
University of Huddersfield Repository

Parkinson, Simon, Vallati, Mauro, Crampton, Andrew and Sohrabi, Shirin

GraphBAD: A General Technique for Anomaly Detection in Security Information and Event 
Management

Original Citation

Parkinson, Simon, Vallati, Mauro, Crampton, Andrew and Sohrabi, Shirin (2018) GraphBAD: A 
General Technique for Anomaly Detection in Security Information and Event Management. 
Concurrency and Computation: Practice and Experience. ISSN 1532-0626 

This version is available at http://eprints.hud.ac.uk/id/eprint/34133/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



GraphBAD: A General Technique for Anomaly Detection in

Security Information and Event Management

Simon Parkinson1, Mauro Vallati1, Andrew Crampton1, and Shirin Sohrabi2

1Department of Computer Science, University of Huddersfield, UK
2IBM T.J Watson Research Center, New York, USA

Abstract

The reliance on expert knowledge –required for analysing security logs and per-
forming security audits– has created an unhealthy balance where many computer
users are not able to correctly audit their security configurations and react to poten-
tial security threats. The decreasing cost of IT and the increasing use of technology
in domestic life is exacerbating this problem where small companies and home IT
users are not able to afford the price of experts for auditing their systems configu-
ration.

In this paper we present GraphBAD, a graph-based analysis tool able to analyse
security configurations in order to identify anomalies that could lead to potential
security risks. GraphBAD, which does not require any prior domain knowledge,
generates graph-based models from security configuration data and, by analysing
such models, is able to propose mitigation plans that can help computer users in
increasing the security of their systems. A large experimental analysis, conducted on
both publicly available (the well-known KDD dataset) and synthetically generated
testing sets (file system permissions), demonstrates the ability of GraphBAD in
correctly identifying security configurations anomalies and suggesting appropriate
mitigation plans.

Key words: Security Auditing, Log Files, Graph Structure, Anomaly Detection,
SIEM

1 Introduction

Auditing security configurations is the process of searching for anomalies that potentially
expose a vulnerability of a considered system. The term Security Information and Event
Management (SIEM) is often used to describe this process of monitoring audit logs and
security configurations to identify vulnerabilities. Given the complexity of the task,
there is a heavy reliance on expert knowledge, which is required for understanding the
different security configurations. This reliance has two main drawbacks: first, expert
knowledge can be incomplete or erroneous; second, the high cost of security experts
makes it infeasible for many users to correctly configure the security of their Information

1



Technology (IT) systems. Therefore, in many cases unseen weaknesses, which can be
exploited, will remain in the configuration. Clearly, auditing security configurations is a
critical problem for organisations whom significantly rely on their IT infrastructure for
undertaking business. For this reason, many companies frequently employ a third party
security auditing company to examine their IT infrastructure to identify weaknesses and
suggest suitable mitigation plans (named penetration testing [1, 2]). Although businesses
are prepared to pay a premium for maintaining their security, the average home IT user or
small company are left to maintain their own IT security. Furthermore, the decreasing
cost of IT and the increasing use of technology in domestic life is exacerbating this
problem.

These limitations are heightened by the following factors: (i) The complexity of com-
putational infrastructure –the cyber-physical platform on which security is attained– is
increasing and the technological landscape is dynamic; (ii) Vast amounts of data available
at any given time present a signal-to-noise ratio that is impossible to manage without
technological advanced support [3]; (iii) The diversity, completeness and spatio-temporal
distribution of security data across different sources compound the difficulty of extracting
important signals from an ocean of noise [4]; (iv) Security threats, knowledge capabili-
ties of human security experts, and technological support rarely co-evolve in such a fast
changing discipline, limiting the ability to defend against new threats appropriately.

In order to overcome these factors, it is envisaged that the design and development
of automatic approaches, able to identify security anomalies and suggest actions to be
taken, will assist in mitigating security risks. The underlying need to produce situation
aware tools is widely acknowledged, and actions are being taken at state level [5]. Various
studies have demonstrated how software tools can be developed to extract meaningful
knowledge to aid security configuration, auditing, and digital investigations [6]. Such
tools are domain-dependent in that their functionality is heuristically guided to identify
threats that are expected. A limitation of these tools is that each requires different
knowledge and skills to translate their output to gain an appreciation of why the ex-
tracted knowledge is of significance [7], i.e. to autonomously gain situation awareness
which can be exploited to promote cyber resilient systems.

In this paper we propose a Graph-based Security Anomaly Detection herein named
GraphBAD. GraphBAD analyses security configurations and audit logs in order to iden-
tify anomalies which can potentially lead to security issues. The analysis is performed by
encoding the provided input, which describes the configuration of a considered IT sys-
tem, under the form of an undirected graph, and by checking the regularity of subgraphs.
By analysing the models generated from the data, GraphBAD identifies anomalies and
then suggests suitable mitigation plans that enable users to take reactive action; requir-
ing minimal expertise from the final user. Evidently, the proposed approach can be used
by non-experts, but it can also be fruitfully exploited by experts either as a decision
support or training tool. In the former use, it can help the expert by quickly analysing
large chunks of data; in the latter it can be used for expert training. Remarkably, the
proposed system performs anomaly detection by analysing the generated graphs. There-
fore, it is applicable to a wide range of scenarios, in which irregularities can be spotted

2



by analysing undirected graphs.
To empirically evaluate the effectiveness of the proposed approach, a large experimen-

tal analysis has been performed. Such analysis considered large synthetically generated
file system permission datasets, as well as the well-known (KDD Cup 1999 datasets) [8],
which has been used in the Third International Knowledge Discovery and Data Mining
Tools Competition. There are many other datasets available in the public domain for
benchmarking of anomaly detection algorithms; however, the KDD dataset is chosen for
its applicability to the SIEM theme of this research and many other researchers have
benchmarked their algorithms against the dataset, allowing for direct comparisons to
be made. Our results indicate that GraphBAD is an effective approach for identifying
anomalies in security configurations and suggesting suitable mitigation plans.

The primary aim of this paper is to introduce a general and widely exploitable
technique for identifying anomalies in SIEM data sources. The research hypothesis
addressed in this paper is: representing security data using graph-based structure creates
the potential to identify anomalies without programatically encoding specific application
knowledge. The primary contributions presented in this paper are:

� GraphBAD for the unsupervised translation of structured data into a graph rep-
resentation that can then be analysed in order to identify anomalies. A measure
of regularity is then used to identify anomalous subgraphs. This technique, albeit
an exploratory prototype, demonstrates the potential of adopting the domain-
independent philosophy for application in the security auditing and SIEM commu-
nities. Furthermore, the application will be of importance in the Artificial Intel-
ligence community as a useful benchmark for further development and evaluation
of unsupervised learning mechanism.

� Method of generating synthetic datasets has been developed in response to
the absence of publicly available benchmarking security configuration datasets.
The technique is used for generating synthetic datasets for file system access con-
trol. The auditing of file system permissions is a prominent challenge in the security
auditing community as vulnerabilities can have significant implications [9, 10]. The
technique will promote awareness and result in other researchers using the datasets
for benchmarking purposes, thus providing new solutions for file system auditing.

� Benchmarking using large security logs to identify anomalies (KDD dataset).
An accuracy rate of 0.80 demonstrates the potential of GraphBAD as the result
surpasses some supervised approaches. Furthermore, to the best of the authors
knowledge, the method of partitioned KDD data presented in this paper aids to
remove potential bias introduced in previous research where the data has been
selectively divided into small subsets and only utilised a few attack types.

� Worked example for detecting anomalies in file system permissions allows
the reader to relate the proposed technique to a common administrative and audit
challenge. This ensures that the research presented in this paper has importance
for both the research and administrative communities.

3



The paper is organised as follows: as graph based systems are used in many different
applications within the cyber security research discipline, the next section is devoted
to summarising the different areas of research and the positioning of this paper. The
next section is devoted to a detailed explanation and example of the presented graph-
based extraction technique. This leads to the experimental analysis section where a
technique is presented to detect anomalous data items in both synthetically generated
and bench marking datasets. Following this, conclusions and the direction of further
work is provided.

2 Related Works

In terms of research in the Security Information and Event Management (SIEM) and
administrative communities, there is a wealth of research detailing the challenges of
analysing data sources to assist users in auditing their systems’ security. Recent re-
view papers detail the challenges facing SIEM analysis, and in particular in the areas
of intrusion [11] and attack detection [12]. Research has demonstrated the potential of
using data mining techniques to identify hidden patterns in malware data to support
SIEM analysis [13]. Another interesting approach is the use of latent semantic analysis
to help reduce unnecessary noise in large datasets [14]. These approach demonstrates
good potential; however, knowledge regarding data structure, as well as what consti-
tutes a threat, is required throughout the analysis. This motivates the work in this
paper where an unsupervised techniques is developed to assist in SIEM. According to
literature, this view is shared by the SIEM research community where although the use
of statistical and machine learning techniques have demonstrated some success, yet they
require modification per problem instance [15].

Graph-based analysis is used in many different aspects of cyber security [16] which
warrants its exploitative use in this research. Three main strands of research exploiting
graph-based models can be identified as:

1. Analysis of software behaviour. Works in this area are encoding actions executed
by software as graphs, in order to identify suspicious patterns, typical of malicious
code [17]. For instance, recently graph-based analysis has been used for identifying
malicious downloader systems [18].

2. Penetration testing / attack graphs. This area focuses on identifying sequences
of actions that violates some property defined over the system. Researchers have
successfully used graph-based representations to identify vulnerabilities in net-
works [19, 20, 21, 22]. In addition, researchers have also developed methods of
automating penetration testing and auditing [23, 24]. The interested reader is
referred to [16] for a survey on this topic.

3. Identification of anomalies or potential issues in security configuration. Notably, a
number of works investigated the extraction of graph-based models from security
data (see, e.g. [25, 26, 27, 28, 29, 30, 9]). However, most of them are aimed at

4



identifying anomalies in a graph’s structure with prior expert knowledge regarding
the data’s structure. The interested reader is referred to [31] for an overview of
the exploitation of graph-based anomaly detection techniques, in a wide range of
application.

According to the provided “classification”, our work should be situated in the third
category. However, it does also have practical applications in the second category where
configuration files and logs are analysed during penetration testing. Despite the amount
of existing work on this topic, there is still a significant lack of research being performed in
the area of developing general, unsupervised, autonomous methods of anomaly detection
that can provide mitigation suggestions without relying on expert knowledge. There is a
large body of research work on using graph-based models in cyber security analysis, and
some of the more prominent have been mentioned in the above. In addition, there are
works where automated planning and scheduling are used for security analysis [23, 32].
However, the majority of this work is “domain-specific” in that specific application
knowledge is encoded into the algorithms or provided by the user as a hand-crafted
model. Although such work presents significant findings in its related application area,
it is unable to provide contribution to the research hypothesis integral to this paper.

There are different types of anomalies within the research area of SIEM cyber security
analysis, which can loosely be categorised as:

1. Temporal anomalies occur when data is determined to be irregular if its temporal
occurrence is unusual. For example, identifying temporal anomalies in internet
traffic [33], and techniques detecting temporal based anomalies in data sources
available on UNIX systems.

2. Volume anomalies occur where a spike in the volume of data being monitored
and/or logged occurs. For example, detecting volumetric changes in network traf-
fic [34, 35], which can be used for security applications such as detecting a high
volume of command and control communication, indicative of a malware [36, 37].

3. Relational where an anomaly is described by an irregular relationship among
data elements (objects). There has been a wealth of research in developing and
exploiting new techniques for detecting security configuration anomalies, which
adopt an object-centric modelling technique [38, 39, 40, 41]

Based on the above categorisation, this paper focusses on the development of tech-
niques for the identification of relational anomalies. It is worth noting that in focusing on
the development of a technique capable of the unsupervised identification of irregularities
in relational data, the potential applicability of the proposed technique on other types
of anomalies will be hindered. This is due the different characteristics with datasets in
the volume and temporal categorise. For example, temporal datasets will have to deal
with continuous (e.g. time), and datasets of a large volume will pose computation and
efficiency challenges.

5



3 THE GraphBAD APPROACH

Before introducing the proposed Graph-based Security Anomaly Detection (GraphBAD)
approach, we provide a definition of anomaly, which follows from the definition provided
in [31].

Definition 1 Given a graph and a measure of regularity, an anomaly is a subgraph that
has a regularity value below the provided reference measure.

Notably, given the generality of the proposed approach, anomalies can be identified
only by considering the structure of the analysed graph. Having introduced the notion
of anomalies, we can now present GraphBAD. An overview of the system is as follows:

1. Graph-based model generation for the translation and reduction of security
auditing data into a graph-based representation;

2. Anomalous subgraphs detection where data entries are determined to be
anomalous should they be infrequent and poorly connected;

3. Mitigation suggestion generation for suggesting the objects that need to be
reducing to nullify the identified vulnerability.

Each step will be described in the remainder of this section. As a working exam-
ple to aid the reader (researcher and system administrator), throughout the paper we
consider auditing access control on Microsoft’s New Technology File System (NTFS).
The brief construct of access control in NTFS (sufficient to understand the example) is
that each user or group (e.g. Bob) within the system can be granted a level of access
(e.g. FileReadData) on a file system resource (k : \) through the use of fine-grained
permission attributes. Users can be associated to groups which inherit multiple access
control entries on multiple file system resources. This combination, amongst others not
covered here, make administering and auditing NTFS permissions challenging and thus
the solution presented in this paper is of significant benefit to this target domain. The
interested reader is referred to [42] for a full description of NTFS permissions and their
auditing challenges. The use of this example will communicate how GraphBAD is able
to work domain-independently.

3.1 Graph-based Model Generation

The first step of the approach is to convert the provided security data into a relational
graph-based model. Here the model is represented as an undirected graph. As security
configuration data and audit logs comes in many different forms, the developed algo-
rithm relies on two assumptions: (i) security data are provided in text form; and (ii)
each delimited value represents an object and all objects in the same dataset share a
relationship. It should be noted that currently, many security configurations respect
the mentioned assumptions [11]. Furthermore it should be mentioned that other re-
searchers also acknowledge this assumption. This is most likely due to the natural way

6



in which a programmer will rationalise security configurations following an object-centric
philosophy.

For each object identified in the security data, a corresponding vertex vk is generated.
Therefore, given n objects, a set of vertices V = {v1, v2, ..., vn} is provided. Following
the file system example, reading the two datasets of:

Bob, k : \, F ileReadData
Dave, k : \, F ileReadData

would result in the following vertices:

V = {Bob,Dave, k : \, F ileReadData}

If an object –corresponding to a vertex vk in set V – is part of a dataset containing
more objects, than for each couple of vertices vk,vi with k 6= i, an edge ei = (vk, vi) is
created. At the end of this step, an edge set E = {e1, e2, ..., ej} is generated. Following
our example, the considered datasets would result in the production of the following
relationship set.

e1 = (Bob, k : \)
e2 = (Bob, F ileReadData)

e3 = (k : \, F ileReadData)

e4 = (Dave, k : \)
e5 = (Dave, F ileReadData)

e6 = (k : \, F ileReadData)

3.1.1 Graph Reduction

Once all datasets have been processed, the cardinality of both V and E are likely to be
excessively large and contain a significant quantity of repetitive information. Intuitively,
it is possible to reduce the size of the graph without losing information, in order to speed
up the subsequent analysis. Performing reduction has potential to group regular data en-
tries together, making irregular items less distinguishable. Conversely, it is also possible
that irregular data entries will be grouped together making them more distinguishable.
This does create uncertainty over its potential. However, empirical analysis performed
in this paper yields positive results. Vertices that are not directly connected, but share
the same set of edges to other vertices, are merged. In other words, vertices’ relation-
ships determine their class (set). In the example, it is easy to determine that Bob and
Dave can be placed into the same set as they have the same relationships with the same
objects. In order to perform this reduction, each vertex is systematically compared with
all other vertices. A given vertex vk is determined to match vi where k 6= i if ei = ek.
When a match is found, both vk and vi will be added to a new or previously created
set. For example, s1 = {vk, vi}. This exhaustive search has a complexity of O(n2). To

7



D

B

K

F

e4

e5

e6 e3

e1

e2

Figure 1: Before graph-based diagram generated by GraphBAD for the considered file
system example. D = Dave, B = Bob, K = k : \ , and F = FileReadData

s1 s2 s3e1(2)

e2(2)

e3(2)

Figure 2: Final graph-based diagram generated by GraphBAD for the considered file
system example. Cardinality (weight) of edges is provided between brackets.

aid understanding, consider the following continuation to the file system example where
the following sets are determined:

s1 = {Bob,Dave}
s2 = {k : \}

s3 = {FileReadData}

Relationship reduction is performed to remove repetitive edges. In the example, e6 is
removed as e6 = e3. To each “surviving” edge we attached the number of edges removed
because of it: this information gives the weight (or cardinality) of each edge in the graph.

3.1.2 Rename Vertices and Perform Final Edge Reduction

In the final step, the graph is re-generated by collapsing vertices of the same set into
a single vertex and removing duplicate edges, generated by vertices reduction. In our
example, e1 and e4 are now equal and one of them can safely be removed. The before
and final graph G = {{s1, s2, s3}, {e1(2), e2(2), e3(2)}} of the considered example are
shown in Figure 1 and Figure 2, respectively.

8



s1 = {User1, ..., User20}
s2 = {k : \}

s3 = {FileReadData}
s4 = {User21}

s5 = {FileWriteData}

e1 = (s1, s2)

e2 = (s1, s3)

e3 = (s2, s3)

e4 = (s2, s4)

e5 = (s2, s5)

e6 = (s3, s4)

e7 = (s4, s5)

Figure 3: Vertices sj and edges ei of the graph generated for the file system anomaly
example.

3.2 Anomalous Subgraphs Detection

The graph generated by following the process described in Section 3.1 is examined in
order to identify anomalies that can indicate security issues. Here we will consider the
continuation of the previous file system example. However, this time there are twenty-
one users in the system, all with the permission of:

Usern, k : \, F ileReadData

In addition to each user having the permission of FileReadData, User21 also has
the permission entry of:

User21, k : \, F ileWriteData

Figure 3 provides the vertices and edges obtained by generating the graph. The
corresponding graph-based diagram is shown in Figure 4. For the purposes of this
example, this extra permission for User21 is in fact the anomaly.

The method developed for the automatic detection of anomalous subgraphs is based
on an evaluation of weights of edges connecting subgraphs. It should be noted that sim-
ilar evaluations have been exploited in different domains –for instance in detecting fraud
in healthcare data [43]. However, such techniques are either based on supervised learn-
ing, or are developed with embedded application knowledge. In GraphBAD, anomalous
subgraphs are detected without relying on any prior or specific application knowledge.

3.2.1 Calculate Measure of Regularity

For detecting anomalous subgraphs, also following Definition 1, it is critical to identify
a measure of regularity. For this purpose, we consider the average weight of edges per
vertex, R(G), calculated as:

9



R(G) =
1

l

j∑
k=1

weight(ek), (1)

where j is the number of edges and l is the number of vertices of the graph G. In
the considered example, R(G) = 17.4. Although this measure of regularity may appear
to be simplistic, it is important to remember that GraphBAD is being used to identify
subgraphs that appear anomalous, i.e subgraphs which are below a measure of regularity.
Intuitively, the average weight of vertex edges will provide an approximate measure of
regularity. More sophisticated and complex measures of regularity can easily be added to
GraphBAD; however, the experimental analysis provided in Section 4 does not suggest
this to be necessary.

3.2.2 List Suspicious Subgraphs

Once the R(G) value is calculated, it is used as a threshold for identifying interesting
and potentially anomalous subgraphs. Specifically, in this context, we are interested in
subgraphs gi with H(gi) value lower than R(G). Given a subgraph gi, H(gi) is the sum of
all weighted edges connected to the vertices in gi. In our example, given g1 = {{s1}, {∅}},
H(g1) = 40.

Algorithm 1 is then performed for identifying interesting subgraphs. The complex-
ity of the algorithm is O(n2) and takes three parameters: the threshold value T –
corresponding to R(G)–, the set of vertices V and the set of edges E. Firstly, the set
of interesting subgraphs belowT is empty, and the set of subgraphs to compute is ini-
tialised with V . This corresponds to considering all the subgraphs of cardinality 1, with
no edges. Lines 5–14 evaluate the H(gi) value of each subgraph: subgraphs with a value
above the threshold are removed, while the others are saved in the belowT set. At line
10 the cardinality of subgraphs is checked, in order to stop the evaluation as soon as the
maximum size –i.e., the size of the graph G– is reached in the next step. At line 16, each
subgraph that is still relevant is extended. More specifically, a new connected vertex is
added as the aim is to find the largest subgraph with a H(gi) value less or equal to R(G).
Algorithm 2 details the ExtendSubG procedure. As previously mentioned, the purpose
of this procedure is to extend a given subgraph, g, by one vertex. Therefore, it is increas-
ing the size of g to find the largest expansion of a subgraph below the threshold. This
technique iterates over the set of edges and vertices to identify a vertex, vk, which is con-
nected to a vertex gj within the subgraph g by edge ei. If a suitable vertex is identified,
then it and the connected edge is added to g. Finally, the list of all subgraphs gi with
H(gi) value below threshold is returned. In our example, the returned belowT includes
three subgraphs: g1 = {{s4}, {∅}}, g2 = {{s5}, {∅}}, g3 = {{s4, s5}, {e7}}. Note that in
a very regular graph-based model of security data, the described method would return
only subgraphs composed of at most a single vertex. Therefore, the number and sizes of
subgraphs with H value below the threshold is itself an indication of the regularity of
the analysed security data.

10



s1 s2 s3

s4s5

e1(20)

e2(20)

e3(41)

e4(3)e5(1)
e6(1)

e7(1)

Figure 4: Graph-based diagram of the anomaly example considered for the anomalous
subgraphs detection.

3.2.3 Identify Anomalous Subgraphs

In order to provide effective mitigation suggestions, it is important to identify the largest
areas of the graph-model G that are potentially affected by the security issue. Therefore,
we select the largest subgraphs –with regards to involved vertices– with H value below
the threshold. In our example, g3 is the largest subgraph, involving s4 or s5, and is thus
identified as anomalous. Again we note that in large datasets there can be more than
one security issue, leading to more than one anomalous subgraph.

It is important to identify the maximum number of vertices which are anomalous.
For this reason, we select the largest subgraph that involves vertices appearing in other
smaller identified anomalous subgraph. In the example this would result in the identi-
fication of the following subgraphs: H1 = {s4}, H2 = {s5}, and H3 = {s4, s5} with a
m(Hn) score of 5, 2, and 7, respectively. If the subgraph of H3 is below the threshold,
then smaller graphs consisting of its constituent vertices (s4, s5) are also going to be
below the threshold. The solution is to select the subgraph with the greater m(Hn)
score under the threshold. Using this technique will disregard H1, H2 and result in the
identification of anomaly H3 = {User21, F ileWriteData}.

3.3 Generate Mitigation Suggestions

Given an identified anomalous subgraph, GraphBAD suggests corrective steps in order to
remove the anomaly. However, it is useful to remind the reader that no prior knowledge
is provided, and that it is pivotal to minimise disruption to the system and its users.

Evidently, modifications can in principle imply the removal of both vertices and edges.
This raises the interesting question of will removing the edge, vertex, or both mitigate the
anomaly and leave the system in a safe state? It is challenging to discover the answer to
such a question without domain knowledge, or the ability to interact with the system to
test mitigation hypothesis. However, the proposed technique only considers the removal
of vertices as although removing an edge would disable the anomalous subgraph, there is
a large amount of uncertainty surrounding the potential effect of the remaining vertices

11



Algorithm 1 Return all gi with H(gi) < R(G)

1: procedure AnomalousSubgraph(T ,E,V )
2: belowT := ∅
3: toCompute := V
4: repeat
5: for g ∈ toCompute do
6: if H(g) ≥ T then
7: toCompute := toCompute \ g
8: else
9: belowT := belowT ∪ g

10: if NumberVert(g) = (|V | -1 ) then
11: toCompute := toCompute \ g
12: end if
13: end if
14: end for
15: for g ∈ toCompute do
16: g := ExtendSubG(g,E,V )
17: end for
18: until ToCompute 6= ∅
19: return belowT
20: end procedure

in the real-world implementation of the data being analysed.
Following in the same object-centric assumption made during the graph generation

phase can help identify the solution. For example, removing the vertex in a file system
anomaly will also nullify the edge. Domain knowledge allows us to know this; however,
in the situation where this assumption is void, it is safer to remove objects, rather than
removing their relationships only. For example, removing an edge would result in the
anomalous object remaining active in the system, and potentially remaining configured
in other anomalies within the system.

Continuing with the illustrative example (Figure 4), subgraph g3 has been identified
as an anomaly. Focusing on vertices, g3 includes two of them: {User21, F ileWriteData}
(here we refer to the objects which vertices represent, since it makes easier the explana-
tion). Those familiar with file system access control will correctly identify that removing
FileWriteData for User21 will remove the anomaly. However, this may not be so obvi-
ous for users who have little or no prior knowledge regarding file system access control.

Our approach tackles this problem by considering the degree of connectivity that
each vertex has to vertices outside the anomalous subgraph. The ideal solution is to be
able to remove sets of vertices from the subgraph which have no connectivity beyond the
subgraphs; however, in most cases it will not be such a trivial solution. In the example,
neither s4 nor s5 can be removed under the assumption that they have no connectivity
outside of the anomalous subgraph g3. In cases like the one considered in our example,

12



Algorithm 2 ExtendSubG for expanding a subgraph, g, by one vertex

1: procedure ExtendSubG(g,E,V )
2: i = |E|, j = |g|, k = |V |,
3: for ei ∈ E do
4: for gj ∈ g do
5: if gj ∈ ei then
6: for vk ∈ V do
7: if vk ∈ ei then
8: return g ∪ {ei,vk}
9: end if

10: end for
11: end if
12: end for
13: end for
14: return null
15: end procedure

the vertex with the lowest connectivity value is removed. Here, as connectivity, we
consider the sum of the weights of edges connecting the vertex with vertices outside the
anomalous subgraph. In the example, this would result in s4 = 8, (e4 + e6) and s5 = 2,
(s6 = 2). As s5 has the lowest score, it is considered as the vertex which should be
removed.

Once a vertex has been identified to be removed, this information is presented to
the user. Specifically, positive (i.e., removing the anomaly) and negative (i.e., affecting
relationships outside the anomalous subgraph) effects of removing the object (or more
objects) corresponding to the vertex in the graph model are described. In the example,
the following is presented to the user:

Remove s5{
Positive : remove F ileWriteData,

Negative : remove relationship F ileWriteData to k : \ }

Although it is not possible to provide the user with a detailed set of instructions
about how to perform the above, the information presented can be used to help make
a better-informed decision on how to rectify the anomaly, and therefore go some way
to help reduce the reliance on expert knowledge. The above mitigation information is
informing the user that removing FileWriteData is identified as a positive effect to
mitigation the identified anomaly. The effect of performing the action is that it will
remove the relationship between FileWriteData to k : \.

It should be noted that this technique is general in that it will provide suitable
mitigation plans for anomalies identified in any object-centric dataset. This technique
does have a degree of uncertainty as it is operating without domain-specific knowledge.

13



It is foreseen that the user will need to interpret the suggested mitigation action and
determine its suitability. Although this is a limitation of the technique, it should be
noted that providing a suggestion to a user with limited expert knowledge puts them in
a better position to resolve security weaknesses than without using GraphBAD.

4 EXPERIMENTAL ANALYSIS

The aim of this analysis is to gain a comprehensive understanding of GraphBAD’s ability
to correctly identify both regular and irregular (anomalous) security data. Remarkably,
there is a lack of security configuration benchmark datasets; however, anomaly detec-
tion audit logs are available. Therefore, we consider two different benchmark sets: (1)
synthetically produced configuration datasets with varying degrees of complexity and
number of anomalies, and (2) publicly available anomaly benchmark datasets used by
other researchers. The latter allows us to make a direct comparison with other state-of-
the-art techniques.

In the experimental analysis, performance is assessed using the following measures:

1. True Positive Rate (c): the fraction of irregular permissions correctly identified as
irregular, and correctly included in the mitigation plan;

2. False Positive Rate (fpr = 1 - tnr): the fraction of regular permissions incorrectly
identified as irregular, and incorrectly included in the mitigation plan;

3. True Negative Rate (tnr): the fraction of regular permissions correctly identified
as regular, and correctly not included in the mitigation plan;

4. False Negative Rate (fnr = 1- tpr): the fraction of irregular permissions incorrectly
classified as regular, and incorrectly not included in the mitigation plan;

5. Accuracy is reported as the fraction of all samples correctly identified. More specif-
ically, Accuracy = tpr+tnr

tpr+tnr+fpr+fnr

It should be noted that all the measures consider, at the same time, the capability
of GraphBAD in identifying anomalies and proposing an adequate mitigation plan.

GraphBAD has been programmed in 64-bit Java and executed on an Intel i7 with
16GB of RAM, equipped with Java 1.7. The software is multi-threaded to reduce pro-
cessing time. For the examples presented in this paper, a maximum of 8 threads were
used during the graph reduction and anomaly detection stage.

4.1 Synthetic datasets

In this section we firstly detail the algorithm developed for generating synthetic data,
and then show the results of the experimental analysis performed on such data.

14



Algorithm 3 Algorithm for generated synthetic directory structures

Input: The maximum number of directories, MaxDir
Input: The step size of the directories, StepDir
Input: The maximum number of anomalies , MaxAnom
Input: The step size anomalies, StepAnom
Output: A set of directories, S = {s1, s2, ..., sn}, where sn = {d, p} where d is the

directory resource, and p is the permission level
1: procedure GenerateData
2: belowT := ∅
3: toCompute := V
4: repeat
5: while n← 0 do
6: i← 0
7: while i ≤MaxDir do
8: S[j]← createDirectory()
9: i+ = StepSize

10: end while
11: j ← 0, i← 0
12: while J ≤MaxAnom do
13: dirNo← genRandomInt(0, i)
14: pLevel← genRandomInt(1, 14)
15: i+ = StepSize
16: S[j]← pLevel
17: end while
18: n+ = StepAnom
19: end while
20: until n = MaxAnom
21: return S
22: end procedure

4.1.1 Generation of Synthetic Data

The synthetic datasets are generated by continuing with the example of auditing file
system permissions. Different datasets have been created, and their characteristics are
defined by the number of regular and irregular permissions. In our file system exam-
ple, the dimensions are denoted by the number of directories, the number of users and
the different levels of permissions. The number of irregular and regular permissions is
programatically defined.

Algorithm 3 has been developed to generate synthetic datasets that closely replicate
real-world security configurations [10]. The designed function takes four inputs: the
maximum number of directories to create (MaxDir); the maximum number of anoma-
lies to introduce (MaxAnom); the step size of the directories (StepDir); and the step
size of the anomalies (StepAnom). The algorithm will produce a set of directory struc-

15



tures (S). Each set, si, will contain a sequence of directory resources and permissions,
increasing in multiples of StepDir until we reach the maximum directory size MaxDir.
Line 5 is where the directory resource is created. However, for the purpose of creating
synthetic datasets we do not need to create the actual directory structure, rather just a
set representation. Each directory size will exist several times with a different frequency
of simulated anomalies. The algorithm will start at StepAnom and increase in multiples
of StepAnom until MaxAnom is reached. The directory to assign the anomaly to, as
well as the level of permission, are determined through generating a pseudo random
number (lines 10 and 11). For the directory this will be between zero and the maximum
number of directories (MaxDir), and the permission level will be established through
generating a number between one and fourteen which is then translated into a permis-
sion level by setting the corresponding bits. For example, 1 denotes the permission level
of full control, 2 to traverse folders, etc. A full definition of the individual attributes can
be found in [9].

4.1.2 Empirical Results

For providing a comprehensive analysis of the system, we generate 380 unique datasets
by using Algorithm 3 with the following four specifications:

1. MaxDir = 1,000, StepDir = 100, MaxAnom = 9, StepAnom = 1;

2. MaxDir = 1,000, StepDir = 100, MaxAnom = 100, StepAnom = 10;

3. MaxDir = 10,000, StepDir = 1000, MaxAnom = 9, StepAnom = 1; and

4. MaxDir = 10,000, StepDir = 1000, MaxAnom = 100, StepAnom = 10.

These specifications consider small to medium (100 to 1,000 directories) and large
directory structure (1,000 to 11,000 directories). Test cases are created to simulate a
small to medium (1 to 10) and a large number of anomalies (10 to 100). The motiva-
tion behind the creation of these datasets is to allow for a comprehensive analysis of
GraphBAD against datasets with a different number of anomalies.

The Receiver Operating Characteristic space, illustrated in Figure 5, demonstrates
the capability of GraphBAD to identify anomalies. Figure 5 illustrates the tpr and fpr for
each dataset. The minimum accuracy ratio is 0.86; however, the average is above 0.98.
The graph illustrates the trade-off between the tpr and fpr. The further the distance
from the 45-degree (dotted) line, the more accurate the result. This clearly demonstrates
GraphBAD’s capability; especially considering that it has no prior knowledge regarding
what is an anomaly, only the basic assumption regarding object relationships. It is
worth emphasising the very low fpr value; given the typical scenario, where users are
not required to be IT experts, it is very important that those identified as anomalies are
actually anomalies, in order to minimise disruptions and changes. The average fnr and
tnr are 0.58 and 0.98, respectively. The high tnr demonstrates the ability to correctly
identify regular permissions as regular. The fnr has an average of 0.23, but it should be
noted that the number of irregular permissions which are incorrectly classified as regular

16



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate (fpr)

T
ru

e
P

o
si

ti
ve

R
at

e
(t

p
r)

Dataset

Figure 5: ROC space illustrating the tpr and fpr on the considered synthetic datasets.

increases as the number of anomalies also increase. This effect increases as the number
of directories reduce. This is because the ratio of anomalies to regular permissions will
decrease, making them less easy to identify by using the measure of regularity provided
in this paper. However, it should be noted that considering GraphBAD is a very general
approach, that does not exploit any specific application knowledge, these results are
promising and show the potential of the technique.

Although Figure 5 demonstrates the classification characteristics of the technique,
it is useful to also examine the relationship between the number of objects and the
number of anomalies. Figure 6 (coloured) illustrates a polynomial surface (for result
presentation only) of degree 5 for modelling the number of directories (objects), the
number of anomalies (objects) and the accuracy. From this figure, it is noticeable that
the accuracy is best when the number of anomalies is low and the number of directories
is high. This is interesting as it demonstrates that the system is more effective at
identifying anomalies when there is a large number of regular objects. However, this is
no surprise as an increasing number of regular permissions will result in an increased
measure of regularity, and therefore make the anomaly more easily identifiable. This
clearly demonstrates that although the measure of regularity used in detecting subgraphs
is simplistic, the results warrant its use. Figure 6 also illustrates an interesting trend
where the accuracy decreases, and is at its lowest, when the number of anomalies is
around 10, irrespective of directory size. However, this is potentially misleading as a
large percentage of the generated datasets have less than 10 anomalies, and only very

17



Figure 6: Polynomial fit illustrating how accuracy changes with respect to directory size
and number of anomalies, on the considered synthetic data.

few have exactly 10.
In the application of examining file system permissions, GraphBAD is processing data

offline and time is less of a concern. However, as GraphBAD ignores duplicate entries,
it is able to maintain quick execution. The time required for execution is between 2-5
seconds for each of the synthetically generated datasets. Execution time increases as
the number of anomalies also increases. The reason behind this increase is because
the number of vertices and edges will increase with an increased variety of permissions
(regular or anomalous).

4.2 Benchmarking

Even though research into anomaly detection is a large field, there is a lack of publicly
available, standardised benchmarks for comparison of techniques [51]. The benchmark
data that we are using is that from the Third International Knowledge Discovery and
Data Mining Tools Competition (KDD Cup 1999 datasets) [8]. Although these data
originates from 1999, many anomaly detection techniques have been evaluated using
this data and, to the best of our knowledge, it is the most commonly used for bench
marking. During this benchmarking, GraphBAD’s accuracy is compared against other
state-of-the-art techniques which have also been tested on the KDD datasets.

The KDD data are suitable for examining the presented technique as it comprises of
a fixed set of connection-based features. The data is in Comma Separated Value (CSV)
format, and each line contains a series of variables and an attack type. The structure of

18



Table 1: Survey of accuracy results from previous works using (part of) the KDD dataset.

Technique datasets derivation Accuracy

Unsupervised Cluster-based Detec-
tion [44]

datasets of 400k with 1-1.5% anomalies 0.48

γ-Algorithm [45, 46] datasets of 2k with 5% anomalies 0.70

Subspace Categorical Data (Catsub) [47] Entire KDD dataset divided into four at-
tack categories

0.82

Real-Time Incremental Clustering (AD-
WICE) [48, 46]

Entire KDD dataset divided into four at-
tack categories

0.95

Fuzzy C-Means (FCM) Entire KDD dataset divided into four at-
tack categories

0.96

Self-adaptive and Dynamic Clustering [49] Divided into three attack types, re-
factored into three datasets with 99% nor-
mal and 1% anomaly

0.86

Genetic Algorithm & Support Vector Ma-
chine [50]

Random extraction of DOS attack only
(no detail of size)

0.99

the data does not require any modification for use with GraphBAD. There are a total of
24 different attack types and “normal” in the KDD cup dataset. However, researchers
who have previously used KDD bench marking data have raised concerns over the KDD
Cup dataset which can bias comparative experiments [8]. Two identified limitations are:
(1) the attack rate within the KDD Cup dataset is unnatural, and almost 80% of all
instances correspond to an attack, and (2) the distribution of each attack type within
the KDD cup dataset is unbalanced [45]. Another issue with using the KDD datasets for
direct comparison is that other researchers often use different pre-processing techniques
to generate sub datasets for evaluation. However, it should be noted that the KDD
dataset, despite its limitations, has been widely used for benchmarking allows for state-
of-the-art comparison. Table 1 details the results, and the considered KDD sub datasets,
of state-of-the-art unsupervised anomaly detection algorithms tested on the KDD cup
dataset.

As previously highlighted, the absence of any publicly available and standardised
dataset makes it challenging to perform a systematic comparison with state-of-the-art in
to unsupervised algorithms. One study determined that the use of a supervised algorithm
could achieve 95% classification accuracy on KDD data [52], which is significantly better
than the unsupervised techniques presented in Table 1. However, it should be noted
that it is not realistic to compare unsupervised and supervised algorithms for the correct
identification of irregular data items within the KDD dataset. Supervised algorithms
have the benefit of being able to train to know what constitutes an irregular data entry
through the use of classified training data, whereas unsupervised algorithms attempt to
identify irregular data with no prior knowledge or training. Instead, GraphBAD is an

19



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate (fpr)

T
ru

e
P

o
si

ti
ve

R
at

e
(t

p
r)

Dataset

Figure 7: ROC space illustrating the tpr and fpr on the considered KDD datasets.

unsupervised algorithm for detecting anomalies in object-based datasets with no prior
knowledge of what is classed as both normal and anomalous.

It should be noted here that a primary difference between GraphBAD and other
approaches is that GraphBAD does not use any meta-data or restructuring techniques
prior or during the processing of the KDD datasets. The use of meta-data would go
against the aim of this work to produce a domain-independent technique for identifying
security configuration anomalies. GraphBAD does not use any user input, only the
actual data itself. It should also be noted that using the KDD data does not allow us to
perform any mitigation planning. This is because the data does not represent a system’s
configuration, rather a network activity log.

In our experimental analysis, we test GraphBAD using the unlabeled KDD cup data
which does not contain the attack type. Once processed, we consider the GraphBAD
output against the labeled data –used as ground truth– in order to calculate tpr, tnr and
accuracy as previously defined.

Although the techniques presented in Table 1 are unsupervised, each researcher has
partitioned the data in different ways for processing. Specifically, the fact that only
specific attack types have been selected potentially introduces bias. Here, in order to
minimise potential bias and to provide a complete overview of performance, we decided
to test GraphBAD on the complete KDD cup dataset (and a random sub-sample of 10%
of it), and to systematically divide it into datasets with different characteristics. To
provide a wide-scale analysis, the proposed methodology is to incrementally construct

20



Figure 8: Polynomial fit illustrating how accuracy changes with respect to directory size
and number of anomalies, on the considered KDD data.

datasets consisting of 1,000 entries, to 100,000 entries, in steps of 5,000. Each dataset will
have an incrementally increasing number of attack entries from 1% to 20%, increasing
by 5% in each increment. Both the normal and attack entries are extracted from the
KDD cup dataset at random, and to get a complete representation, each data entry is
only used one time.

In addition to the constructed subsets, we also process GraphBAD using both the
10% sample and the entire KDD cup dataset which results in an accuracy of 0.60 and
0.72, respectively. This performance is surprising as 80% of the data entries are attacks.
However, the reason that GraphBAD still has such a high accuracy rate is because the
80% attack data is further divided into 24 different attack types, making an average
of less than 4% for each attack. The results demonstrate that 20% of the data being
normal is enough for GraphBAD to achieve a good accuracy rate.

The execution time of GraphBAD deteriorates as the size of the data structure
increases. For example, execution time for datasets containing 1,000 and 100,000 entries
were 5 and 6834 seconds (1.8 hours), respectively. This demonstrates that GraphBAD
would suffer from poor performance on datasets of a large size; however, a dataset with
over 100,000 datasets would represent a large security configuration. Furthermore, the
time required for GraphBAD to analyse a system configuration is insignificant compared
to the time required for a human expert to thoroughly analyse the configuration.

The results presented in Table 2 demonstrate the average results of GraphBAD on
the KDD datasets generated using the previously described methodology. The results
in the table centre around the percentage of anomalies (attacks), rather than the size of
the dataset. We chose to present the results in this way as the results only differ slightly

21



Table 2: GraphBAD performance, on the KDD sub-sets, with respect to different
anomaly percentages. Results (averaged) are shown in terms of accuracy, true posi-
tive rate, and false positive rate.

Anomaly
Percent-
age

tpr fpr tnr fnr Accuracy

1% 1.00 0.17 0.00 0.83 0.84

5% 1.00 0.17 0.00 0.83 0.83

10% 1.00 0.20 0.00 0.80 0.82

15% 0.95 0.23 0.05 0.77 0.80

20% 0.45 0.45 0.55 0.55 0.74

depending upon dataset size. For example, the accuracy for 1% of anomalies in dataset
sizes of 1000 and 20,000 is 0.87 and 0.81, respectively. It is also noticeable from the
results that the tpr is at 100% until the percentage of attacks reaches 15%. The fpr is at
17% with both 1% and 5% of attacks and increases to 45% with 20% of attacks. The fpr
is the main weakness of GraphBAD as it describes the percentage of regular data entries
which are identified as irregular, i.e., the system is too sensitive. Figure 7 illustrates the
ROC space where it is noticeable there are two distinct clusters: those with a high trp,
and those with a low tpr. Figure 8 (coloured) illustrates a surface fit with a polynomial
surface of degree 5. From this it is possible to deduce that those with a low tpr are those
with a high number of data entries (> 15, 000) with a high percentage of anomalies
(> 10%). The results in the table demonstrate that the accuracy of the proposed system
diminishes with an increasing percentage of anomalies. To the best of our knowledge,
results shown in Table 2 and those achieved on the complete KDD dataset indicate that
GraphBAD can provide better results than existing unsupervised approaches. In fact,
the only two other approaches (first two rows of Table 1) that consider all the attack
types –though only on a subset of the KDD data– show significantly worse performance.

5 Conclusion

Auditing security configurations is a complex task, that heavily relies on expert knowl-
edge, which is required for understanding the different security configurations. However,
expert knowledge can be incomplete or erroneous, and the cost of security experts can
be unaffordable for home users and small companies.

For addressing the above issues, in this paper we presented the novel Graph-based
Security Anomaly Detection (GraphBAD) approach. GraphBAD does not require any
previous knowledge on the data structure; the only assumptions are that security data
are provided in text form, and that objects in the same dataset are related. GraphBAD
converts security configuration and audit log data into a graph-based model. The graph-

22



based model is then analysed in order to identify anomalous (irregular) subgraphs, which
possibly indicate security issues. A mitigation plan is then provided; it allows to disable
an anomaly, aiding the user in rectifying the problem with minimal expert knowledge.

Beside the design and development of GraphBAD, and the definition of anomalies in
the given context, the main contributions of this paper are: (i) a new method for gen-
erating synthetic datasets, that will be made publicly available in order to increase the
currently limited number of benchmarks available for researchers; (ii) a large experimen-
tal analysis, performed on both synthetically generated data, and the well-known KDD
dataset. Specifically, the experimental analysis demonstrated the good (average of 98%
for synthetic, 80% for KDD) accuracy performance of GraphBAD. The experimental
analysis presented in this paper demonstrates the suitability of GraphBAD to identify
anomalies in large data structures where up to 20% of their content is anomalous. A
system with such a high number of configuration errors would be classes as having a
substantial number of vulnerabilities. However, it should be noted that the accuracy of
the system deteriorates as the number of anomalies increases. It can be concluded that
GraphBAD performs best of datasets that contain a lower number of anomalies.

The purpose of GraphBAD is to provide a general technique to identify irregularities
in object-based configuration data. In pursuing this ambition, a measure of regularity has
been adapted that has been empirically evaluated on both KDD dataset and synthetic
file system permissions, which are representative of other object-based data sources. A
limitation is that this measure could be ineffective for processing data sources that have
different data characteristics. It is likely that the measure will need to be changed to
improve performance in some instances; however, this is likely to be influenced by domain
knowledge and will go against the criteria of GraphBAD being domain independent.

The accuracy characteristics of GraphBAD acquired from performing empirical eval-
uation on both synthetic file system configuration and KDD datasets has demonstrated
suitability in the technical implementation. However, there is a possibility that Graph-
BAD may suffer adverse accuracy characteristics when processing datasets containing
anomalies of different types. In this instance, the user may need to adjust the threshold
value to improve accuracy. It is also possible that anomalies in datasets that result in
a sparse graph would be undetected as there is no distinguishable numeric difference
in measure of regularity between both regular and irregular datasets. However, de-
spite these potential limitations, GraphBAD is unsupervised and the empirical analysis
performing in this paper has demonstrates its good applicability to different datasets.

We see several avenues for future work. Firstly, we plan to design a technique capable
of automatically identifying object relationships within both structured and unstructured
data. Secondly, a further empirical evaluation –involving real-world data– is devised.
Thirdly, we are interested in testing the proposed approach in different domains that
allows to analyse structured data by considering an undirected graph encoding. This
may lead to the development of different measures of regularity which give improved
performance and accuracy on different datasets. Finally, we would like to emphasise
that the proposed approach can also be used either as a training or support tool for
security experts. For this reason, we aim to develop a graphical user interfacein order

23



to make GraphBAD more accessible and more easily exploitable. We also foresee the
need to undertake further research to provide technological support tools which can help
users interpret and utilise the provided mitigation plan.

6 Availability

All source code, datasets and results presented in this paper are available at:
https://selene.hud.ac.uk/scomsp2/GraphBad.zip

References

[1] J. Hoffmann, “Simulated penetration testing: From “Dijkstra” to “Turing
Test++”,” in Twenty-Fifth International Conference on Automated Planning and
Scheduling, 2015.

[2] J. L. Obes, C. Sarraute, and G. Richarte, “Attack planning in the real world,”
in Working Notes for the 2010 AAAI Workshop on Intelligent Security (SecArt),
p. 10, 2010.

[3] S. Sohrabi, O. Udrea, and A. Riabov, “Hypothesis exploration for malware detec-
tion using planning,” in Proceedings of the 27th National Conference on Artificial
Intelligence (AAAI), pp. 883–889, 2013.

[4] A. V. Riabov, S. Sohrabi, D. Sow, D. Turaga, O. Udrea, and L. Vu, “Planning-based
reasoning for automated large-scale data analysis,” in Twenty-Fifth International
Conference on Automated Planning and Scheduling, 2015.

[5] HM Government, “Requirements for basic technical protection from cyber attacks,”
2014.

[6] U. Franke and J. Brynielsson, “Cyber situational awareness–a systematic review of
the literature,” Computers & Security, vol. 46, pp. 18–31, 2014.

[7] S. L. Garfinkel, “Digital forensics research: The next 10 years,” digital investigation,
vol. 7, pp. S64–S73, 2010.

[8] M. Tavallaee, E. Bagheri, W. Lu, and A.-A. Ghorbani, “A detailed analysis of
the KDD CUP 99 data set,” in Proceedings of the Second IEEE Symposium on
Computational Intelligence for Security and Defence Applications 2009, 2009.

[9] S. Parkinson, V. Somaraki, and R. Ward, “Auditing file system permissions using
association rule mining,” Expert Systems with Applications, vol. 55, pp. 274–283,
2016.

[10] S. Parkinson and A. Crampton, “Identification of irregularities and allocation sug-
gestion of relative file system permissions,” Journal of Information Security and
Applications, 2016.

24



[11] R. Zuech, T. M. Khoshgoftaar, and R. Wald, “Intrusion detection and big hetero-
geneous data: a survey,” Journal of Big Data, vol. 2, no. 1, pp. 1–41, 2015.

[12] R. Luh, S. Marschalek, M. Kaiser, H. Janicke, and S. Schrittwieser, “Semantics-
aware detection of targeted attacks: a survey,” Journal of Computer Virology and
Hacking Techniques, pp. 1–39, 2016.

[13] R. Gabriel, T. Hoppe, A. Pastwa, and S. Sowa, “Analyzing malware log data to
support security information and event management: Some research results,” in
Advances in Databases, Knowledge, and Data Applications, 2009. DBKDA ’09.
First International Conference on, pp. 108–113, March 2009.

[14] P. Dairinram, D. Wongsawang, and P. Pengsart, “Siem with lsa technique for threat
identification,” in 2013 19th IEEE International Conference on Networks (ICON),
pp. 1–6, Dec 2013.

[15] S. Asanger and A. Hutchison, “Experiences and challenges in enhancing security
information and event management capability using unsupervised anomaly detec-
tion,” in Availability, Reliability and Security (ARES), 2013 Eighth International
Conference on, pp. 654–661, Sept 2013.

[16] V. Shandilya, C. B. Simmons, and S. Shiva, “Use of attack graphs in security
systems,” Journal of Computer Networks and Communications, vol. 2014, 2014.

[17] A. A. E. Elhadi, M. A. Maarof, and A. H. Osman, “Malware detection based on hy-
brid signature behaviour application programming interface call graph,” American
Journal of Applied Sciences, vol. 9, no. 3, p. 283, 2012.

[18] B. J. Kwon, J. Mondal, J. Jang, L. Bilge, and T. Dumitras, “The dropper effect:
Insights into malware distribution with downloader graph analytics,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pp. 1118–1129, ACM, 2015.

[19] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based network vul-
nerability analysis,” in Proceedings of the 9th ACM Conference on Computer and
Communications Security, CCS ’02, (New York, NY, USA), pp. 217–224, ACM,
2002.

[20] C. Phillips and L. P. Swiler, “A graph-based system for network-vulnerability anal-
ysis,” in Proceedings of the 1998 workshop on New security paradigms, pp. 71–79,
ACM, 1998.

[21] O. Sheyner and J. Wing, “Tools for generating and analyzing attack graphs,” in
Formal methods for components and objects, pp. 344–371, Springer, 2003.

[22] E. A. Manzoor, S. Momeni, V. N. Venkatakrishnan, and L. Akoglu, “Fast memory-
efficient anomaly detection in streaming heterogeneous graphs,” arXiv preprint
arXiv:1602.04844, 2016.

25



[23] M. S. Boddy, J. Gohde, T. Haigh, and S. A. Harp, “Course of action generation for
cyber security using classical planning.,” in ICAPS, pp. 12–21, 2005.

[24] J. L. Obes, C. Sarraute, and G. Richarte, “Attack planning in the real world,” arXiv
preprint arXiv:1306.4044, 2013.

[25] C. C. Noble and D. J. Cook, “Graph-based anomaly detection,” in Proceedings of
the Ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’03, (New York, NY, USA), pp. 631–636, ACM, 2003.

[26] W. Eberle and L. Holder, “Discovering structural anomalies in graph-based data,”
in Data Mining Workshops, 2007. ICDM Workshops 2007. Seventh IEEE Interna-
tional Conference on, pp. 393–398, Oct 2007.

[27] A. Inokuchi, T. Washio, and H. Motoda, “An apriori-based algorithm for mining fre-
quent substructures from graph data,” in Principles of Data Mining and Knowledge
Discovery, pp. 13–23, Springer, 2000.

[28] X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,” in Data
Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on,
pp. 721–724, IEEE, 2002.

[29] P. Bangcharoensap, H. Kobayashi, N. Shimizu, S. Yamauchi, and T. Murata,
Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part III,
ch. Two Step graph-based semi-supervised Learning for Online Auction Fraud De-
tection, pp. 165–179. Cham: Springer International Publishing, 2015.

[30] S. Parkinson and D. Hardcastle, “Automated planning for file system interaction,”
in 32nd Workshop of the UK Planning and Scheduling Special Interest Group, De-
cember 2014.

[31] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and descrip-
tion: a survey,” Data Mining and Knowledge Discovery, vol. 29, no. 3, pp. 626–688,
2015.

[32] M. Roberts, A. Howe, I. Ray, M. Urbanska, Z. S. Byrne, and J. M. Weidert, “Per-
sonalized vulnerability analysis through automated planning,” in Working Notes
of IJCAI 2011, Workshop Security and Artificial Intelligence (SecArt-11), vol. 4,
2011.

[33] V. Bandara, A. Pezeshki, and P. J. Anura, “Modeling spatial and temporal behavior
of internet traffic anomalies,” in Local Computer Networks (LCN), 2010 IEEE 35th
Conference on, pp. 384–391, IEEE, 2010.

[34] S. Ali, Enabling Accurate Anomaly Detection Using Progressive Security-Aware
Packet Sampling. PhD thesis, School of Electrical Engineering and Computer Sci-
ence, National University of Sciences and Technology, 2009.

26



[35] W. Budgaga, M. Malensek, S. Lee Pallickara, and S. Pallickara, “A framework for
scalable real-time anomaly detection over voluminous, geospatial data streams,”
Concurrency and Computation: Practice and Experience, vol. 29, no. 12, 2017.

[36] G. Gu, J. Zhang, and W. Lee, “Botsniffer: Detecting botnet command and control
channels in network traffic.,” in NDSS, vol. 8, pp. 1–18, 2008.

[37] G. Gu, P. A. Porras, V. Yegneswaran, M. W. Fong, and W. Lee, “Bothunter:
Detecting malware infection through ids-driven dialog correlation.,” in USENIX
Security Symposium, vol. 7, pp. 1–16, 2007.

[38] J. G. Alfaro, N. Boulahia-Cuppens, and F. Cuppens, “Complete analysis of config-
uration rules to guarantee reliable network security policies,” International Journal
of Information Security, vol. 7, no. 2, pp. 103–122, 2008.

[39] M. Gander, M. Felderer, B. Katt, A. Tolbaru, R. Breu, and A. Moschitti, “Anomaly
detection in the cloud: Detecting security incidents via machine learning.,” in Eter-
nalS@ ECAI, pp. 103–116, Springer, 2012.

[40] S. Parkinson, V. Somaraki, and R. Ward, “Auditing file system permissions using
association rule mining,” Expert Systems with Applications, vol. 55, pp. 274–283,
2016.

[41] A. Sapegin, M. Gawron, D. Jaeger, F. Cheng, and C. Meinel, “Evaluation of in-
memory storage engine for machine learning analysis of security events,” Concur-
rency and Computation: Practice and Experience, vol. 29, no. 2, 2017.

[42] S. Parkinson and A. Crampton, “A novel software tool for analysing NT file system
(NTFS) permissions,” International Journal of Advanced Computer Science and
Applications, vol. 4, no. 6, pp. 266–272, 2013.

[43] J. Liu, E. Bier, A. Wilson, T. Honda, S. Kumar, L. Gilpin, J. Guerra-Gomez, and
D. Davies, “Graph analysis for detecting fraud, waste, and abuse in healthcare
data,” in Twenty-Seventh IAAI Conference, 2015.

[44] L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion detection with unlabeled data using
clustering,” in In Proceedings of ACM CSS Workshop on Data Mining Applied to
Security (DMSA-2001, Citeseer, 2001.

[45] P. Laskov, P. Düssel, C. Schäfer, and K. Rieck, “Learning intrusion detection: Su-
pervised or unsupervised?,” in Image Analysis and Processing – ICIAP 2005 (F. Roli
and S. Vitulano, eds.), vol. 3617 of Lecture Notes in Computer Science, pp. 50–57,
Springer Berlin Heidelberg, 2005.

[46] P. Gogoi, B. Borah, and D. K. Bhattacharyya, “Anomaly detection analysis of
intrusion data using supervised & unsupervised approach,” Journal of Convergence
Information Technology, vol. 5, no. 1, pp. 95–110, 2010.

27



[47] B. Borah and D. Bhattacharyya, “Catsub: a technique for clustering categorical
data based on subspace,” J Comput Sci, vol. 2, pp. 7–20, 2008.

[48] K. Burbeck and S. Nadjm-Tehrani, “Adwice–anomaly detection with real-time
incremental clustering,” in Information Security and Cryptology–ICISC 2004,
pp. 407–424, Springer, 2005.

[49] S. Lee, G. Kim, and S. Kim, “Self-adaptive and dynamic clustering for online
anomaly detection,” Expert Systems with Applications, vol. 38, no. 12, pp. 14891 –
14898, 2011.

[50] D. S. Kim, H.-N. Nguyen, and J. S. Park, “Genetic algorithm to improve SVM based
network intrusion detection system,” in Advanced Information Networking and Ap-
plications, 2005. AINA 2005. 19th International Conference on, vol. 2, pp. 155–158
vol.2, AINA, March 2005.

[51] A. F. Emmott, S. Das, T. Dietterich, A. Fern, and W.-K. Wong, “Systematic con-
struction of anomaly detection benchmarks from real data,” in Proceedings of the
ACM SIGKDD Workshop on Outlier Detection and Description, pp. 16–21, ACM,
2013.

[52] P. Laskov, P. Düssel, C. Schäfer, and K. Rieck, “Learning intrusion detection: su-
pervised or unsupervised?,” Image Analysis and Processing–ICIAP 2005, pp. 50–57,
2005.

28


