
Achieving Differential Privacy against Non-Intrusive 

Load Monitoring in Smart Grid: a Fog Computing 

approach 
Hui Cao1, Shubo Liu1*, Longfei Wu2, Zhitao Guan3, Xiaojiang Du4 

1(School of Computer, Wuhan University, Wuhan 430072 China) 

2(Department of Mathematics and Computer Science, Fayetteville State University, Fayetteville, NC 28301 USA) 

3(School of Control and Computer Engineering, North China Electric Power University, Beijing 102206 China) 

4(Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122 USA)  

 
Abstract—Fog computing, a non-trivial extension of cloud 

computing to the edge of the network, has great advantage in 

providing services with a lower latency. In smart grid, the 

application of fog computing can greatly facilitate the collection 

of consumer’s fine-grained energy consumption data, which can 

then be used to draw the load curve and develop a plan or model 

for power generation. However, such data may also reveal 

customer’s daily activities. Non-intrusive load monitoring 

(NILM) can monitor an electrical circuit that powers a number 

of appliances switching on and off independently. If an adversary 

analyzes the meter readings together with the data measured by 

an NILM device, the customer’s privacy will be disclosed. In this 

paper, we propose an effective privacy-preserving scheme for 

electric load monitoring, which can guarantee differential 

privacy of data disclosure in smart grid. In the proposed scheme, 

an energy consumption behavior model based on Factorial 

Hidden Markov Model (FHMM) is established. In addition, noise 

is added to the behavior parameter, which is different from the 

traditional methods that usually add noise to the energy 

consumption data. The analysis shows that the proposed scheme 

can get a better trade-off between utility and privacy compared 

with other popular methods. 

Keywords—Fog computing; Differential Privacy; Internet of 

Things; Non-intrusive Load Monitoring; Smart Grid 

I.  INTRODUCTION 

With the support of emerging information technologies 
like the Internet of Things (IoT), fog computing, and cloud 
computing, smart grid has become increasingly intelligent and 
efficient [1-3]. As shown in Figure.1, in smart grid, IoT 
devices have been widely used for data collection purposes, 
such as the electricity consumption information gathering, the 
transmission line monitoring, and the transformer substation 
monitoring [4, 5]. The data collected by IoT devices are 
aggregated by the fog nodes that in the form of gateways or 
data aggregators with on-board computing capabilities; then 
the aggregated data are transferred to the control center for 
further analysis. For instance, in the electricity consumption 
information gathering scenario, to optimize the energy 
utilization, lots of smart meters (SM) installed at users’ 
households are connected to the communication network. 
They can send their power consumption data to the control 
center via the fog layer comprised of multiple aggregators at a 
fine granularity [6]. 
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Figure.1 Fog computing enabled data collection in smart grid 



However, accurately collecting user data always induces 

privacy and security issues as studied in [14,15,32,39]. The 

fine-grained energy consumption data collected by smart 

meters may disclose the sensitive information regarding the 

power consumption patterns of the household appliances 

which raises serious concerns about the user’s privacy [7]. As 

shown in Figure.2, non-intrusive appliance load monitoring 

(NILM) is an advanced power signature analysis tool, which is 

often used to break down the aggregate energy consumption 

data into individual appliances [8]. Given a user’s load profile, 

an adversary can track the states (ON or OFF) of all 

appliances with NILM. Based on the extracted device-level 

energy consumption data, the adversary can further infer lots 

of privacy-sensitive information about the user’s habits and 

behaviors. For example, the adversary can figure out whether 

there is nobody at home in a specific period of time, when the 

users go to bed and get up, when the users leave for work and 

so on. Therefore, users require a privacy-friendly scheme to 

protect such privacy-sensitive information.  

In fact, there is a significant body of work analyzing the 

users’ privacy-preservation [9-13]. The major privacy-

preserving solutions can be classified into homomorphic 

encryption [42] [43], flattening energy signatures by battery-

based load hiding (BLH) [16-21] and noise addition [22-24]. 

However, schemes based on homomorphic encryption have 

huge computational cost and require a third party for key 

distribution and management [24]. These solutions are 

infeasible when used in a wider area with a large number of 

meters. However, the credibility of the third party is difficult to 

guarantee. The privacy-preserving schemes based on 

rechargeable battery are limited to the battery capacity. 

Moreover, the charging and discharging of the household 

battery may conflict with the user’s economic interest [25].  

Installing batteries and equipment in each home is infeasible. 

Zhao [1] adopts the BLH method to preserve user’s privacy-

sensitive information and uses differential privacy to measure 

the privacy-preserving performance. Noise addition is a 

common solution to provide differential privacy in which the 

outcome is not significantly affected by the removal or addition 

of single participants. 
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Figure.2 Non-intrusive appliance load monitor and user’s behavior privacy inference in smart grid 

Differential privacy is a better solution to the problem that 

existed methods such as k-anonymity are not sufficient to 

guarantee the anonymity of users. It requires that adding noise 

into the statistical results according to the sensitivity of each 

statistic when publishing the statistical results of the dataset. 

Therefore, whether or not the individual is in the dataset, the 

statistical result will not be affected. Differential privacy has 

been widely used in the fields of data statistics, information 

publishing, information searching and data mining, such as 

recommendation system, trace analysis and so on. 

However, most schemes based on differential privacy are 

mainly used to protect individual information for a statistical 

dataset, and existing schemes applying differential privacy to 

smart grid have several problems. For example, Barbosa [24] 

proposed a fundamental work on the application of differential 

privacy in smart grid. Nevertheless, the trade-off between 

utility and privacy is not very ideal in his scheme. Therefore, 

designing a reasonable data obfuscation algorithm by noise 

addition with a better trade-off between utility and privacy is 

the focus of our paper. We summarize our contributions as 

follows: 

1) Differing from traditional differential privacy schemes, 

we add noise into the switch states of each appliance to provide 

differential privacy. 

2) We use the basic properties of differential privacy to 

prove the effectiveness of our scheme in privacy-preservation.  

3) Motivated by the lower bound on utility which is called 

discriminant proposed by Kifer [25], we define a measurement 

to prove the better performance of our scheme in data-utility. 

4) We adopt the information theory of differential privacy 

proposed by Cuff [26] to measure the trade-off between utility 

and privacy in our scheme. 

The rest of this paper is organized as follows. Section II 

introduces the background and related work. In section III, our 

scheme is stated. In section IV, security analysis is given. In 

Section V, the performance of our scheme is evaluated. In 

Section VI, the paper is concluded. 

 

II. BACKGROUND AND RELATED WORK 

A. Differential privacy 



Dwork [27] has proposed the notion of differential 

privacy for general datasets and presented how to realize 

differential privacy by adding noise [28]. Using the infinite 

divisibility of Laplace Distribution to provide differential 

privacy in smart grid was discussed in [29] [30]. McSherry [31] 

studied the parallel composition and stable transformation in 

differential privacy. Kifer [25] analyzed the privacy-utility 

tradeoff and provided the metrics for data-utility. For the 

differential privacy in smart grid, Won J [44] analyzed the 

fault-tolerance during the data aggregation and used 

differential privacy to protect the future ciphertext. Shi [33] 

applied differential privacy to preserve the metering data 

during the data-aggregation. Several other papers (e.g., [34-

37]) have studied related security and network issues. 

1) Definition of differential privacy 

M is a randomized algorithm. For any datasets 
iD and

'D differing from at most one element, and all subsets of 

possible answers ( )S Range M , M satisfies   -differential 

privacy if both of the datasets satisfy the following condition: 

{ ( ) } { ( ') }r i rP M D S e P M D S                               (1) 

The smaller the value of  is, the higher the degree of 

privacy-preservation is. 

2) Property1: Parallel Composition 

 
1 2, ... nM M M are different randomized algorithms with the 

privacy budgeting parameters
1 2, ... n   . Then, the combined 

algorithm
1 1 2 2( ( ), ( )... ( ))n nM M D M D M D provides (max )i -

differential privacy for the disjoint datasets
1 2, ... nD D D . 

3) Property2: Stable Transformations 

For any two databases E and F, we say T provides c-stable 

if it meets the following condition. 
| ( ) ( ) | | |T E T F c E F                                               (2)

 represents the XOR operation. If the privacy 

preserving mechanism M provides  -differential privacy and T 

is a c-stable transformation, the combination M  and T  

provides ( )c  - differential privacy. 

B. Hidden Markov Model 

In order to get a better trade-off between the privacy-

preservation and data-utility, Sanker [23] adopts the Hidden 

Markov Model (HMM) to model the state sequences of the 

appliances and generates the new energy consumption data 

based on the estimated state sequences and HMM. Besides, a 

noise following normal distribution is added to the new energy 

consumption data for further obfuscation. Based on the 

Factorial Hidden Markov Model (FHMM) [36], Kim [37] 

proposes a Conditional FHMM (CFHMM) to estimate the 

hidden states of each appliance. 

1) Hidden Markov Model 

Hidden Markov Model is a finite model that describes a 

probability distribution over sequential data. As shown in 

Figure.3 (a), X denotes the hidden states during different times, 

which can be viewed as a Markov Model and satisfies

1 1 1 1( | , ,... ) ( | )t t t t tP x x x x P x x   . Y denotes the observed 

states decided by the hidden states. There are three important 

parameters in HMM model: initial state probability distribution, 

transition matrix and emission matrix. 

The initial states probability distribution can be described 

as follows
( )

1{ | ( ),1 }i

i i P x i N      . The transition 

matrix can be described as follows
( ) ( )

1{ ( | ),1 }i i

t tA P x x i N   . Given a discrete or a 

continuous set, the emission matrix can be described as
( ) ( ){ ( | ),1 }i i

t tB P y x i N   , representing the probability of 

emission of observed state 
iy  when the hidden state is 

ix . 

2)  Factorial Hidden Markov Model 

Hidden Markov Model is a finite model that describes a 

probability distribution over sequential data. X denotes the 

hidden states during different times, which can be viewed as a 

Markov Model and satisfies 1 1 1 1( | , ,... ) ( | )t t t t tP q q q q P q q  
. 

Y denotes the observed states decided by the hidden states. 

There are three important parameters in HMM model: initial 

state probability distribution, transition matrix and emission 

matrix. 

As an extension of HMMs, FHMM is used to model 

multiple independent hidden state sequences in different times. 

The structure is shown in Figure.3 (b). 
iX  represents 

independent hidden states sequence. 
iY  represents 

corresponding observed states sequence. sumY  represents the 

aggregated observed states sequence. 
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(b) Factorial Hidden Markov Model 

Figure.3 Sample graph of HMM and FHMM 

III.  OUR SCHEME 

Compared with traditional schemes, in this section, we 

proposed a differential privacy scheme which can get a better 



trade-off between utility and privacy. The key idea is to solve 

the problem of huge sensitivity through a specific 

transformation, achieve a novel result with a smaller noise and 

stronger privacy-preserving level. 

A. Notations 

In Table.1, the notations used in this paper are listed. 

Table.1 Notations in our scheme 

Acronym Descriptions 
 Privacy budget 

, 'D D   Adjacent datasets 

i  Initial probability of appliance i 

iA  Transition probability of appliance i 

iB  Emission probability of appliance i 

N The number of appliances 

iX  Hidden states sequence of appliance i 

iY  Observed states sequence of appliance i 

 Aggregate observed state sequence 

trainY  Training energy consumption data 

 Hidden state of appliance i at time t 

( ) 'i

tx  
Obfuscated hidden state of appliance i at 

time t 

 Observed state of appliance i at time t 

( ) 'i

ty  
Obfuscated observed state of appliance i at 

time t 

'
t

y  
The aggregation of the obfuscated 

observed state at time t 
 The set of parameters , ,A B   

 Global sensitivity 

 Local sensitivity 

 

B. Design goal 

Traditional differential privacy proposed the notion for 

general statistical data sets. But for smart grid, the object of 

the protection is not only statistical data. Before Barbosa, there 

is no well-accepted rigorous definition of privacy in the smart 

grid environment. Barbosa [24] described it as that a 

consumption profile is a set of appliances, we say profiles P1 

and P2 differ in at most one element if one is a proper subset 

of the other and the larger dataset profile contains just one 

additional appliance. 

Base on this definition, we have made fine-grained 

improvements. We say profiles D  and 'D  differing in at 

most one element if one is a proper subset of the other and the 

larger dataset profile contains just one state of an appliance. 

Instantiated by the notion of differential privacy proposed 

by Dwork [27] and Barbosa [24], we propose the notion of 

differential privacy for datasets of the behavior signatures. 

Therefore, the adversary learns the similar information when 

there is a difference of the behavior signatures.  

We call switch D and D' differing in at most one element 

adjacent datasets, if the differential element is an additional 

behavior signature. 

Definition.1. Adjacent datasets 

M is a randomized algorithm. M satisfies  -differential 

privacy if both of the datasets satisfy the following condition: 

{ ( ) } { ( ') }r i rP M D S e P M D S                               (1) 

For all profiles D  and 'D   differing in at most one state 

of an appliance. 

Definition.2. Global sensitivity 

For a mapping : kf D R , 
kR denotes a k-dimensional 

vector. D and 'D are an arbitrary pair of adjacent datasets. The 

global sensitivity of f is  

1
, '

|| ( ) (D') ||maxf
D D

GS f D f                                           (2) 

For all the D and D' differing in one appliance’s switch 

state.  

The design goals of the proposed scheme are given as 

follows. Inherited from Barbosa’s [24] design goals, our 

schemes focus on the following aspects: 

1) Enabling the calculation of the total consumption of a 

consumer over a period of time (e.g., monthly billing); 

2) Enabling the calculation of the total consumption of all 

consumers in a region at a certain instant of time; 

3) Avoiding the measurement of the instantaneous 

consumption of an individual consumer at a certain instant of 

time. 

Besides, we also propose two new design goals. 

1) The entropy of the final obfuscated data should not be 

far from the original data. 

2) There is no outlier in the final obfuscated load profile. 

Figure.4 is quoted from Acs’s scheme [30]. As shown in 

the obfuscated load profile, there are several values extremely 

lower than zero, which is against the common energy 

consumption behavior. We take these values as outliers. 
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(a) Original load profile 
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(b) Obfuscated load profile 

Figure.4 Load profiles of original and obfuscated data 
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Figure.5 The system model of our scheme 

C. System model  

We show the system model of our scheme in Figure.5 

and show the architecture in Figure.6. The load signature is 

extracted from the energy consumption data. Then, each 

appliance’s switch state related with the consumer’s behavior 

is estimated based on the FHMM. Differing from the 

traditional differential privacy schemes which add noise into 

active power data, we add noise into the consumer’s behaviors 

(the switch states of appliances) to implement the differential 

privacy. Then, the obfuscated energy consumption data is sent 

to the fog by smart meters. After processing the data with the 

fog computing nodes in groups, the aggregators will send the 

processed result to the cloud for further analysis. 

D. Appliance Modelling  

As we have analyzed before, the energy consumption 

behavior can be modeled by the FHMM, in which the 

aggregated active power sequence of the entire appliances is 

regarded as the observed state, and the switch state sequence 

of each appliance is regarded as the hidden state. To estimate 

the hidden state, we need to estimate the related parameters in 

FHMM first. 

We use H to denote the set of switch states 

1{ , ,... }H OFF ON ON . iON represents the kind of switch 

state in ON-state. The related parameters of appliance i in 

FHMM contain the initial probabilities
( )

1( )i

i P x  , the 

conditional probabilities
( ) ( )

1( | )i i

i t tA P x x   , and the emission 

probabilities
( ) ( )( | )i i

i t tB P y x . To simplify the analysis, we 

use i to denote the set of parameters. 

Based on the related parameters of appliance i, we can 

calculate the initial probability i , the transition probability 

iA , the emission probability iB  and the conditional 

probability of switch state ( , | ,1 )iP Y X i N    as follows: 

( )

1

1 1

( )
N N

i

i

i i

P x 
 

    

( ) ( )

1

1 1

( | )
N N

i i

i t t

i i

A A P x x 

 

    

( ) ( )

1 1

( | )
N N

i i

i t t

i i

B B P y x
 

    

( , | ,1 )iP Y X i N AB                                              

(3) 

N denotes the number of appliances. Expectation 

Maximization algorithm (EM) is a common solution to 

estimate these parameters by using an auxiliary function until 

the convergence to a local maximum occurs. In our paper, we 

don’t adopt EM, instead, we take partial energy consumption 

data from all kinds of appliances as the training data trainY  and 

estimate the parameters by Maximum Likelihood Estimation. 

The process is shown in Table.2. 

Given a series of energy consumption data sumY from a 

smart meter, we can estimate all the appliances’ switch state 



sequences based on our FHMM model. With the Maximum 

Likelihood Estimation, we can estimate all the appliances’ 

switch state sequences as follows:  

1 2... argmax ( , | )N sumX X X P Y X                                 (4) 

Here, argmax() represents the Maximum Likelihood 

Estimation of related parameters in our FHMM model.  

As the hidden states of each appliance are easier to 

disclose user’s habits and behaviors, adding noise into the 

hidden states is more effective to preserve user’s privacy. 

Besides, noisy hidden state has better performance than the 

noisy energy consumption data in terms of data-utility. We 

show the detailed process in the next section. 

Table.2 Estimate the switch state by FHMM 

Algorithm1. Estimate the switch state by FHMM 

Input: 
trainY , 

sumY  

Output: The switch state sequences of each appliance 

(1) Input
trainY  into the FHMM as the training data. 

(2) Calculate the Maximum Likelihood Estimation of   

(3) Input 
sumY  

(4) Calculate the switch state sequences based on   

(5) Output switch states sequences 
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(a) Traditional noise addition scheme 
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(b) Our noise addition scheme 

Figure.6 The difference of noise addition between traditional scheme and ours 

E. Noise addition 

Definition.3. Local sensitivity 

For a mapping : kf D R , in which 
kR denotes a k-

dimensional vector and D'  is an arbitrary adjacent dataset of 

D, the local sensitivity of f is  

1|| ( ) (D') ||maxf
D

LS f D f                                           (5) 

Definition.4. Smooth sensitivity 

For a mapping : kf D R , in which 
kR denotes a k-

dimensional vector and D'  is an arbitrary adjacent dataset of 

D, the local sensitivity of f is  
| '|( ) max( ( ') )D DS D Ls D e   

                               (6) 

 

Theorem.1. For : kf D R , the mechanism that adds noise 

with distribution ( / )Lap f   provides  -differential privacy. 

The theorem has been proved by Dwork [28]. In this 

paper, 
kR  represents the active power of all the appliances in a 

period of time. f represents the process of FHMM. =S(D)f  

and represents the maximum difference of the appliance’s 

switch states for the two adjacent datasets. 

After getting the switch state sequences of appliance i in 

time t, we add Laplace into the switch states of each appliance 

to generate the obfuscated switch state
( ) 'i

tx . The detailed 

process can be expressed as follows: 
( ) ( )' ( ( ) / )i i

t tx x lap S D                                              (7) 



F. Data re-aggregation 

After we get the obfuscated switch state sequence, we 

can generate the obfuscated active power sequence based on 

the FHMM. While, considering the data-utility, we adjust the 

obfuscated active power as follows: 
( )

( )
1( )

( )

' 0

' 1
'

... ...

'

i

t

i

i t

t

i
w t

OFF x

ON x
x

ON x 





 

 

                                                 (8) 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

y ' ' 0

' 0 ' 0

' ' 0

i i i i

t t t t

i i

t t

i i i

t t t

x x x

y x

CP x x x

   


 
   

                             (9) 

When 
( ) ( )'i i

t tx x and
( ) ' 0i

tx  , the obfuscated active 

power based on FHMM is similar to the average value of the 
energy consumption data in total time slots. To reflect the real 
energy consumption, we take the original energy consumption 
data as the obfuscated active power in this time slot. 

When
( ) ' 0i

tx  , theoretically, the obfuscated active power 

should be zero. However, as the relationship between the 
switch states and observed states is estimated by FHMM and 

may be nonzero when
( ) ' 0i

tx  . Therefore, we set 
( ) ' 0i

ty  in 

this situation. 

 

 

(a) Fridge 

 

(b) Washer dryer 

 

(c) Light 

 

(d) Microwave 

Figure.7 Energy consumption profile of each appliance 

In fact, the active power of an appliance is a little different 

even in the same switch state. When 
( ) ( )'i i

t tx x and
( ) ' 0i

tx  , 

to reflect the real energy consumption, we take the value from 
the Consumption Profile (CP) whose switch state is equal to

( ) 'i

tx  as our obfuscated active power. Figure.7 shows the 

energy consumption profiles of a fridge, a washer dryer, a light 
and a microwave, respectively. All these appliances have two 
or multiple states and the energy consumption dynamics are 
different even in the same operation mode. The final 
aggregated active power in time t can be calculated as follows: 

( )

1

' '
N

i

tt

i

y y


                                                                 (10) 

IV. SECURITY ANALYSIS 

A.  Privacy analysis   

Theorem 2: Our scheme provides  -differential privacy. 

Proof: 

      The process of our scheme sumT can be expressed as follows: 

( ): FHMM iT Y x  

As the mapping bT  representing the FHMM can be 

regarded as a linier mapping approximately and | |E F

represent the number of different elements between E and F.  

We use sumT  to denote the process of FHMM which 

could be regarded as a combination of two sub-processes aT
 

and bT
. aT

 represents the transformation from each 

appliance’s obfuscated switch states to the power consumption 

data. bT
 represents the processes of data disaggregation. 
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Therefore, the process of FHMM can be seen as a combination 

1 2( ( ), ( )... ( ))sum b a a a nT T T X T X T X
. 

1) According to the analysis by Dwork [26], adding 

Laplace noise into the original switch states provides   -
differential privacy. We use M to denote this process. 

2) As the map between appliances’ obfuscated switch 
states and the power consumption data is one to one.  

We use T to denote this process. 

( ) E E ET E A B  

( ) F F FT F A B  

, | , 0.If a A b B and a b e we have a b       

0if E F  , 

0E F  
 

0E FA A 
 

0E FB B   

( ) ( ) 0Therefore T E T F   

| ( ) ( ) | 1 | | .And T E T F E F     

Thus, the map T  is c-stable and the value of c is one. 

3) According to the property of c-stable, the 

transformation 
aT  which is equivalent to M T  provides  -

differential privacy. 

4) According to the combinability property of differential 
privacy, our scheme provides  -differential privacy. 

B. Utility analysis 

Definition.5. ( , )  -utility: 

For two datasets D, D'  which represent the original data 

and processed data, a randomized function Q satisfies ( , )   -

utility if it has the following property 

1Pr[||Q(D')-Q(D)|| ] 1                                           (11) 

Here,  represents the upper bound of distance between 

Q(D') and Q(D) . The smaller   is, the higher the level of 

data-utility will be achieved.  measures the probability 

1Pr[||Q(D')-Q(D)|| ] , and the probability of the distance 

between Q(D') and Q(D) below the upper bound increases 

when the value of  decreases. 

Theorem 3: our scheme satisfies ( , )   -utility. 

Proof: 

In this paper, D can be regarded as the real switch states 

of an appliance in different time slots. D'  can be regarded as 

the noisy switch states. Q represents the FHMM algorithm, 

which decides the mapping between the observed state and 

switch state. 

1) As the mapping between the observed state and switch 
state in the FHMM can be seen as a linear mapping, we have  

(D') D'Q k b                                                                (12) 

( )Q D kD b                                                                  (13) 

'D D D                                                                    (14) 

k and b are linear parameters and  represent the 

correction coefficient. 

2) Based on the above analysis and the property of norm, 
we have 

1 1

1

||Q(D')-Q(D)|| || (D' ) ||

|| ||
n

i

i

k D

k D k d

 

   
                             (15) 

3) As each noise ~ (0, )i

f
d laplace




 , the value of 

n

i

i

d will converge to zero when the value of n is large 

enough. Therefore, we have  

n

i

i

d                                                                         (16) 

1||Q(D')-Q(D)|| k                                                        (17) 

4) According to the above analysis, we have  

1Pr[||Q(D')-Q(D)|| ] 1k                                              (18) 

Therefore, our scheme is proved to satisfy ( ,0)k -utility. 

V. PERFORMANCE EVALUATION 

In this section, we use F1-score [38] to measure the 

performance of our scheme in terms of the level of privacy-

preservation and adopt Kullback–Leibler divergence [45] to 

measure the level of data-utility based on the REDD data set 

[40] with the tool NILMTK [41]. Then, we compare our 

scheme with Barbosa’s scheme and Sankar’s scheme as 

follows. 

A. Privacy-preserving level of our scheme  

As we know, F1-score is an efficient metric to measure 

the level of privacy preservation, which can be regarded as a 

broadly accepted measuring tool for the accuracy of NILM F1-

score is widely used in NILM and completed in NILMTK [41].  

F1-score can be calculated as follows: 

2
1-score

Precision Recall
F

Precision Recall

 



                               (19)

 

Here, Precision and Recall represent the positive 

predictive value and the recall sensitivity respectively. They 

can be calculated as follows: 

100%
+F

P

P P

T
precision

T
                                           (20) 



100%P

P N

T
recall

T F
 


                                              (21)

 

PT
 
represents the value of true positive which means the 

number of appliances that are correctly predicted to be on. 
PF  

represents the value of false positive which means the number 

of appliances that are wrongly predicted to be on. 
NF  

represents the value of false negative which means the number 

of appliances that are wrongly predicted to be off. When the 

F1-score goes high, the application usage patterns can be 

tracked more accurately. 

We adopt FHMM to estimate the switch states from the 

active power data obfuscated by Barbosa’s scheme, Sankar’s 

scheme and our scheme. The F1-scores of different schemes 

are shown in Figure.8.  

After the noise addition, the F1-score by NILM has fallen. 

We can find that the F1-score of our scheme is smaller than the 

other schemes, which means that our scheme has a stronger 

advantage resisting NILM. When the same noise is adding to 

the electricity consumption data, the F1-score of our scheme by 

NILM decreases greatly. So our scheme has a higher level of 

privacy preservation. 

 
Figure.8. The F1-scores of different schemes 

B. Data-utility of our scheme  

Kullback–Leibler divergence is a measure of how one 

probability distribution diverges from another expected 

probability distribution. The definition is shown as follows 

( )
( || ) ( ) log

( )i

P i
D P Q P i

Q i
                                            (22)

 

P represents the original discrete probability distribution 

and Q represents the fitting distribution. The larger the 

Kullback–Leibler divergence is, the larger the difference of the 

two distributions is. In this section, the original energy 

consumption data serves as P and the obfuscation data serves 

as Q. When the Kullback–Leibler divergence grows higher, the 

difference of original data and obfuscation data will grow 

higher as well, and the level of data-utility will become lower.  

At last, the multiple appliances’ energy consumption data 

processed by different schemes are shown in Figure.9. We 

could find directly that our scheme has a lower impact of data 

utility. 

We show the profiles of Kullback–Leibler divergence 

based on different  values in Figure.10. Through comparing 

those figures, we can find that the energy consumption profile 

processed by our scheme is very close to the original energy 

consumption profile. Besides, by observing the curves of 

Kullback–Leibler divergence in Figure.10, we can find that the 

Kullback–Leibler divergence decreases with the value of  

and our scheme’s Kullback–Leibler divergence is smaller than 

the Barbosa’s scheme and Sankar’s scheme. We take the value 

of ε  from the discrete set and calculate the 

Kullback–Leibler divergences of different schemes based on 

differentε . According to the property of Kullback–Leibler 

divergence, the Kullback–Leibler divergence will decrease 

when decreases and the scheme with a lower Kullback–

Leibler divergence provides a higher level of data-utility. 

Therefore, our scheme has an obvious advantage in data-utility. 

                           
(a) Original data of multiple applications                                                                         (b)Data obfuscated by Barbosa 
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(c)Data onfuscated by Sankar                                                                                       (d)Data obfuscated by our scheme 

Figure.9 Energy consumption profiles processed by different schemes (multiple appliances ε = 5) 

 

 
Figure.10. Kullback–Leibler divergence of different schemes 

VI. CONCLUSION 

In this paper, we propose a privacy-preserving scheme 

based on the obfuscated switch states to realize the differential 

privacy towards fog computing in smart grid. We adopt the 

Factorial Hidden Markov Model to estimate the switch states 

of each appliance. Then, noise following Laplace distribution 

is added into the switch state to achieve the differential 

privacy. Based on the obfuscated switch states, we generate 

the obfuscated observed states and adjust them to guarantee 

the data-utility. Therefore, the appliance energy consumption 

patterns can be masked, even if the adversary can obtain the 

near real-time load profile. At last, we analyze the 

performance of our scheme, and compare it with other similar 

schemes in terms of the level of privacy-preserving (F1-score) 

and data-utility (Kullback–Leibler divergence). The security 

analysis and performance evaluation show that our scheme 

provides a better utility-privacy tradeoff. In the future, we will 

focus on extending the FHMM to further preserve user’s 

privacy without compromising the data-utility. In addition, the 

limitation of the FHMM algorithm is its high computational 

cost. We will try to design the lightweight FHMM based 

method that is suitable for fog clients. 
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