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Summary
Continuous streaming computations are usually composed of differentmodules, exchanging data
through shared message queues. The selection of the algorithm used to access such queues (i.e.
the concurrency control) is a critical aspect both for performance and power consumption. In
this paper we describe the design of automatic concurrency control algorithm for implement-
ing power-efficient communications on shared-memory multicores. The algorithm automatically
switches between nonblocking and blocking concurrency protocols, getting the best from
the two worlds, i.e. obtaining the same throughput offered by the nonblocking implementa-
tion and the same power efficiency of the blocking concurrency protocol. We demonstrate the
effectiveness of our approach using twomicro-benchmarks and two real streaming applications.
KEYWORDS:
Data Streams, Data Pipelining, Blocking, Concurrency Control, Power Saving, Multicores

1 INTRODUCTION
In the realm of parallel and distributed computing, throughput and latency have been traditionally considered the primary metrics to evaluate the
performanceof computing systems (1).However, in recent yearspower consumptionhas gainedmoreandmore significanceup to thepoint it reached
the same importance of traditional metrics (2). As a consequence, system optimization is played against multiple concerns, performance and power
consumption at least, to dynamically find acceptable trade-offs during the processing of real-world workloads.
The optimization of the performance/power trade-off has been mainly pursued by means of dynamic reconfigurations of the system at different

abstraction levels, from the hardware level up to the run-time system and the application levels by employing suitable synchronization mecha-
nisms and algorithms. Their principal goal is to reduce power consumptionwith limited impact on performance. Examples areDynamic Voltage and
Frequency Scaling (DVFS) (3), approximate computing (4), energy-efficient data structures (5) and adaptive locking (6).
A recent work has demonstrated that a simple and effective power saving technique consists in optimizing the synchronization mechanisms (7).

In a shared-memory system, a standard approach to synchronize producer/consumer interactions between pairs of threads relies on a concurrent
FIFOqueue that supports push and popoperations in an atomic and efficientway. This approach is particularly relevant in theData StreamProcessing
paradigm (8), where applications are modeled as arbitrarily complex graphs of modules/operators exchanging unbounded sequences of data items
through channels implemented by concurrent queues.
A naive implementation consists in protecting the access to a concurrent queue by using mutexmechanisms. If the thread that currently holds

themutex is delayed, all the other threads attempting to access the data structure are delayed too. Furthermore, acquiring themutex implies passive
waiting, that is the suspension of all the threads waiting for the mutex acquisition. The suspended threads are moved in a waiting queue and their
core/hardware contexts are released to the OS. In addition, passive waiting can be used as the basic mechanism to handle synchronization events
during the usage of the queue, like when the producer tries to push a data item in a full-size queue or when the consumer attempts to pop from an
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empty queue. Suspended threads do not directly consume power. However, suspension andmainly restart mechanismsmay impair application perfor-
mance due tomany factors such as the waiting time in the ready queue, context switch overhead, compulsory cachemisses or coremigration (7). In
general, a concurrent algorithm that may force the calling thread to be blockedwaiting that a given condition holds is defined as blocking.
Concurrent queues can be implemented in a efficient and scalable way by using nonblocking algorithms. Although many definitions exist and

have been utilized in the literature, in this paper we consider a concurrent algorithm as nonblockingwhen thread suspension cannot be caused by
synchronizations related to the data structure usage (of course a thread can still be de-scheduledby a time-sharing scheduler or due to preemption).
Therefore, a solution that replaces passive waiting phases with a busy-waiting spin-loop (e.g., by replacing mutexes with spin-locks) are accepted as
nonblocking according to this definition.Oneof thedrawbacks of non-blocking algorithms is that thebusy-waiting phase consumesCPUcycles and
power without doing useful task, and the approachmay impair throughput when there aremore threads than available hardware contexts/cores.
An interesting andwidely studied class of nonblocking algorithms are the ones classified as lock-free. This term refers to the fact that the failure

or the suspension of a thread in any arbitrary point during its execution cannot prevent at least one thread in the system to make progress (9). As
an example, a spin-lock based queue is not lock-free because if a thread fails after the lock acquisition none of the other threads will be able to
correctly complete its operation on the queue. In a lock-free concurrent queue the producer and the consumer threads are able to push and pop
elements concurrently byworking on different positions of the queue. This does not necessarilymean that threads do not have to take into account
their mutual interference. For instance, a thread may start a push/pop operation and, if the queue state changes due the access by another thread,
this must be detected and the operation restarted until it is correctly executed. Such actions (occurring in while-loops) may consume CPU cycles
and power although the degree of concurrency inside the queue’s code is maximized.
While lock-free algorithms are mainly chosen for their progress guarantees, they are also employed for their higher throughput and lower

latency (9) (5). Furthermore, by avoiding the threads to be de-scheduled in the synchronization phases, they contribute to reduce the so-calledOS
noisewhichmaybea sourceof scalability problems inmanyHighPerformanceComputing applications (10).Unfortunately, as said, thenonblocking
approach is not power-efficient due to the busy-waiting loop executed when a given operation cannot be immediately concluded (e.g., CAS retry
loop). Although several approaches have been proposed to reduce the power consumption during busy-waiting loops, for example using pause,
memory barriers or monitor/mwait instructions (7), none of them revealed completely successful on the off-the-shelf commodity multicores and
busy-waiting is de-facto considered not power efficient.
Away to improvepower saving is todelay thebusy-waitingphaseswith short phasesof passivewaitingobtainedbyexecutingmicro-sleep system

calls. This technique is called backoff and has been widely adopted in the implementation of spin-locks (11). Theoretically, if the micro-sleep phases
are perfectly regulated each time by an oracle, the achievable performance/power trade-off can be optimal (same performance of the pure busy-
waiting approach with almost the same power saving of passive waiting). However, this is unlikely in real situations and the use of wrong values
could have dramatic effects on the reactivity of the system or on its power consumption. Furthermore, the tuning phase can hardly be automatized
and the solutions are in general not portable since the sleeping intervals should be regulated for eachmachine and application, and it might be even
impossible to use sufficiently fine-grained sleeps in someOSs 1.
Instead of optimizing the backoff technique, this paper proposes a different approach that breaks the dichotomy between blocking vs

nonblocking techniques that have been often used as mutual exclusive alternatives in the past. Our solution is designed for data stream processing
scenarios, where thread synchronization happens on the use of lock-free concurrent queues. To exemplify the problem, we show in Fig. 1 the anal-
ysis we performed on a network streaming application where a continuous flow of data packets is analyzed in real-time.We tested the application
with twodifferent input rates: thefirst is of 350Kpackets per secondwhile the second has about 1Mpackets per second. In both cases, we collected
the throughput and power consumptionmeasures obtained by two configurations of the application, the first using a blocking concurrencymode,
the second uses a nonblockingmode.
Interestingly, with the slowest input rate the two versions achieve almost the same throughput, whereas the power consumption is significantly

in favor of the blocking concurrency mode. This result is obtained because in that case the application is fast enough to process the packets at
their arrival speed, and it often idlewaiting for newpackets. The blocking version optimizes power consumption in those phases by suspending the
application threads. Furthermore, the wake-up overhead is negligible comparedwith the packet inter-arrival time.
In the case of the high input rate the pressure to the system is intensive and on average there are always packets to consume from the network.

Hence, the idle time is minimized and the two versions consume comparable power. The extra-overhead of the blocking version (e.g., for waking
up suspended threads) impairs throughput because the inter-arrival time interval is short and a slight improvement of the thread processing speed
immediately delivers better throughput.
The solution that we propose is to automatically switch between the two concurrencymodes according to the actual properties of the incoming

workload. Each queue supports both the concurrency modes that can be switched transparently to the user. This strategy is used to adapt graphs
of streaming operators working on single-producer single-consumer (SPSC) queues. Although the switching decision requires some tuning, we

1For example, onWindowsOSs is difficult to put one thread to sleep for less than onemillisecond.
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FIGURE 1 Motivating example: throughput and power consumption of the blocking vs nonblocking concurrency control modes in a network
application with different input rates.

design our algorithm so that the tuning is done only once per architecture by executing some micro-benchmarks, being independent from specific
workloads and applications. To confirm the effectiveness of our approach, we validate the algorithm using two real streaming applications.
The outline of this paper is the following. Sect. 2 provides background concepts useful for understanding the rest of the reading. Sect. 3 describes

the design of our algorithm and its application to the lock-free queues adopted by the FastFlow parallel programming framework. Sect. 4 shows an
evaluation using synthetic benchmarks and two real-world applications. Sect. 5 describes some relatedworks while Sect. 6 provides the conclusion
of this work and outlines possible future research directions.

2 BACKGROUND
In this section we will describe the background concepts that are useful to understand the contribution of this paper. We will discuss the main
featuresof data streamprocessingboth in termsof its computingparadigmsandprogrammingmodels. Then,wewill focuson themechanismsdevel-
oped inpast researchworkandadopted in current frameworks tobalanceperformancewithpower consumption. This descriptionwill contextualize
precisely which frameworks and tools will benefit from our power-aware data pipeliningmechanism.

2.1 Data StreamProcessing
Data stream processing frameworks support the development of applications that continuously process unbounded flows of input elements to be
processed on-the-fly. Applications are modeled as data-flow graphs of operators that compute in parallel over subsequent and independent data
items, and communicate partial results via data streams (12). The stream processing approach is worth for a wide class of applications, not limited
to cases where the input stream is primitive, e.g., when it is generated by external sources like sensors, networks or I/O devices, but also when it is
generated by reading from an in-memory large data structure (13).
In most of the existing frameworks like Apache Storm (14), StreamIt (15), FastFlow (16) and IBM InfoSphere Streams (17), operators can be

replicated to increase performance when hotspots are discovered. Besides the default distribution policies, the programmer may be eventually in
charge of programming how input items are dispatched to the distinct replicas of an operator, and of building the output stream by respecting the
input ordering. In that vein, some libraries promote the use of predefined patterns to instantiate parallel versions of operators, like pipeline and
farm (18). This approach has themerit to reduce the programming effort and to help in writing correct and deadlock-free applications, although the
expressiveness in writing arbitrarily complex graphs can be slightly hampered.
Operators represent the basic building block of graph topologies, which perform pre-built or user-defined transformations of the input data

streams into output data streams. Stateless operators apply the processing logic on each input item independently of the others. Instead, in stateful
operators the output of the computation on each input item depends on the value of the item itself and also on the history of the past items seen by
the operator. Of particular interest are windowed operators that maintain the most recent items received so far (e.g., the last n > 0 received items
or all the items received in the last n > 0 time units) and apply a user-defined function on each window data group (19). Except the case when the
window results can be computed incrementally, i.e. the result is updated each time a new itemof thatwindow is available, in commonwindow-based
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computations the user-function is triggered only when thewindow is full. Hence, no significant computation cost is paid when non-triggering items
are received, because they need just to be stored into a proper buffer thus paying few clock cycles for that. Since the triggering of the user function
is infrequent than the arrival of new items, windowed operators may often have a low computation time per item on average which reflects in a
pressing need of low communication overhead for data exchange between operators in order to achieve high throughput.

2.2 Run-time AdaptationMechanisms
The inputworkload of data streamprocessing applications is often highly variable, both for causes related to the user behavior, different application
phases, network outages and based on the intrinsic variability of the computation timeof user-defined functions, applied over individual input items
or window data groups. Over the years, several run-time mechanisms have been developed to adapt the application structure in terms of operator
deployment and their replication degree based on themonitored workload.
One of the most common reconfiguration mechanism is concurrency throttling (called operator fission in stream processing), which consists in

dynamically changing the concurrency level usedbyanoperator in order to accommodate the incomingworkloadbymeeting the applicationperfor-
mance constraints.Most of the existing research papers (20, 21) on this topic have focused onperformance, because streamprocessing applications
are demanding in termsof service-quality requirements (like in automaticfinancial trading systems). Because of the downtimepotentially causedby
changes in the concurrency level (e.g., for state management activities (22, 23)), advanced strategies have been designed to make reconfigurations
only when strictly necessary, avoiding oscillating decisions that may seriously impair performance instead of improving it (3, 24). Even more intru-
sive are structural changes (25), where computationally lightweight operators can be fused together in order to reduce communication latencies. In
modern stream processing systems no support exists for performing such reconfigurations on-the-fly. Indeed, the application needs to be stopped
and resumedwith the new structure, thus hampering the possibility to use structural changes frequently in case of high-speed streams.
Workload consolidation (26) (also known as Thread Packing) have been proposed as an alternative to concurrency throttling. In fact, instead of

changing the number of threads implementing an operator, they try to pack threads on the same core by reducing the reconfiguration time with
comparable power efficiency (27). By packing asmuch as possible the running processes of a streamprocessing systemover the available resources,
it is possible to turn off under-utilized computing nodes, reducing the power consumption of the system. Another direction instead, is to exploit the
DVFS (Dynamic Voltage and Frequency Scaling) support provided in most of the existing multicore architectures (3, 28). Instead of scaling out/in
the number of threads, the runtime increases/decreases the working frequency of the CPU in order to save power/increase throughput based on
the current workload. Other techniques are based on adaptive scheduling strategies (29, 30), which decide how to execute operator replicas over
the cluster nodes to achieve trade-offs between resource consumption and performance.
As far as we know, there are few papers that address the balance between throughput and power efficiency at the level of concurrency mecha-

nisms. The problem can be tackled on two fronts: one is oriented to efficient data structures supporting specific operators; the other is to provide
general-purpose synchronization mechanisms that work at a low level, i.e. at the level of the basic cooperation mechanisms used in the runtime of
stream processing systems. The paper presented in (31) proposes ScaleGate, a concurrent data object enabling low-latency operations for merg-
ing multiple input streams into an outbound stream ordered by timestamps. The data structure allows a set of readers to consume ready tuples
based on their timestamp by guaranteeing deterministic processing. The same idea has been recently extended to support multiway aggregation
operators in (32), showing high-throughput and low-latency levels with respect to traditional implementation techniques.
None of the previous papers address the problem of optimizing the performance/power trade-off. Although synchronization mechanisms play a

crucial role in case of fine-grained operators fed by high speed streams, the application workload is far to be stable in stream processing systems,
and the use of performance-friendly or power-friendlymechanisms can be regulated automatically based on theworkload.Once the features of the
incoming workload are recognized, a synchronizationmechanism equippedwith automatic concurrency control is able to choose one of the different
working modes that fit better with the current workload scenario, i.e. choosing a highly reactive mode in case of high speed streams, where a small
optimization of the operator’s processing speed might reveal of great importance for throughput, or using less aggressive concurrency modes to
save power without impairing performance when the arrival rate allows the application to be often idle waiting new data items to process.
The switching logic between different concurrency modes is the hardest part to design. The logic must have a minimal overhead in the standard

processing flow since it is executed continuously. Furthermore, the application of the switching actionsmust be immediate on the application data-
flow graph in order tomake themechanism able to rapidly receive reliable feedbacks from the system’s execution.
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3 DESIGNAND IMPLEMENTATION
In this sectionwe describe the design of a shared-memorymessage queue that can be used both in blocking and nonblocking concurrency control
modes for a generic data streaming computation. Then, we describe how to use it to optimize the power consumption and performance of a generic
streaming graph.

3.1 BaseMechanisms
An effective way for implementing pipeline parallelism between two threads on multicores is to use a lock-free Single-Producer Single-Consumer
(SPSC) FIFOqueue (33, 34). As discussed in Sec. 2 this approach is not power-efficient if a thread is performing busy-waiting because the underlying
hardware context remains active so that theOS cannot set the core in a low-power state.
In case of variable arrival rates, the producer (P) or the consumer (C) threads might spent some time in a busy-waiting loop because the message

queue is full or empty. Rather than spinning, to reduce power consumption wewant to put the threads to sleep waking them up as soon as they can
make useful work. The only portable way for doing this is to uses POSIX mutexes and condition variables (or equivalent C++1x features).
We consider FastFlow (16) as the reference parallel framework. We extended the FastFlow concurrency mode by associating to each FastFlow

channel a POSIXmutex and a condition variable and by changing the push and pop operations as described in the following pseudo-code.

Let us describe theAlgorithm1. To push amessage into the output queue the runtime first pushes the data pointer into the lock-free SPSCqueue
Q (line 1); if it succeeds, depending on the current concurrency mode of the node (called CCM in the algorithms), two different actions are taken. In
case of nonblockingmode the operation has been successfully completedwithout any further step (returning success at line 11). If CCM=blocking,
the runtime checks if the consumer node (C) has to be woken up because it has been previously put to sleep waiting for a new message (testing
C_waiting at line 4). In that case, C will be awakened by an explicit signal on its input condition variable C_cond_in (line 5) and the operation
returns with success (line 11). If the push on the lock-free queue fails and CCM=nonblocking, the push operation is executed again until it will com-
plete with success (line 10). If CCM=blocking, then the runtime checks if the queue is full (line 8) and, in that case, the thread is put to sleep on its
output condition variable P_cond_out (line 9). If it is not full (this is a spurious condition that may happen with lock-free data structure), or if the
thread is woken up by a signal, the operation is restarted from the beginning (line 10).
Let us now consider the pop operation described in the Algorithm 2. The runtime pops a new data pointer from the lock-free queue (line 1). If the

operation succeeds and CCM=nonblocking, the operation has been successfully completed (line 3 and line 11). If CCM=blocking then the runtime
checks if the producer (P) has to be woken up because it is waiting for a new free slot in the queue (line 3 and 4). This case can happen only if the
input queue has a bounded size. In that case, P receives a signal on its output condition variable and the operation completeswith success (line 5 and
11). If the pop fails and CCM=nonblocking the operationwill be repeated until it completes with success (line 10). If CCM=blocking then the runtime
checks if the queue is empty (line 8) and puts the thread to sleep on its input condition variable (line 9), otherwise the operation is restarted from
the beginning (line 10).
By switching the CMM variable between blocking and nonblocking concurrency mode, it is possible to control the throughput and the power

consumption of the nodes using the queue. The next section will explain this mechanismmore in detail.
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3.2 Power-Aware Data Pipelining
To describe the algorithm,we first consider a streaming network structured as a pipeline, a connected graphwhere each node has atmost one input
queue and one output queue. Then, in Sec. 3.3 we extend the algorithm to generic streaming networks.
To simplify the exposition, from now on we consider that all message queues are unbounded in size. Consequently, each node would never need

to do busy-waiting or to suspend itself when doing a push operation. This may cause an uncontrolled growth of memory usage and we will discuss
this aspect in Sect. 3.3.
As described in Sec. 3.1, by changing the CCM variable it is possible to change the concurrency mode of the producer and consumer thread. But,

who decides if it is worth to switch from blocking to nonblocking and vice-versa for a given pair of nodes?
Our implementation, considers a manager thread that is in charge of making decisions for the entire streaming application. At configurable

time intervals, by collecting monitoring information about the current performance and power consumption of the entire application, the man-
ager decides which message queue should operate in blocking or nonblocking concurrency control mode by directly notifying the producer and
consumer threads. Each concurrent activity will execute the following operations in a loop:

1. Reads an element from its input queue by executing a pop. The average latency of this operation is Lb
pop for blocking queues and Lnb

pop for
nonblocking queues. If no data is present in the queue (the pop fails), the node waits for new data to arrive by suspending itself or by doing
busy waiting. Let us denote this average waiting timewithLidle;

2. Executes some processing (with a latencyLproc) on the data element;
3. Sends the computed result(s) on its output queue through a push. This operation has an average latency ofLb

push in case of blockingqueues
andLnb

push in case of nonblocking queues. Since the output queue is unbounded in size, this operation will always succeed.
The breakdown of a single loop iteration of a node is sketched in Fig. 2 . Timing values (e.g., Lidle, Lproc) are stored by the single node in its

internal variables that can be accessed (read only) by themanager without any extra synchronization.
In the rest of this section we will describe the two possible cases for the dynamic switching of the concurrency control mode: i) from blocking

to nonblocking; ii) from nonblocking to blocking. It should be noted that the manager must manipulate the CCM variable in mutual exclusion (a
mutex is also needed in the POSIX condition variables API) and it has to wake up through a signal a thread possibly waiting on the queue to avoid
critical cases when the consumer is blockedwhile the producer is already in the nonblockingmode.

3.2.1 From blocking to nonblocking
Suppose that when the application starts, it uses all the message queues in blockingmode. To improve the throughput of the application, we have
to improve the throughput of its slowest node, i.e., the onewith the highest latency.We call this node S. If it hasLidle > 0, despite being the slowest
node in the application, it is still fast enough to process the incoming data, so there is no need to improve the throughput of the application at all.
Otherwise, we can improve the throughput of S by reducing the latency of both the pop and push operations. Let us start with the pop operation.
Switching the input queue to nonblocking mode would have no impact on the power consumption since Lidle = 0 and S will not do busy wait.
Now let us consider the push operation. We could switch the output queue of S to nonblockingmode and reduce Lpush as well. Let us call T the
successor of S. Since S is slower than T, Lidle(T ) is greater than zero. If the message queue is in blocking mode, while idling T is suspended on
the condition variable. However, after switching to nonblockingmode, T will start doing busy-waiting, thus increasing the power consumption of
the application. To determine if the increase in power consumption is worth the increase in performance, we decided to let the application user
(or the system developer) to set some preferences for the application, by specifying maximum allowed increase in power consumption for each 1%
increase in performance. Similarly, the user might just set a maximum power consumption of the system letting the runtime system to optimize the
performance with the given power budget (this is also known as Power Capping).
For evaluating the outcome of the decision, we adopt a rollback-based approach. When a potential performance improvement for the output

queue is detected, the algorithm switches the queue from blocking to nonblocking. Then, the performance and the power consumption aremoni-
tored for thenext time interval. If the results of the switchingdoesnot complywith theuser requirements, thedecision is revertedback, otherwise is
kept. Since in both caseswe improved S by switching its input queue, the slowest nodemight now be a different one. If this is the case, the algorithm
is executed on the new slowest node, otherwise it terminates. To avoid toomany rollback operations, if a nodewas involved in a rollback operation,
it is marked and it is not evaluated again for a time interval that can be specified by the user.

3.2.2 From nonblocking to blocking
Due toworkload fluctuations, the system could start receiving less data per unit of time. In such a case, themessage queueswill become empty and
some nodes will start doing busy-wait on their input queues. By switching a queue to blocking mode, the nodes using the queue would suspend
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FIGURE 2 Different kind of latencies in the node operations.
FIGURE 3 A data stream processing graph and all its possible
routing paths.

on the condition variable instead of doing busy-wait. However we would also increase the latency of push and pop operations. To ensure that this
switch does not decrease the throughput of the nodes, it is sufficient to ensure that the increase in the push and pop latency is “absorbed” by the idle
latency, i.e., even if these operations will last longer, the nodes will still have enough time before receiving the next data element, thus not reducing
their performance. To do so, it is sufficient to find the pairs of nodes P (producer), C (consumer) such that the following condition is true:

Lidle(C) > Lb
pop(C)− Lnb

pop(C) andLidle(P ) > Lb
push(P )− Lnb

push(P )

If this condition is satisfied, wewill haveLidle > 0 for both nodes after switching to blocking, thus not reducing their throughput.

3.3 Generic Streaming Graphs
Herewe discuss how to apply to a generic connected graph, the algorithm previously described for the pipeline graph.
Wemay observe that a data element, flowing from a source to a sink of the streaming network, will cross different processing nodes and different

message queues. Since each nodemay havemultiple output channels towards different nodes, the path followed by an input element depends both
on the scheduling policies adopted by these multi-output nodes and by the data element itself. However, all the possible paths are statically known
(see Fig. 3 ).
Since each of these paths is actually a pipeline, we can apply the algorithm described for the pipeline separately on each path. When computing

all the possible paths we remove the backward edges, i.e. those forming a loop in the graph. Indeed, a loop simply replicates a sub-paths multiple
times (NTimes in Fig. 3 ) in the pipeline. However, it is sufficient to optimize each node of the path just once, thus the algorithmwill still optimize the
throughput of the application even if we do not consider these duplicate nodes. For example, two bottom paths in Fig. 3 (right) will actually be the
same path for the purpose of the algorithm.

3.3.1 Message queues’ memory utilization
In the algorithm, we considered all the message queues used by the application to be unbounded in size. However, if the application receives data
at a faster rate than the one it has been designed for, data would accumulate in the message queues, leading to an uncontrolled growth of memory
utilization and to catastrophic effects on the application.
The application, however, has been designed to sustain a given maximum input data rate or not to exceed a certain memory utilization. Accord-

ingly, the source nodes would throttle itself by not injecting data into the application at a rate faster than the one the application was designed for.
In this way, the total amount of memory of the system is kept under amaximum value.

4 EXPERIMENTS
In this Section we first analyze the results obtained considering two simple benchmarks aimed at measuring latency and throughput in different
configurations, then we describe the results obtained validating the algorithm proposed in Sec. 3 for two real streaming applications: Network
Protocol Identification andMalware Detection. Finally we characterize the applicability of the proposed algorithm by manually tuning the service
time of theMalware Detection application and by running an image filtering application using OpenCV and thread over-provisioning.
All experiments were conducted on an Intel workstation with 2 Xeon E5-2695 @2.40GHz CPUs, each with 12 2-way hyper-threaded cores,

runningwith Linux x86_64.Wedid not usehyper-threading andwe ran all the experiments by selecting themaximumCPUclock frequency available
through the performance scaling governor.
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FIGURE4 PipelinebenchmarkofN stages aimedatmeasuring the average latency of each single
stage, i.e. the average time needed to a packet tomove from the previous stage to the next one.

FIGURE5 Ring benchmark ofN stages aimed at
measuring the maximum throughput sustained
by the system varying the number of stages.

Benchmarks and applications have been implemented using the FastFlow parallel framework version 2.1.3. FastFlow is an open-source, struc-
tured parallel programming framework supporting highly efficient stream parallel computation on heterogeneous multi-core platforms (16). It
is realized as a C++11 header-only template library that allows the programmer to simplify the development of parallel applications modeled
as directed graphs of processing nodes. FastFlow provides a set of ready-to-use, parametric algorithmic skeletons modeling the most common
parallelism exploitation patterns, whichmay be freely nested tomodel arbitrarily complex graph topologies.
Tomeasure thepower consumption,weused theMAMMUT2 library (35), that on themulti-core systemused for the tests relies onRAPL counters.

The results reported in each plot are the average values of five repetitions, unless otherwise stated.

4.1 Synthetic benchmarks
The first set of experiments considers two benchmarks: i) pipeline benchmark (Fig. 4 ), a linear chain ofN stageswhere the first stage (theGenerator)
injects into the chain a continuous stream of packets at a pre-defined constant rate for a given amount of time (30 seconds in our tests); a Collector
stage gathers all packets injected in the pipeline; ii) ring benchmark (Fig. 5 ), a ring ofN stages where the master stage called Generator & Collector
continuously sends packets to the first stage of the ring and receives back packets from the last stage of the ring. The number of packets injected at
the maximum speed into the ring is fixed and equal toM . The last packet is a special packet (called End-Of-Stream) that allows to stop all stages and
measure the execution time (called TotalExecutionT ime).
Theobjectiveof thebenchmarks is twofold: for thepipeline benchmark tomeasure the average latency for the single stage, that is the average time

needed by a packet to cross a pipeline stage (i.e. the average time between the push of the packet by the previous stage and a pop operation by the
next stage for receiving thepacket); for the ring benchmark tomeasures theoverall throughputof the systemvarying thenumberof stagesof the ring.
In the ring benchmark each stage spends 1, 000CPU cycles before sending the packet to the next stage, instead in the pipeline benchmark each stage
forwards the packet as soon as possible. The latency in the pipeline benchmark is computed by starting a timer for each packet before sending it into
the chain and stopping the timer when the packet is received by the Collector stage. The Collector computes a moving average with an overlapping
constant size of 10 values and eventually produce in output the average value divided by the (N + 1) (i.e the number of channels of the pipeline).
The overall throughput in the ring benchmark is computed considering the total amount of messages exchanged during the benchmark execution
time and preciselyM ∗ (N + 1)/TotalExecutionT imewhereM andN are the number of messages and the number of stages, respectively.
We studied three different configurations: 1) nonblocking concurrency mode where all threads continuously keep polling their input/output

queues with a minimal active backoff of few hundred CPU cycles; 2) blocking concurrency mode where all threads are immediately put to sleep
waiting for awake-up signal if their input/output queues are empty/full; 3) backoffwhere all threads uses different retry policy strategies alternat-
ing active polling and micro sleeping periods. For the backoff configuration, we consider two distinct cases: a) backoff-2l having two levels of retry
policies: aggressive andmoderate; b) backoff-3l having three distinct levels of retry policy: aggressive,moderate and relaxed. In the backoff-2l the aggres-
sive policy performs 256 active polling tentative then it switches tomoderate strategy where, between two distinct retries, the polling thread sleeps
for 1millisecond. In the backoff-3l case, the aggressive policy performs 64 tentative of active polling then it switches to moderate where the thread
performs 256 tentative and between two distinct retries it sleeps for 50microseconds then, if the queue is still empty/full, it switches again moving

2http://danieledesensi.github.io/mammut/

http://danieledesensi.github.io/mammut/
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FIGURE 6 Latency and Power consumption of the pipeline benchmark in blocking and backoff configurations for "low"message rate (100msg/s).
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to the relaxed mode where the threads sleeps for 1 millisecond between two distinct retries. The backoff-2l is characterized by a more aggressive
behaviorwhere the thread spins or sleep, whereas the backoff-3lmore graduallymoves from spinning to sleeping over time.We select these specific
values for sleeps and retries since they provide a good trade-off between power consumption and performance.
Fig. 6 shows the results of the pipeline benchmark in the blocking and backoff configurations for lowmessage rate (10msg/s). For such low rate

the best average latency is obtained using the backoff-3l configuration which has a moderate policy that performs small sleeps (50 microseconds)
whereas the backoff-2l has a longer sleeping period (1millisecond). It is worth noting that increasing the number of stages the blocking and backoff-
3l case have closer average latencies. Concerning power consumption, as expected, the blocking concurrency mode is the most power efficient
consuming less than 50Watts in all tests.
The results obtainedwithhigher inputmessage rage (100Kmsgs/s) are reported inFig. 7 . In this test, a packet is producedeach10microseconds.

The best latency is obtained by the backoff-2l configuration while the backoff-3l is the worst configuration. This can be explained considering that
the backoff-2l has a higher number of retry attempts in the aggressive strategy. In fact, it performs 256 retries of active polling instead of 64 retries of
the backoff-3l. Therefore, with the given rate, in the backoff-3l the spinning thread will enter the retry loop of themoderate strategy which between
two consecutive retries the thread is put to sleep for at least 50microseconds which is a time higher than the actual rate. Conversely, the backoff-2l
is themost power-hungry strategy consuming in the 24 stages configuration 167Watts.
In Fig. 8 we show the average latency and the power consumption for the pipeline benchmark using the nonblocking configuration, varying the

message rate between 10msg/s to 100Kmsg/s. We considered two configurations for the pipeline: 3 and 24 stages. As can be seen, the latency is
almost constant (about 400 nanoseconds) for the two cases regardless the input message rate and the number of stages of the pipeline chain. The
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same applies for the power consumption that is constant regardless the input rate. The difference between the case with 3 and 24 pipeline stages
is due to number of CPUs used in the two configurations, in fact each CPU of the platform considered for the tests hosts 12 cores. Therefore, in the
pipeline configuration with 3 stages only the cores of the first CPU are used, allowing theOS to put the second CPU in low-powermode.
Concerning the throughput, in Fig. 9 is shown the results obtained by the nonblocking, blocking and backoff-2l configurations. As expected,

the blocking concurrencymode offers the lowest overall system throughput due to the higher overhead of the concurrencymechanisms, whereas
the nonblocking and the backoff-2l configurations have exactly the same system throughput reaching amaximumvalue of about 55Mpps (millions-
packets-per-second).
Finally, in Fig. 10 is reported the averageCPUutilization of the pipeline benchmark for the casewith 24 stages. As can be noted, the nonblocking

configurationuses almost100%of theCPUcycles available regardless the input rate, theblocking configurationuses less than1%ofCPUcycles for
lowmessage rate (100msg/s) and about 10%CPU cycles for highmessage rate. The backoff configurations consumesmuch less of the nonblocking
concurrency mode for lowmessage rate while for high message rate the backoff concurrency mode consumes about 95% and 40%CPUs cycles in
the backoff-2l and backoff-3l configurations, respectively.
In summary, on thebaseof the results of the twobenchmarks,we can conclude that thenonblocking concurrencymodel is themost efficient and

stable one when considering latency reduction as the most important metric. On the other hand, it is also the most power expensive both in terms
of CPUs cycles and in terms of power consumed. The backoff and blocking concurrency models offer different performance results on the base
of the given input rate. Moreover, the tuning of the backoff’s sleeping time and number of tentative for each strategy, is not an easy task and need
to be regulated on the base of the rate. The backoff strategy is a good compromise if the most important optimization metric is the throughput, in
fact it can offer the same performance of the nonblocking strategy at high rate and to offer almost the same power consumption of the blocking
strategy for low input rate. When latency is not the primary metric to optimize, the blocking concurrency model offers the most efficient and
effective solution providing a good balance between absolute performance and power consumption.
Given the above considerations, we concentrate our study on the blocking and nonblocking concurrency control strategies that represent the

two best solution for low and high data rate respectively.

4.2 Applications
In this section we consider two streaming applications: the Protocol Identification and Malware Detection. In the experiments we used the auto-
matic algorithm proposed in Sec. 3 to optimize the performance/power consumption ration of the applications considered by setting the following
requirement: for each +1% increase in the throughput we are willing to pay an increase of power consumption not greater than 1%.
Since the algorithm activates once every second, and since it takes just fewmilliseconds to decidewhich queuesmust be switched, the overhead

of the algorithm is less than 1% both in terms of performance and power consumption.
To compute Lb

push, Lnb
push, Lb

pop and Lnb
pop needed to decide when to switch from nonblocking to blockingmode, we run a micro-benchmark

composed by a producer-consumer pair of nodes (i.e. a simple 2-stage FastFlow pipeline), considering the average latency over 200 thousands
messages exchangedwhen the queue between the producer and the consumer is empty, which represents aworst case scenario for the latency. On
the target architecture we obtained the following average values:Lb

push = 27usec,Lnb
push = 0.4usec,Lb

pop = 0.8usec andLnb
pop = 0.01usec.

These values include the cost of the push and pop operations plus the cost introduced by the FastFlow runtime for themessage handling.

4.2.1 Protocol identification application
The first application we use for validating our algorithm is a networkmonitoring application (36).
This application is implemented as a three stage pipeline. The source node receives the network packets and assigns to each of them a key,

such that packets belonging to the same “application flow” have the same key. The packets are then forwarded to the second stage of the pipeline
through themessage queue. For each packet, the second stage stores packet information into a hash table by using the key. This information is used
to correlate packets belonging to the same “application flow” in order to detect the application protocol (e.g., HTTP). If the node receives a packet
belonging to a flow whose protocol has been already identified, no additional processing is performed and the packet is simply forwarded to the
third stage.
This behavior creates a situation where for each logical “application flow” we have a high latency on the first packets but then, after the proto-

col has been identified, the latency drops down to almost zero. This is a typical scenario in many data stream processing applications where the
computation is triggered only upon receiving a given number of input tuples (8).
Eventually, the second stage will forward each packet to the third node, which injects the packets again into the network. To analyze the appli-

cation in a realistic environment, we sent the packets to the application at variable rates, equal to those characterizing a modern Internet Service
Provider. For this purpose, we used the dataset available at http://bit.ly/1RY7fEt.

http://bit.ly/1RY7fEt
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FIGURE 11 Performance and power consumption comparison of blocking, nonblocking and automatic concurrency control strategies for the
Protocol identification application.

FIGURE 12 Performance and power consumption comparison of blocking, nonblocking and automatic concurrency control strategies for the
Malware detection application.

We ran the application for 24 hours and the results are shown in Fig. 11 (the performance is measured using packets-per-second – pps). The
spikes in the plot of the power consumption can be explained considering that the application uses only three threads pinned on three CPU’s cores.
During the application execution, theOS executes on the other CPU’s cores others threads/processes (i.e. demons, services, etc.) which temporarily
increase the power consumption of the CPU. The algorithm we are proposing (automatic) is able to provide, at every time, the best performance
and the lowest power consumption among the three concurrency modes. When there is no need to improve the throughput (because there is not
enough data to process), the algorithm switches the queues to blocking concurrencymode, thus reducing the power consumption. However, when
the input arrival rate increases, it switches the queues to nonblocking, thus improving the performance to be able to sustain the input data rate.
For this application, the automatic algorithm leads to amaximumperformance improvement of 33.28%with respect to the blocking case and to a
maximum power reduction of 11%with respect to the nonblocking case.
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FIGURE 13 Comparison of efficiency of blocking, nonblocking and automatic concurrency control strategies on the Malware detection
application.

4.2.2 Malware detection application
This application is described in (36). Logically, the Malware Detection Application is structured as a 3-stage pipeline where the middle stage
computes the most expensive part and can be conveniently replicated a number of times. In FastFlow, this network can be easily and efficiently
implemented by using a single task-farm pattern with a custom scheduling policy.
Each worker of the task-farm, after having identified the protocol, searches for a predefined set of “signatures” (representing malware binaries)

inside each HTTP packet. The packets are scheduled to a specific worker according to the value of the key computed by the first logical stage of the
pipeline that is implemented by the task-farm emitter.
In this experiment, the application graph is composed by 24 nodes (one for each core of the machine). As in the previous test, the arrival rate of

the packets to the application is variable. In our test, we used the rate that characterize amodern Internet Exchange Point network3. For themalware
detection part, we used a subset of the database used by the ClamAV antivirus4, containing 2000 signatures.
The results of our test are sketched in Fig. 12 , showing that the automatic policy is able to achieve the maximum performance while having

the optimal power consumption (i.e. the same values obtained by the blocking concurrencymode). Between 15 and 22 the blocking concurrency
mode has a lower power consumption but it cannot sustain the same arrival rate of the nonblockingmode.
In Fig. 13 we show another interpretation of the result, by plotting the efficiency of the different concurrency control techniques, expressed as

the ratio between the performance and the power consumption. Aswe can see from the plot, the automatic strategy is always characterized by the
highest efficiency between those of the other two techniques.

4.2.3 Corner Cases and Summary of Results
In this section, we study the applicability of our algorithm considering some corner case scenarios. Analyzing again the Malware Detection appli-
cation described in the previous section, we studied its behavior when the database of signatures is more extensive than the one considered in
the previous tests. This means that the generic worker executes more work for each input packet so its service time increases. By increasing the
time spent computing the single input element (i.e. Lproc in Fig. 2 ), the relative impact of Lpop and Lpush decreases, thus reducing the benefit
of the nonblocking strategy over the blocking one. In a nutshell, for application characterized by a high Lproc, the blocking strategy is as much
performing as the nonblocking one.
While in the previous section (results shown in Fig. 12 ), we considered a database of 2000 signatures, herewe consider other two cases: a bigger

database of 45000 signatures and a very large database of 90000 signatures. The results for the two cases tested are reported in Fig. 14 in the top
and bottom plot, respectively.
Moving to a larger database of signature, the performance gap between blocking and nonblocking strategies get closer as shown in the top

plot of Fig. 14 . As expected, the number of packets-per-seconds the system can sustain over time decreases because of the increased service time
of each worker. When the largest database of signatures is considered, the two concurrency control policy provide almost the same performance
(see the bottom plot of Fig. 14 ), whereas, in terms of the ratio between performance and power consumption, the automatic policy still provides
the best efficiency.
Tobetter quantify the relationbetween service timeandmaximumthroughput of theblocking andnonblocking concurrency control strategies

for theMalware Detection application, we reported themeasured values in Table 1 . Particularly, the table shows the averageworker service time

3https://stats.linx.net/, (IXMANCHESTER), 24 hours data between 02/01/2016 and 03/01/2016.We scaled it down by a 3xmultiplicative factor to match
themaximum performance achievable on our target architecture.

4https://www.clamav.net/.

https://stats.linx.net/
https://www.clamav.net/
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FIGURE 14 Performance and power consumption comparison of blocking, nonblocking and automatic concurrency control strategies for the
Malware detection application when the database of signature is of 45000 (top plot) and 90000 (bottom plot) signatures, respectively.

(microseconds) for the entire execution and themaximumnumberof packets-per-second the systemcan sustain. The lower theworker service time,
themore significant the performance gap between the two strategies. This confirms that the nonblocking strategy introduces lower overhead than
the blocking one. From our tests, for service time higher than 26microseconds, the nonblocking policy starts providing only marginal benefit if
none at all. Therefore there is a clear threshold in the node’s service time that delimits the point below which the automatic algorithm provides
some benefits and it is worth to be used.

TABLE1 Performance gap between blocking and nonblocking strate-
gies considering different worker’s service time for the Malware detec-
tion application.

Worker’s
service time (us)

Blocking vs Non Blocking
throughput difference (%)

19 24.23%
23 15.3%
26 5.15%

TABLE 2 Impact of using thread over-provisioning with respect to the
available number of cores for the video filtering application. The target
machine has 24 cores and 48 hyperthreaded core contexts.

Max Throughput (pps)
num
threads Blocking Non Blocking
24 646720 714291
48 708459 586084
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Finally, we considered a new simple video filtering application that can be logically modeled as a three-stage pipeline. The peculiarity of this

new application with respect to previous ones is that it always operates at maximum throughput. In fact, the input video is loaded into main mem-
ory by the first stage of the pipeline and then individual frames are sent to the second stage at maximum speed. Each frame can be computed
in parallel by a set of workers and then the filtered frames are re-organized to preserve video frames order by the third stage, which also stores
them in the output file. This application uses the OpenCV library 5 to manipulate frames and to apply an image filter (from RGB to Gray) to each
frame of the video (the resolution of the video is 64 × 64). We used this video filtering application to study the behavior of the blocking and
nonblocking strategies when thread over-provisioning is considered. The machine used for the test has 24 physical and 48 logical cores (featur-
ing Intel’s Hyper-Threading technology). The results are shown in Table 2 . While the blocking strategy benefits from an increased number of
threads-per-physical-core, the nonblocking strategy decreases its performance when more than one thread-per-core is used. This is due to the
higher resource contention introduced by the busy-waiting policy employed by the nonblocking strategy. Therefore, to avoid inconsistency, the
automatic algorithm is automatically disabled when the number of threads is higher than the number of physical cores.
To conclude and summarize the results, the nonblocking strategy is the most performing one and the most power-hungry. Its power consump-

tion depends on the number of cores used and not on the input data rate. The blocking strategy is the most power-efficient for low to medium
input rates and when more threads than physical cores are used. However, its associated overhead does not always allow to reach the maximum
throughput, particularly for very fine-grained computation. In our tests the limit has been identified considering node’s service time in the range
25-30us. When applicable, the automatic strategy proposed in this work represents a good trade-off between absolute performance and power
consumption. It allows exploiting both benefits of the blocking and nonblocking strategies leading to optimal values of the power/performance
ratio.

5 RELATEDWORK
Concurrent programming requires primitives to synchronize the execution of concurrent threads accessing shared data structures. The standard
approach is based on a basic pessimistic assumption that each time a thread tries to access a critical section this accessmay potentially be in conflict
with other running threads that simultaneously do the same. This problem has been traditionally solved by using locking primitives that protect
the critical section from concurrent accesses. In turn, the implementations of the lock data structures adopt hardware-level instructions to protect
their use, like test-and-set instructions on x86-based machines. In addition, locking mechanisms can adopt busy waiting phases, as in spin-lock
implementations, and also passive waiting as did by POSIXmutexes.
Adifferent approach is basedonan optimistic assumption that concurrent accesses to the sharedata structures are infrequent, and always paying

the overhead of locking is something that can be avoided in the real executions. An approach to that is to exploit the so-called TransactionalMemories
(TM) (37, 38), which provide generic mechanisms for optimistic concurrency. TM can be used to designate arbitrary regions of code making them
appear as executed atomically. If no concurrent access is executed during the transaction (a sequence of read/write operations on a memory area),
the transaction can be committed and its effects will be permanent on the data structure. Otherwise, the transaction is aborted as it was never
executed (i.e. by rolling back the state at the time instant before the transaction begun). As described in (39), TM has the potential of reducing
power/energy consumption in real workloads, however hardware supports to TM are not present in every machine although the trend is to extend
such support inmost of the affordable computing platforms available nowadays. Speculative Lock Elision (40) and Transactional Lock Removal (41) are
two techniques proposed for optimistically executing program’s lock regions using transactional memories.
Another specialized form of optimistic concurrency is lock-free concurrency, used to implement efficient concurrent data structures. Lock-free

algorithm implementations aim at overcoming the various problems associated with the use of locks. Various progress conditions such as wait-
freedom, lock-freedom, and obstruction-freedom have been deeply studied and proposed in the literature (9). In (5) the authors analyzed some
lock-free and lock-based concurrent data structures (i.e. FIFOqueues, double-endedqueues and sorted linked lists) by using hardwareperformance
countersfinding that lock-free algorithms tend to performbetter in general that their lock-based counterparts. Another research direction of inter-
est consists in using specific architectural features to improve the performance of locks. This idea has been followed in (42, 43), where the authors
have proposed to use specific on-chip interconnection networks of some chip multiprocessors (i.e. Tilera ones and Netlogic/Broadcom chips) in
order to exchange the lock ownership efficiently by exchanging messages over such networks. Although interesting, such solutions have a limited
applicability since they target specialized architectures only.

5OpenCV library: http://opencv.org

http://opencv.org
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Quite a few authors have previously combined optimistic and pessimistic concurrency control mechanisms in the context of Database Systems.
Authors in (44) combined locking with Software TM (STM) in different parts of the program, obtaining better performance than just using a lock-
based or an STM-based solution. They found that by using one of the two choices exclusively throughout the application execution is often sub-
optimal. Moreover, they formalized a theory for correctly composing different concurrency control protocols into a single program. Adaptive run-
time techniques developed for selecting between TMand locking for each transaction are described in (6). These papers represented an inspiration
for our work. In fact the dichotomy between different concurrency modes can be breaken by designing an adaptation mechanism that: i) identifies
the features of the current application phase (e.g., of its workload); ii) dynamically selects which concurrency mode to use and applies the chosen
onewithout blocking the application; iii) iterates the points i) and ii) by continuously monitoring the application execution.
The trade-off of the spin-then-sleep technique has been studied in (45) where it is shown that simply spinning or sleeping is sub-optimal in many

cases. Current implementation ofmutexes in the LinuxOSuses this technique. Themutex call spins for up to a fewhundred cycles before employing
a costly futex call for suspending the caller. Therefore, it can happen that the threads pay the cost of the futex call only to be immediately woken
up, thus wasting both time and energy because the core where the thread is running is not immediately put in a low-power state.
A different approach for reducing power consumption of nonblocking algorithms is to use the same techniques used to reduce contention in

spin locks, e.g., linear and exponential backoff (11). Instead of continuously retry in checking the given condition, the thread is put to sleep between
two retries for an amount of time that increases linearly or exponentially until a maximum value.While from one side sleeping reduces power con-
sumption because the core where the thread is running may enter a low-power state, this approach has the disadvantage that the threads may be
not reactive enough since they might be backed off too far while there is some data ready to be processed. Finding good values for the minimum
and the maximum sleeping time is not straightforward and may depend on the target application and on the given input rate for streaming appli-
cations. Adaptive backoff mechanisms have been developed for many years, and they target specific execution scenarios by typically performing a
statistical analysis of the accesses and their duration. A recent example of this approach is described in (46), whereQueueing Theory has been used
to dynamically regulate the parameters of a general backoff strategy that can be applied tomost of the lock-free data structures.
Althoughbackoff strategies can achieve optimal trade-offs betweenperformance andpower consumption in theory, they are hard to be tuned. In

our work we did not follow this approach but instead we proposed a switching scheme supported by proper mechanisms and strategies to dynami-
cally choose thebest concurrencymode that does not impair performance andpower consumption toomuch.Our ideahas been tunedanddesigned
for data stream processing, which is an emerging topic in Big Data analytics.

6 CONCLUSIONSANDFUTUREWORK
In thisworkwedescribed an algorithm for the automatic selection of the optimal concurrency controlmode formessage queues implementing data
streaming channels. We validated our proposal using two benchmarks and two real-world data streaming applications, showing that our solution
properly adapts the concurrencymodeaccording to the current inputdata rateof theapplication, keepingupwith themaximumthroughputwithout
wasting power. As a futurework,wewill consider the optimization of the latency aswell as the introduction of performance andpower consumption
prediction techniques to reduce the need of the rollback phase in the algorithm. Moreover, we would like to compare this concurrency control
algorithmwith other techniques like concurrency throttling andDVFS.
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