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SUMMARY

The rise of heterogeneous systems has given place to great challenges for users, as they involve new
concepts, restrictions and frameworks. Their exploitation is further complicated in the context of distributed
memory systems, which require the usage of additional different programming paradigms and tools. In this
paper we propose a novel approach to program heterogeneous clusters that is based on high level abstractions
such as tiles and hierarchical decomposition combined with the powerful APIs that data types and embedded
languages can provide in languages such as C++. Rather than building our proposal from scratch, we have
implemented it as a natural integration of the existing Hierarchically Tiled Arrays (HTA) and Heterogeneous
Programming Library (HPL) projects, the first one being focused on distributed computing and the second
one on heterogeneous processing. The result, called Heterogeneous Hierarchically Tiled Arrays (H2TA),
is very intuitive and easy to use thanks to the global view of the data and the single-threaded view of
the execution that it provides at cluster level together with the transparency it provides with respect to
the management of the heterogeneous devices. An evaluation comparing our proposal with MPI-based
implementations shows its large programmability advantages and the reasonable overhead incurred.
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2 M. VINAS ET AL

1. INTRODUCTION

High Performance Computing (HPC) applications and systems are increasingly adopting the
usage of heterogeneous devices due to their advantages in terms of performance and power
consumption. A clear example of this tendency is the number of heterogeneous supercomputers
found in the TOP500 list (http://www.top500.org/), as June 2017 list includes 91 systems that use
accelerators/co-processors, up from 64 on June 2014, which means a 42% increase in the last three
years. Unfortunately the exploitation of heterogeneity has important programming costs because of
the required new restrictions and programming tools that accelerators require. The complexity of
the development of applications is even larger in the context of heterogeneous clusters, as their
distributed nature requires the usage of yet other tools that are usually intended for low level
programming, the most common one being the standard message passing library MPIL. Also, these
problems are sometimes coupled with lack of portability across different families of accelerators.
This latter restriction has been ameliorated by the appearance of the OpenCL standard, which suffers
however from yet higher programming costs than other alternatives [32].

Given the growing relevance of heterogeneous distributed memory systems and the large
development effort they pose nowadays, the research community has come up with a number of
interesting proposals to facilitate their usage [23, 7, 5, 9, 20, 17]. In our opinion, the best answers
to programmability problems must combine three main characteristics. First, simple semantics and
high levels of abstraction must be provided to the users. This way, in the case of the heterogeneous
clusters, alternatives in which the data distributed can be seen as global data structures that cover the
whole cluster are preferable to those in which isolated local portions of data must be independently
managed. Relatedly, it is desirable to consider the data containers as the units of representation for
the data storage rather than the different buffers that can be needed to store such data in different host

memories and devices. Also, enabling programmers to focus on a single thread of execution that at
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HETEROGENEOUS DISTRIBUTED COMPUTING BASED ON HIGH LEVEL ABSTRACTIONS 3

some points diverges to perform parallel independent computations in different processors is better
than controlling independent execution paths in each process following the SPMD programming
style typical of MPI-based applications. The second element that must be stressed is a concise
and powerful APIL. In this regard, we favor the use of libraries over new languages and compiler
directives because they facilitate code reuse and do not suffer from the limitations of compiler
technology. Also, these libraries should naturally exploit the rich semantics associated to object-
orientation and polymorphism when they are supported by their host language. The final third
property that a proposal of this kind should have is a reasonable performance when it is compared
with the low level approaches it seeks to replace or complement.

This paper presents a framework for the programming of heterogeneous clusters that has been
designed based on the premises laid out above. It relies on a data type that represents a distributed
array with powerful tile-based notation and semantics on which data-parallel operations can be
applied. These operations can be run either on the regular CPUs or in the heterogeneous devices
of a cluster depending on the specification of the user and they are encapsulated in the data type
methods, which make the associated underlying management as transparent to the user as possible.
The usage of our data type allows to avoid the SPMD programming style, offering a single-threaded
view of the execution, where the parallelism is encapsulated in the array operations on the data
type. Communications are also implicit, as they appear either in array assignments that imply
portions located in different cluster nodes or in global operations that require communications
such as reductions. Our proposal has been developed as an extension of the existing Hierarchically
Tiled Array (HTA) project [2], as it provides a data type with all the starting properties required
except the support for heterogeneous computing. Rather than reinventing the wheel, we provided
the accelerator support for the HTA class by reusing the runtime and integrating the API of the
Heterogeneous Programming Library (HPL) project [42] given its portability, good performance
and intuitive notation. An initial experience [44] on heterogeneous clusters showed that the use of
both libraries in the same application separately provided good results in terms of programmability

and performance, although it required some manual management operations and a duplication of
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4 M. VINAS ET AL

handles for arrays, which complicated the programming. This led us to focus our efforts on the
development of an integrated solution. The result, which we call the Heterogeneous Hierarchically
Tiled Array (H2TA), is a high level proposal for the programming of heterogeneous clusters that
presents important advantages with respect to the strategies that are currently used while presenting
negligible overheads with respect to them.

The rest of this paper is organized as follows. First, our proposal is motivated through a discussion
of the related work in Section 2. This is followed by an introduction to the HTA data type in Section 3
and a discussion on the Heterogeneous Programming Library and our first experiences combining
it with HTAs to program heterogeneous clusters in Section 4. Our new integrated proposal is then
presented in Section 5. Implementation details of the H2TAs are provided in Section 6, which is

followed by an experimental evaluation in Section 7 and our conclusions in Section 8.

2. RELATED WORK

There has been a considerable amount of work on the enhancement of the programming of
heterogeneous clusters in the past few years. The approaches that operate at the lowest level
take existing communication tools such as MPI and facilitate their integration with heterogeneous
frameworks [23, 1, 21] keeping the same level of abstraction. When the accelerator is a Xeon
Phi, it is possible to only rely on MPI, potentially combining it within each node with traditional
shared memory programming tools such as OpenMP [26]. However, interesting efforts to program
clusters of Xeon Phi only based on compiler directives such as OmpSs [9], discussed later, have
also been made [10]. A more ambitious approach is to enable the execution of unaltered or
very slightly modified heterogeneous applications written using well-known frameworks such as
CUDA [25, 33, 37, 41] or OpenCL [3, 4, 7, 12, 17, 19, 20, 35, 47] on distributed systems, so
that they can exploit remote accelerators in clusters, grids and the cloud, typically by virtualizing
them. Since the main purpose of these proposals is not to provide higher level semantics for the
programming of the distribution resources, but to simplify their exploitation as much as possible in
application developed using CUDA or OpenCL, most of these tools expose abstractions, and thus
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HETEROGENEOUS DISTRIBUTED COMPUTING BASED ON HIGH LEVEL ABSTRACTIONS 5

APIs, that are at the low level of these tools, being in fact nearly identical in most cases. This also
means that these approaches focus on the usage of the distributed accelerators, the exploitation of
the remote CPUs being only available to the proposals based on OpenCL and requiring their use to
be also based on their handling as OpenCL devices. The most outstanding efforts of abstraction
in this family of proposals have been performed by the Many GPUs Package (MGP) [7] and
libWater [17]. MGP allows to run unmodified OpenCL applications in clusters on top of MOSIX
VCL, a cluster-wide virtual implementation of OpenCL. It also supports a C++ object-oriented API
that, while simplifying the process, is still based on low-level concepts such as buffers, contexts or
tasks with explicit enqueuings and synchronizations. In addition it presents important restrictions to
the processing of distributed data; for example only a scatter and a gather communication patterns
are supported and only one task can be associated to the data they distribute. MGP also has task-
based OpenMP-like directives that are restricted to the execution of individual kernels in each node.
Regarding libWater [17], it relies on explicit kernel creation processes, buffers that must be manually
associated to specific devices and that require the user to specify the read and write transfers on
them, as well as synchronizations based on events. Therefore it is at a considerably lower level than
H2TAs with their globally distributed data structures that abstract away any idea of buffer and make
totally transparent all the management related to heterogeneous devices.

At an upper level of abstraction we find proposals based on skeletons, compiler directives and
language extensions. The main restriction of skeletons, represented in this area by [11, 27], is that
they support a specific set of computational patterns, thus not being universal solutions.

A proposal to program heterogeneous clusters based on compiler directives is the task-based data
flow programming model of OmpSs [9], which lacks the H?TA fine-grained control over device
selection, globally distributed data structures and implicit data-parallelism across cluster nodes. The
programming model in [38] is very similar to that of OmpSs, thus having similar differences with
respect to H2TAs, additional ones being that it is only intended to specific kinds of applications and
CUDA-based accelerators. Also restricted to this kind of accelerators we find [39], which relies

on language extensions to CUDA in combination with explicit copy requests in a distributed shared
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6 M. VINAS ET AL

memory model in order to support the CUDA programming model in clusters of GPUs and multi-
GPU systems.

Another relevant project with APIs based on libraries, directives and language extensions that
supports two programming models for clusters is StarPU. While [6] operates at a lower level
exposing MPI-like messages to the programmer, [5] task-based approach is quite similar to that of
OmpSs. As a result it shares similar limitations, the most important difference being that it allows
to define distributed arrays as a collection of tiles located in different nodes, but lacking all the tile-
level semantics, advanced syntax, collective manipulation capabilities and data-parallel operations
of H2TAs. Another interesting alternative that relies on language extensions [30] and compiler
directives is XcalableACC [31]. The XMP extensions are in charge of providing distributed arrays
with a small subset of the array operations of H2TAs and without their tile-level features. As for
heterogeneity, the fact that Xcalable ACC relies on OpenACC [34] reduces its portability compared
to OpenCL [28], which we use as backend, and sometimes also the performance, as OpenACC has
been found to often offer considerably less performance than manually optimized kernels [16]. In
addition, unlike H2TAs OpenACC requires explicit annotations for data movements between each
host and its device(s).

A final advantage of our proposal is that the reliance on HPL rather than on OpenCL allows
H2TAs to benefit from its runtime code generation capabilities, which facilitate the development of

high performance kernels [13].

3. HIERARCHICALLY TILED ARRAYS (HTAS)

The HTA data type [2] represents an array that is optionally partitioned into tiles that can be either
conventional arrays or lower level HTAs. The tiles can express both locality and parallelism, as
different tiles can be processed in parallel following data parallel semantics that are embedded in
the methods of the class. Also, the tiles of an HTA can be stored in a single node or they can be
distributed across the nodes of a cluster. In this latter case the top level tiles are the ones that are
distributed. For example, Fig. 1 shows how to create in C++ an HTA that is divided into 2 x 2 tiles
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HETEROGENEOUS DISTRIBUTED COMPUTING BASED ON HIGH LEVEL ABSTRACTIONS 7

CyeclicDistribution dist({2, 2});
auto h = HTA<float, 2>:alloc({ {7, 7}, {2, 2} }, dist);

SN S  BOBERES
- LN -

Figure 1. HTA creation

HTA a | auto a = HTA <double, 1>::alloc({{3}, {5}});

auto b = HTA<double, 1>:alloc({{3}, {5}});
HTA b [see]a(s o]a(® s]«(s s]a® o) b(Triplet(1,4))[Triplet(1,2)] =a(Triplet(0,3))[Triplet(0,1)];

Figure 2. HTA complex indexing and assignment example

of 7 x T single-precision floating point elements each. The HTA is built in a distributed fashion
using a cyclic distribution of its tiles on a grid of 2 x 2 processors that is specified by the object
dist built in the first line. As a result each tile is placed in a different processor Pz, resulting in the
mapping illustrated in the figure.

HTAs support two indexing operators, the parenthesis, which operate at tile level, and the
brackets, that operate at element level. In addition, these operators support scalars for a single
point and Triplets for ranges of elements. The resulting scheme is very flexible, as both kinds
of indexing can be combined and applied at different levels. This is illustrated in Fig. 2, which
shows how to select the first two elements of each one of the first four tiles of an HTA a in order
to copy them to the last two elements of the last four tiles of a destination HTA b. Notice that in
the case of distributed HTAs assignments imply communications if the tiles involved are located
in different nodes. The example also illustrates the intuitive notation for point-wise operations on
HTAs. For example, given the HTAs a, b and c, and the scalark,a = b + k * c will add each
element of b and the associated element of ¢ multiplied by k into a on the condition that these
HTAs are conformable [2], 1.e., that they have the same topology (number of levels and shape of

each level) and the corresponding tiles in the topology have sizes that allow to operate them.
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8 M. VINAS ET AL

void saxpy(HTA <float,1> y, HTA<float,1> x, HTA <float, 1> alpha)

int size = x.shape().size()[0];
for(inti=0;i < size; i++)
y[il = alpha[0] * x[i] + y[i];

auto x = HTA <float, 1>alloc({ {N}, {M} };
auto y = HTA <float, 1>::alloc({ {N}, {M} }):

10 auto alpha = HTA <float, 1>:alloc({ {1}, {M} });
11 ..

12 hmap(saxpy, x, y, alpha);

Rr=R - = R R

Listing 1. Parallel application of a user-defined function to the tiles of HTAs

HTAs also provide many methods that allow to express more complex computations as well as
higher-order operators that support the application of user-defined computations. For example, the
function hmap applies in parallel a user function to the tiles of an HTA. When several HTAs are
provided to hmap, each parallel invocation operates on the corresponding tiles of the input HTAs.
In this situation, if the HTAs are distributed the associated tiles should be located in the same node.
This way in the example in Listing 1, if we assume that x, y and alpha are distributed in the same
way, function saxpy is applied in parallel to their tiles O in the node that owns them, their tiles 1 in
their associated node, and so on. The example also illustrates that hmap requires that the input HTAs
have the same top level structure so that their tiles can be matched, but the internal structure and
size of those tiles can be different. Namely, while in Listing 1 all the HTAs have a single dimension
and M tiles, the tiles of the HTA alpha have a single element, while the other ones have N.

Regarding the HTA implementation, the one used in this paper uses MPI as backend for the
communications. This way, users spawn as many processes as desired using the same system as
in any other MPI application, but the code of their application only interacts with the HTAs. The
HTAs are built at run-time using the alloc function seen in our examples. The construction of
each HTA should be performed with the same arguments by all the participating processes so that
it is coherent. This builds in each process a separate HTA object located in its private memory.
These objects keep the same global information on the dimensions of the top level tiles and their
placement in all the processes, but the object of each process only contains the low level tiles that
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HETEROGENEOUS DISTRIBUTED COMPUTING BASED ON HIGH LEVEL ABSTRACTIONS 9

are mapped to the associated process. The top-level operations that affect distributed HTAs are
observed by all the processes because every process executes the whole program. In each one of
these operations, the process performs the computations that are associated to its local tiles. In
statements with communications, since all the processes know the location and size of every tile,
the HTA runtime can use a two-sided communication model where the synchronization is implicit
because communication always goes from the producer to the consumer. This way eager consumers
have to wait for delayed producers. As a result there is no need for synchronizations before or after
a parallel computation; synchronizations take place on demand when data from other processor
is needed. These communications are performed using asynchronous MPI messages whenever the
runtime detects that it is safe to do so. Similarly, when the library has to perform communications
that obey to a typical pattern provided by MPI collective communications, the runtime relies on
them in order to optimize the performance. A detailed discussion on the implementation of HTAs
can be found in [15].

As we can see, in the context of a cluster HTA programmers manipulate a data type that represents
a whole data structure distributed on the cluster under a given specification. All the parallelism is
encapsulated in the tile-level parallel operations supported by the data type, which can apply both
standard and arbitrary user-defined functions. This way, users have a single-threaded view of the
execution coupled with a global view of the data. As for communications, they are conveniently
expressed by means of either assignments between tiles located in different nodes or collective
operations provided by the data type. This gives place to a high level programming style that
offers great programmability advantages with respect to the traditional MPI-based programming of
clusters. Unfortunately, HTAs lacked until now of an integrated mechanism to exploit heterogeneity

in their applications, which 1s the subject of this work.
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10 M. VINAS ET AL

4. A FIRST APPROACH TO HETEROGENEOUS COMPUTING USING HIERARCHICALLY

TILED ARRAYS

Motivated by the growing usage of specialized coprocessors in HPC clusters, we seek to provide
users with high level approaches to program heterogeneous clusters. We propose to explore
answering this problem using HTAs because of their excellent properties for parallel distributed
computing. This requires extending them to support heterogeneity. A first problem to tackle is the
diversity of accelerators and frameworks to program them. Since we wanted our proposal to be
as uniform and portable as possible, we decided to base our work on the OpenCL standard, as it
is supported by all the most popular accelerators. Also, since there are several tools that facilitate
the use of OpenCL in C++, it would not make sense to implement the HTA OpenCL support from
scratch, but rather to rely on some of the existing projects. Given the discussion on OpenCL support
in C++1n [14, 46, 44] we took as basis the Heterogeneous Programming Library (HPL), from which
we take its runtime and some ideas for the notation of our H2TA proposal. For this reason, we will
first describe the basics of HPL (Section 4.1) as well as the main drawbacks of the separate use
of HTAs and HPL in the same application for programming heterogeneous clusters (Section 4.2),

already evaluated in [44]. Our new integrated proposal will be then discussed in Section 5.

4.1. Heterogeneous Programming Library

This framework, which is available at http://hpl.des.udc.es, allows to exploit heterogeneous
computing in C++ on top of OpenCL. In HPL the main application runs in the host, while the pieces
of code that are run in OpenCL are functions, called kernels, which can be expressed either directly
in C++ by means of the HPL embedded language [42] or in native OpenCL C [46]. Both alternatives
are illustrated in Listing 2 using a SAXPY kernel, which is implemented using the HPL language
in lines 14 and a string with the OpenCL C version in line 6. In both cases, the host-side data to
to use in the kernels, defined in line 10, must be contained in a data type provided by the library
called Array. This is a class template that receives as arguments the type of the elements stored
in the array and the number of dimensions of the array, which are float and one in SAXPY,
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1 void saxpy(Array<float,1> y, Array<float,1> x, Float alpha)
2
3 y[idx] = alpha * x[idx] + y[idx]; # idx is an HPL variable that contains the global thread ID
4
5 ..
6 const char *string = ”_kernel void saxpy(_global float xy, _global float #x, float alpha) { ... };
7
8 void saxpy_handle(InOut< Array<float,1> >y, In< Array<float,1> > x, Float alpha) {}
9 ..
10 Array<float, 1> x(1000), y(1000);
11 float alpha;
12
13 eval(saxpy)(y. x, alpha);
14

15 nativeHandle(saxpy_handle, "saxpy”, string);
16 eval(saxpy_handle)(y, x, alpha);

Listing 2. HPL example code

respectively. As we see in line 1 this type is also used to represent arrays in the heterogeneous
kernels written using the HPL embedded language, while scalars have types such as Int, Float,
etc. Kernels are invoked using the function eval followed by the kernel name and arguments as
lines 13 and 16 show. This requires associating a function to the kernels that are provided by means
of OpenCL C strings, which is achieved by means of the function nativeHandle, illustrated in
line 15. The associated function, shown in line 8, labels its arguments to inform HPL not only on the
type, but also on whether each argument is an input, an output, or both. HPL kernels do not require
this labeling because HPL automatically analyzes them to extract this information. This knowledge
allows HPL to automatically manage the data transfers between the host and the devices giving
transparent coherency for each Array across the different memories in which it may be used by
the user. Also, the library runtime achieves this using the minimum possible number of transfers,
getting a performance identical to that of OpenCL based applications.

The semantics of kernel executions in HPL is analogous to that of OpenCL. This way, each
kernel is executed in parallel by a number of threads determined by a global index space or
workspace. Users can also optionally define a local index space in order to define the size of the
work-groups, which are teams of threads that can synchronize by means of barriers and share a
fast scratchpad memory called local memory. Although not illustrated here for space reasons, HPL
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12 M. VINAS ET AL

kernel invocations allow users to specify the desired global and local workspaces as well as the
device where the execution should take place.

As we can see, HPL largely improves the usability of heterogeneous systems replacing the
verbose host API of OpenCL [32] with high-level abstractions such as system-wide coherent
Arrays and kernels, which in turn allow to hide many low level concepts such as contexts,

programs, or buffers, as well as tasks such as kernel compilations, data transfers or synchronizations.

4.2. Separate use of HTA and HPL

A first approach to program heterogeneous clusters taking advantage of HTAs and HPL would be
to use both libraries separately in the same application. This possibility was successfully evaluated
in [44], where the steps to make them properly work together were explained. Despite the positive
results, this decoupled design presented significant limitations. The most relevant ones are related
to the management of the two kinds of array containers used by both libraries independently. This
lack of integration forces users to manually maintain two memory spaces for each regular array
and to use ad-hoc HPL arrays as a workaround in order to perform efficient copies of regions of
those arrays. Namely, these applications require global HTAs to partition the data and perform
communications among processes. Also, locally at each process, the kernels are executed in the
accelerators by means of HPL, which requires the user to convert the local data of HTAs into local
per-process HPL Arrays. Similarly, if the results of kernel executions have to be communicated
through the mechanisms provided by HTAs, the HTA arrays have to be manually updated with the
data of the associated HPL Arrays. In addition, the update of subregions of HTAs with the data of
the HPL Arrays also suffers the lack of integration of the involved libraries. A possibility would be
to update the whole host side of the HPL Arrays, which could have an unacceptable overhead, as it
involves copying all the data when only a subset is needed. HPL also provides mechanisms to copy
portions of HPL arrays between the devices and the host, but while they avoid this performance
overhead, they involve additional coding and thus higher cost in terms of programmability.
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auto hta_x = HTA <float, 1>::alloc({ {N}, {M} });
Array<float,1> hpl x(N, hta_x({MY_ID}).raw()):
auto hta_y = HTA <float, 1>::alloc({ {N}, {M} });
Array<float,1> hpl_y(N, hta_y({MY_ID}).raw());
float alpha;

eval(fillin_x)(hpl_x);
hmap(fillin_y, hta_y);
eval(saxpy)(hpl_y, hplx, alpha);

Rr=R - = R R

11 hpl_y.data(HPL_RD); #/Brings y data to the host
12 float accum = hta_y.reduce(plus<float>());

14 ifMYID <M —1){
15 eval(user_GPU_kemel)(hpl_y, accum);
16  hpl_y.data(HPL_RD); #/Brings y data to the host

Listing 3. HTA+HPL example code

Many of the problems that arise with this programming style are exemplified in Listing 3, which
uses the SAXPY computation also illustrated in the preceding examples. It assumes that there are
M parallel processes and that in each process we build a tile of N elements for each one of the
two vectors involved, x and y. Besides the hta_x and hta_y HTAs that represent these distributed
memory structures, we also need in each process an hpl_x and an hpl_y HPL Array. These HPL
containers are associated to the corresponding local tile of the global HTA, and their purpose is to
allow to operate on that tile in an accelerator. As explained in [44], each HPL Array has its host-side
storage in the same memory area as the associated tile, which is obtained by applying the method
raw to the local tile, that is, the one with the index MY_ID, which is the global identifier of the
process. The example assumes that the initialization algorithm for x is more efficiently run in the
accelerator than in the regular CPU, while the opposite happens for the initialization of y. This way,
line 7 fills x using an HPL eval on its HPL Array, while line 8 applies a traditional HTA hmap
on hta_y. The SAXPY computation takes place in line 9 in the accelerator. HPL knows that hpl_x
was initialized in this device, and thus no data movement is required for this array. Nevertheless,
hpl_y has never been been used in the accelerator, and thus the runtime builds a buffer for it in
the device and fills it with the host-side version, which matches the storage of the local tile of the
HTA hta_y. After this point the only valid copy of this array is the one contained in the buffer

image of hpl_y in each accelerator. For this reason, and since there is no automatic communication
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14 M. VINAS ET AL

between the runtimes of HTA and HPL, when we want to make some operation using hta._y, we
have to explicitly request the update of the host-side copy of hpl_y, which as we have just explained
is associated to the same memory as the local tile of hta_y. As detailed in [44], this is achieved
using method data on this HPL Array, indicating the kind of access which will be performed; in
this case only a read access to perform a reduction across the whole HTA in line 12. As a final
step, the example assumes that some computation must be performed in the device in all the tiles
of hta_y except the last one. The natural way to do this using HTAs would have been to select
the required tiles, that this, those in the range [0, M — 2], and then operate on the selected HTA
using hmap. Because this function only operates in the CPU and we want to perform the operation
in the accelerator, this is not possible. Instead, the user has to take a local view of the problem
and apply a SPMD programming style, asking the processes with the appropriate MY_ID to perform
the computation in their local hpl_y HPL Array. Finally, this container is updated again in the host

memory, as the example assumes that further computations will require to operate on it using HTAs.

5. HETEROGENEOUS HIERARCHICALLY TILED ARRAYS

The new data type Heterogeneous Hierarchically Tiles Array (H2TA) avoids the shortcomings
described in Section 4.2 thanks to a total integration of HTA and HPL. We will describe the
properties of H2TAs illustrating them with Listing 4, which shows the high level programming

style enabled by our extension for the example shown in Listing 3.

5.1. A single unified data type

H2TAs can exploit the general CPUs of a cluster using the same mechanisms as HTAs. In addition,
they allow to use the heterogeneous devices available by means of kernels defined using any of the
two strategies explained in Section 4.1. In both situations the H2TAs, which have the same syntax
as the original HTAs, are the only data structure required in the host side, while the heterogeneous
kernels are written using the HPL Array data type (or OpenCL C strings) because no hierarchical
sub-partitioning or tile-level manipulation is supported inside them. This representation allows
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auto x = HTA <float, 1>::alloc({ {N}, {M} });
auto y = HTA<float, 1>::alloc({ {N}, {M} });
float alpha;

evalHTA(fillin_x)(x);
hmap(fillin_y, y);
evalHTA (saxpy)(y, x, alpha);

float accum = hta_y.reduce(plus<float>());

=1k = I~ B W= N W S PUR S

—_—

evalHTA (user_GPU _kernel)(hpl_y(Triplet(0, M—2)), accum);

Listing 4. Example from Listing 3 written using H2TAs
to seamlessly mix in the same application parallel computations that are run in the CPUs and
operations that are performed in the accelerators. This can be seen in Listing 4, where only HTA
objects, which are actually H2TAs from our new library, are built. The syntax is the same because
H2TAs keep the same name and creation process as the original HTAs. Also, their usages in the
CPUs as well as the communications by means of assignments or high level collective operations

follow exactly the same notation as in the original HTA.

5.2. Heterogeneous computing

The API for the heterogeneous executions is based on that of HPL because it facilitates the
specification of details such as the kernel global and local spaces when the default values are not
suitable or the best ones. This way, the most important component of the new API is the function
evalHTA (f),where f is the C++ function associated to a heterogeneous kernel, which plays a role
analogous to that of eval (f) in HPL, but accepting as inputs H2TAs or scalars. Just as in hmap,
the H2TAs should have the same top-level structure, that is, number of dimensions and top level tiles
per dimension, so that the associated tiles of each one of the H*TAs would be processed together
in the same kernel execution. As we can see in Listing 4, operations on H2TAs can be performed
interchangeably either in the CPU, using the traditional HTA hmap, or in the accelerator, using the
new evalHTA mechanism, all the complexity (buffer creations, transfers, kernel compilations, etc.)
being hidden from the user. The heterogeneous kernels can be implemented by means of any of
the two mechanisms exemplified in Listing 2 using exactly the same notation. For example the
saxpy kernel used can be the one from Listing 2. Also, in between evalHTA and the kernel
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arguments it is possible to insert the same modifiers as in the HPL eval invocations in order to
specify the workspaces and devices to use. Some improvements have been performed to enhance
the programmability of these modifiers. For example, the device specification allows to provide a
kind of device (GPU, CPU or accelerator) rather than a specific device. In this case the tiles are
processed in their home node using devices of that kind. If there are several tiles and more than
one device, the tiles in the same node are evenly distributed on the existing devices to maximize the

parallelism of the runtime.

5.3. Automatic coherency

Following the spirit of both the HTA and the HPL projects, the integration automatically keeps a
coherent view of the H2TAs across the distributed memory nodes, the CPUs and the devices of the
cluster, avoiding explicit copies. In order to achieve this, the runtime automatically monitors any
access to H2TAs, ensuring that correct versions of the data are always used in any computation, no
matter where it is performed. This is reflected in Listing 4 by the lack of any kind of statement to

maintain the coherency.

5.4. Indexing

As exemplified by the last line in Listing 4, one can choose to operate on a subset of the tiles of
any H?TA, and thus only in some nodes of the cluster. In addition, although not illustrated in this
example, in each tile used it is possible to choose between operating either on the whole tile or
only on a portion by using the high level indexing notation of HTAs. With these properties, the
requirements in Listing 3 to swap between global and local view of the data along our application
and to resort sometimes to a SPMD programming style are gone, the outcome being noticeably

cleaner and more maintainable.

5.5. Summary

As we can see, the resulting programming style is very powerful and easy to use thanks to the
intuitive and simple semantics of H2TAs. Users manipulate the abstract arrays required by their

Copyright ©) 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)

Prepared using cpeauth.cls DOI: 10.1002/cpe



HETEROGENEOUS DISTRIBUTED COMPUTING BASED ON HIGH LEVEL ABSTRACTIONS 17

application rather than the underlying different copies of them that are required because of the
disjunct memories of each host and its devices. The data objects seen by the programmer enjoy
a simple sequential consistency model [22] that is automatically provided by their data type. This
feature, coupled with the single threaded view of the programming model and the global view of
the distributed data structures that H2TAs inherit from HTAs, largely simplify the reasoning about

the parallel applications.

6. IMPLEMENTATION DETAILS

H2TAs are basically HTAs that have been extended with HPL Arrays associated to their tiles. Just
as HTAs only store in each process the tiles that belong to it, H2TAs only keep in each process
the HPL Arrays associated to the tiles owned by the process. The runtime exploits the ability of
HPL to place the host-side storage of HPL Arrays in any memory location, thus internally applying
the policy explained in Section 4.2 of placing the host-side memory of the HPL Arrays it builds in
exactly the same location as their associated HTA tiles in order to avoid memory copies.

The copies of the same tile that are used in different memories are managed by the runtime under
a multiple-readers/single-writer (MRSW) policy [40] with an invalidation protocol on writes [24],
which together with a lazy copy policy that only updates a copy when it is actually required,
minimizes the transfers between the host and the devices. A lazy policy is also applied to the
creation of buffers for the tiles, so that they are only allocated in the devices when necessary. This
way, H2TAs that are only used in the host CPUs do not require more resources than the original
HTAs. The cost of data copies was also reduced to the minimum possible one by ensuring that
whenever only a portion of a tile is required in a memory where it is outdated or inexistent, only
that region is copied, rather than the whole tile. Relatedly, the H?TA runtime remembers which
portions of each tile are updated or outdated in each memory, so that the coherency mechanism
granularity dynamically adjusts to the size of the tile regions manipulated by the user, which is
needed to ensure a minimum number of transfers with the smallest possible cost. The coherency
between the operation performed on the CPUS, either computational or due to communications,
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and the ones performed in the heterogeneous computations is kept by means of the mechanism
explained in Section 4.2, with the difference that now the H2TA runtime is the one in charge of the
invocations to the data method of the HPL Arrays in order to kept this coherency.

Most optimizations of the H?TA runtime are inherited from the runtimes it is built on. For
example, the HPL runtime provides critical performance optimizations such as the caching
of buffers and kernels to avoid repetitive creation processes, while the HTA implementation
provides performance enhancement techniques such as the caching of HTAs or asynchronous
communications between nodes [15]. Finally, just as the libraries it integrates, H2TAs also heavily
rely on the compile-time polymorphism and optimizations enabled by C++ templates [8] rather than
in the more expensive dynamic polymorphism also supported by this language.

At this point it can be also interesting to discuss how to implement this proposal on top of CUDA
given its popularity. The implementation would be much simpler than the one presented here, since
CUDA naturally provides for single-source applications and a cleaner and simpler host API than
OpenCL. Two main changes would be required. The first one would consist in changing the host API
used used inside HPL to initialize the heterogeneous environment, manage memory and transfers,
etc. by the corresponding and usually much simpler equivalents of CUDA. The second one would be
writing the kernels as standard CUDA kernels and compiling their code with the CUDA compiler,

so that the runtime could request their execution.

7. EVALUATION

A high level approach to program a system must show programmability improvements with respect
to existing alternatives to motivate their interest. Also, its abstractions must incur in reasonable
performance costs. Thus, both sides of the problem are tackled in this evaluation. In [44] we already
showed that the separate usage of HTA and HPL, which we call for short HTA+HPL, largely
improved the programmability of heterogeneous clusters while incurring in negligible overheads.
This way, in order to better assess the advantages of the integrated H2TA with respect to HTA+HPL,
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Table 1. Benchmarks characteristics.

Benchmark || SLOCs Unique Repetitive Data
‘ H host invocation | invocation exchanges H
248 1 kernel final reduction
1263 | 3 kernels 7 kernels all to all
Matmul 184 1 kernel none
ShWa 386 3 kernels | stencil and reduction
Canny 4 kernels stencil

our evaluation takes as baseline MPI+HPL versions, so that the improvement that HPL means with
respect to the usage of standard OpenCL bindings is already present in the baseline.

The main characteristics of the benchmarks used in the evaluation are shown in Table I, where
the first column represents the number of source lines of code excluding comments and empty lines
(SLOCs) of the host side of their baseline HPL+MPI version. The size of the kernels has been here
dismissed because the H2TA versions use exactly the same OpenCL kernels, so they play no role in
the comparison. The remaining columns contain the number of kernels that are invoked just once
during their execution, the number of kernels that are invoked inside loops and the nature of the data
exchanges between processes they have.

As we can see, these programs present very different patterns, going from codes with no exchange
of information among processes to iterative applications with several data exchanges in each
iteration. EP and FT are two NAS Parallel Benchmark (NPB) implemented in OpenCL in [36].
EP is a embarrassingly parallel application that finishes with reductions. FT computes the Fourier
Transform of a 3-D array along its three dimensions. Since the array is partitioned along one of
its three iterations, it needs to be rotated to complete the Fourier Transform for the remaining
dimensions. This requires an all-to-all pattern of communications among the processes. Matmul
is a single precision floating point dense matrix product distributed per rows among the processes
involved. ShWa is a shallow water simulator with pollutant transport parallelized for multiple GPUs
in [43]. This application computes the evolution of a mesh of volumes on time, where each volume
has several parameters associated such as the amount of pollutant or the strength of the oceanic
currents in each direction. Each time iteration step executes three kernels in sequence and requires
exchanges between GPUs both to correctly update the volumes that are in the frontiers of the region
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assigned to each GPU, as well as to perform reductions necessary to compute global values. The
last application used in this evaluation is an algorithm aimed at finding edges in images called
Canny, which consists of four stages, each one of them implemented in a kernel. The first stage
applies a Gaussian filter to smooth the image. Then, the edges are highlighted with an edge detection
benchmark (e.g. Gauss, Prewitt, ... ). This is followed by an edge thinning technique and finally the
variety of the output image is reduced with a double threshold kernel. It deserves to be mentioned
that the stencil kernels developed in HPL in this paper were not based on the mechanisms described

in [45], which were developed later.

7.1. Programmability

The ideal way to compare several programming approaches from the point of view of the effort
they require from the users is to ask teams of programmers to try them and compare their opinions
and time taken developing some applications using them. This is usually difficult to achieve, so
we have resorted to three objetive metrics automatically extracted from the source code to estimate
the programmability. The first one is the SLOCs, already introduced in the description of Table [.
The second one is Halstead’s programming effort [18], which is a value computed by means of a
reasoned formula that takes into account the total number of operands (constants and identifiers)
and operators (symbols that affect the value or ordering of the operands) in the code, as well as the
number of unique operands and operators. The third one is the cyclomatic number V =P + 1, where
P is the number of decision points or predicates, which was proposed as a measurement of code
complexity in [29], as the more branches and conditions a program has, the more complex it is.
Figure 3 shows the reduction of the three metrics just described in applications written using
separately HTA and HPL (HTA+HPL) and the proposed H?TA library, compared to the baseline
counterparts written using MPI and HPL (MPI+HPL). The measurements are based on the host
side of the applications, since kernels are identical in the three versions. There are two kinds
of benchmarks attending to the strength of the reduction. In the programs that have no or very
little communication, which are EP and Matmul, the programmability of the three versions are
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Figure 3. Reduction of programming complexity metrics of HTA+HPL and H2TA programs with respect to
versions based on MPI+HPL (higher is better).

very similar because the sources have few differences and HPL already provides very good
programmability metrics to the baseline for the exploitation of heterogeneity. However, while H2TA
always obtains a positive result, the HTA + HPL version requires more programming effort than the
baseline because of the duality of the arrays used. This bad behavior is mitigated in the rest of the
benchmarks because of their larger complexity. The other group consists of the benchmarks with
more complex communication patterns, which make the applications benefit more from the high
level semantics of the HTAs. In the case of ShWa and Canny this complexity is mainly due to the
management of the ghost regions needed in these benchmarks with distributed stencil computations.
Finally, the rotation of the 3D array that requires FT, which implies an all-to-all communication
coupled with transpositions, is well covered by the HTA interface, as it includes a rich set of global
collective operations. In this second group, although HTA+HPL usually obtains good results, H2TA
always improves them, except in the cyclomatic number of FT, where they achieve the same value.
The large improvement that HTA obtains with respect to HTA+HPL for all the metrics in ShWa
and Canny is particularly outstanding. The most important reason is related to the synchronization
of the ghost regions of these two applications based on stencil computations. While HTA+HPL
and MPI+HPL need a more manual user management to keep the memory coherence of the ghost
regions, H2TA allows a more convenient and concise programming thanks to its better integration.
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7.2. Performance

Two different heterogeneous clusters were used to assess the performance of our proposal. The
first one, called Fermi, has four nodes with an Intel Xeon X5650 CPU with 6 cores and 12 GB
of memory each. Additionally, each node is connected to 2 Nvidia M2050 GPUs with 3GB per
GPU. The interconnection network is a QDR InfiniBand. The second system, called K20, has eight
nodes. Each one has a 2xIntel Xeon E5-2660 8-core CPUs and 64 GB of RAM. In this case, the
accelerator present in each node is a K20m GPU with 5 GB. The interconnection network for this
system is an FDR InfiniBand. The g++ 4.7.2 compiler was used with optimization level O3 in both
systems, the underlying MPI library being OpenMPI 1.6.4. The problem sizes used for the NPB
tests were classes D and C for EP and FT, respectively. Matmul multiplies two matrices of 8192 x
8192 elements, ShWa computes the evolution of a mesh of 1000 x 1000 volumes and Canny filters
an image of 9600 x 9600 pixels.

Figures 4 to 8 show the speedups of the MPI+HPL, the HTA+HPL and the H2TA versions when
using a varying number of accelerators of each cluster taking as baseline an HPL version that uses
a single accelerator of the corresponding cluster. All the values plotted as well as the baselines
were obtained as the minimum of five executions. While the effort required for programmers was
very different for the three approaches, their performance behavior is very similar. This way, the
maximum slowdown of H2TAs with respect to MPI-based applications happens in the execution of
FT, where the overhead reaches a maximum value of 2.9% in the Fermi cluster and 2.4% in the K20
system. The next benchmark with the largest overheads is ShWa, which reaches slowdowns of just
1.1% and 1.9% with respect to the MPI+HPL baseline in the Fermi and K20 systems, respectively,
while the maximum overhead for the other three benchmarks remains well below 1%. This way,
when we look at the big picture, the performance overhead of H2TAs with respect to MPI combined
with HPL is minimal, with an average of just 0.5% in both clusters. This overhead is very similar,
and even a bit better than that of the manual integration of HTA with HPL, whose average slowdown

with respect to the same baseline i1s 0.8% in both clusters. As a result, it is clear that the large
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programmability improvements measured in Sect. 7.1 totally justify the reduced overhead of our
proposal.
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8. CONCLUSIONS

Developing parallel applications for heterogeneous clusters requires simultaneously facing the
complexity inherent to distributed memory environments and heterogeneous systems, which leads
to increased development times, debugging difficulty, and maintenance costs. In this paper we
propose a high level approach to program these systems that is based on an abstract data type that
represents an array partitioned into tiles. Such tiles can be distributed on a cluster and processed in
parallel following data-parallel semantics, giving a global view of the distributed data structure and
exposing a single high-level thread of execution to the user. The data type, called Heterogeneous
Hierarchically Tiled Array (H?TA), extends the existing Hierarchically Tiled Array (HTA), which
was oriented to traditional distributed memory clusters, adding support for arbitrary computing
devices that support OpenCL, thus maximizing the portability of our solution. Rather than exposing
the user to the raw OpenCL API, H2TA relies on the Heterogeneous Programming Library (HPL),
which substantially reduces the development complexity of OpenCL-based applications. H2TAs
inherit the high level notation of HTAs for communications between cluster nodes and add total
transparency and automated management of the kernels, buffers, transfers between host and devices
memory, etc. required by heterogeneous computing.

H2TA vastly improves the programmability of heterogeneous clusters with respect to existing
approaches. Even if we consider baselines that exploit the advantages of HPL but resort to the
traditional MPI library for communications, H>TAs reduce their programming complexity metrics
by an average of 20.5%, 31.8% and 26.9% in terms of SLOCs, Halstead’s programming effort
and cyclomatic number, respectively. These improvements are twice larger than those achieved by
separately using the HTA and HPL libraries, which further justifies the interest of this proposal.
Also, the H2TA runtime is very light, with average slowdowns below 1% that peak at 2.9%,
thus making our proposal a very appealing approach for the programming of current complex

heterogeneous clusters.
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A possible ambitious line of future work for this project would be to implement an HTA-aware
compiler that further improves the programmability of these systems and applies optimizations that

are more difficult to identify using a library-based implementation.
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