
The University of Manchester Research

Enabling Shared Memory Communication in Networks of
MPSoCs
DOI:
10.1002/cpe.4774

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Lant, J., Concatto, C., Attwood, A., Pascual Saiz, J., Ashworth, M., Navaridas, J., Luján, M., & Goodacre, A.
(2018). Enabling Shared Memory Communication in Networks of MPSoCs. Concurrency and Computation:
Practice and Experience. https://doi.org/10.1002/cpe.4774

Published in:
Concurrency and Computation: Practice and Experience

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:28. Apr. 2024

https://doi.org/10.1002/cpe.4774
https://research.manchester.ac.uk/en/publications/e3fbb8c1-06d5-477b-82ed-6a7de27a0e62
https://doi.org/10.1002/cpe.4774

Received <day> <Month>, <year>; Revised <day> <Month>, <year>; Accepted <day> <Month>, <year>

DOI: xxx/xxxx

SPECIAL ISSUE PAPER

Enabling Shared Memory Communication in Networks of
MPSoCs

Joshua Lant*, Caroline Concatto*, Andrew Attwood*, Jose A. Pascual*, Mike Ashworth*, Javier
Navaridas*, Mikel Luján*, John Goodacre*

1School of Computer Science, University of
Manchester, Manchester, UK

Correspondence
*Email: {joshua.lant, caroline.concatto,
andrew.attwood, jose.pascual,
mike.ashworth.compsci, javier.navaridas,
mikel.lujan,
john.goodacre}@manchester.ac.uk

Summary

Ongoing transistor scaling and the growing complexity of embedded system designs
has led to the rise of MPSoCs (Multi-Processor System-on-Chip), combining multi-
ple hard-core CPUs and accelerators (FPGA, GPU) on the same physical die. These
devices are of great interest to the supercomputing community, who are increasingly
reliant on heterogeneity to achieve power and performance goals in these closing
stages of the race to exascale. In this paper we present a communication backend,
designed to sit inside the FPGA fabric of a cutting-edge MPSoC device, enabling
networks of these devices to communicate within a distributed and shared mem-
ory context, with reduced need for costly software networking system calls. We will
present our implementation and discuss the main design decisions relevant to the use
of the Xilinx Zynq Ultrascale+, a state-of-the-art MPSoC, and the challenges which
arise owing to the constraints imposed by the device’s natural limitations.We demon-
strate the working prototype system connecting two MPSoCs, with communication
between processor and remote memory region and accelerator. We then discuss the
limitations of the current implementation and highlight areas of improvement to
make this solution production-ready.

KEYWORDS:
MPSoC, FPGA, networks, interconnect, HPC, distributed shared memory

1 INTRODUCTION AND MOTIVATION

Over the past decade the embedded systems landscape has
changed dramatically due to the growing demands from the
mobile market and the rise of the Internet of Things. These
advances led to the SoC paradigm, with increasingly complex
and heterogeneous systems placed upon the same physical die.
At the same time the High Performance Computing (HPC)
community has had to deal with the consequences of the break-
down of Dennard scaling [1], causing an explosion in the
core count and power consumption of the largest machines to

0This work was funded by the European Union’s Horizon 2020 research and
innovation programme under grant agreements No 671553 and 754337.

keep pacewith the demands for increasingly greater computing
capabilities.
These two phenomena have created an opportunity for con-

vergence between the HPC and the Data Centre markets, and
to the use of low-power, mobile processors, which are begin-
ning to penetrate the server market [2], and are even being
used by the RIKEN institute for the next stage of their roadmap
to an Exascale class machine, the post-K computer [3]. It is
unsurprising that this shift is happening, given the greatest
challenge which computer and system architects now face in
the race to exascale is the need for increasing energy efficiency.
Naively scaling out current architectures, e.g. in the TOP500,
would result in an exascale machine requiring in excess of
100MW power, which is unrealistic in terms of infrastructure

2 LANT ET AL

and cost. Designers are facing the challenge of reducing power
consumption by a number of means: increased component
density, tighter coupling between processor/memory/acceler-
ator/network, shorter paths for copper lines, increased perfor-
mance/Watt of components, hyper-converged storage etc. The
relentless quest for increasingly more power-efficient systems
opens up the potential use of new FPGA devices as suitable
candidates for the main compute element of a system.

1.1 FPGAs for HPC
The key advantage of FPGA technology is its impressive
performance-per-watt compared to GPU, and flexibility com-
pared to ASICs. As well as this, FPGAs can outperform
GPUs for a number of problem domains, such as in neu-
ral networks [4], signal processing [5], finance [6], computer
vision [7], data mining [8] to cite a few. There have tradition-
ally been several key barriers towards the uptake of FPGAs
for use in HPC and Data Centre applications. These barriers
are now seemingly being broken down, as is evident from the
interest shown in FPGA vendors from companies such as IBM,
Intel and Microsoft [9, 10, 11]. We see the barriers as follows:

Cost- Traditionally, the cost of logic cells has prohibited
their uptake in the HPC domain. However, in the ten years
between 1999 and 2009 the price of FPGA per logic cell fell
by an order of magnitude, and the compute performance per
logic cell increased by two orders of magnitude [12]. Cur-
rent FPGAs can now realize vastly more complex designs, and
costly floating point operations can bemore readily performed.

Programmability- As High-Level Synthesis (HLS) tools
and languages mature, bespoke hardware acceleration is
no longer the preserve of specialized hardware engineers.
There are now many options which raise the level of
abstraction above register transfer language (RTL), such as
Vivado HLS [13], OpenCL, Bluespec System Verilog [14],
FCUDA [15] among others.

Memory Bandwidth- Traditionally, FPGAs were used as
a coprocessor to a CPU and connected through PCIe lanes.
This was very restrictive, particularly given the limited on-
chip memory of FPGAs. Tighter coupling between the FPGA
and memory provides a far more suitable model for data-
intensive HPC workloads. Similarly, tight coupling between
compute and network will achieve much lower latency for
small message , as those of HPC workloads such as in LQCD
codes (lattice quantum chromodynamics) or certain machine
learning applications. This tight coupling is featured in mod-
ern MPSoC devices, e.g. Xilinx Zynq, and indeed increases
their suitability for a number of applications within the HPC
domain. The remainder of this paper considers Zynq devices,
which consist of hard-core ARM based processing system
(PS), with reprogrammable FPGA logic (PL) on the same die.

1.2 Network Requirements for Clusters of
FPGAs
There are two distinct forms of communication which need
to be dealt with in order to build a suitable network for HPC
applications on any given system, and some special consider-
ations which are required for FPGA-based systems. We must
first consider small, ultra-low latency packets in the form of
barrier and synchronization messages which are common to
MPI-like applications. The second form of communication is
based around larger RDMA (Remote Direct Memory Access)
based transfers, used to exchange data between nodes.
Typically the smaller synchronizationmessages will be used

to tell applications that they need no longer block the running
of an application, informing all other nodes involved in a job
that the data they require for the next stage of computation is
available. This sort of communication relies on low latency to
avoid bottlenecks in running the application.
Larger transfers are typically initiated using RDMAengines,

so as to free up the processor to perform meaningful work
while the transfer is underway. Here, latency is typically less
significant than throughput, especially for larger data transfers.
Zero-copy is a key desired property for the RDMA transfers as
it avoids the immense overheads introduced by the OS, such
as slow system calls and copying data between memory and
network buffers.
Designing networking components to sit on the FPGA fabric

in the context of a HPC system environment presents its own
challenges. The first one is the limitation of memory usage on
the FPGA. Typically switching and routing requires significant
amounts of memory, which is in limited supply in the FPGA
fabric, and too slow to access from main memory. Design-
ers must therefore be mindful of this and present tailor-made
solutions which are less memory intensive.
The main reason for using an FPGA-based compute unit

is its flexibility and capability to be used as an accelerator.
Although having the networking components on the FPGA is
beneficial for tight coupling between network, processor and
accelerator it uses valuable resources on the FPGA. Care needs
to be taken to minimize the footprint of the design, to leave
maximum resources for the accelerator to be placed.

1.3 Contributions
The aim of this work is to demonstrate a prototype which rec-
onciles large scale networking with the SoC communication
interfaces seen on the processor side of the MPSoC. We pro-
vide a detailed account of the implementation issues faced.
By doing this we hope to enable the reader to gain valuable
insight into the design aspects of networked MPSoC com-
munication which require the most careful consideration. The

LANT ET AL 3

design of our NIC (Network Interface Card) enables transpar-
ent, NUMA-style (Non-Uniform Memory Access) read and
write operations into remote locations, as well as user-initiated
RDMAoperations for data transfer between remote nodes. The
main contributions of this work can be summarised as follows:

1. Design of a new NIC architecture which enables
(i) Transparent read/write operations (in user-space)
to regions of remote memory/accelerators, as well as
(ii) User-initiated RDMA operations to allow high
throughput data transfer to remote memory.

2. A low-latency protocol translation mechanism between
ARM’s memory-mapped AXI, used in the PS, and our
interconnect intended for large-scale networking.

3. Implementation of a hardware prototype able to perform
full end-to-end remote memory operations between two
MPSoC devices, connected via 10Gbps serial links.

4. Outlining a hardware based resiliency mechanism in the
NIC, which allows packet retransmission and safe use of
early acknowledgements for AXI transactions.

5. A comprehensive evaluation of many important perfor-
mance metrics such as latency, throughput, area, and
power.

6. Testing functional correctness and robustness of the
design with real-world applications. We run the
STREAM memory benchmark, and a custom compute-
intensive kernel from the weather forecast domain.

7. We identify issues/solutions surrounding the use
of NUMA-style communication on a state-of-the-art
MPSoC device.

2 RELATEDWORK

The design of clusters of FPGAs is not a new phenomenon.
Several systems have been developed in the previous decade
or so, with varying levels of coupling between FPGAs them-
selves, and with other standard compute elements. Each of
the implementations outlined here however, are either ad-hoc
networks not designed for general HPC, are non-scalable solu-
tions or rely on Ethernet technology, which is unsuitable for
the future of supercomputing.
The Maxwell cluster [16] of 64 FPGAs was built to ana-

lyze the applicability of FPGA acceleration for a set of HPC
applications. They use a set of Xeon processors for running
the application process, and interface to the cluster of FPGAs
on a separate interconnect, which then act as an accelerator
for kernels of computation. FPGA to FPGA communication is

performed using point to point messages only, with no routing,
so falls back on host CPU Ethernet communication for certain
operations such as MPI collectives and data initialization etc.
Bunker and Swanson [17] create a 32 purely FPGA cluster

with a hierarchical network. The FPGAs are grouped in enclo-
sures of four, with an all-to-all connection made from single
ended wires inside the enclosure. They analyze a series of pos-
sible solutions for Inter-enclosure communication, including
10G Ethernet and Xilinx Aurora.
SMCFA [18] is a small cluster of Xilinx Zynq-7000s. Com-

munication between the devices is non-scalable, using bus
based communication between “master" and “slave" devices.
They use the ARM CPUs for transaction management and the
FPGA fabric to accelerate feature extraction algorithms.
Zedwulf [19] is a 32-node cluster of Zynq SoCs designed

to perform graph traversal algorithms. Communication is per-
formed between a single switch using 1Gbps Ethernet. They
trade off the performance and power consumption of the sys-
tem, and show promising performance-per-watt results against
x86 based implementations considering the ARMv7 based
CPU architecture.
The AIREN interconnect forms an on- and off-chip network,

for connecting in FPGA-based NoC designs with multi-FPGA
clusters for HPC [20]. For the off-chip network they use multi-
gigabit transceivers and link FPGAs together using SATA
connectors. They used Xilinx Aurora for the link layer protocol
and form a 4-ary 3-cube topology.
Markettos et al. [21] argue the case for custom-built inter-

connects on FPGA clusters. They create a new interconnect
toolkit called BlueLink, which provides several layers of
communication infrastructure; physical, link, reliability, rout-
ing/switching and application primitives. They compare their
interconnect in terms of area and performance with some other
common communication standards implemented for FPGA,
such as Aurora, Ethernet, Interlaken and Infiniband.
Like [21], we argue that a custom network is preferable to

out-of-the box soft IP solutions, although we differ from them
in that we seek to create an interconnect for general HPC appli-
cation use, rather than targeting a specific application with
small message sizes only. Both [20] and [17] consider only
standard soft IP solutions for their interconnect. Our intercon-
nect provides tighter coupling between CPU-FPGA resources
than [16], which views the FPGA as a co-processor rather than
the full compute element.
APEnet+ is an FPGA-based network controller for imple-

menting 3D-Tori [22]. The primary target for this network
being GPU-accelerated HPC applications. The FPGA is con-
nected to the compute element via PCIe, and communica-
tions between nodes is performed between the interconnected
FPGAs. The controller features capability for lossless flow-
control and a monitoring scheme for detecting network faults.

4 LANT ET AL

ARM

CORES

BRIDGE

SWITCH

PHYS

2

GLB VIRT

RDMA

ENGINE

CCI/

SMMU

GLB VIRT

2

PHYS

DDR4

CONTROLLER

L2

FIGURE 1 Elements within the non-reconfigurable process-
ing system (PS), and programmable logic (PL) for system.

It uses a custom network protocol, and provides hardware
support for RDMA operations, enabling low latency commu-
nication [23].
This system most closely resembles our work, but uses the

FPGA solely to implement the interconnect resources, using
it to move data between host-GPU or GPU-GPU using PCIe.
Using PCIe devices like this requires additional copies of data
to be made. They only support RDMA type transfers, and do
not allow for transparent load/store operations in remote mem-
ory, enabling the hybrid MPI/NUMA programming model we
provide support for in this work. We are also able to imple-
ment topologies other than the tori/meshes used in [23], due to
our use of an arithmetic routing scheme as opposed to Dimen-
sion Order Routing. For instance, we provide routing schemes
for both tree-like and Dragonfly topologies in [24], increasing
the scalability of our system. There is also no system of hard-
ware retransmission, which provides us an efficient mechanism
to overcome the obstacles which limit the performance of the
MPSoC.

3 MPSOCS AND COMMUNICATION
PROTOCOLS

The target for this work is Xilinx’s Zynq Ultrascale+ device, a
state-of-the-art MPSoC using 16nm FinFET technology [25].
Each of these MPSoCs contains 4 ARM-v8 A53 processors
with shared L2 cache, two real-time Cortex-R5 processors, a
Mali GPU, as well as plentiful FPGA fabric (up to ≈600k
logic cells), all on the same die. This advance in the availabil-
ity of hard-core compute within the device is of great interest
for certain portions of the HPC community, particularly in

more power constrained contexts. However, in order to scale
to large clusters of these devices it is unsuitable to rely on the
traditional methods of communication for FPGAs.
Figure 1 shows the distribution of system elements and

interfaces between the ARM based processing system (PS)
and the programmable logic (PL) of the MPSoC, with cus-
tom elements shown on the PL being completely user-defined
and customizable. The setup shown is how we envisage the
completed system to be set up, with separate communications
channels between PS and PL for small messages through the
cache coherent ACP (Accelerator Coherency Port), and the
RDMA engine based upon a standard memory mapped AXI
interface.
ARM’s AXI (Advanced eXstensible Interface) is a commu-

nication interface designed for high speed on-chip communi-
cation. As the design of SoCs has become more complex the
need for standardized interfaces has arisen to promote IP reuse
and greater design productivity. AXI and its cache coherent
extensions (ACE) have been the de-facto standard for com-
munication between Xilinx IP for a number of years, and
they form the only interfaces between the PS (Processing Sys-
tem, ARM subsystem) and PL (Programmable Logic, FPGA
resources) domains in the Zynq Ultrascale+.
An AXI interface [26] consists of 5 independent channels

of communication; Write Address (AW), Read Address (AR),
Write Data (W), Write Response (B), and Read Response (R).
These independent channels allow for separated control and
data planes, and flexible-width data paths. The standard also
supports burst transactions and out-of-order delivery. Figure
2 shows the basic transmission of data for read and write
transactions within the AXI channels.
While these characteristics allow for high throughput and

low latency communication within small, reliable on-chip net-
works or tightly-coupled devices, it has many characteristics
which make it unsuitable for large-scale networking. The main
reason is that the AXI standard provides no method of retrans-
mission and that the channels contain only simplistic error
codes, with no detection or recovery scheme included. These
are based on the assumption that errors in packet delivery will
be an extremely rare occurrence due to critical failures from
which no recovery is possible. Obviously, this is not the case
in large-scale networks where data traverse multiple switches
over lengthy cabling.
The issues with AXI cause numerous problems in the design

of an interconnect for large networks of MPSoCs. Given that
the AXI standard defines the only low level interface for trans-
actions between the Zynq PS and PL, a software solution
cannot be obtained for packet retransmission that reconciles
easily with AXI. Several standard options are available to the
architect to deal with this. However, all of them have their own

LANT ET AL 5

Master
interface

Slave
interface

Address
and control

Read address channel

Read
data

Read
data

Read
data

Read
data

Read data channel

Master
interface

Slave
interface

Address
and control

Write address channel

Write
data

Write data channel

Write
data

Write
data

Write
data

Write
response

Write response channel

FIGURE 2 Channels in AXI interface, taken from [26].

disadvantages which make them unsuitable for our use, which
motivated the development of our custom network.

3.1 Ethernet
Xilinx provides a wealth of IP to enable Ethernet networking
capabilities. However, using TCP for retransmission causes its
own problems. The networking stack requires numerous sys-
tem calls, with multiple copies of the data being made, adding
greatly to the latency of transmission. Advances have been
made to provide support for RDMA transfers, such as through
RDMA Over Converged Ethernet (RoCE) to reduce the over-
head of the networking stack, freeing the CPU to continue with
compute tasks. Unfortunately there are no freely available NIC
IPs to provide support for this, and Ethernet also presents many
other issues as a HPC network protocol.
The soft IP subsystem forming the Xilinx Ethernet MAC

layer requires considerable resources in the FPGA. Given the
wish to create direct PL-PL connections in a large-scale net-
work, we must also consider the micro-architecture for the
switching elements and the resources which this will consume.
Typically Ethernet switches are based upon routing tables
which are populated dynamically. The size of these routing
tables is a determining factor in the performance of the net-
work, as any packet destined for an IP address not contained
within the routing table must be broadcast to all output ports.
The use of large routing tables to store destination IPs is not
feasible within the FPGA, owing to the limited block RAM
resources. The alternative, using DDR memory to store these

tables, would mean significant latency penalties for IP lookups
at intermediate hops in the network.
This broadcasting of the packets destined for unknown IPs

also causes limitations with the network topology. In order to
prevent cycles in the topology creating broadcast storms we
must overlay a virtualized spanning tree on top of the network
for a given source-destination pair. What this means is that we
are unable to make full use of path diversity in a given topol-
ogy, as a given packet can only have one route through the
network. In HPC applications taking full advantage of mul-
tipath routing would give much better network performance.
While the ability to use multiple paths can be implemented
in the TCP/IP software stack, the full path for packet/connec-
tion must be made at the source node alone. This does not
provide sufficient flexibility in a very large-scale network to
prevent congestion from building. Using per-hop routing deci-
sions should give far superior network performance, reducing
congestion considerably.

3.2 Infiniband
Another obvious candidate for the networking protocol is
Infiniband. Infiniband is a high throughput, low latency proto-
col that is common in the HPC domain, making up over a third
of the system interconnects on the current TOP500 list (Nov’
2017). It provides capabilities for complex operations such as
RDMA, multicast packets, and atomics, with capability to use
very high signaling rates, making it ideal for HPC applications.
The major issue around the use of Infiniband is its complex-

ity, and the lack of freely licensed/open source IP to support it
inside the MPSoC. In any case, the protocol being highly com-
plex means an in-house implementation for the FPGA would
be incredibly time consuming, and likely use lots of the avail-
able FPGA resources. The possibility of using a dedicated card
attached to theMPSoC accessed via PCIe or othermeans is dis-
carded due to the additional overheads in terms of cost, power
consumption, latency, compute density, etc. For these reasons
we decided to use a custom packet format.

3.3 Custom Network Switch
The architecture of the custom switch design is described fully
in [24]. Written in Manchester using Verilog the switch can be
implemented in the system without incurring the heavy costs
associated with Infiniband. The switch has an AXI-stream
interface which we use to wrap our custom network packet. It
provides variable width data-path, with read/valid handshak-
ing for the transfer of data to prevent buffer overflow . The
connection between theMACand PHYuses a standardXGMII
(10G Media Independent Interface) interface.

6 LANT ET AL

The switch uses a 3-stage pipelined architecture with vir-
tual cut-through switching in which the packets (composed
of header, payload and footer) are split into 64-bit flits. The
data sent and received by the asynchronous AXI-data stream
FIFO is connected to the 10Gbps MAC layer which is attached
to the 10Gbps transceivers (PHY). The PHY serializes/de-
serializes the data between the switches and transfers the
data over an optical fiber. The clocks that feed the asyn-
chronous FIFOs come one from the PHY on the receiving
side and from the router on the transmitting side. The switch
uses a 3-stage pipelined architecture with virtual cut-through
switching in which the packets (composed of header, pay-
load and footer) are split into 64-bit flits. The data sent and
received by the asynchronous AXI-data stream FIFO is con-
nected to the 10Gbps MAC layer which is attached to the
10Gbps transceivers (PHY). The PHY serializes/deserializes
data between the switches and transfers it over an optical
fiber. The clocks that feed the asynchronous FIFOs come from
the PHY on the receiving side and from the router on the
transmitting side.
Our switch uses an arithmetic routing scheme, which has

clear benefits over alternatives in the context of large-scale net-
worked FPGAs. The first is that we see lower area overhead
in implementing the switch over Ethernet and Infiniband. As
discussed previously, Ethernet relies on large routing tables to
store information on destination ports to send packets over, and
Infiniband is a far more complicated protocol to implement.
They are infeasible for implementation inside the FPGA, as
they are heavily memory constrained (only 32.1Mb of BRAM
on the target chip).
The secondmajor benefit of our protocol is that it enables the

use of per-hop multiple paths for a single source-destination
pair for many common HPC network topologies. This has
obvious benefits for load balancing and throughput in the net-
work over Ethernet. Moreover, it implements Virtual Output
Queues (VOQs) [27] to eliminate Head-of-Line (HOL) block-
ing, thus minimizing network congestion and preventing the
spread of congestion trees.

4 NETWORK INTERFACE

The network interface (Figure 3) forms a bridge between the
memory-mapped AXI domain used by the PS to access the
PL, and the AXI-stream wrapped custom network protocol for
use over the high speed serial links connecting the FPGAs.
It consists of five main data interfaces. The first two are AXI
stream interfaces, one master and one slave, and form the TX
(transmit) and RX (receive) interface to the global intercon-
nect (either a local switch or to a transceiver connected to an
external switch). There are then two full AXI slave interfaces

which handle incoming RDMA transfers and shared memory
transactions from the local PS. Finally there is an AXI master
interface which handles inbound transfers from the network.
The NIC is attached to a Xilinx AXI Central DMA IP block,
used for the RDMA transfers. We pass the configuration trans-
actions from the PS through our NIC, enabling us to keep
track of the transfers to be scheduled and support hardware
retransmissions.

4.1 Packetizer
The packetizer is formed of a state machine which waits for the
arrival of a read or write request (AR/AW). Once a request has
been initiated a 128-bit header can be generated in two flits.
The current IP uses a 64-bit data path, as the Xilinx MAC/-
PHY interface has 64-bit data width, transmitting only 64-bits
per cycle, although this can be extended to a 128-bit datapath,
as the PS-PL AXI interfaces are variable width. This would
provide internal speedup, allowing us to operate at a lower
frequency, or lower the latency within the PL data path.
On the outbound request (AR/AR/B) side there is no infor-

mation which is required upon the arrival of its respective
response (R/W), so forwarding is simple. A two-flit, 128-bit
header is first formed, then the body is transferred, then a
two-flit 128-bit footer follows. The header contains informa-
tion regarding the destination address, the packet type and size,
and error detection/codes, while the footer encodes the source
address for the sending node and the ID of the transaction,
among other information.
In the event of a read request (AR) the header and footer are

formed, with no body needed. If a write is requested (AW/W)
then the formation of the footer is stalled until the last piece of
data has arrived. Data can only be accepted the cycle following
an address request, but this is not an issue because the header
requires two cycles for formation and egress from the Master-
Stream port regardless, so latency is masked.
When a packet arrives from a remote node (incoming on the

AXI-Stream Slave port) the header is decoded. If the incom-
ing message is a write response (B) the footer is decoded to
retrieve the ID, at which point the response packet can be
reconstructed. If the packet is a read response (R) then we
must queue the incoming data, and wait for the footer. As
the read data has an associated transaction id (R_ID) we can-
not form the Read Data (R) channel until the footer has been
received. This is inefficient in terms of both additional latency
and due to the additional buffering resources required. How-
ever, it is impractical to move the channel ID (R_ID/W_ID) to
the header without extending the size of the header. Extend-
ing the full width of the header beyond 128-bits would mean
that once the datapath is extended to 128-bits wide, two flits
would be required for the header, and a lot of padding would

LANT ET AL 7

NACK/TIMEOUT QUEUE

Depacketizer

Packetizer

Priority

Arbiter
Update

Request

Shared Mem

Early Ack Timers

Retransmit Transaction

Address/Data

RDMA Early Ack

Timers

Retransmit RDMA

OP Src/Dest/Len

Con�g Entry

RDMA Con�g

AXI Master

To Switch Ingress

Stream Master

Transaction

Tables

RDMA Con�g

AXI Slave

Remote Data

AXI Master

RDMA DATA

AXI Slave

Shared Mem

AXI Slave

From Switch Egress

Stream Slave

Add

Request

STORE & FORWARD (W/R)

AW/AR

REQUEST

RESPONSE
RDMA (B/R)

PGAS
(B/R)

INTERRUPT CPU

RDMA

RETRANSMISSION

 PGAS OP REQUEST

RESPONSE

AW/WEARLY B

PASS THROUGH

AW/W

R/B
AW/

AR/W

AW/AR

AW/W/AREARLY B/R

FIGURE 3 Micro-architecture the NIC.

then be required within the header (given the only additional
information in the header to be the ID). Given the relatively
small intended maximum packet size for the network proto-
col (for congestion control reasons), this would impact on the
maximum available goodput of the network.

4.2 Transaction Tables
If the remote packet is a request (AW/W/AR) then we must
again wait for the footer to construct the ID, but this time we
must also place a request in for access to a “transaction table”.
This table stores information about the outstanding transac-
tions that have arrived from remote nodes, to which responses
have not yet been sent back. Information must be stored here
in order to route response packets back to their source. This
is because the AXI standard does not have any signals for the
source address. All routing of the response packets is done
using the transaction ID signals (AW_ID,AR_ID,R_ID,B_ID).
Typically this can be achieved by appending bits which cor-
respond to the source port/link/location to the variable width
ID signals, thereby allowing simple decoding and routing back
to source. However, this is not suitable for a large-scale dis-
tributed system, as we cannot append additional bits which are
encoded with the routing information for the whole system.
For this reason we rely on the transaction tables.
The table is formed of an 8-entry binary CAM (Content

Addressable Memory), to which requests for entry are submit-
ted, and updated ID values are returned for AXI packet forma-
tion. Responses (R/B) then post an update to the CAM entry on
their way back, retrieving their original ID for network packeti-
zation. The CAMsearch is performed on both the sending node
coordinates, and the transaction ID. Each table entry also con-
tains the original ID, a new ID issued at each new CAM entry,

Original

 Channel ID
New

Channel ID

Source Node

Coordinates
Transaction

Count
Available

0x0FFE01 0x0124 0x0 0x1 FALSE

0xXXXXX 0xXXXX 0x1 0x0 TRUE

0xXXXXX 0xXXXX 0x2 0x0 TRUE

0x0FFE01 0x0220 0x3 0x4 FALSE

...

0x08EE00 0x0124 0x3

RESPONSE

0x02200x1

REQUEST

0x0FFE01

FIGURE 4 Example CAM table entries. Shows the request
returning a new ID, and a response retrieving the source node
location and the original ID for use in the remote source node.

a count on outstanding transactions, and information regard-
ing whether this is an RDMA or shared memory transaction.
Figure 4 shows the structure and insertion/replacement policy
for the CAM.
If a new request is given which has the same transaction

ID and source coordinates as an existing table entry the count
of the entry is simply increased. In this manner we can han-
dle multiple outstanding transactions from the same master in
flight at once, for example from a large-scale DMA transfer.
If the source coordinates are different then a new table entry
must be issued regardless of whether the transaction ID is the
same, as they are independent transactions. The returning AXI
response then posts an update to the table, lowering the out-
standing count. If the count reaches zero this entry will become
available for a completely new transaction.

8 LANT ET AL

In the event that a new entry request is made and there
is no available space in the table the request will be stalled
until an entry becomes available. This is likely to cause issues
with backpressure in the network in certain circumstances, but
should be able to be alleviated by allowing a table large enough
to provide sufficient entries to mask the latency of the average
round trip time from the IP to memory and back, which should
not be a significant number.

4.3 Early Acknowledgements
In the Processing System (PS), transactions out to the Pro-
grammable Logic (PL) can cause serious performance degra-
dation if the response is not provided in a timely fashion.
This is because the ARMCortex-A53 has an in-order pipeline,
so will stall until the corresponding load/store instruction is
completed, meaning the AXI response must be seen for the
processor to continue execution. While this may be accept-
able for communication within a single MPSoC, considering
the round trip time for traversing a large network, this is
completely unworkable.
Also worth noting is the fact that this can cause particular

problems when debugging PS-PL communications for testing
new IP. There is no hardware to provide negative responses
using timeouts within the PS. This means if a rogue program
writes to some undefined location in the PL and a response is
not provided the whole system will hang (assuming OS and
program sharing a single core).
While there is little to be done with regards to remote read

operations because the processor needs the data to continue,
we can alleviate the latency issues for remote writes by provid-
ing an early acknowledgement. We receive the full request into
the NIC, and begin a process to create the early acknowledge-
ment. We include a set of (currently 16) timers, which have
an associated ID register. Available timers are popped from a
queue of uninitialized timers. The ID is stored and the timer
started. Once a given transaction has been granted an associ-
ated timer and all of the associated data has been transferred
into the NIC (i.e. WLAST signal is seen high), then a response
is sent back to the PS. If the timer overflows or we receive a
negative acknowledgement then retransmission is attempted.
If the real response arrives back from the remote node before
timeout then the timer is reset and pushed back onto the list of
unused timers.
Currently the timeout value is static in the timers, whichmay

lead to suboptimal values being chosen. If the timeout is too
short then it may be the case that a timeout occurs when the
response is simply delayed traversing the network. However, if
the timeout value is too long then the process of retransmission
is delayed and so latency of the transaction is lengthened fur-
ther still. Given that the round trip time will heavily depend on

the distance to the destination and the system load, we intend
to explore how to adjust the timeout values dynamically based
on local information.

4.4 Reliability Layer
Two separate methods of hardware packet retransmission are
implemented in the system (Figure 3); one for the small low-
latency remote load/store operations, and one for the bulky
RDMA data transfers. Neither of them requires immediate
intervention from the CPU. For the shared memory transfers
we store the transactions on the local NIC, issuing a new ID
for the transaction. In the event of a negative acknowledge-
ment or a timeout we simply reissue the transaction. Multiple
attempts are made, the limit of which is capped, at which point
a more serious network error than packet loss or CRC (Cyclic
Redundancy Check) failure is assumed and an interrupt is
provided to the CPU. To prevent read-after-write dependency
issues arising we block and queue all read operations in the
NIC to addresses which reference to an in-flight write transac-
tion until we receive the genuine acknowledgement from the
remote side.
Given the area limitations on the FPGA it is infeasible to

store the transaction data for RDMA transfers within the PL. In
order to provide reliable transmission for RDMA transfers we
keep track of the individual transactions which pass through
from the DMA engine, storing their base address, destination
address offset and transaction length using the pass-through
AXI interface which configures the DMA, and keeping count
of the transactionswhich are issued.We allow theDMAengine
to complete a full transfer, storing the transactions which time-
out or have negative acknowledgements. We then reconfigure
the DMA from the NIC to retry these transactions, again cap-
ping the number of reattempts and then elevating the severity
of the failed transfer.
While the retransmission is transparent to the programmer,

performed completely in hardware and avoids the immediate
utilization of CPU resources (unless severity is elevated), there
are several caveats with this retransmission method which con-
cern the software developer. Until there has been notification
from the RDMA engine and NIC that the full transfer has suc-
cessfully completed, the user must not alter the data being
transferred, and the data must be pinned in memory. In the case
where they wish to continue processing the data while trans-
fers are in progress they must create a local copy of the data to
ensure no inconsistencies in the data are introduced. This situ-
ation should be infrequent however, and copying can therefore
be postponed; only creating a copy of the data if the local node
wishes to change the data mid way through an RDMA trans-
fer. This ensures no significant impact on the available memory
bandwidth.

LANT ET AL 9

5 EXPERIMENTAL SETUP

Our current system setup consists of two interconnected Xil-
inx ZCU102 evaluation kits, connected using a 10Gbps SFP
(Small Form-factor Pluggable) link. Each FPGA is loaded
with the same bitstream, consisting of the design detailed
in Figure 5 . We have created a simple address mapping IP
block as an interim module to test the interconnect until a
block is created which will perform the physical to global vir-
tual address translation within the programmable logic side
of the MPSoC. This needs to be performed for various rea-
sons. Firstly, all addresses which leave and enter the PS
must be physical addresses. There is no way to route through
the internal interconnect out through to the PL using virtual
addresses. There are only specific windows of memory within
the Ultrascale+ that the PS interconnect will route to the PL,
and only through a single static AXI interface. This is not cus-
tomizable. For the purposes of this initial work we map only
a small segment, 1MB of memory at 0xA0000000 which is
visible to user-space applications, and issues AXI commands
through the PS-PL interface HPM0.
The address mapper is a simple block which contains a con-

figuration register and two small RAMs that can be written or
read. The block can be configured to send AXI read or write
requests, of varying burst length, with the target address and
data being stored in the RAMs. The IP can be configured to
send one shot requests or repeating requests with a given set
of IDs, with a variable number of outstanding transactions
allowed.
The DMA requires no additional work inside the PL, as

the interface from the DMA to the PL is a standard memory-
mapped AXI interface. Which can then be sent directly to the
NIC (once the address has been remapped to mimic the behav-
ior of the PL page table). The DMA engine does not require
this mimicked translation process between the PS-PL interface
and the networking IP, as the local DMA engine configuration
registers are accessed using a fixed physical address. Config-
uration registers are loaded with source/destination address
pairs, which can be any address, either global virtual addresses
or physical. Data is pulled from remote memory using a phys-
ical address, and then pushed to the NIC with transactions
formedwith a global virtual address, complete with destination
node coordinate information.
Sincewe only require two ports for the test we connect in and

out port 0 of the first switch to in and out port 1 of the second
switch, and tie the other IO ports off (ensuring that they are
still synthesized as if connected). In the design we configure
the address mapper to send to address 0x0520140011110000
(upper 22-bits 0x00014805). Configuring the local port value
of the two routers thusly will emulate the routing of the packet
to a node in another chassis of the network:

Address Cabinet Chassis Daughter Card
R1 0x00014403 00000101 0001 0000000011
R2 0x00014805 00000101 0010 0000000101

This means that the packet will be routed out of the network
switch over the first output (port 0/TX_o0), towards the node
in chassis 2. As the receiving node matches the node ID in the
destination address we route out of the second switch through
the local port (Local_o0). If the packet was destined for a dif-
ferent cabinet the packet would be directed out of the uplink
port (port 3 in this implementation).

5.1 Transceiver Setup
The Zynq Ultrascale+ MPSoC contains several transceiver
types (GTH/GTY/GTR) with different characteristics
(throughput capability, power consumption, PS/PL accessibil-
ity). In the setup we use the GTH transceivers with a line rate
of 10.3125Gb/s, with a full duplex link – parallel lanes for TX
(transmit) and RX (receive).
The transceivers are grouped into “Quads”, which is a bank

of four transceivers, each consisting of TX and RX serial lanes,
along with reference clock IO pins and routing. The reference
clock is typically set up in Input Mode, in which the reference
clock input is used to clock the transceiver. There is also avail-
able an Output Mode, in which the transceiver is clocked from
another transceiver using the recovered clock (RXRECCLK-
OUT) [28]. The resulting output clock can then be routed out
to be used at a different location. In our design we use two
transceiver pairs from a single quad with the clocking in Input
Mode.
To interface between the Media Access Control (MAC)

layer (used to provide a preamble and end of packet as well as
idles) and the transceiver we use the Xilinx 10G/25G Ethernet
Subsystem IP block [29]. This block is capable of providing
both MAC and PHY (Physical Layer) functionality, however,
licensing restrictions prevent us from implementing the MAC
functionality of the IP block on the FPGA The block is thus
configured as a 64-bit PCS/PMA (Physical Medium Sublay-
er/Physical Medium Attachment) with 4 TX/RX pairs.
The MAC layer used in this work is an open source imple-

mentation with a compatible interface for the Xilinx 10G PHY.
The MAC provides a CRC check and converts frames between
XGMII (10G Media Independent Interface) and AXI Stream
formats. The widest datapath this implementation currently
supports is 64-bit, so other options will be sought to provide
internal speedup, required for higher (25G) line rates. The Xil-
inxMAC functionality provided in the 10G/25G Subsystem IP
can perform this, but with paid licenses only. The only prop-
erties changed for the MAC for correct functionality with our

10 LANT ET AL

HPM0

FIGURE 5 Full system setup between the two MPSoCs. MM_(M/S) is memory mapped AXI master/slave interfaces, and ST
are the streaming interfaces.

custom network packets is a reduction in the minimum frame
size. The Ethernet protocol states a minimum frame size of 512
bits, but our custom protocol is able to create frames as small
as 256 bits (header and footer, with no body).
Three clocks are required to instantiate the PHY, a reference

clock, an RX clock, and a dclk used to initialize the transceiver.
For a 10Gbps line rate the PCS/PMA reference clock requires
a frequency of 156.25MHz, the standard for a 10G Ethernet
PHY (802.3) [29]. Since we use a 64-bit datapath in the PS-PL
interface there is no internal speedup, so we set the RX clock
and dclk to the same frequency.
In previous investigations using Xilinx Virtex-7/Ultrascale

devices and soft-core Microblaze processors it was required
to set up an external chip for the reference clock using I2C
commands issued following reset from a hardware driver, as
this was not done by default. Similar to the Virtex device,
the Zynq contains Silicon Labs chips for this purpose (Si570,
and Si53340 for low jitter), but no additional setup is required
for the 10Gbps line rate, as the system defaults to a clock
frequency of 156.25MHz [30].
In future extensions to this project it will be desirable to uti-

lize the higher available line rates of the transceivers. If this
is the case the clock will require setting up with a frequency
of 390.625MHz. This can be done simply from the PS side as
there is access to the two I2C buses as part of the Multiplexed
IO banks (MIO 14,15,16,17 by default). This can be accessed
using drivers which expose a character device in sysfs to be
written to for setting up the clocks [31].

6 EVALUATION RESULTS

We have performed several experiments, as well as gathering
reports from Xilinx’s Vivado tools during synthesis/imple-
mentation of the system in order to analyze the design of
the NIC and the network switch. All of these experiments
are run on two interconnected ZCU102 evaluation kits, with
production grade MPSoC (part number EK-U1-ZCU102-G),

TABLE 1 Area utilization of interconnect in absolute values
and % total resources on Xilinx xczu9eg-ffvb1156-2-i FPGA.

Component CLB
LUT(%)

CLB
REG(%)

BRAM
(%)

Total 48374(17.6) 53139(9.70) 350(38.4)
MAC/PHY
Subsystem 18620(6.79) 16659(3.04) 62(6.8)

⇒ PHY (4 port) 7399 9468 0
⇒ ETH MACx4 2131 807 3
⇒ Async FIFOs 898 2128 20
⇒ Switch 1771 1810 30
NIC 12876(4.70) 13797(2.52) 11.5(1.26)
⇒ Shared Mem
Reliability 2871 4833 0

⇒ RDMA
Reliability 2273 3205 0

⇒ CAM Tables 2911 1360 0
⇒ FIFOs 4302 750 11.5
DMA Engine 2215(0.81) 2169(0.40) 0
On Chip
Interconnect 10823(3.94) 14851(2.71) 4.5(0.49)

Address
Mapper 1691(0.62) 2862(0.52) 0

Other 2149(0.78) 2801(0.51) 272(29.8)

using the setup shown in Figure 5 unless otherwise stated.
The ARM PS is by default clocked at 1.2GHz, and the PL
components are all clocked at 156.25MHz as required by the
transceivers.

6.1 Area, Performance and Power
Table 1 shows a breakdown area consumption of the individ-
ual components of the system described in the top of Figure
5 . The table shows that the system utilizes around 17.6%
of LUTs (Look-Up Tables) in the FPGA as logic, and uses

LANT ET AL 11

around 9% of the Block RAMs (implements 2x 8-entry CAMs
in NIC). The high block RAM utilization (in Other) is caused
by a block memory generator IP used for testing purposes.
Considering this is the entirety of the networking hardware
for 4 10G ports, as well as interfacing for PS-PL communi-
cation this seems a reasonable price to pay, and leaves ample
resources for accelerator logic and additional network func-
tionality to be implemented. We implement the CAM tables
and other memory using distributed RAM in order to further
preserve precious Block RAM resources.
All area comparisons we make here are based upon data

available in Tables I and II of [21], which pulls implementation
details from numerous sources to compare area consumption.
The largest component by some margin in our design is the
MAC/PHY subsystem, but compares similarly or favorably
compared with other implementations. The open source MAC
component we use for a single 10G lane consumes almost
the same amount of LUTs as other implementations in the
literature and over 3x less registers. We notice that the Infini-
band implementation with reliability layer consumes about
32% more LUTs, suggesting that a smaller, more lightweight
protocol can afford us area savings (not to mention licensing
cost). The results for a hardware TCP implementation in an
Ethernet based system are only provided with a single 10G
link, and show an improvement in resources over our design,
but given that the area results for our reliability layer compare
similarly to the custom interconnect implementation given in
[21], this seems acceptable.
The NIC consumes the vast majority of its resources imple-

menting the CAM tables or FIFOs at input and outputs.
Although this can be reduced by reimplementing the CAM as
a cache with lower associativity, as discussed in Section 4.2.
The additional latency of the table operations will be minus-
cule compared with network traversal, so should seriously be
considered.
The FIFO resources listed here may be able to be reduced by

optimizations in the implementation. The implementation is
written using Bluespec, and for readability and ease of devel-
opment in many cases we hold a structure rather than a single
data item. This results in the FIFO in some instances contain-
ing redundant information and being of unnecessarily large
width. For example, we hold full request structures to take the
write data, which results in a FIFO width of 192 bits, but a
width of 64 bits (only the data) is sufficient.. This is easily
amended, but should be considered as a source of unnecessary
overhead.
Table 2 shows a breakdown of the zero-load latency

through each component of the networking hardware for a sim-
ple remote load/store operation. As can be seen, the total time
for an 8-byte payload remote write operation (AWLEN = 0)
to complete is around 1.5�s. This includes the return journey

TABLE 2 Breakdown of zero-load latency for a remote write
and return of acknowledgement. N is the number of payload
flits, and the component breakdown latency for NIC is from
first flit input to last output (given transformation of interface,
this seemed most logical).

Component Latency (cycles) Latency (ns)
Total (RTT) 232 1485
NIC
(MM 2 S)

8
(7+N) 51.2

Switch
Traversal 9 57.6

NIC
(S 2 MM)

9
(7+2N) 57.6

Sin MAC0 -
Sout MAC1 100 640

of the acknowledgement for the packet. This value is domi-
nated by the traversal of theMAC and PHY,which accounts for
nearly 85% of the latency. This value is quite typical compared
with similar implementations [17], and can be heavily masked
by the inclusion of the early acknowledgement for remote write
operations. Notice that the 3-stage switch has a latency of 9
cycles. This is due to the stream interface which wraps the
switch, and various additional buffering stages at output and
input. The 2N latency on the depacketization stage arises from
the fact that the ID for the transaction is stored within the tail
of the packet, as discussed in Section 4.2. This latency will
therefore be more pronounced with larger packet sizes, but
given that the throughput is more important for these larger
RDMA transfers, and given the high latency of the MAC/PHY
subsystem, this should not be an issue.
In Table 3 we see a breakdown for the estimated power

consumption from the Vivado tools after place and route of
the FPGA. As we expect from our design the PS consumes the
majority of the dynamic power (≈60%), owing to the fact that
the PS clocks at 1.2GHz, and the PL is clocked at 156.25MHz.
The majority of the power in the PL is consumed within the
transceivers, which cannot be improved upon, as these are hard
components within the system.We also implemented the same
design with the Xilinx 10/25G Ethernet Subsystem component
configured as bothMAC and PHY, eliminating the need for the
separate open source MAC block. (N.B. Licensing restrictions
only prevent us writing the final bitstream, not running imple-
mentation.) The reported consumption of this component is
1.191W, which is around 75% of the 1.579W total consump-
tion we see for the PHY plus 4 individual MAC components.
This efficiency gain is small in relation to the total overall con-
sumption, and so we are not concerned with the additional
power.

12 LANT ET AL

TABLE 3 Component power consumption estimates follow-
ing place and route.

Component Power (W)
Total 5.344
PS 3.198
MAC/PHY Subsystem 1.579
⇒ PHY 1.124
⇒MAC x4 0.069
⇒ FIFOs 0.014
NIC 0.201
Router 0.097
Config
Interconnect 0.128

Address Mapper 0.029

6.2 Stream Benchmark
In order to test the effects of communicating in a shared mem-
ory system we use the standard STREAM benchmark [32] for
memory performance. This benchmark performs a series of
memory operations using different access patterns, in order to
test the whole memory subsystem. The code is compiled from
C source using GCC with -O2 optimization flag, and not using
OpenMP. This experiment is run to show correctness over per-
formance, as this model of shared memory communication is
not designed for data transfer in this manner, but for small
synchronization and barrier messages. The results are given in
Table 4 , and show the achievable memory throughput for the
benchmark running in three configurations:

1. Memory is allocated in the local DRAM attached
directly to the PS through the cache hierarchy.

2. Memory is allocated in a local Block RAM inside
the PL, having to be accessed through the Full Power
Domain HPM master port.

3. Memory is allocated in a remote Block RAM, having to
be accessed across the network 1 hop away.

We see that the degradation in performance is significant
(≈2 orders of magnitude) when we have to use the PL to
access memory. There are several factors which cause these
poor results. As the user accesses this memory transparently as
a simple STR/LDR instruction, the limitations of the processor
come heavily into play. The ARM Cortex-A53 is an in-order
dual issue CPU. Meaning a maximum of only two read/write
transactions can be in flight at any point in time. The proces-
sor’s pipeline will block until it receives the acknowledgement
of successful write or the data from a read operation.
Another cause of the performance degradation is the fact

that we can use the entire memory hierarchy when accessing

the DRAM in the PS. By accessing the PL through the AXI
master ports we are unable to cache the resulting data. Obvi-
ously this is required as there is no way of keeping track of
stale data in the PS side. We cannot know what a given hard-
ware block is doing at any point in time, so cannot know that
it is not changing the data.
We see that the throughput to access remote memory is

about an order of magnitude slower than using local PL
BRAM. This makes sense from our observations on latency
of accesses and the CPU blocking. We see typically it takes
about 150ns round-trip time for a write/read into a BRAM in
the PL. This is about 10x less latency than we see in the≈1.5�s
round-trip time for a remote operations (see Table 2) traveling
1 hop each way. Given the blocking nature of these operations
the latency in acknowledgements causes the degradation of the
performance we observe here.
It is obvious that thismodel of communication is not suitable

for data transfer between remote memory regions, and that the
RDMA operation is required to provide a far more appropriate
method to transfer larger chunks of data. The shared-memory
path to the network here is only suitable for simple low-latency
communication between processors, as typically seen in syn-
chronization messages or control packets. The advantage in
having this kind of communication present in the system is that
the latency of giving access to the user of the whole memory
space allows us to reduce the latency of transfer for these small
packets. DMA for these transfers is not sensible because of the
buffer setup and memory copies involved. We also prioritize
the forwarding of the shared memory requests over RDMA
transfers in the NIC. All of which incurs additional latency
penalties.

6.3 Throughput Tests
In order to test the performance of larger RDMA transfers
through the network we set up two experiments. In the first we
use a traffic generator to vary the packet size and number of
possible simultaneous in-flight transactions to show the max-
imum attainable throughput of the system over a single link.
The second experiment uses the completed RDMA engine to
send varying sizes of messages, pulling memory from the PS
and sending it over the network, waiting for every transaction
to be properly acknowledged. We show the effectiveness of
adding early acknowledgements to the NIC in improving the
performance of the RDMA transfers.
Figure 6 shows how we can increase the achievable

throughput over the NIC and switch by varying the number of
possible outstanding transactions the DMA can issue simul-
taneously, and by varying the burst length (and thus network
packet size) of the DMA transfers. We see that by increasing
the maximum payload size from 128B (16×64-bit) to 512B

LANT ET AL 13

TABLE 4 Results for running STREAM benchmark

PS DRAM Local BRAM Remote BRAM

Function
Best
Rate
(MB/s)

Avg
Time
(s)

Min
Time
(s)

Max
Time
(s)

Best
Rate
(MB/s)

Avg
Time
(s)

Min
Time
(s)

Max
Time
(s)

Best
Rate
(MB/s)

Avg
Time
(s)

Min
Time
(s)

Max
Time
(s)

Copy: 3345 0.0489 0.04784 0.0497 45.4 3.52 3.52 3.53 4.8 33.6 33.6 33.6
Scale: 1826 0.0887 0.0876 0.0905 44.0 3.64 3.64 3.64 4.7 33.8 33.8 33.8
Add: 2033 0.118 0.118 0.119 44.2 5.43 5.43 5.43 4.7 50.8 50.8 50.8
Triad: 1683 0.144 0.142587 0.151 44.6 5.38 5.38 5.38 4.7 50.8 50.8 50.9

(64×64-bit) we are able to increase the saturation point for
the throughput by ≈32%. Using a transaction size greater than
this may have adverse effects on the network. Keeping packet
length relatively short allows us to perform better load balanc-
ing, and will aid in lowering the congestion in the network.
The increase in throughput is due to the packet header and
footer, which contribute 4 flits of overhead on the link per
packet, given our 64-bit datapath. This gives a reduction in
the packet overhead from 20% (20/16) to 6.3% (68/64). If we
were to increase the data width to 128-bits (reducing header
and footer to a single flit each) the packetization overhead will
drop further still to 3.1%.
We see that saturation occurs at 8.56Gb/s, which is seem-

ingly lower than the 9.4Gb/s promised by the GTH transceivers
(given our packet overhead and the link being run at 10Gb/s).
However, this additional drop can easily be accounted for. The
MAC layer adds a preamble at the beginning of transmis-
sion and an end-of-packet flit at the end. An inter-frame gap
is also required between packet transmission to aid in keep-
ing the transceiver clocks synchronized. This results in a raw
throughput drop of about 9% in our specific case (though this
is dependent on frame size).
Adding the early acknowledgements to the system we see

that the latency of waiting for acknowledgements is masked
completely if more than a single packet can be in flight at any
one time. The reason that there is degraded performance in the
event that we have a single in-flight transaction limit comes
from the implementation of the timer module for the early
acknowledgement. When a request is presented, a request for
an available timer to begin takes 2 clock cycles. This timer can
only be requested once the entire request has been presented.
What this means is that there is a bubble in the pipeline which
is only masked when a separate request can begin writing data
into the NIC while the timer is being started for the previous
transaction.
In Figure 7 we see the time taken for an RDMA opera-

tion to process and receive (genuine) acknowledgement for a
given message size. The baseline for small sized messages is
around 1.9�s, which stays consistent until the message size
grows to over 64B.We see the divergence in performance in the

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750
 800
 850
 900
 950

 1000
 1050
 1100

 1 2 3 4 5 6 7 8 9 10

 11

 12

 13

 14

 15

 16

D
at

a
T

hr
ou

gh
 N

et
w

or
k

(M
B

/s
)

Number of Outstanding Transactions Allowed

16 burst standard impl
16 burst w/ early ack

64 burst standard impl
64 burst w/ early ack

FIGURE 6 Throughput of network varying max in-flight
transactions and burst length.

results such that for largermessages adding early acknowledge-
ments to the system results in a transfer time of roughly half.
This difference arises because the RDMA engine cannot issue
more than five simultaneous transactions per channel. This dif-
ference would become even more pronounced if the distance
between source and destination were more than a single hop, as
the latency between issuing new transactions would grow even
further. These results are encouraging given that they include
the return hop time for the acknowledgement.

6.4 Weather and Climate Simulation Kernel
In our sibling EuroExa project, we are porting kernels from
the LFRic model to FPGA-based systems. LFRic (named in
honour of Lewis Fry Richardson) is the new weather and cli-
mate model which is being developed by the UK’s Met Office
and its partners for operational deployment in the middle of
the next decade [33]. High quality forecasting of the weather
on global, regional and local scales is of great importance to a

14 LANT ET AL

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 8 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 131072

T
im

e
fo

r
T

ra
ns

fe
r

(u
s)

Message Size (Bytes)

RDMA w/ Early Ack
RDMA Standard

FIGURE 7 Time for RDMA transfers to complete for differ-
ent message sizes.

wide range of human activities and exploitation of latest devel-
opments in HPC has always been of critical importance to the
weather forecasting community.
In this context, we are looking at how kernels from LFRic

can be accelerated using FPGAs. An example of such a kernel
is a matrix-vector update (known as dgemv in the BLAS [34]
library) which can contribute significantly to execution time.
The matrix-vector updates have been extracted into a ker-
nel test program and converted to C. There are dependencies
between some of the updates and a colouring scheme is used
such that nodes within a single ‘colour’ can be computed in
parallel. This is used to produce independent computations for
multi-threading with OpenMP or to be exploited by FPGA
accelerators.
We used the Vivado HLS tool to generate, from C code, an

IP block for use in this work. The inner loop of the C code
was hand unrolled to enable maximum pipelining within the
IP block. We run the kernel in five separate configurations to
test correctness, stability and performance of the network. In
the first one we perform computation in the PS with data held
in DRAM. The next two use the PS and hold the data in either
local or remote BRAMs. The final two perform computation
in a local and remote accelerator block, with the data provided
to the accelerator block from BRAM. The results are shown in
Table 5 .
We see that the latency of using remote resources is around

an order of magnitude slower, as we would expect from the
observations of the STREAM benchmark results. While we
see a speedup in computation time over the CPU-BRAM
implementation, this does not take into account the memory
hierarchy, which as in the stream benchmark, gives significant
benefits in performance. Where the data is stored in DRAM

TABLE 5 Climate kernel execution time.

Implementation Execution Time (s)
CPU Execution in DRAM 0.077698
CPU Execution in Local BRAM 7.520
CPU Execution in Remote BRAM 68.232
FPGA Execution in Local BRAM 2.533
FPGA Execution in Remote BRAM 24.186

during CPU execution rather than inside FPGA resources exe-
cution time is significantly faster than using the accelerator
block, due to the memory bandwidth limitations discussed
previously, and the CPUs use of the cache hierarchy.
What this experiment shows primarily is the ability of

our network to be utilized for accessing distributed FPGA
resources. Implementation is currently under way to enable
the accelerator block to stream the data in bursts directly from
RAM itself (basically acting as a DMA). This should pro-
vide significant improvement in the performance (as we see
in the throughput results in Figure 6), and eliminate the bot-
tleneck that we see. We show that this kernel is capable of
executing faster in the FPGA than on the CPU, despite being
clocked in this instances ≈ 8× slower. The next step in imple-
mentation is to overcome the memory bottleneck. Significant
additional infrastructure is also being worked on in a sibling
project [35] for viable real-world exploitation, such as runtime
reconfigurability, task scheduling and resource allocation.

7 DISCUSSION AND FURTHERWORK

We present in this paper a novel Network Interface architec-
ture, suitable for facilitating shared memory communications
over large scale networks of XilinxMPSoCs. Our solution pro-
vides a method of eliminating many of the issues surrounding
the use of these devices for HPC applications. We solve all the
problems involved with bridging between the AXI interface,
designed for small scale, highly reliable networks, and large
HPC networks which aim to scale to hundreds of thousands of
nodes. By providing amethod of early acknowledgement to the
local AXI transactions we overcome the massive performance
degradation that is seen with shared memory communications
from the PS, owing to the dual-issue, in order pipeline of the
ARM A-53s. This also allows the DMA engine to saturate
the links to achieve a suitably high throughput over the 10G
transceivers.
While this paper is focused on the hardware design

and implementation issues surrounding the Xilinx Zynq
Ultrascale+, there is one key component of the system which
prevents the solution from being utilized for full-scale HPC
applications. We require a method of translating from physical

LANT ET AL 15

addresses which are able to reach the PL, to a global virtual
address space. A solution to this problem requires significant
systems software development, setting up the SMMU within
the PS, and writing drivers to cope with tables that would be
placed in the PL. There are many issues to be faced with this.
Themost pressing of these is howwe plan to reconcile the need
for exa-scalable page tables with the limited resources of the
FPGA. One solution to this may be to segregate the network
into different domains, and progressively translate the virtual
address as it travels through the network. Therefore very large
regions of address space can be mapped into a single entry,
with only a few bits of the address being considered in each
portion of the network. This concept is similar to the use of
subnets in IP routing, and is proposed in this work byKatevenis
specifically for interprocessor communication [36].
Once we can translate into this global virtual address space

and run full MPI applications we can analyze performance
metrics and tune the system, performing some of the additional
work discussed in Sections 4.2 and 4.3. Finding a suitable
value for the acknowledgement timeout will be important for
striking a balance between prompt retransmission and coping
with any jitter experienced by packets traveling through the
network, but requires a full network with real contention for
resources to test. By the same token, limiting the associativ-
ity of the CAM will provide us a smaller design, and give us
the ability to handle more outstanding transactions in the same
footprint. However, this may not be necessary depending on
the traffic patterns we see. It is therefore important that we are
able to evaluate the system eventually using real-world HPC
applications.
We plan in the immediate future to provide a deeper analy-

sis of the micro-architecture of the reliability layer which has
been implemented, and compare it with some other standard
hardware and software based solutions. There are likely to be
several improvements we canmake to this solution, and several
parameters such as queue length, retransmission attempt limits,
variable retransmission timeouts etc. which can be investigated
more thoroughly to provide a more performant solution.

8 CONCLUSIONS

As the High-performance Computing (HPC) community
closes in on the exascale milestone, new architectures for
achieving greater performance per watt are desperately sought.
We argue that for certain workloads, the use of MPSoCs with
low-power mobile processors and FPGA fabric can be utilized
to great effect in this cause. They are able to provide dense
packaging and tight coupling for cpu/memory/accelerator/net-
work, reducing wire length and data transfer (thereby reducing
power consumption).

We show that standard networking solutions for FPGA and
HPC are unable to provide us with all of the properties for a
large scale cluster of FPGAs that we desire; namely price, flex-
ibility and low overheads on the FPGA.We present a novel net-
work interface and switching architecture, which use a custom
network packet designed for use in networks ofXilinxMPSoCs
for HPC applications, in a shared memory context. We pro-
vide a method for performing transparent low-latency access
to a global shared memory via standard load/store instruc-
tions, and a method for performing large data transfers over a
user-initiated RDMA, avoiding costly system calls and mem-
ory copies over traditional networking solutions. We propose
a reliability layer within the NIC which allows for hardware
retransmission of packets, without immediately resorting to
intervention by the CPU.
We discuss in detail the design of the hardware, and the fac-

tors which influenced the design based upon the use of the
Xilinx Zynq Ultrascale+ MPSoC. We hope that these issues
(primarily regarding the use of AXI as the interfacing standard
to the ARM Processing System in the device) have been dis-
cussed sufficiently so as to give the reader an insight into the
main considerations when using such a system or designing a
new architecture.
Preliminary results show that this prototype design is com-

parable in terms of performance and FPGA area consumption
to alternative implementations, and that the inclusion of a sys-
tem to provide early acknowledgements for write transactions
can provide significant latency and throughput benefits. The
design is lightweight and leaves considerable FPGA resources
for use as an application accelerator, and the design allows
for many more exotic network features to be explored and
implemented in the future.

References

[1] Bohr Mark. A 30 year retrospective on Dennard’s MOSFET scaling
paper. IEEE Solid-State Circuits Society Newsletter. 2007;12(1):11–13.

[2] Marazakis Manolis, Goodacre John, Fuin Didier, et al. EUROSERVER:
Share-anything scale-out micro-server design. In: Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), 2016:678–
683IEEE; 2016.

[3] Fujitso Post-K Supercomputer https://www.top500.org/news/
fujitsu-switches-horses-for-post-k-supercomputer-will-ride-arm-into\
-exascaleAccessed: 15-11-17; .

[4] Nurvitadhi Eriko, Sim Jaewoong, Sheffield David, Mishra Asit, Krish-
nan Srivatsan, Marr Debbie. Accelerating recurrent neural networks in
analytics servers: comparison of FPGA, CPU, GPU, and ASIC. In: Field
Programmable Logic and Applications (FPL), 2016 26th International
Conference on:1–4IEEE; 2016.

[5] Cooke Patrick, Fowers Jeremy, Stitt Greg, Hunt Lee. A compari-
son of correntropy-based feature tracking on FPGAs and GPUs. In:
Application-Specific Systems, Architectures and Processors (ASAP),
2013 IEEE 24th International Conference on:237–240IEEE; 2013.

https://www.top500.org/news/fujitsu-switches-horses-for-post-k-supercomputer-will-ride-arm-into\ -exascale
https://www.top500.org/news/fujitsu-switches-horses-for-post-k-supercomputer-will-ride-arm-into\ -exascale
https://www.top500.org/news/fujitsu-switches-horses-for-post-k-supercomputer-will-ride-arm-into\ -exascale

16 LANT ET AL

[6] Kozikowski Grzegorz, Papamanousakis Grigorios, Yang Jinzhe. Poten-
tial future exposure, modelling and accelerating on GPU and FPGA. In:
Proceedings of the 8th Workshop on High Performance Computational
Finance:4ACM; 2015.

[7] Hefenbrock Daniel, Oberg Jason, Thanh Nhat Tan Nguyen, Kast-
ner Ryan, Baden Scott B. Accelerating Viola-Jones face detection to
FPGA-level using GPUs. In: Field-Programmable Custom Computing
Machines (FCCM), 2010 18th IEEE Annual International Symposium
on:11–18IEEE; 2010.

[8] Hussain Hanaa M, Benkrid Khaled, Erdogan Ahmet T, Seker Huseyin.
Highly parameterized K-means clustering on FPGAs: Comparative
results with GPPs and GPUs. In: Reconfigurable Computing and FPGAs
(ReConFig), 2011 International Conference on:475–480IEEE; 2011.

[9] Abel Francois, Weerasinghe Jagath, Hagleitner Christoph, Weiss Beat,
Paredes Stephan. An FPGA Platform for Hyperscalers. In: High-
Performance Interconnects (HOTI), 2017 IEEE 25th Annual Sympo-
sium on:29–32IEEE; 2017.

[10] Intel Completes Altera Acquisition https://insidehpc.com/2015/12/
intel-completes-acquisition-of-altera/Accessed: 15-11-17; .

[11] Ovtcharov Kalin, Ruwase Olatunji, Kim Joo-Young, Fowers Jeremy,
Strauss Karin, Chung Eric S. Accelerating deep convolutional neural
networks using specialized hardware. Microsoft Research Whitepaper.
2015;2(11).

[12] Sundararajan Prasanna. High performance computing using FPGAs.
Xilinx White Paper: FPGAs. 2010;:1–15.

[13] Xilinx . Vivado Design Suite User Guide, High-Level Synthesis,
UG902 Available: https://www.xilinx.com/support/documentation/sw_
manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf2014.

[14] Nikhil Rishiyur. Bluespec System Verilog: efficient, correct RTL from
high level specifications. In: Formal Methods and Models for Co-
Design, 2004. MEMOCODE’04. Proceedings. Second ACM and IEEE
International Conference on:69–70IEEE; 2004.

[15] Papakonstantinou Alexandros, Gururaj Karthik, Stratton John A, Chen
Deming, Cong Jason, Hwu Wen-Mei W. FCUDA: Enabling efficient
compilation of CUDAkernels onto FPGAs. In: Application Specific Pro-
cessors, 2009. SASP’09. IEEE 7th Symposium on:35–42IEEE; 2009.

[16] Baxter Rob, Booth Stephen, Bull Mark, et al. Maxwell-a 64 FPGA
supercomputer. In: Adaptive Hardware and Systems, 2007. AHS 2007.
Second NASA/ESA Conference on:287–294IEEE; 2007.

[17] Bunker Trevor, Swanson Steven. Latency-optimized networks for clus-
tering FPGAs. In: Field-Programmable Custom Computing Machines
(FCCM), 2013 IEEE 21st Annual International Symposium on:129–
136IEEE; 2013.

[18] Li Lin, Yang Quansheng. SMCFA: A Zynq-based stacked multi CPU-
FPGA architecture. In: :303–306IEEE; 2016.

[19] Moorthy Pradeep, Kapre Nachiket. Zedwulf: Power-performance trade-
offs of a 32-node zynq soc cluster. In: :68–75IEEE; 2015.

[20] Schmidt Andrew G, Kritikos William V, Gao Shanyuan, Sass Ron.
An evaluation of an integrated on-chip/off-chip network for high-
performance reconfigurable computing. International Journal of Recon-
figurable Computing. 2012;2012:5.

[21] Markettos A Theodore, Fox Paul J, Moore Simon W, Moore AndrewW.
Interconnect for commodity FPGA clusters: standardized or cus-
tomized?. In: Field Programmable Logic and Applications (FPL), 2014
24th International Conference on:1–8IEEE; 2014.

[22] Ammendola Roberto, Biagionil Andrea, Frezza Ottorino, et al. Design
and implementation of a modular, low latency, fault-aware, fpga-based
network interface. In: Reconfigurable Computing and FPGAs (ReCon-
Fig), 2013 International Conference on:1–6IEEE; 2013.

[23] Ammendola Roberto, Biagioni Andrea, Frezza Ottorino, et al. APEnet+:
high bandwidth 3D torus direct network for petaflops scale commodity
clusters. In: Journal of Physics: Conference Series, vol. 331: :052029IOP
Publishing; 2011.

[24] Concatto Caroline, Pascual Jose A., Navaridas Javier, et al. A CAM-
free Exascalable HPC Router. In: Architecture of Computing Systems
(ARCS):to appear; 2018.

[25] Xilinx . Ultrascale MPSoC Architecture https://www.xilinx.com/
products/technology/ultrascale-mpsoc.htmlAccessed: 15-11-17; .

[26] ARM . AMBA AXI and ACE Protocol Specification, IHI 0022D,
ID102711 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.
doc.ihi0022e/index.htmlAccessed: 15-11-17; 2011.

[27] Dally William, Towles Brian. Principles and Practices of Interconnec-
tion Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.; 2003.

[28] Xilinx . Ultrascale Architecture GTH Transceivers, User Guide, UG576,
pp. 24 Available: https://www.xilinx.com/support/documentation/user_
guides/ug576-ultrascale-gth-transceivers.pdf2017.

[29] Xilinx . 10G/25G High Speed Ethernet Subsystem v2.1, User
Guide, PG210, pp. 135 Available: https://www.xilinx.com/
support/documentation/ip_documentation/xxv_ethernet/v2_1/
pg210-25g-ethernet.pdf2017.

[30] Xilinx . ZCU102 Evaluation Board, User Guide, UG1182, pp.46 Avail-
able: https://www.xilinx.com/support/documentation/boards_and_kits/
zcu102/ug1182-zcu102-eval-bd.pdf2017.

[31] Controlling FCLKs in Linux http://www.wiki.xilinx.com/Controlling+
FCLKs+in+LinuxAccessed: 15-11-17; .

[32] McCalpin John D. A survey of memory bandwidth and machine bal-
ance in current high performance computers. IEEE TCCA Newsletter.
1995;19:25.

[33] Mullerworth Steve. From ENDGame to GungHo then LFRic. In:
ECMWF Workshop on Scalability; 2014.

[34] BLAS (Basic Linear Algebra Subprograms) http://www.netlib.org/
blas/Accessed 15-11-17; .

[35] Mavroidis Iakovos, Papaefstathiou Ioannis, Lavagno Luciano, et al.
ECOSCALE: Reconfigurable Computing and Runtime System for
Future Exascale Systems. In: DATE ’16:696–701EDA Consortium;
2016; San Jose, CA, USA.

[36] Katevenis Manolis GH. Interprocessor communication seen as load-
store instruction generalization. In: In The Future of Computing, essays
in memory of Stamatis Vassiliadis, K. Bertels ea (Eds.), Delft, The
NetherlandsCiteseer; 2007.

How cite this article: J. Lant, C. Concatto, A. Attwood,
J. A. Pascual, M. Ashworth, J. Navaridas, M. Luján, and J
Goodacre (2017), Shared Memory Communication in Net-
works of MPSoCs, , .

https://insidehpc.com/2015/12/intel-completes-acquisition-of-altera/
https://insidehpc.com/2015/12/intel-completes-acquisition-of-altera/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/products/technology/ultrascale-mpsoc.html
https://www.xilinx.com/products/technology/ultrascale-mpsoc.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
https://www.xilinx.com/support/documentation/user_guides/ug576-ultrascale-gth-transceivers.pdf
https://www.xilinx.com/support/documentation/user_guides/ug576-ultrascale-gth-transceivers.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xxv_ethernet/v2_1/pg210-25g-ethernet.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xxv_ethernet/v2_1/pg210-25g-ethernet.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xxv_ethernet/v2_1/pg210-25g-ethernet.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
http://www.wiki.xilinx.com/Controlling+FCLKs+in+Linux
http://www.wiki.xilinx.com/Controlling+FCLKs+in+Linux
http://www.netlib.org/blas/
http://www.netlib.org/blas/

	Enabling Shared Memory Communication in Networks of MPSoCs
	Abstract
	Introduction and Motivation
	FPGAs for HPC
	Network Requirements for Clusters of FPGAs
	Contributions

	Related Work
	MPSoCs and Communication Protocols
	Ethernet
	Infiniband
	Custom Network Switch

	Network Interface
	Packetizer
	Transaction Tables
	Early Acknowledgements
	Reliability Layer

	Experimental Setup
	Transceiver Setup

	Evaluation Results
	Area, Performance and Power
	Stream Benchmark
	Throughput Tests
	Weather and Climate Simulation Kernel

	Discussion and Further Work
	Conclusions
	References

