
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 0000; 00:1–27
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Energy-based Tuning of Convolutional Neural Networks on
Multi-GPUs

F.M. Castro1, N. Guil1, M.J. Marı́n-Jiménez2, J. Pérez-Serrano1, M. Ujaldón1

1Computer Architecture Department, University of Malaga, Spain
2Department of Computing and Numerical Analysis, University of Cordoba, Spain

SUMMARY

Deep Learning (DL) applications are gaining momentum in the realm of Artificial Intelligence, particularly
after GPUs have demonstrated remarkable skills for accelerating their challenging computational
requirements. Within this context, Convolutional Neural Network (CNN) models constitute a representative
example of success on a wide set of complex applications, particularly on datasets where the target can
be represented through a hierarchy of local features of increasing semantic complexity. In most of the real
scenarios, the roadmap to improve results relies on CNN settings involving brute force computation, and
researchers have lately proven Nvidia GPUs to be one of the best hardware counterparts for acceleration.
Our work complements those findings with an energy study on critical parameters for the deployment
of CNNs on flagship image and video applications: object recognition and people identification by gait,
respectively. We evaluate energy consumption on four different networks based on the two most popular
ones (ResNet/AlexNet): ResNet (167 layers), a 2D CNN (15 layers), a CaffeNet (25 layers) and a ResNetIm
(94 layers) using batch sizes of 64, 128 and 256, and then correlate those with speed-up and accuracy to
determine optimal settings. Experimental results on a multi-GPU server endowed with twin Maxwell and
twin Pascal Titan X GPUs demonstrate that energy correlates with performance and that Pascal may have up
to 40% gains versus Maxwell. Larger batch sizes extend performance gains and energy savings, but we have
to keep an eye on accuracy, which sometimes shows a preference for small batches. We expect this work to
provide a preliminary guidance for a wide set of CNN and DL applications in modern HPC times, where the
GFLOPS/w ratio constitutes the primary goal. Copyright c⃝ 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: CNN, Deep Learning, Low-Power, HPC, GPU

1. INTRODUCTION

We are witnessing a revolution in computer vision with the advent of Deep Learning (DL)
architectures [1]. Computer vision problems have been traditionally solved using hand-crafted
features specifically designed to tackle particular problems [2, 3, 4, 5], where the main challenge
was to find the right descriptors for certain image contents. DL introduced a general way to proceed
via supervised learning. Fukushima et al. [6] were pioneers developing a hierarchical architecture
for handwritten character recognition and other pattern recognition, which we may consider the
inspiration for Convolutional Neural Networks (CNNs).

In 1998, LeCun et al. [7] introduced one of the first and most popular architectures for handwritten
character recognition, and a decade later, Serre et al. [8] contributed with a new general framework
for the recognition of complex visual scenes. Those first steps were based on a small number of

∗Correspondence to: Manuel Ujaldón

Copyright c⃝ 0000 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]



2 F.M. CASTRO ET AL.

layers and limited datasets due to the modest computational power available, so researchers often
moved to less demanding approaches like SVM [9].

In 2012, Krizhevsky et al. [10] released ‘AlexNet’, a CNN composed of 25 layers and around
60 million parameters. GPUs were capable to train the model with CUDA in a reasonable amount
of time using four GPUs, and since then, the fascinating evolution of GPU performance and its
recent emphasis on DL has propelled those models to gain extraordinary popularity. Meanwhile,
new datasets [11, 12, 13] containing millions of samples were released to train models with even
more parameters without overfitting, promoting CNN models to be established as the state-of-art in
computer vision. The challenge for researchers to tune computer vision applications at this point is
no longer based on low-level features, but on general neural network components like number of
layers, set of parameters or batch size. Within this trend, the last couple of years have been prolific in
assorted areas like image recognition [14, 15], action recognition [16, 17], object detection [18, 19],
and biometric identification [20, 21], just to mention a few akin to that of this work.

This trend has been lately fortified with the arrival of deep learning frameworks publicly available,
like Caffe [22], TensorFlow [23], CNTK [24], MatConvNet [25] and PyTorch [26]. Most of these
frameworks are optimized for GPUs and still require large execution times, so energy consumption
on GPUs becomes critical. That way, the flagship metric is no longer GFLOPS (Giga Floating-
Point Operations Per Second), but GFLOPS/w (GFLOPS per watt). This paper emphasizes energy
over speed, choosing representative CNN instances to shed some light about the way energy
is spent within CNN depending on its architecture (ResNet/CaffeNet/2D-CNN), input dataset
(images/videos) and batch size (64/128/256). Finally, a correlation with performance and accuracy
is performed to complete our analysis.

On the hardware side, latest generations of Nvidia GPUs, namely Maxwell (2014) and Pascal
(2016), have been used for our experimental setup. Those two generations have contributed like no
other before to optimize the GFLOPS/w ratio, and the advantage amplifies in supercomputers to
populate the green500 list [27]. Our work gathers results combining the best GeForce model for
those two generations, Titan X, and a multi-GPU server endowed with up to four GPUs, returning
somehow to the departure point where AlexNet emerged five years ago.

Previous works have contributed with performance analysis of DL networks in GPU
architectures [28, 29, 30]. We extend those results to energy for a more complete study using
a probe plugged to the GPU that measures power consumption at real-time for every stage a deep
learning algorithm consists of. Major contributions of this paper on DL algorithms are the following:

• A combined energy and performance analysis on a multi-GPU setup using the two most
popular types of CNNs, and particularized for the forward, backward and weight update stages
of a DL algorithm.

• Accuracy statistics to find out the best algorithm parametrization depending on three different
metrics: time, energy consumption and energy-delay product.

• Comparison between Maxwell and Pascal architectures for all those features above.

The rest of this paper is structured as follows. Section 2 introduces some related work. Section
3 provides a general overview of CNNs, and Section 4 particularizes our selection of CNNs for
the experimental study. Section 5 outlines our CNN implementation on multi-GPU environments.
Section 6 describes the infrastructure we have used for measuring energy on GPUs. Section 7
introduces the input datasets. Section 8 presents and discusses the experimental results, and finally,
Section 9 summarizes the conclusions drawn from this work.

2. RELATED WORK

Energy consumption has gained relevance among researchers during the big-data era, sometimes
representing more than 20% of the budget in Data Centers nowadays. For an illustrative example,
costs have exceeded 5 billion dollars per year over the last decade only in the US [31], and it is
predicted that the energy billing will increase in forthcoming years if power optimizations are not
conducted in all levels, including operating systems, kernels and applications.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



ENERGY-BASED ... 3

The industry is aware about the need of low-power CNN acceleration when using them
extensively. Google is a clear example with Tensor Processing Unit tailored to their TensorFlow
framework in its data centers, claiming that they are able to reduce power an order of magnitude
versus GPUs [32].

The research community is also helping to reduce power on CNNs. Five notable examples
recently published in 2016-17 are the following:

• Moons et al. [33] propose methods at system and circuit level based on approximate
computing. They always perform training using 32-bit, lowering precision during the test
phase. They claim energy gains up to 30 without losing classification accuracy and more than
100 at 99% classification accuracy, compared to a commonly used 16-bit fixed point number
format.

• Cai et al. propose NeuralPower [34], a layer-wise predictive framework based on sparse
polynomial regression, for predicting the serving energy consumption of a CNN deployed
on different GPU platforms and Deep Learning software tools, attaining an average accuracy
of 88.24% in execution time, 88.34% in power, and 97.21% in energy.

• Andri et al. introduce YodaNN [35], an energy and area efficiency accelerator based on ASIC
hardware optimized for BinaryConnect CNNs which basically removes the need for expensive
multiplications during training, also reducing I/O bandwidth and storage.

• Yang et al. [36] propose an energy-aware pruning algorithm for CNNs that directly uses
energy consumption estimation of a CNN to guide the pruning process. The energy
consumption of AlexNet and GoogLeNet are reduced by 3.7x and 1.6x, respectively, with
less than 1% top-5 accuracy loss. Results are obtained via a energy estimation tool for Deep
Neural Networks publicly available in [37].

• Lin et al. [38] propose PredictiveNet to skip a large fraction of convolutions in CNNs at
runtime without modifying the CNN structure or requiring additional branch networks. An
analysis supported by simulations is provided to justify how to preserve the mean square
error (MSE) of the nonlinear layer outputs. Energy savings are attained by reducing the
computational cost by a factor of 2.9 compared to a state-of-the-art CNN, while incurring
marginal accuracy degradation.

Moving away from estimators, predictors and simulators, we may find examples of real energy
measurements and studies on low-power devices like DSPs [39] and FPGAs [40], even for CNN
applications [41, 42]. But to the best of our knowledge, our work is pioneer on measuring the
actual power consumption of CNNs with wires and measurement devices physically plugged to the
pinout of latest GPU generations and multi-GPU platforms, and even identifying the most expensive
operators and functions in terms of energy budget.

3. CNN OVERVIEW

Convolutional Neural Networks (CNNs) are a type of neural network particularly successful on
computer vision problems where the information is spatially related and it can be represented in
a hierarchical mode [1]. A CNN is defined by its architecture which is a set several convolutional
layers and several fully connected layers. Each convolutional layer is, in general, the composition
of a non-linear (convolutional filter) layer and a pooling or sub-sampling layer to get some spatial
invariance.

In the last years, CNN models are standing out above on a wide range of applications, like object
detection, text classification, natural language processing or scene labeling [10, 43, 44, 45]. CNNs
are specially successful on data where the target can be represented with a feature hierarchy of
increasing semantic complexity. When successfully trained, the output of the last hidden layer can
be seen as the representation of the target in a high-level space. The fully connected layers reduce the
dimensionality of the representation and hold the high-level knowledge, improving the classification
accuracy.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



4 F.M. CASTRO ET AL.

During training, a random batch, which is a set of N samples, is selected from the training
samples and passed through the model obtaining the activations (outputs) of each layer and the final
output. This final output, depending on the type of application, can be a probability distribution
(classification), an image (segmentation), a number (regression), etc. With this final output and its
corresponding ground-truth label, a loss function designed for each problem computes the error,
which is back-propagated from the top layers to the bottom ones.

Therefore, during training, there are three different processes in a CNN:

1. Forward, where a batch is passed through the CNN to obtain the activations.
2. Backward, where the error is back-propagated to obtain the derivatives.
3. Weights update, for the weights of the model to be updated according to the solver. This stage

is negligible compared to the previous two and we have preferred to discard it for the sake of
simplicity.

During test, only the forward process is executed to obtain the final output of the model. Along
with the back-propagation process, each layer computes its own derivatives according to the error
coming from the top layer. Once derivatives are computed, the average derivative from the N
samples is computed and the weights of the model are updated according to the solver selected,
with the Stochastic Gradient Descent (SGD) being the most common case.

These three steps are repeated for M epochs until the algorithm converges, with an epoch being
a set of Mb batches (or iterations) to process the whole training set. For example, in a training
set composed of 1000 samples and batches of 100 samples, an epoch would have 10 batches or
iterations.

This work focuses on energy consumption and execution time of the forward and backward
processes, also analyzing the global accuracy for the model. Energy, acceleration and precision
are put in perspective on modern GPUs as attractive candidates for a leadership on different models
and problems, among which we select a bunch of popular instances for a representative case study.

4. OUR CNN SELECTION FOR POWER ANALYSIS

We select two popular CNN architectures typically applied to process input data in computer vision,
either using images or videos. On the image side, we deal with image recognition, that is, identify
what appears in an image; whereas using videos we focus on gait, that is, the challenge of identifying
people by the way they walk. We pretend this way to explore setups acting as solid templates for
deep learning in computer vision, so that conclusions can easily be extrapolated to a wide range of
problems.

The energy consumed by an algorithm is directly proportional to the number of operations and
its type. In a CNN, this type is defined by the architecture and the kind of layers. The architecture
also plays an important role on the number of operations, because that number increases with the
number of layers. In addition, during training, more than one sample is passed through the CNN
according to the mini-batch training process, and so the number of samples (batch size) influences
power consumption and the convergence process in a decisive manner.

Each layer has its own number and type of operations, so we now characterize the most common
layers used in the majority of CNNs. For simplicity, all formulas are related to a single sample as
input. Thus, when dealing with a batch, expressions must be multiplied by the batch size.

We start introducing some terminology:

• win, hin. Width and height of the input sample, respectively.
• wout, hout. Width and height of the output sample, respectively.
• chin, chout. Number of input and output channels, respectively.
• kw, kh. Kernel width and height, respectively.

The terms wout and hout are obtained from the formula wout =
(win−kw)+2P

S , with P being the
padding applied to the input and S the stride or step of the kernel. Similarly, hout =

(hin−kh)+2P
S .

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



ENERGY-BASED ... 5

Using previous definitions, the functionality and number of operations performed at each layer
are shown as follows.
Convolution. It applies a kernel to the input sample. The number of operations is defined on Eq. 1.
In this layer, the type of operation is multiply–accumulate (macc). In addition, if the convolution
has bias, we need to include chout add operations.

#operations = (kw · kh)(wout · hout) · chin · chout (1)

Fully connected. It has full connections to all activations in the previous layer. The number of
operations is defined on Eq. 2. In this case, the type of operation is multiply–accumulate (macc).

#operations = (win · hin) · chin · chout (2)

Pooling. It reduces the spatial size of the input to lower the amount of parameters and computation
in the network. The number of operations is defined on Eq. 3. The type of operation depends on the
architecture, being max the most common one.

#operations = (kw · kh)(wout · hout) · chin (3)

ReLU. It applies a regularization function to the input. The number of operations is defined on
Eq. 4. In this case, the type of operation is max.

#operations = (win · hin) · chin (4)

Dropout. It randomly disconnects inputs to minimize overfitting. The number of operations is
defined on Eq. 5. In this case, the type of operation is multiplication by 0 or 1 depending on the the
input to be disconnected or not.

#operations = (win · hin) · chin (5)

Batch normalization. It normalizes the input subtracting the mean and dividing by the standard
deviation. The number of operations is defined on Eq. 6. The type of operations are add and division.
As the number of both operations is the same, we combine them into a single equation.

#operations = (win · hin) · chin · 2 (6)

Softmax. It scales a K−dimensional vector of arbitrary real values to a K−dimensional vector of
real values in the range [0, 1] that add up to 1. The number of operations is defined on Eq. 7. The
type of operations are exponential, add and division. As the number of the three operations is the
same, we combine them into a single equation.

#operations = (win · hin) · chin · 3 (7)

Apart from the number and type of operations, each layer is also characterized by the data volume
read and written. In this analysis, the formulas are valid for all layers so we present a formula for
the reading process 8 and another one for the writing one 9. Note that in the reading part, the second
term refers to the weights of the layer.

read = (win · hin) · chin + (kw · kh) · chin (8)

written = (wout · hout) · chout (9)

For building our benchmark, we first select four architectures: (1) a 2D-CNN [46] based on
AlexNet [10] using videos as inputs, (2) a ResNet network [47] specifically developed for gait
recognition [21] involving videos, (3) CaffeNet, which is an implementation of AlexNet released
with Caffe, and (4) ResNetIm, which is the ResNet34 published in [47]. Then, for each architecture,
we select three batch sizes so that we can characterize the energy consumed and accuracy depending
on networks and batch sizes.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



6 F.M. CASTRO ET AL.

 

softmax

 
conv1
7x7x96
stride 1
pool 2x2

conv2
5x5x192
stride 2
pool 2x2

conv3
3x3x512
stride 1
pool 2x2

conv4
2x2x4096
stride 1

 

full5
4096

dropout
 

full6
2048

dropout
 

a)

b)

softmax

 
conv1

7x7x64
stride 1
pool 3x3
stride 2

4xResB1

3x3x64
stride 1

6xResB2

3x3x128
stride 1

7xResB3

3x3x256
stride 1

 

2xResB4

3x3x512
stride 1

 

pool

avg
2x2

stride 1
 

c)

softmaxconv1
11x11x96
stride 4
norm

pool 3x3

conv2
5x5x256
stride 1

pad2
norm

pool 3x3

conv3
3x3x384
stride 1
pad 1

conv5
3x3x256
stride 1

pad1
pool 3x3

 

full6
4096

dropout
 

full7
4096

dropout
 

conv4
3x3x384
stride 1
pad 1

d)

softmax

 
conv1

7x7x64
stride 1
pool 3x3
stride 2

3xResB1

3x3x64
stride 1

4xResB2

3x3x128
stride 1

6xResB3

3x3x256
stride 1

 

3xResB4

3x3x512
stride 1

 

pool

avg
2x2

stride 1
 

Figure 1. Proposed CNN models for gait signature extraction. a) 2D-CNN: linear CNN with four 2D
convolutions, two fully connected layers and a softmax classifier. b) ResNet: residual CNN with a 2D
convolution, four residual blocks, an average pooling layer and a final softmax classifier. Note that before
the first block of each kind (ResB 1, 2, 3, 4), there is an adapter convolution to resize the input image to
that of the next block. c) CaffeNet: linear CNN with five 2D convolutions, two fully connected layers and
a softmax classifier. d) ResNetIm: residual CNN with a 2D convolution, four residual blocks, an average
pooling layer and a final softmax classifier. Note that before the first block of each kind (ResB 1, 2, 3, 4),

there is an adapter convolution to resize the input image to that of the next block.

Among those hyper-parameters to be optimized within a DL network, we have selected the one
which has a bigger impact in performance and accuracy. Other candidates might be the learning
rate, to affect the convergence speed, and the stride of the convolutions, which defines the step size
of the convolutions applied to an image. The learning rate only affects if a good value is known
beforehand to guarantee a fast convergence, but in most cases that value is a heuristic determined
through an exhaustive experimental process. The stride has a huge impact in the performance and
energy (less operations are performed with higher stride values), and also in the model, because
networks can lose important local information. Nevertheless, latest networks like ResNet just use
stride one and small convolutions to capture that information, leaving this hyper-parameter with a
minor influence and highly sensitive to the problem itself.

4.1. Architecture analysis

2D-CNN (15 layers).
This architecture is inspired by AlexNet [10] and it is adapted to the specific requirements of gait

recognition. For our particular case, we use optical flow as input following the approach described
in [46].

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



ENERGY-BASED ... 7

The proposed CNN comprises the following sequence of layers (see Fig. 1.a):

1. ‘conv1’, 96 filters of size 7× 7 applied with stride 1 followed by max pooling 2× 2.
2. ‘conv2’, 192 filters of size 5× 5 applied with stride 2 followed by max pooling 2× 2.
3. ‘conv3’, 512 filters of size 3× 3 applied with stride 1 followed by max pooling 2× 2.
4. ‘conv4’, 4096 filters of size 2× 2 applied with stride 1.
5. ‘full5’, fully-connected layer with 4096 units and dropout.
6. ‘full6’, fully-connected layer with 2048 units and dropout.
7. ‘softmax’, softmax layer with as many units as subject identities.

ResNet (167 layers).
This CNN is composed of a sequence of layers and residual blocks shown in Fig. 1.b (two

consecutive convolutions of size 3× 3 plus a sum layer, as defined in [47]). The main blocks in
our model are:

1. ‘conv1’, 64 filters of size 7× 7 applied with stride 1 followed by max pooling 3× 3 with
stride 2.

2. ‘4xResB1’, 4 residual blocks with convolutions of 64 filters of size 3× 3 applied with stride
1.

3. ‘6xResB2’, 6 residual blocks with convolutions of 128 filters of size 3× 3 applied with stride
1.

4. ‘7xResB3’, 7 residual blocks with convolutions of 256 filters of size 3× 3 applied with stride
1.

5. ‘2xResB4’, 2 residual blocks with convolutions of 512 filters of size 3× 3 applied with stride
1.

6. ‘pool’, global average pooling 2× 2.
7. ‘softmax’, softmax layer with as many units as subject identities.

CaffeNet (25 layers).
This architecture is inspired by AlexNet [10], and it was released within Caffe, to be used for

object recognition in images. The input has a size of 227× 227, obtained from a random crop of the
original images resized to 256× 256.

The proposed CNN is composed by the following sequence of layers (see Fig. 1.c):

1. ‘conv1’, 96 filters of size 11× 11 applied with stride 4 followed by max pooling 3× 3 and a
normalization layer of size 5× 5.

2. ‘conv2’, 256 filters of size 5× 5 applied with stride 1 and padding 2 followed by max pooling
3× 3 and a normalization layer of size 5× 5.

3. ‘conv3’, 384 filters of size 3× 3 applied with stride 1 and padding 1.
4. ‘conv4’, 384 filters of size 3× 3 applied with stride 1 and padding 1.
5. ‘conv5’, 256 filters of size 3× 3 applied with stride 1 and padding 1 followed by max pooling

3× 3.
6. ‘full6’, fully-connected layer with 4096 units and dropout.
7. ‘full7’, fully-connected layer with 4096 units and dropout.
8. ‘softmax’, softmax layer with as many units as object identities.

ResNetIm (94 layers).
This CNN is composed of a sequence of layers and residual blocks shown in Fig. 1.d (two

consecutive convolutions of size 3× 3 plus a sum layer, as defined in [47]). The main blocks in
our model are:

1. ‘conv1’, 64 filters of size 7× 7 applied with stride 1 followed by max pooling 3× 3 with
stride 2.

2. ‘3xResB1’, 3 residual blocks with convolutions of 64 filters of size 3× 3 applied with stride
1.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



8 F.M. CASTRO ET AL.

Table I. Characterization of our CNN networks through number of arithmetic operations, data volume read
and written per sample during forward step and ratio between the number of operations and amount of data

read.

Type of CNN # arithmetic operations Data volume read Data volume written CTC ratio
ResNet 425.13M 87.6 MB 4.8 MB 18.5
2D-CNN 783.84M 73.8 MB 1.9 MB 40.5
CaffeNet 727.20M 239.1 MB 6 MB 11.6
ResNetIm 2080.96M 97.1 MB 46.6 MB 81.8

3. ‘4xResB2’, 4 residual blocks with convolutions of 128 filters of size 3× 3 applied with stride
1.

4. ‘6xResB3’, 6 residual blocks with convolutions of 256 filters of size 3× 3 applied with stride
1.

5. ‘3xResB4’, 3 residual blocks with convolutions of 512 filters of size 3× 3 applied with stride
1.

6. ‘pool’, global average pooling 2× 2.
7. ‘softmax’, softmax layer with as many units as subject identities.

The convolutional layers from all CNNs use the rectification (ReLU) activation function.
Applying the formulas of Section 4 to characterize our networks, we may obtain the number of
arithmetic operations and memory accesses required, which are compiled in Table I. In addition, we
show the Computation to Communication ratio [48] defined as: CTC =

Nop

Nd
where Nop is the total

number of operations and Nd is the amount of data read.

4.2. Batch analysis

The batch size (number of samples) used during training influences three aspects of the model:
number of operations, performance and accuracy. More precisely, the number of operations is
defined by the Eq. 10 and the data read and written by Eq. 11 and 12 respectively.

#operations = B · operationsSample (10)

readB = B · readSample (11)

writtenB = B · writtenSample (12)

where B represents the batch size, operationsSample the number of operations, readSample
the data read and writtenSample the data written, obtained by the formulas described in Section 4
for one sample.

The batch size defines the number of samples used as input to a model. Therefore, the bigger the
batch size, the more number of operations performed as there are more samples to process. If we
consider the latency due to input data coming from secondary memory, a bigger batch size allows
a better overlapping between computations on GPU and CPU to GPU communications. Moreover,
we have to remember that the batch size plays an important role during training as the weights are
updated according to the mean of the gradients obtained from the images of the batch. Therefore,
there is a trade off here: bigger batches improve accuracy in gradients, but smaller batches (noisy
gradients) benefit convergence as it maximizes the exploration of the solution space. Taking into
account all these considerations, we are going to evaluate three batch sizes: 64, 128 and 256. These
values are the most common in the literature and they achieve good results in terms of accuracy for
the problems tested here, and constitute the best candidates in our quest for the optimal batch size
in terms of accuracy, performance and power requirements.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



ENERGY-BASED ... 9

4.3. Energy measurement

The training process is composed of three main parts, namely, forward, backward and weight
updating (see Section 3). According to our experiments, forward and backward steps consume on
average more than 95% of the execution time. Then, we focus on the two first steps to simplify our
analysis. In any case, total values can always be roughly obtained by adding this percentage to the
sum of forward and backward steps.

Algorithm 1 shows the training process and the points established for measurements. Since the
algorithm executes concurrently on the GPU, we use CUDA events to make sure that the measured
execution is over. Also, our infrastructure for measuring power is attached to a single GPU, which
means that on multi-GPU executions, we nominate a root GPU and the global consumption is
extrapolated for the set involved. More details are provided later in Section 5. Note that maxIter is
computed as the number of iterations in an epoch multiplied by the number of epochs.

Algorithm 1 Schematic for CNN training.
model = InitializeModel()
iter = 0
maxIter = Initialize(InitParams)
while iter < maxIter do

StartTimer()
data = LoadData(batch)
time = StopTimer()
StartTimerAndPowerMeassurement()
output = Forward(model, data)
time, power = StopTimerAndPowerMeassurement()
StartTimerAndPowerMeassurement()
derivatives = Backward(model, output)
time, power = StopTimerAndPowerMeassurement()
model = updateWeights(model, derivatives)
iter++

end while

5. GPU IMPLEMENTATION

We use Caffe [22] (commit c98de53b7817c732b482c2fa810f09c260c58857) with cuDNN [49] 6.0,
NCCL 2.1.2 and CUDA 8.0 libraries to train our CNNs. Forward and backward processes are
entirely implemented in GPU by Caffe using the primitives available in cuDNN. To update the
weights efficiently in a multi-GPU environment, Caffe uses primitives included in NCCL. Finally,
the CPU just loads the input data.

When the model is being trained on a single GPU, we use a CPU thread to load data constantly
from secondary storage into a CPU memory buffer. This way, we maximize overlapping between
data transfers and GPU computation. If there is enough data to fill a batch, the GPU computes the
forward and backward steps while the CPU is loading new data. Finally, the weights are updated in
the GPU and the process starts again to compute a new batch.

When the model is being trained using multiple GPUs, each GPU has a CPU thread which is
loading data into its own memory buffer, thus, we have one thread and one memory buffer per
GPU. In this case, each GPU has exactly the same CNN architecture model with similar weights,
but the batch is divided among GPUs (e.g. a batch with 64 samples trained with 2 GPUs is splitted
into 2 sub-batches of 32 samples). Once all GPUs have finished their computation, the derivatives
are collected and the weights updating process starts. In order to optimize the weights updating

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



10 F.M. CASTRO ET AL.

Figure 2. Wires, slots, cables and connectors for measuring energy on GPUs.

step, Caffe uses the ncclAllReduce † primitive, which gathers local gradients, computes global
derivatives and leaves a copy of those on each GPU. It is important to clarify that according to
the documentation, Caffe uses a tree reduction strategy ‡, but recent implementations use NCCL
instead to improve the multi-GPU performance. Thus, ncclAllReduce arranges the GPUs in a
virtual ring and the information to be transferred is split into small packages. Then, the i-th
GPU transfers a package to its neighbour (i+ 1) and, at the same time, performs the reduction
computation with the information coming from the (i− 1)-th GPU. This process is repeated until
all packages are transferred and all reductions are done. When the primitive ends, all GPUs store the
same information, that is, the values of global derivatives. That way, each GPU updates the model
independently.

6. MONITORING ENERGY

6.1. Measurement Infrastructure

We have built a system to measure current, voltage and wattage based on a Beaglebone Black, an
open-source hardware [50] combined with the Accelpower module [51], which has eight INA219
sensors [52]. Inspired by [53], wires taken into account are two power pins on the PCI-express slot
(12 and 3.3 volts) plus six external 12 volt pins coming from the power supply unit (PSU) in the
form of two supplementary 6-pin connectors (half of the pins used for grounding). See Figure 2 for
details.

6.2. Software tool

Accelpower uses a modified version of pmlib library [54], a software package specifically created
for monitoring energy. It consists of a server daemon that collects power data from devices and
sends them to the clients, together with a client library for communication and synchronization with
the server.

6.3. Methodology for Measuring Energy

The methodology for measuring energy begins with a start-up of the server daemon. Then, the
source code of the application where the energy wants to be measured has to be modified to (1)
declare pmlib variables, (2) clear and set the wires which are connected to the server, (3) create

†https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf
‡https://github.com/BVLC/caffe/blob/master/docs/multigpu.md

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



ENERGY-BASED ... 11

Figure 3. Flow diagram for measuring energy on a code excerpt when running on the GPU.

a counter and (4) start it. Once the code is over, we (5) stop the counter, (6) get the data, (7) save
them to a .csv file, and (8) finalize the counter. See Figure 3 for a flow chart. Note that we get the
instant consumption per measurement. Therefore, to obtain the global consumption, we compute
the discrete integral over time.

Note that the homemade system we have built to measure real energy consumption can only be
attached to a single GPU. That way, for obtaining performance or accuracy numbers, a single run
suffices in multi-GPU environments, but energy requires a different approach. We have to move
our measurement infrastructure from Pascal GPU to Maxwell GPU and perform different runs to
monitor power values in both architectures. The final values are obtained multiplying those previous
values by the number of GPUs. In case of four GPUs, we compute the energy for Maxwell and
Pascal and aggregate them.

6.4. Hardware Resources

Our experimental study was conducted on a multi-GPU computer endowed with an Intel Xeon E5-
2620 server and four PCI 3.0 slots to hold up to two Nvidia Titan X Pascal and two Titan X Maxwell
GPUs. Table II summarizes major features for those GPUs. Note that cores and memory frequencies
are overclocked to the maximum allowed by each GPU. The CPU has eight cores running at
2100 MHz and 64 GB of main memory running at 2400 MHz in a four-channel architecture. For
secondary storage, we enable a Samsung SSD 850 EVO with a sequential reading up to 540 MB/s
and an access time of 0.03 ms. On the software side, Ubuntu 14.04.4 LTS 64 bits was installed as
the operating system together with CUDA 8.0.

7. INPUT DATASETS

We cover a quantitative and qualitative analysis for a multi-GPU system, where each GPU executes
evenly a subset or partition of the computation according to the workload distribution. Our
experiments are conducted on a challenging dataset for gait recognition, TUM-GAID [55], and
a huge dataset for image recognition, ILSVRC12 [11].

7.1. TUM-GAID

TUM-GAID (TUM Gait from Audio, Image and Depth) collects 305 subjects performing two
walking trajectories in an indoor environment. The first trajectory is traversed from left to right and
the second one from right to left. Two recording sessions were performed, one in January, where
subjects wore heavy jackets and mostly winter boots, and another one in April, where subjects wore
lighter clothes. The action is captured by a Microsoft Kinect sensor which provides a video stream

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



12 F.M. CASTRO ET AL.

Table II. The set of Nvidia GPUs used along our experimental study.

Commercial model Titan X Titan X
GPU generation and year Maxwell 2015 Pascal 2016

Raw computational power:
Number of cores 3072 3584
Cores frequency 1392 MHz 1911 MHz
Peak processing 6.6 TFLOPS 11 TFLOPS
CUDA Compute Capability 5.2 6.1

Dynamic memory (DRAM):
Size and type 12 GB GDDR5X 12 GB GDDR5X
Frequency and width 3505 MHz @ 384 bits 5005 MHz @ 384 bits
Bandwidth 336.5 GB/s 480 GB/s.

Static memory (cache):
Shared memory per multiprocessor 48 Kbytes 48 Kbytes
L2 cache 3 Mbytes 3 Mbytes

Thermal and energy specifications:
Maximum GPU Temperature 91 C 94 C
Peak Power Consumption (TDP) 250 W 250 W
Recommended supply Power 600 W 600 W

with a resolution of 640× 480 pixels and a frame rate around 30 FPS. Figure 4 provides some
examples.

Hereinafter the following nomenclature is used to refer each of the four walking conditions
considered: normal walk (N), carrying a backpack of approximately 5 kg (B), wearing coating
shoes (S, as used in clean rooms for hygiene conditions), and elapsed time (TN-TB-TS). During
our experiments, we follow the experimental protocol defined by the authors of the dataset [55].

7.2. ILSVRC12

ImageNet Large-Scale Visual Recognition Challenge 2012 (ILSVRC12) is an annual competition
which uses a subset of ImageNet. This subset is composed of 1000 classes with more than 1000
images per class. In total, there are roughly 1.2 million training images, 50,000 validation images,
and 150,000 testing images. Those images have a variable resolution and have been manually
annotated.

At test time, it is customary to report two accuracy rates: top-1 and top-5, where top-1 value is
the classic accuracy metric and the top-5 accuracy rate is the fraction of test images for which the
correct label is among the five most frequent labels considered by the model.

7.3. Customizing videos and images

For the experiments with ResNet and 2D-CNN, we resize all videos to a common resolution of
80× 60 pixels, keeping the original aspect ratio of video frames. This size exhibits a good trade-off
between computational cost and recognition performance, as already reflected in a previous work
[46].

Given the resized video sequences, we compute dense OF on pairs of frames by using the method
of Farneback [56] implemented in OpenCV library [57]. For each video frame, two OF frames are
generated containing the x and y components of the flow vector. In parallel, people are located in a
rough manner along the video sequences by background subtraction [58]. Then, we crop the video
frames to remove part of the background and to align the subsequences (people are x-located in
the middle of the central frame, #13), obtaining video frames of 60× 60 pixels (keeping the whole
height).

Finally, from the cropped OF maps, we build subsequences of 25 frames by stacking OF maps
with an overlap of O% frames. In our case, we choose O = 80%, that is, to build a new subsequence,

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



ENERGY-BASED ... 13

Figure 4. Our input datasets. Upper: TUM-GAID images from different subjects. Lower: ILSVRC1 images
from different classes.

we use 20 frames of the previous subsequence and 5 new frames. For most state-of-the-start datasets,
25 frames cover almost one complete gait cycle [59]. Consequently, each OF volume has a size of
60× 60× 50, which constitutes a sample for 2D-CNN and ResNet.

To increase the amount of training samples, we add mirror sequences and apply spatial
displacements of ±5 pixels on each axis, obtaining a total of 8 new samples from each original
sample.

For the experiments with CaffeNet, we resize all the images to a common resolution of 256× 256
pixels and, like in previous works [10], we do not keep the aspect ratio. During training, we perform
random cropping and mirroring to obtain samples of 227× 227. In this case, we do not perform
spatial displacements, but center cropping at test time.

During ResNet and 2D-CNN training, the weights are learnt using mini-batch stochastic gradient
descent algorithm with momentum equal to 0.9. We set weight decay to 5 · 10−4 and dropout to 0.4
(when required). The number of epochs is limited to 20 and the learning rate is initially set to 10−2,
to be decreased a 20% every epoch.

During CaffeNet training, the weights are also learnt using mini-batch stochastic gradient descent
algorithm with momentum equal to 0.9. We set weight decay to 5 · 10−4 and dropout to 0.5. The
number of epochs is limited to 90 and the learning rate is initially set to 10−2, to be divided by 10
every 20 epochs.

8. EXPERIMENTAL RESULTS

Our testbed was executed on a multi-GPU server endowed with two Titan X Pascal and two Titan
X Maxwell GPUs. The infrastructure for measuring time and energy was migrated from a Pascal
GPU to a Maxwell one to gather all results shown along this section. For the sake of reliability and
variance, we run all our experiments three times, and take the average as valid number. By using the
same seed for the three experiments, the training process matches in all cases. Moreover, our tables
distinguish rows in white for those CNNs using the TUM-GAID dataset (ResNet and 2D-CNN),
and rows shaded for those CNNs using the ILSVRC12 dataset (CaffeNet and ResNetIm).

Table III shows the number of iterations and epochs executed for each CNN. Note that the number
of epochs is the same along batch sizes but the number of iterations (i.e. batches) changes with the
batch size. That way, the larger the batch size, the more samples are executed per iteration and less
iterations are required to process training data.

Before we start discussing the experiments, let us introduce the section contents. In Sections 8.1
and 8.2, execution time and energy consumption are measured and discussed for forward and
backward steps at batch level on Pascal and Maxwell GPUs. Also, different metrics are employed to

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



14 F.M. CASTRO ET AL.

Table III. Iterations and epochs run for each CNN model and batch size.

Batch size: 64 Batch size: 128 Batch size: 256
CNN model Iterations Epochs Iterations Epochs Iterations Epochs
ResNet 72 368 20 36 184 20 18 092 20
2D-CNN 72 368 20 36 184 20 18 092 20
CaffeNet 1 800 000 90 900 000 90 450 000 90
ResNetIm 1 800 000 90 900 000 90 450 000 90

Table IV. Execution times (in seconds) on a Pascal GPU for forward and backward steps of four CNN
models using one, two and four GPUs and three batch sizes: 64, 128 and 256.

Forward
Seconds per batch Samples per second Seconds for whole training

Batch size −→ 64 128 256 64 128 256 64 128 256
ResNet 0.029 0.041 0.067 2 207 3 122 3 821 2 099 1 484 1 212

1 GPU 2D-CNN 0.013 0.029 0.057 4 923 4 414 4 491 941 1 049 1 031
CaffeNet 0.013 0.027 0.053 4 923 4 741 4 830 23 400 24 300 23 850
ResNetIm 0.075 0.144 - 853 889 - 135 000 129 600 -
ResNet 0.025 0.030 0.041 2 560 4 267 6 244 1 809 1 086 742

2 GPUs 2D-CNN 0.008 0.014 0.027 8 000 9 143 9 481 579 507 488
CaffeNet 0.008 0.014 0.027 8 000 9 143 9 481 14 400 12 600 12 150
ResNetIm 0.040 0.074 0.138 1 600 1 730 1 855 72 000 66 600 62 100
ResNet 0.029 0.032 0.040 2 207 4 000 6 400 2 099 1 158 724

4 GPUs 2D-CNN 0.007 0.012 0.023 9 143 10 667 11 130 507 434 416
CaffeNet 0.007 0.014 0.024 9 143 9 143 10 667 12 600 12 600 10 800
ResNetIm 0.035 0.062 0.112 1 829 2 065 2286 63 000 55 800 50 400

Backward
Seconds per batch Samples per second Seconds for whole training

Batch size −→ 64 128 256 64 128 256 64 128 256
ResNet 0.125 0.220 0.254 512 582 1 008 9 046 7 960 4 595

1 GPU 2D-CNN 0.021 0.048 0.094 3 048 2 667 2 723 1 520 1 737 1 701
CaffeNet 0.026 0.053 0.105 2 462 2 415 2 438 46 800 47 700 47 250
ResNetIm 0.188 0.369 - 340 347 - 338 400 332 100 -
ResNet 0.069 0.115 0.205 928 1 113 1 249 4 993 4 161 3 709

2 GPUs 2D-CNN 0.018 0.029 0.051 3 556 4 414 5 020 1 303 1 049 923
CaffeNet 0.037 0.045 0.071 1 730 2 844 3 606 66 600 40 500 31 950
ResNetIm 0.099 0.181 0.337 646 707 760 178 200 162 900 151 650
ResNet 0.053 0.105 0.184 1208 1 219 1 391 3 836 3 799 3 329

4 GPUs 2D-CNN 0.019 0.029 0.052 3 368 4 414 4 923 1 375 1 049 941
CaffeNet 0.111 0.118 0.130 577 1 085 1 969 199 800 106 200 58 500
ResNetIm 0.097 0.176 0.314 660 727 815 174 600 158 400 141 300

compare and choose the best experimental setup for each device. In Section 8.3, a comparison
between GPU generations is performed in terms of execution time and energy consumption.
Section 8.4 performs a similar comparison for energy versus performance. Section 8.5 evaluates
accuracy for the different trained models because a good model from either an energy or
performance viewpoint is useless without a decent accuracy. Finally, Section 8.6 provides a
guideline to select the best settings according to our findings.

8.1. Results on Pascal

In this section we conduct experiments enabling the following hardware configurations: (1) one
Pascal GPU , (2) two Pascal GPUs and (3) 2 Pascal + 2 Maxwell GPUs, with the measurement
infrastructure always plugged to a Pascal GPU.

Table IV shows execution times with three batch sizes: 64, 128 and 256. For ResNetIm, the batch
of 256 samples was not executed because it does not fit within the GPU memory. The whole training
process corresponds to the number of epochs shown in Table III.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



ENERGY-BASED ... 15

Table V. Energy measurements (in joules) on a Pascal GPU for forward and backward steps of four CNN
models using one, two and four GPUs and three batch sizes: 64, 128 and 256.

Forward
Joules per batch Joules per second Joules for whole training

Batch size −→ 64 128 256 64 128 256 64 128 256
ResNet 4.255 8.308 15.732 175 212 215 307 934 300 613 284 629

1 GPU 2D-CNN 3.891 8.335 16.614 225 240 248 281 552 301 580 300 576
CaffeNet 3.203 6.552 12.428 227 223 243 5 764 522 5 896 956 5 592 634
ResNetIm 17.331 31.707 - 229 213 - 31 195 884 28 535 892 -
ResNet 2.721 4.274 8.529 151 169 211 196 931 154 633 154 305

2 GPUs 2D-CNN 1.754 4.126 8.951 219 250 268 126 948 149 305 161 949
CaffeNet 1.818 3.307 6.782 204 210 222 3 272 331 2 976 198 3 052 121
ResNetIm 8.441 17.280 30.902 212 229 214 15 194 106 15 552 276 13 905 941
ResNet 2.222 2.797 4.322 136 143 173 160 833 101 200 78 185

4 GPUs 2D-CNN 0.776 1.819 3.372 247 222 232 56 177 65 833 61 012
CaffeNet 0.813 1.901 3.323 228 214 209 1 464 046 1 711 015 1 495 398
ResNetIm 4.692 9.054 16.837 214 225 222 8 446 127 8 148 414 7 576 728

Backward
Joules per batch Joules per second Joules for whole training

Batch size −→ 64 128 256 64 128 256 64 128 256
ResNet 15.990 28.531 26.714 194 185 177 1 157 146 1 032 357 483 313

1 GPU 2D-CNN 5.132 10.078 20.180 238 227 227 371 387 364 665 365 102
CaffeNet 6.284 11.887 23.135 252 240 229 11 310 979 10 698 568 10 410 800
ResNetIm 36.643 66.454 - 207 183 - 65 957 112 59 808 896 -
ResNet 12.374 21.295 36.600 167 174 172 895 508 770 549 662 165

2 GPUs 2D-CNN 3.251 6.012 11.178 187 222 234 235 272 217 530 202 237
CaffeNet 6.328 9.384 14.768 175 203 228 11 390 632 8 445 849 6 645 535
ResNetIm 18.679 35.967 63.990 199 205 182 33 621 476 32 369 871 28 795 564
ResNet 12.380 18.103 28.557 119 134 148 895 904 655 040 516 653

4 GPUs 2D-CNN 4.485 12.920 26.749 128 123 115 324 571 467 505 483 944
CaffeNet 12.254 13.909 16.301 121 135 140 22 058 063 12 518 079 7 335 402
ResNetIm 14.824 26.025 45.179 178 175 166 26 682 456 23 422 753 20 330 641

Table VI. Total execution time, energy consumption and EDP measurements for Pascal considering forward
+ backward steps of four CNN models using one, two and four GPUs and three batch sizes: 64, 128 and

256. Best results per measurement are boldfaced.

Kiloseconds (ks) Megajoules (MJ) EDP
Batch size −→ 64 128 256 64 128 256 64 128 256

1 GPU 11.1 9.4 5.8 1.47 1.33 0.77 16.3 12.6 4.5
ResNet 2 GPUs 6.8 5.2 4.5 2.18 1.85 1.63 14.9 9.7 7.3

4 GPUs 5.9 5.0 4.1 4.30 3.05 2.28 25.5 15.1 9.2
1 GPU 2.5 2.8 2.7 0.65 0.67 0.67 1.6 1.9 1.8

2D-CNN 2 GPUs 1.9 1.6 1.4 0.72 0.73 0.73 1.4 1.1 1.0
4 GPUs 1.9 1.5 1.4 1.62 1.81 1.68 3.1 2.7 2.3
1 GPU 70.2 72.0 71.1 17.08 16.60 16.00 1198.7 1194.9 1137.8

CaffeNet 2 GPUs 81.0 53.1 44.1 29.33 22.84 19.40 2375.4 1213.0 855.3
4 GPUs 212.4 118.8 69.3 101.26 60.97 38.39 21508.0 7243.5 2660.6
1 GPU 473.4 461.7 - 97.15 88.34 - 45992.2 40788.8 -

ResNetIm 2 GPUs 250.2 229.5 213.8 97.63 95.84 85.40 24427.3 21996.3 18254.9
4 GPUs 237.6 214.2 191.7 146.39 132.87 120.61 34781.5 28460.5 23121.2

8.1.1. Forward step

According to the timing values (seconds per batch) shown in Table IV for the forward step on a
single GPU, the performance of 2D-CNN, CaffeNet and ResNetIm is very similar for different batch
sizes. Best values for these networks are obtained for batch sizes of 64 (2D-CNN and CaffeNet) and
128 (ResNetIm). You realize much better when observing peak numbers in the column of samples
processed per second. Also for one GPU, ResNet obtains larger performance gaps for different
batch sizes, with poor results on small batches to reflect its dependency of aithmetic intensity. For
the scalability of our implementations, using two GPUs 2D-CNN and Caffenet reach outstanding

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



16 F.M. CASTRO ET AL.

speedups (around 2.0x) on large batch sizes. Similar scores are attained by ResNetIm for any batch
size, with its worst 1.6x speedup for the largest batch size. When moving to four GPUs, marginal
improvements are seen, ranging from 2% (ResNet for a 256 batch size) to 19% (ResNetIm for 128
batch size). This is because the time is determined by the slowest GPU on Maxwell devices.

Last columns in Table IV include the time required to compute all the forward iterations (shown
in Table III) to perform a complete training. On a single GPU, smaller values are obtained for
large batch sizes in ResNet and RestNetIm. However, a batch size of 64 is better for 2D-CNN and
CaffeNet. Extending to twin GPUs, time is significantly reduced in all cases, and again, we find
marginal gains on four GPUs, even with scenarios where execution times slowdown a bit.

Table V shows in three main columns the joules per batch, joules per second (watts) and joules
for whole training spent in the forward and backward step for three batch sizes. Note that power
consumption is measured in one GPU. That way, when running the experiments on multiple GPUs,
the energy spent must be multiplied by the number of GPUs to take into account all devices (that
is on four GPUs, the total energy is the sum of two Pascals and two Maxwells). Starting on a
single GPU, joules per batch increase as the batch size grows because more samples per batch are
processed. Likewise, the value of joules per second is higher in most cases for larger batch sizes
as more computational density is available. Joules spent for the whole training not only depend on
the joules per second value (watts), but also on the number of samples processed per second (that
is, the execution time for the whole training process). When considering all these aspects for the
forward step, ResNet, CaffeNet and ResNetIm networks give their best for the largest batch sizes,
while 2D-CNN does it for a batch size of 128. On multi-GPUs, joules per second for a specific batch
size is smaller when using more GPUs to reflect the distribution of samples per batch.

8.1.2. Backward step

The backward step takes longer than the forward step (see samples per second for each case). We
identify a peculiar behaviour in ResNet for a batch size of 256 on a single GPU, where seconds per
batch are very similar to those of a batch size of 128 (in principle, it should double those times).
Using the Nvidia CUDA Profiler for a closer analysis, we found that the last 5 convolutions using
a batch size of 128 are executed with the function wgrad alg0 engine, whereas for the batch size
of 256, those convolutions call the function wgrad alg1 engine. Those functions are automatically
included in the final code by cuDNN. Comparing their execution times, wgrad alg1 engine is
quite faster than wgrad alg0 engine to benefit the batch size of 256. Using two GPUs, speedups
are a bit lower than in the forward step, with the best value, 1.9x, to be reached for ResNet, 2D-CNN
and ResNetIm for batch sizes of 128, 256 and 128, respectively. That indicates a good overlapping
between kernels computation and AllReduce transfers. In CaffeNet, which has the lowest CDC,
the kernel computation cannot hide completely the data transfer performed by AllReduce and,
consequently, the multi-GPU version for this network reduces its speed-up to 1.5x for a batch
size of 256, and even worse, when using four GPUs. The only network that obtains a significant
improvement using four devices is ResNet with up to a 30% gain over the twin GPUs scenario.

Last columns in Table IV show the time spent to compute all backward iterations (as shown in
TableIII) to perform a complete training. As already indicated in the forward step, on a single GPU,
the process accelerates on lower batch sizes for ResNet and ResNetIm models. However, a batch
size of 64 is better for 2D-CNN and CaffeNet. The use of two GPUs reduces the execution time
in all forward and backward scenarios, but using four GPUs, only ResNet and ResNetIm improve
during backward.

Table V shows the energy consumption for the backward step. On a single GPU, ResNet and
ResNetIm networks consume less energy on larger batch sizes, whereas 2D-CNN and CaffeNet do
it for a batch size of 64. For the multi-GPU case, joules per second for a specific batch size decrease
when more GPUs are used, as the number of samples per batch is reduced and, consequently, less
computation is performed.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



ENERGY-BASED ... 17

Table VII. Execution times (in seconds) on a Maxwell GPU for forward and backward steps of four CNN
models using one, two and four GPUs and three batch sizes: 64, 128 and 256.

Forward
Seconds per batch Samples per second Seconds for whole training

Batch size −→ 64 128 256 64 128 256 64 128 256
ResNet 0.039 0.059 0.094 1 641 2 169 2 723 2 822 2 135 1 701

1 GPU 2D-CNN 0.026 0.049 0.097 2 462 2 612 2 639 1 882 1 773 1 755
CaffeNet 0.023 0.045 0.090 2 783 2 844 2 844 41 400 40 500 40 500
ResNetIm 0.110 0.211 - 582 607 - 198 000 189 900 -
ResNet 0.031 0.039 0.059 2 065 3 282 4 339 2 243 1 411 1 067

2 GPUs 2D-CNN 0.014 0.025 0.048 4 571 5 120 5 333 1 013 905 868
CaffeNet 0.014 0.024 0.046 4 571 5 333 5 565 25 200 21 600 20 700
ResNetIm 0.059 0.107 0.209 1 085 1 196 1 225 106 200 96 300 94 050
ResNet 0.029 0.032 0.040 2 207 4 000 6 400 2099 1 158 724

4 GPUs 2D-CNN 0.007 0.012 0.023 9 143 10 667 11 130 507 434 416
CaffeNet 0.007 0.014 0.024 9 143 9 143 10 667 12 600 12 600 10 800
ResNetIm 0.035 0.062 0.112 1 829 2 065 2 286 63 000 5 5800 50 400

Backward
Seconds per batch Samples per second Seconds for whole training

Batch size −→ 64 128 256 64 128 256 64 128 256
ResNet 0.110 0.184 0.336 582 696 762 7 960 6 658 6 079

1 GPU 2D-CNN 0.039 0.074 0.148 1 641 1 730 1 730 2 822 2 678 2 678
CaffeNet 0.047 0.092 0.182 1 362 1 391 1 407 84 600 82 800 81 900
ResNetIm 0.269 0.520 - 238 246 - 484 200 468 000 -
ResNet 0.049 0.078 0.135 1 306 1 641 1 896 3 546 2 822 2 442

2 GPUs 2D-CNN 0.025 0.045 0.080 2 560 2 844 3 200 1 809 1 628 1 447
CaffeNet 0.044 0.060 0.103 1 455 2 133 2 485 79 200 54 000 46 350
ResNetIm 0.141 0.261 0.512 454 490 500 253 800 234 900 230 400
ResNet 0.053 0.105 0.184 1 208 1 219 1 391 3 836 3 799 3 329

4 GPUs 2D-CNN 0.019 0.029 0.052 3 368 4 414 4 923 1 375 1 049 941
CaffeNet 0.111 0.118 0.130 577 1 085 1 969 199 800 106 200 58 500
ResNetIm 0.097 0.176 0.314 660 727 815 174 600 158 400 141 300

8.1.3. Setup comparison

Now we compare all setups run on Pascal (i.e. number of GPUs, batch size and CNN models) to
extract some conclusions regarding execution time, energy consumption and a combined metric
of them, the Energy Delay Product (EDP) [60]. Table VI summarizes those numbers for forward
+ backward steps during the complete training process. For a more compact representation, we
measure time in kiloseconds (ks) and energy in Megajoules (MJ).

Focusing on execution time, the best option is a batch size of 256 samples for any network model.
Depending on the type of architecture, it is better to use two GPUs for AlexNet-based models (2D-
CNN and CaffeNet) and four GPUs for ResNet-based models (ResNet and ResNetIm).

For the energy exam, the best option is a batch size of 256 samples in most cases. Only with
2D-CNN it is better to use a small batch size of 64 samples, and only with ResNetIm we improve
energy using two GPUs.

Finally, using the EDP metric, the best option overall is a large batch size with two GPUs. ResNet
is an exception with one GPU as winner numbers due to the wgrad alg1 engine problem already
described in Section 8.1.2.

8.2. Results on Maxwell

In this section, experiments are conducted using the following hardware configurations: (1) one
Maxwell GPU, (2) two Maxwell GPUs and (3) 2 Pascal + 2 Maxwell GPUs, with the measurement
infrastructure always plugged to a Maxwell GPU.

Table VII shows execution times for three batch sizes: 64, 128 and 256. Again, the batch of 256
samples has not been executed for ResNetIm because it exceeds the GPU global memory size.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



18 F.M. CASTRO ET AL.

Table VIII. Energy measurements (in joules) on a Maxwell GPU for forward and backward steps of four
CNN models using one, two and four GPUs and three batch sizes: 64, 128 and 256.

Forward
Joules per batch Joules per second Joules for whole training

Batch size −→ 64 128 256 64 128 256 64 128 256
ResNet 6.111 11.070 19.342 163 174 176 442 221 400 540 349 944

1 GPU 2D-CNN 6.248 12.199 24.432 208 208 214 452 148 441 402 442 022
CaffeNet 5.379 10.499 21.217 209 206 215 9 681 859 9 448 940 9 547 708
ResNetIm 22.864 45.341 - 201 203 - 41 155 296 40 807 243 -
ResNet 3.988 6.188 11.183 154 156 172 288 620 223 899 202 325

2 GPUs 2D-CNN 3.052 6.272 12.221 194 213 217 220 855 226 959 221 108
CaffeNet 2.995 5.255 10.615 185 196 203 5 391 093 4 729 650 4 776 933
ResNetIm 12.581 22.611 45.459 226 199 206 22 646 534 20 349 928 20 456 374
ResNet 2.979 4.075 6.350 141 152 156 215 574 147 466 114 892

4 GPUs 2D-CNN 1.530 3.146 6.003 192 207 219 110 705 113 847 108 603
CaffeNet 1.493 3.103 5.381 193 206 204 2 686 577 2 792 498 2 421 440
ResNetIm 6.043 11.620 21.899 190 188 192 10 876 855 10 457 805 9 854 684

Backward
Joules per batch Joules per second Joules for whole training

Batch size −→ 64 128 256 64 128 256 64 128 256
ResNet 13.012 23.047 45.465 166 172 178 941 655 833 920 822 555

1 GPU 2D-CNN 8.245 16.542 33.743 210 214 223 596 691 598 569 610 472
CaffeNet 9.995 20.007 40.783 217 210 218 17 990 236 18 006 323 18 352 400
ResNetIm 51.547 101.679 - 191 190 - 92 783 786 91 511 546 -
ResNet 8.616 14.233 24.921 156 157 165 623 520 515 010 450 874

2 GPUs 2D-CNN 4.634 8.714 17.224 180 202 214 335 346 315 321 311 623
CaffeNet 6.935 11.803 21.529 170 187 208 12 483 290 10 622 845 9 688 155
ResNetIm 29.857 50.594 100.843 208 189 195 53 742 006 45 534 792 45 379 223
ResNet 12.123 17.221 23.668 123 124 127 877 320 623 140 428 193

4 GPUs 2D-CNN 4.424 7.095 10.440 137 148 180 320 158 256 728 188 872
CaffeNet 13.568 14.960 17.653 134 142 154 24 422 178 13 464 314 7 943 784
ResNetIm 15.104 27.117 50.097 177 179 182 27 187 992 24 405 527 22 543 695

Table IX. Execution time, energy consumption and EDP measurements for Maxwell architecture considering
forward + backward steps of four CNN models using one, two and four GPUs and three batch sizes: 64, 128

and 256. Best results per measurement are marked in bold.

Kiloseconds (ks) Megajoules (MJ) EDP
Batch size −→ 64 128 256 64 128 256 64 128 256

1 GPU 10.8 8.8 7.8 1.38 1.23 1.17 14.9 10.9 9.1
ResNet 2 GPUs 5.8 4.2 3.5 1.82 1.48 1.31 10.6 6.3 4.6

4 GPUs 5.9 5.0 4.1 4.30 3.05 2.28 25.5 15.1 9.2
1 GPU 4.7 4.5 4.4 1.05 1.04 1.05 4.9 4.6 4.7

2D-CNN 2 GPUs 2.8 2.5 2.3 1.11 1.08 1.07 3.1 2.7 2.5
4 GPUs 1.9 1.5 1.4 1.62 1.81 1.68 3.1 2.7 2.3
1 GPU 126.0 123.3 122.4 27.67 27.46 27.90 3486.7 3385.2 3415.0

CaffeNet 2 GPUs 104.4 75.6 67.1 35.75 30.70 28.93 3732.2 2321.3 1939.8
4 GPUs 212.4 118.8 69.3 101.26 60.97 38.39 21508.0 7243.5 2660.6
1 GPU 682.2 657.9 - 133.94 132.32 - 91373.2 87052.5 -

ResNetIm 2 GPUs 360.0 331.2 324.5 152.78 131.77 131.67 54999.7 43642.0 42720.7
4 GPUs 237.6 214.2 191.7 146.39 132.87 120.61 34781.5 28460.5 23121.2

8.2.1. Forward step

Execution times follow a similar pattern to that already analyzed for Pascal, but as expected there is
a general slowdown in performance because Maxwell is an older device. In the forward step, 2D-
CNN, CaffeNet and ResNetIm all exhibit a stable throughput (samples per second) for any batch
size, whereas ResNet reaches its peak for a batch size of 256. For two GPUs, excellent speedups
values close to the optimal 2x are obtained for 2D-CNN, CaffeNet and ResNetImIn. A lower gain is
achieved by ResNet. The configuration with four GPUs also produces excellent results with speeds
around 4x for 2D-CNN and CaffeNet.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



ENERGY-BASED ... 19

Table VIII shows power results measured following the same methodology described for Pascal.
Again, the energy budget correlates with the execution time, but now power savings are smaller,
basically because Maxwell was manufactured on 28 nm. transistors (Pascal benefits from a 16 nm.
technology). For the forward step, lower energy requirements are typically achieved for larger batch
sizes.

8.2.2. Backward step

Here, values on a single GPU follow tendencies already shown for the forward case. Twin GPUs
exhibit good performance numbers for specific batch sizes, specially with ResNet and ResNetIm, to
indicate effective overlapping between kernels computation and Allreduce transfers. Speedup values
on four GPUs are modest, with improvements just for 2D-CNN and ResNetIm, and for the energy
consumption, optimal values are found on larger batch sizes.

Table VIII shows power results measured following the same methodology described for
Pascal. During the backward step, the benefit of using multiple GPUs during training is more
clear compared to Pascal. Finally, comparing the whole process, forward plus backward, energy
requirements are optimized on larger batches for all networks, what correlates with performance.

8.2.3. Setup comparison

As for Pascal, we compare here all setups run in Maxwell to draw some conclusions. Table IX
compiles all required numbers.

Starting with the execution time, again the best option is a batch size of 256 samples. Depending
on the type of architecture, it is better to use two GPUs with network models having lower CTC (i.e.
ResNet and CaffeNet) and 4 GPUs for the networks with higher CTC (i.e. 2D-CNN and ResNetIm).

For the energy discussion, the best option is a batch size of 256 samples with ResNet-based
models (ResNet/ResNetIm) and 128 samples with AlexNet-based models (2D-CNN/CaffeNet). And
best records are registered on a single GPU, with the exception of ResNetIm on 4 GPUs.

Finally, for the EDP metric, the best option is a large batch size with two GPUs for networks with
low CTC. For higher CTC values, optimal values are found on larger batch size using four GPUs.

8.3. Pascal versus Maxwell

We now want to compare the execution time and power consumption of our four CNN models for
all batch sizes and number of GPUs on Maxwell and Pascal. These results are compiled in Figures
5, 6, 7 and 8. For the bar names in our charts, we follow the rule batch size-number GPUs. For
example, 64-4 stands for a batch of 64 elements using 4 GPUs. Again, there are fluctuations in 4
GPUs because the two Pascals have to wait the two Maxwells to conclude. This effect can only be
seen in energy consumption because the time included in the plots is the slowest of all GPUs (that
is, time measurements for Maxwell match those of Pascal when using 4 GPUs).

Results indicate that for 2D-CNN, CaffeNet and ResNetIm, Pascal is ahead in performance and
power consumption. The improvement can be quantified within a 30− 40% range depending on the
experiment. For ResNet, performance drops in Pascal versus Maxwell when using multiple GPUs,
and also on a single GPU for small batch sizes. To explain this behaviour, we have added Table
X specifically for ResNet, covering all batch sizes and GPUs. As we can see, during forward, the
behaviour is around 30% better in Pascal. However, during backward, its performance decreases
heavily and Maxwell overtakes it. We have found Pascal to be affected by the algorithm change
used within cuDNN to compute the last convolutions of this model (wgrad alg0 engine method
instead of wgrad alg1 engine, being the former 25 times slower than the latter - see Section 8.1).
The only value which is not affected by this anomaly in Table X is the batch size of 256 executed
in one GPU (when using more GPUs, the batch size is distributed among them, and the threshold
for the algorithm to switch to the swift version is never reached). This way, results worsen when
using Pascal with ResNet if the threshold in the batch size is not reached, regardless of the number
of GPUs. We are confident this anomaly will be solved in future releases of cuDNN to end up with
faster executions like all those we have introduced here using the wgrad alg1 engine method.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



20 F.M. CASTRO ET AL.

64-1 128-1 256-1 64-2 128-2 256-2 64-4 128-4 256-4
0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

Maxwell

Pascal

Batch size - GPUs

Ti
m

e
(s

)

64-1 128-1 256-1 64-2 128-2 256-2 64-4 128-4 256-4
0

10

20

30

40

50

60

70

Maxwell

Pascal

Batch size - GPUs

P
o

w
er

(W
)

64-1 128-1 256-1 64-2 128-2 256-2 64-4 128-4 256-4
0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

Maxwell

Pascal

Batch size - GPUs

T
im

e
(s

)

64-1 128-1 256-1 64-2 128-2 256-2 64-4 128-4 256-4
0

10

20

30

40

50

60

70

Maxwell

Pascal

Batch size - GPUs

E
n

e
rg

y
(J

)

Figure 5. Comparative between Maxwell and Pascal for ResNet. (left) time per batch (right) joules per batch.
All measurements are for forward + backward steps using 1, 2 and 4 GPUs and three batch sizes: 64, 128

and 256.

64-1 128-1 256-1 64-2 128-2 256-2 64-4 128-4 256-4
0

0,05

0,1

0,15

0,2

0,25

0,3

Maxwell

Pascal

Batch size - GPUs

Ti
m

e
(s

)

64-1 128-1 256-1 64-2 128-2 256-2 64-4 128-4 256-4
0

10

20

30

40

50

60

70

Maxwell

Pascal

Batch size - GPUs

P
o

w
er

(W
)

64-1 128-1 256-1 64-2 128-2 256-2 64-4 128-4 256-4
0

0,05

0,1

0,15

0,2

0,25

0,3

Maxwell

Pascal

Batch size - GPUs

T
im

e
(s

)

64-1 128-1 256-1 64-2 128-2 256-2 64-4 128-4 256-4
0

10

20

30

40

50

60

70

Maxwell

Pascal

Batch size - GPUs

E
n

e
rg

y
(J

)

Figure 6. Comparative between Maxwell and Pascal for 2D-CNN. Left: time per batch. Right: joules per
batch. All measurements are for forward + backward steps using 1, 2 and 4 GPUs and three batch sizes: 64,

128 and 256.

64-1 128-1 256-1 64-2 128-2 256-2 64-4 128-4 256-4
0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Maxwell

Pascal

Batch size - GPUs

Ti
m

e
(s

)

64-1 128-1 256-1 64-2 128-2 256-2 64-4 128-4 256-4
0

10

20

30

40

50

60

70

Maxwell

Pascal

Batch size - GPUs

P
o

w
er

(W
)

64-1 128-1 256-1 64-2 128-2 256-2 64-4 128-4 256-4
0

0,05

0,1

0,15

0,2

0,25

0,3

Maxwell

Pascal

Batch size - GPUs

T
im

e
(s

)

64-1 128-1 256-1 64-2 128-2 256-2 64-4 128-4 256-4
0

10

20

30

40

50

60

70

Maxwell

Pascal

Batch size - GPUs

E
n

e
rg

y
(J

)

Figure 7. Comparative between Maxwell and Pascal for CaffeNet. Left: time per batch. Right: joules per
batch. All measurements are for forward + backward steps using 1, 2 and 4 GPUs and three batch sizes: 64,

128 and 256.

8.4. Energy versus performance

In general, the GPU evolution has demonstrated that performance does not correlate ideally with
energy efficiency, because sometimes you experience severe power penalties when being eager on
performance. In fact, Nvidia introduced GPU Boost and clock monitoring in Kepler GPUs back
in 2012 to keep an eye on power at run time depending on computational requirements driven by
every particular application. Later in 2014, when they released Maxwell, it was announced as the
most power efficient GPU ever built [61]. Compared to its predecessor Kepler, multiprocessors
were reduced to 128 cores and layout was reorganized into quadrants to shorten wires length.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



ENERGY-BASED ... 21

64-1 128-1 256-1 64-2 128-2 256-2 64-4 128-4 256-4
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

Maxwell

Pascal

Batch size - GPUs

Ti
m

e
(s

)

64-1 128-1 256-1 64-2 128-2 256-2 64-4 128-4 256-4
0

20

40

60

80

100

120

140

160

Maxwell

Pascal

Batch size - GPUs

P
o

w
er

(W
)

64-1 128-1 256-1 64-2 128-2 256-2 64-4 128-4 256-4
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

Maxwell

Pascal

Batch size - GPUs

T
im

e
(s

)

64-1 128-1 256-1 64-2 128-2 256-2 64-4 128-4 256-4
0

20

40

60

80

100

120

140

160

Maxwell

Pascal

Batch size - GPUs

E
n

e
rg

y
(J

)

Figure 8. Comparative between Maxwell and Pascal for ResNetIm. Left: time per batch. Right: joules per
batch. All measurements are for forward + backward steps using 1, 2 and 4 GPUs and three batch sizes: 64,

128 and 256.

Table X. A comparison between Maxwell and Pascal during forward and backward steps using ResNet.

Forward
Time per batch Joules per batch

Batch size Maxwell Pascal % Maxwell Pascal %
64 0.039 0.029 25.6 6.111 4.255 30.4

1 GPU 128 0.059 0.041 30.5 11.070 8.308 24.9
256 0.094 0.067 28.7 19.342 15.732 18.7
64 0.031 0.025 19.4 3.988 2.721 31.8

2 GPUs 128 0.039 0.030 23.1 6.188 4.274 30.9
256 0.059 0.041 30.5 11.183 8.529 23.7
64 0.029 0.029 0 2.979 2.222 25.4

4 GPUs 128 0.032 0.032 0 4.075 2.797 31.4
256 0.040 0.040 0 6.350 4.322 31.9

Backward
Time per batch Joules per batch

Batch size Maxwell Pascal % Maxwell Pascal %
64 0.110 0.125 -13.6 13.012 15.990 -22.9

1 GPU 128 0.184 0.220 -19.6 23.047 28.531 -23.8
256 0.336 0.254 24.4 45.465 26.714 41.2
64 0.049 0.069 -40.8 8.616 12.374 -43.6

2 GPUs 128 0.078 0.115 -47.4 14.233 21.295 -49.6
256 0.135 0.205 -51.9 24.921 36.600 -46.9
64 0.053 0.053 0 12.123 12.380 -2.1

4 GPUs 128 0.105 0.105 0 17.221 18.103 -5.1
256 0.184 0.184 0 23.668 28.557 -20.7

Communications and power lines were identified primary factors in energy consumption, so it was
no surprise to find Maxwell ahead a 2x factor in performance per watt.

Enhancements introduced in 2016 with Pascal were driven by performance and energy, but with
certain tradeoffs versus Maxwell. Focusing on Titan models to be fair, Table II summarizes features
for the two GPUs used in our study. The Maxwell model contains 3072 cores at 1392 MHz clock
rate, whereas the Pascal counterpart has 3584 cores running at 1911 MHz. The number of transistors
on a chip and its frequency affect power in a linear way, which leads us to estimate Pascal around
65% higher on energy demand, and presumably a similar percentage ahead in performance. When
you increase wattage but reduce seconds proportionally, the energy toll in joules should remain
constant, but there were good news for Pascal on a performance-per-watt basis: Multiprocessors
were reduced to 64 cores and, overall, manufacturing process evolved from planar 28 nm. transistors
to 16 nm. fin-FET ones [62]. With those many variables affecting power and all side-effects among
them, it is complex to assess pros and cons to determine a winner of the energy battle, and even
more challenging to put differences in raw numbers.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



22 F.M. CASTRO ET AL.

Our set of experiments may shed some light driven by praxis. Table XI illustrates performance per
watt on a wide number of settings, changing CNN models and batch sizes. Peak numbers are reached
on one GPU computing the 2D-CNN model, where numbers are stable around 11 GFLOPS/w for
Pascal and 7 GFLOPS/w for Maxwell (around 60% deficit). 2D-CNN is also the optimal model
on two GPUs, keeping distances between twin Pascals and twin Maxwells around 50%. Official
peak differences published by Nvidia in double precision numbers are 40% (20 GFLOPS/w for
an average Pascal GPU and 12 GFLOPS/w for the Maxwell counterpart), what tells us that we
have found CNN models where those differences widen up to an additional 20% regardless of the
batch size chosen. We also see that energy efficiency is very sensitive to the CNN model computed,
because there are other cases, like the ResNet model, where differences shorten very much among
GPUs.

Our numbers also validate Nvidia estimations, because our global average for all models and
batch sizes is 42% running on a single GPU and 35% when using a pair. The 4 GPUs setup may
look confusing at first sight, but note that we are not comparing 4 Pascals versus 4 Maxwells.
Instead, we always use 2 Pascals plus 2 Maxwells, that is, it is always the same run, just changing
power measurements from one generation to another. That way, synchronizations may relax the
faster twin Pascals to end up with similar power requirements versus the twins Maxwells. In other
words, performance is mainly responsible for energy savings when running CNNs on Pascal, and
the set of experiments gathered in this paper encourage you to press the throttle because you will
not end up paying more on fuel.

In addition, we can see that CNN applications stay, in general, far from optimal performance
per watt ratios: The maximum values we were able to attain are 11 GFLOPS/w on a Pascal and 7
GFLOPS/w on a Maxwell, whereas SGEMM (Single Precision General Matrix Multiply) reaches
42 GFLOPS/w in Pascal and 23 GFLOPS/w in Maxwell. That means that we barely squeeze 25% of
the performance efficiency exhibited by a typical compute bound procedure. We expect this margin
to shrink when using the new half data types that Nvidia introduced in Pascal particularly to benefit
deep learning applications.

Finally, if we focus our analysis on the influence of the batch size, optimal performance and
minimum energy consumption due to savings in training time are attained when increasing batch
sizes as much as possible in all GPU scenarios. But there are a number of concerns regarding
accuracy and datasets which deserve a closer attention. We address those two in sections 8.5 and
8.6, respectively.

8.5. Accuracy

We extend our CNN analysis from performance and energy viewpoints in this section to find a good
model in terms of accuracy. In our experiments, we only consider the batch size as tunable hyper-
parameter, because all remaining ones have been taken from previously trained models with good
accuracy. According to Caffe’s implementation, the training with one or more GPUs leads to the
same results, so we do not move the number of GPUs. Moreover, we distinguish results taken from
models using videos as input (Table XII) from those using images (Table XIII).

Table XII summarizes the accuracy results for ResNet and 2D-CNN, where we can see that the
best model is 2D-CNN with 86.0% of accuracy. On the other hand, the best ResNet model obtains
a disappointing 76%. Overfitting is responsible for this low accuracy. This model contains a vast
number of parameters, while the amount of training data available in the dataset is relatively small.
Therefore, the model is not able to generalize to the test data. Comparing the accuracy among batch
sizes in both models, the precision decreases with bigger batches because the average gradients are
less noisy and the exploration capacity of the algorithm is reduced. On the other hand, with small
batches, the algorithm explores better the solution space and, consequently, finds a better local
minimum. This effect is more clear in ResNet due to the huge amount of parameters. In 2D-CNN,
accuracy is much less sensitive to the batch size, showing differences around 4%, so we may select
any batch size or prioritize the choice based on performance and/or energy criteria.

Table XIII shows the accuracy values for ResNetIm and CaffeNet. We report top-1 and top-5 ac
curacies, where the top-1 is the classic accuracy and the top-5 is the the percentage of test images

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



ENERGY-BASED ... 23

Table XI. GFLOPS per watt for our four CNN models with three batch sizes measured on Pascal and
Maxwell using 1, 2 and 4 GPUs (note that the 4 GPUs run is the same for Pascal and Maxwell, we just
change the device where energy is measured). Results including both forward and backward. Averages are

calculated per row and column, and last column reflects differences based on those.

GFLOPS/w measured on −→ Pascal Maxwell Pascal
Batch size −→ 64 128 256 Average 64 128 256 Average gain

ResNet 2.7 3.0 5.1 4.3 2.8 3.2 3.4 3.1 38%
1 GPU 2D-CNN 11.1 10.9 10.9 11.0 6.9 7.0 6.9 6.9 59%

(1 Pascal or CaffeNet 9.8 10.1 10.5 10.1 6.1 6.1 6.0 6.1 65%
1 Maxwell) ResNetIm 4.9 5.4 - 5.1 3.6 3.6 - 3.6 41%

Average 7.1 7.3 8.8 7.7 5.8 5.0 5.4 5.4 +42%

ResNet 1.8 2.1 2.4 2.1 2.2 2.7 3.0 2.6 -20%
2 GPUs 2D-CNN 10.0 9.9 10.0 10.0 6.5 6.7 6.8 6.7 49%

(2 Pascals or CaffeNet 5.7 7.3 8.6 7.2 4.7 5.5 5.8 5.3 35%
2 Maxwells) ResNetIm 4.9 5.0 5.6 5.2 3.1 3.6 3.6 3.4 52%

Average 5.6 6.1 6.6 6.1 4.1 4.6 4.8 4.5 +35%

ResNet 0.9 1.3 1.7 1.3 0.9 1.3 1.8 1.3 0%
4 GPUs 2D-CNN 4.8 3.4 3.3 4.2 4.2 4.9 6.1 5.0 -16%

(2 Pascals and CaffeNet 1.8 2.9 4.7 3.1 1.5 2.6 4.0 2.7 14%
2 Maxwells) ResNetIm 3.4 3.8 4.3 3.8 3.1 3.4 3.7 3.4 11%

Average 2.8 2.9 3.5 3.1 2.4 3.0 3.9 3.1 0%

Table XII. Accuracy on TUM-GAID. We deploy different CNN models and batch sizes in rows, and
scenarios (temporal and non temporal) in columns. The last column ‘AVG’ stands for the average of each

case weighted by the number of classes. Best average results are boldfaced.

Model Batch size N B S TN TB TS AVG

ResNet
64 89.0 76.4 72.2 43.5 47.0 45.0 76.0
128 71.9 62.6 62.3 33.8 37.4 36.3 62.8
256 63.5 52.7 56.1 32.8 35.5 38.1 55.4

2D-CNN
64 95.7 87.5 87.1 45.6 47.2 47.4 86.0
128 95.5 84.9 83.9 51.2 41.5 51.5 84.4
256 95.3 79.2 81.2 48.6 39.5 51.7 81.6

Table XIII. Accuracy on ImageNet. CNN models and batch sizes are drawn by rows, and metrics (top-1 and
top-5 accuracy) by columns. Top-1 is the classic accuracy and the top-5 is the the percentage of test images
for which the correct label is among the five labels considered most frequent by the model. Best average

results are boldfaced.

Model Batch size Top-1 Top-5

CaffeNet
64 44.0 68.7
128 52.9 76.7
256 57.3 80.4

ResNetIm
64 61.6 84.7
128 65.6 88.5
256 75.3 92.2

for which the correct label is among the five most frequent labels considered by the model. On
image datasets, the more training data are available, the more performance gap in favor of ResNet.
Moreover, the large number of parameters allows to fit a more discriminant model, overtaking
CaffeNet by more than a 10% in Top-5 and almost 20% in Top-1.

Along batch sizes, all models experience accuracy improvements on larger batches. Again, the
vast amount of training data available in ImageNet requires larger batch sizes to compute more
accurate gradients during the training process. On small batch sizes, the average gradient of the
batch, which is used to update the parameters of the network, separates from the mean of the
complete training set being more noisy, and therefore, worsening updates.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



24 F.M. CASTRO ET AL.

8.6. Best approach

We now summarize the information obtained from our experiments to propose some guidelines
to choose the best hyper-parameters according to performance, energy consumption and accuracy
criteria.

The road to maximize performance and minimize training time and energy consumption leads
to larger batch sizes as shown in Tables VI and IX. On the contrary, when accuracy is a must,
small batches should be used on regular datasets. Big datasets enable a wider range of batch
sizes, and depending on the problem, chances to find a good combination of time, energy and
accuracy increase. When multiple GPUs are available, setups with more than a pair of them must
be carefully studied fas transfers and synchronizations can hurt performance, particularly on a set
of heterogeneous GPUs.

In general, when small and challenging datasets are used, we have to choose between
performance/energy or accuracy, but there are exceptions too. For example, 2D-CNN reaches good
accuracy at any batch size. This may indicate that any CNN composed solely of 2D convolutions
(without batch normalization and residual connections) can use large batches to save time and
energy while retaining accuracy. On the other hand, ResNet networks rely on small batches for
gaining accuracy at the expense of performance and power consumption. Fortunately, this scenario
does not predominate and occurs just on challenging datasets like TUM-GAID.

On large datasets, state-of-the-art accuracy is obtained with a large batch size like 256 samples.
In cases like ILSVRC, thanks to the noise effect in the gradients, we have it all: optimal accuracy,
maximum performance and minimum energy requirements.

In summary, for large datasets the best option is always a large batch size regardless of the CNN
used, and for small datasets, large batches are only useful with networks without batch normalization
and residual connections. Should a ResNet be used, we use a small batch paying a toll in terms of
performance and power consumption. And on a multi-GPU system, it would be convenient to fill all
slots available with GPUs alike.

9. SUMMARY AND CONCLUSIONS

In this paper, we have presented a performance, energy and accuracy analysis on a set of popular
CNN models running on flagship image and video applications for different training sets and
parameters setting using the last two Nvidia GPU generations, namely Maxwell and Pascal (Titan
versions). Our goal is to provide an empirical study using state-of-art CNNs with applied datasets
and carefully selecting parameters of major interest for researchers to tune Deep Learning methods.
They work on understanding how set-ups may help inferences, we evaluate how efficient they are,
primarily from an energy viewpoint, but also considering speed-ups and numerical accuracy.

Major contributions of this work can be summarized as follows:

1. We were never able to squeeze more than 55% of the peak power efficiency announced by
Nvidia: 20 and 12 GFLOPS/w using the worst-case scenario of 64-bit data types on Pascal
and Maxwell, respectively.

2. The performance per watt gap between Maxwell and Pascal GPUs was found to reach peaks
of up to 60%, with differences sensitive to the CNN model and batch size.

3. If we separate performance and energy, Pascal attains solid differences within the 30− 40%
range depending on the batch size for 2D-CNN, CaffeNet and ResNetIm CNN models, in line
with Nvidia estimations.

4. Forward and backward steps show similar behaviour in almost all scenarios, extending
performance and power gains on larger CNN batches.

5. Accuracy prefers small batches on small datasets, but sometimes keeps stable on large batches
for us to prioritize speed and energy without worsening results. On big datasets, larger batch
sizes minimize trade offs among those three.

6. Datasets play an important role associated to every CNN model, sometimes being responsible
of inconsistencies and thermal stress in GPU hardware when complexity increases.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



ENERGY-BASED ... 25

7. In multi-GPU environments, the batch size plays an important role because the GPU code
reduces its arithmetical intensity and becomes less compute-bound, thus requiring larger sizes
to hide the communication and synchronization overhead. In particular, when using four or
more GPUs, models trained are required to be huge for communications to effectively overlap
computations. And heterogeneity in GPU hardware also introduces additional hurdles for
these communication costs.

We envision GPUs to increase their role as high performance and low power devices for CNNs
and Deep Learning applications in future GPU generations, particularly after the introduction of the
3D memory in 2017 and the Volta generation by Nvidia. Volta increases the number of cores from
3584 to 5120 to leverage speedups, and relaxes frequency from 1480 to 1455 MHz with transistors
shrinking from 16 to 12 nm. for a more complete low-power device and ambitious GFLOPS/w ratio.
Endowing Volta with half precision data types and Tensor cores will also affect performance, energy
and accuracy in a very positive manner, leaving room for a promising scalability to constitute the
next step of our analysis as future work.

ACKNOWLEDGEMENTS

This work was supported by the Ministry of Education of Spain under Project TIN2013-42253-P,
TIN2016-78799-P (AEI/FEDER, UE) and by the Junta de Andalucia under Project of Excellence P12-
TIC-1741 and TIC-1692. We thank Nvidia for hardware donations within GPU Education Center 2011-
2016 and GPU Research Center 2012-2016 awards at the University of Malaga (Spain). We also thank
Francisco D. Igual and Luis Piñuel from the Computer Architecture and Automated Department at the
Complutense University of Madrid (Spain) for providing us Accelpower modules to measure power during
our experimental survey. Our measuring system is based on a tool being continuously upgraded as reported
in http://accelpowercape.dacya.ucm.es.

REFERENCES

1. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

2. Lowe DG. Object recognition from local scale-invariant features. Proceedings of the Seventh IEEE International
Conference on Computer Vision, vol. 2, 1999; 1150–1157 vol.2.

3. Wang H, Klser A, Schmid C, Liu CL. Action recognition by dense trajectories. CVPR 2011, 2011; 3169–3176,
doi:10.1109/CVPR.2011.5995407.

4. Castro FM, Marı́n-Jiménez M, Guil Mata N, Muñoz Salinas R. Fisher motion descriptor for multiview gait
recognition. International Journal of Patt. Recogn. in Artificial Intelligence 2017; 31(1).

5. Castro FM, Marı́n-Jiménez MJ, Guil N. Multimodal features fusion for gait, gender and shoes recognition. Machine
Vision and Applications Nov 2016; 27(8):1213–1228.

6. Fukushima K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition
unaffected by shift in position. Biological Cybernetics Apr 1980; 36(4):193–202.

7. Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of
the IEEE Nov 1998; 86(11):2278–2324.

8. Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T. Robust object recognition with cortex-like mechanisms.
IEEE Transactions on Pattern Analysis and Machine Intelligence 2007; 29(3):411–426.

9. Cortes C, Vapnik V. Support-vector networks. Machine Learning Sep 1995; 20(3):273–297.
10. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Advances

in Neural Information Processing Systems, 2012; 1097–1105.
11. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M,

et al.. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV) 2015;
115(3):211–252, doi:10.1007/s11263-015-0816-y.

12. Krizhevsky A. Learning multiple layers of features from tiny images. Technical Report, University of Toronto 2009.
13. Abu-El-Haija S, Kothari N, Lee J, Natsev P, Toderici G, Varadarajan B, Vijayanarasimhan S. Youtube-8m: A large-

scale video classification benchmark. ArXiv e-prints 2016; .
14. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper

with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015; 1–9.
15. He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Surpassing human-level performance on imagenet

classification. 2015 IEEE International Conference on Computer Vision (ICCV), 2015; 1026–1034.
16. Simonyan K, Zisserman A. Two-stream convolutional networks for action recognition in videos. Advances in Neural

Information Processing Systems, 2014; 568–576.
17. Wang L, Qiao Y, Tang X. Action recognition with trajectory-pooled deep-convolutional descriptors. 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2015; 4305–4314.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



26 F.M. CASTRO ET AL.

18. Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time object detection with region proposal networks.
Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1, NIPS’15,
2015; 91–99.

19. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC. SSD: Single Shot MultiBox Detector. Springer
International Publishing: Cham, 2016; 21–37.

20. Marı́n-Jiménez MJ, Castro FM, Guil N, de la Torre F, Medina-Carnicer R. Deep multitask learning for gait-based
biometrics. Proceedings of the IEEE International Conference on Image Processing, 2017.

21. Castro FM, Marı́n-Jiménez MJ, Guil N, López-Tapia S, de la Blanca NP. Evaluation of cnn architectures for gait
recognition based on optical flow maps. BIOSIG, 2017; 251–258.

22. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. Caffe: Convolutional
architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 2014; .

23. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J,
Devin M, et al.. TensorFlow: Large-scale machine learning on heterogeneous systems 2015. URL
https://www.tensorflow.org/, software available from tensorflow.org.

24. Seide F, Agarwal A. Cntk: Microsoft’s open-source deep-learning toolkit. Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’16, 2016; 2135–2135.

25. Vedaldi A, Lenc K. MatConvNet – Convolutional Neural Networks for MATLAB. Proceeding of the ACM Int.
Conf. on Multimedia, 2015.

26. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A. Automatic
differentiation in pytorch 2017; .

27. The Green 500 Supercomputers List. http://www.top500.org/green500.
28. Shi S, Wang Q, Xu P, Chu X. Benchmarking state-of-the-art deep learning software tools. 2016 7th International

Conference on Cloud Computing and Big Data (CCBD), 2016; 99–104.
29. Kim H, Nam H, Jung W, Lee J. Performance analysis of cnn frameworks for gpus. 2017 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS), 2017; 55–64.
30. Dong S, Gong X, Sun Y, Baruah T, Kaeli D. Characterizing the microarchitectural implications of a convolutional

neural network (cnn) execution on gpus. Proceedings of the 2018 ACM/SPEC International Conference on
Performance Engineering, ICPE ’18, 2018; 96–106.

31. Benedict S. Energy-aware performance analysis methodologies for hpc architectures an exploratory study. Journal
of Network and Computer Applications 2012; 35(6):1709–1719.

32. Jouppi N. Google supercharges machine learning tasks with TPU custom chip.
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-
chip.html.

33. Moons B, Brabandere BD, Gool LV, Verhelst M. Energy-efficient convnets through approximate com-
puting. 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), 2016; 1–8, doi:
10.1109/WACV.2016.7477614.

34. Cai E, Juan D, Stamoulis D, Marculescu D. Neuralpower: Predict and deploy energy-efficient convolutional neural
networks. CoRR 2017; abs/1710.05420. URL http://arxiv.org/abs/1710.05420.

35. Andri R, Cavigelli L, Rossi D, Benini L. Yodann: An ultra-low power convolutional neural network accelerator
based on binary weights. 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2016; 236–241,
doi:10.1109/ISVLSI.2016.111.

36. Yang T, Chen Y, Sze V. Designing energy-efficient convolutional neural networks using energy-aware pruning.
CoRR 2016; abs/1611.05128. URL http://arxiv.org/abs/1611.05128.

37. Deep Neural Network Energy Estimation Tool. https://energyestimation.mit.edu.
38. Lin Y, Sakr C, Kim Y, Shanbhag N. Predictivenet: An energy-efficient convolutional neural network via

zero prediction. 2017 IEEE International Symposium on Circuits and Systems (ISCAS), 2017; 1–4, doi:
10.1109/ISCAS.2017.8050797.

39. Mathew M, Desappan K, P KS, S N, Moothedath B. Embedded low-power deep learning with tidl. Texas
Instruments Technical Report 2018; .

40. Bettoni M, Urgese G, Kobayashi Y, Macii E, Acquaviva A. A convolutional neural network fully implemented on
fpga for embedded platforms. 2017 New Generation of CAS (NGCAS), 2017; 49–52, doi:10.1109/NGCAS.2017.16.

41. Wang Y, Xia L, Tang T, Li B, Yao S, Cheng M, Yang H. Low power convolutional neural networks
on a chip. 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2016; 129–132, doi:
10.1109/ISCAS.2016.7527187.

42. Mathew M, Desappan K, P KS, Nagori S, Moothedath B. Sparse, quantized, full frame cnn for low power embedded
devices. Proceedings Computer Vision and Pattern Recognition (CVPR), 2017.

43. Farabet C, Couprie C, Najman L, LeCun Y. Learning hierarchical features for scene labeling. IEEE Transactions
on Pattern Analysis and Machine Intelligence 2013; 35(8):1915–1929.

44. Zhang X, Zhao J, LeCun Y. Character-level convolutional networks for text classification. Advances in Neural
Information Processing Systems, IEEE, 2015.

45. Wang Y, Long M, Wang J, Yu PS. Spatiotemporal pyramid network for video action recognition. The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

46. Castro FM, Marı́n-Jiménez MJ, Guil N, Pérez de la Blanca N. Automatic learning of gait signatures for people
identification. Advances in Computational Intelligence: 14th International Work-Conference on Artificial Neural
Networks (IWANN) 2017; :257–270.

47. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016; 770–778.

48. Zhang C, Li P, Sun G, Guan Y, Xiao B, Cong J. Optimizing fpga-based accelerator design for deep convolutional
neural networks. Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, FPGA ’15, 2015; 161–170.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



ENERGY-BASED ... 27

49. Chetlur S, Woolley C, Vandermersch P, Cohen J, Tran J, Catanzaro B, Shelhamer E. cudnn: Efficient primitives for
deep learning. CoRR 2014; abs/1410.0759.

50. BeagleBone. Beaglebone black. http://beagleboard.org/BLACK.
51. González-Rincón J. Sistema basado en open source hardware para la monitorización del consumo de un

computador. Master Thesis Project. Universidad Complutense de Madrid 2015; .
52. Ada L. Adafruit INA219 Current Sensor Breakout. https://learn.adafruit.com/adafruit-ina219-

-current-sensor-breakout.
53. Igual F, Jara L, Gómez J, Piñuel L, Prieto M. A Power Measurement Environment for PCIe Accelerators. Computer

Science - Research and Development May 2015; 30(2):115–124.
54. Alonso P, Badı́a R, Labarta J, Barreda M, Dolz M, Mayo R, Quintana-Ortı́ E, Reyes R. Tools for power-energy

modelling and analysis of parallel scientific applications. Proceedings 41st Intl. Conference on Parallel Processing
(ICPP’12), IEEE Computer Society, 2012; 420–429.

55. Hofmann M, Geiger J, Bachmann S, Schuller B, Rigoll G. The TUM Gait from Audio, Image and Depth
(GAID) database: Multimodal recognition of subjects and traits. Journal of Visual Communication and Image
Representation 2014; 25(1):195 – 206.

56. Farnebäck G. Two-frame motion estimation based on polynomial expansion. Proc. of Scandinavian Conf. on Image
Analysis, vol. 2749, 2003; 363–370.

57. Bradski G. OpenCV library. Dr. Dobb’s Journal of Software Tools 2000; .
58. KaewTraKulPong P, Bowden R. An improved adaptive background mixture model for real-time tracking with

shadow detection. Video-Based Surveillance Systems. 2002; 135–144.
59. Barnich O, Droogenbroeck MV. Frontal-view gait recognition by intra- and inter-frame rectangle size distribution.

Pattern Recognition Letters 2009; 30(10):893 – 901.
60. Laros JH, Pedretti K, Kelly SM, Shu W, Ferreira K, Dyke JV, Vaughan C. Energy-Efficient High Performance

Computing: Measurement and Tuning. Springer Publishing Company, Incorporated, 2012.
61. Nvidia. NVIDIA GeForce GTX 980: Featuring Maxwell, The Most Advanced GPU Ever Made. Whitepaper,

Corporation N (ed.), 2014.
62. NVIDIA Tesla P100. The Most Advanced Datacenter Accelerator Ever Built. Whitepaper, Corporation N (ed.),

2016.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe


