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SUMMARY

Concurrency bugs, such as atomicity-violation bugs, are difficult to detect due to the uncertainty of thread-
scheduling. It is particularly difficult to conduct a thorough bug fix when an atomicity-violation bug can be
triggered by different buggy interleavings. This paper proposes a prediction-based approach to comprehensively
detect atomicity-violation bugs. A bug fix can be incomplete when the developer cannot have all the buggy inter-
leavings. Based on the candidate interleavings, this approach can predict unmanifested atomicity-violation bugs
from a non-buggy execution and comprehensively display all the buggy interleavings for the same bug to assist a
thorough fix. We use a monitored execution to record execution traces and predict potential buggy interleavings
based on the candidate interleavings identified from the trace. Then we use controlled executions to verify the
predicted buggy interleavings by controlling the thread-scheduling. We implemented a prototype tool called
AVPredictor and evaluated it with real-world tests. Experiments show that AVPredictor can effectively find all the
known atomicity-violation bugs as well as a previously unknown bug together with all the buggy interleavings
for each bug. The runtime overhead is 13x for the monitored execution and 18x for the controlled execution.
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1. INTRODUCTION

The increasing application of the multi-core technology in the hardware makes multi-threading
pervasive in the software, meanwhile, the reliability of concurrent programs has become a crucial issue.
Bug detection in concurrent programs is complicated. Unlike sequential programs whose running
states are only affected by the program inputs, the thread-scheduling in concurrent programs is like
an implicit input and introduces uncertainty to triggering concurrency bugs, making them difficult
to detect and replay. The biggest challenge in concurrent program test is exposing buggy interleavings
that are rare. Sometimes the tester has to run the program hundreds of times to accidentally expose
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2 P. WANGET AL.

Thread 1 Thread 2
1.1 void* LoadScript(nsSpt* aspt) {
1.2 lock(1);
1.3 gCurrentScript = (nsSpt *)aspt;_ 2.2 lock(l);
1.4 LaunchLoad (aspt); \ 2.2 gCurrentScript = NULL;

1.5 unlock();
1.6 }

2.3 unlock(1);];

/*when the NULLed old pointer is reused */

1.7 void OnLoadComplete() {
/*callback function of LaunchLoad*/,

1.8 lock(l);

1.9 gCurrentScript->compile(); "4~ 2.8 }

1.10  unlock(l);

111}

2.6 gCurrentScript = (nsSpt *)malloc(size)

Figure 1. A real atomicity-violation bug in the Mozilla Application Suite.

a buggy interleaving to trigger a hidden concurrency bug. When a concurrency bug can be triggered
by different buggy interleavings, it is particularly difficult to comprehensively identify all the buggy
interleavings to thoroughly understand the bug and eliminate it. Thus, the bug fix might be incomplete
and ineffective, especially when the program is large and complicated. Thus, concurrency bugs tend
to escape from in-house testing before software release and cause severe consequences, such as the
Therac-25 accident [1] and the 2003 American Blackout [2].

Among the varieties of concurrency bugs, atomicity-violation bugs (abbreviated as AV bugs) [3—6]
are one of the most common and significant types, accounting for 70% of the known non-deadlock
concurrency bugs [7]. An atomicity violation occurs when the execution of a block of code is
unexpectedly interleaved by operations concurrently performed by other threads. It turns to an AV
bug if the unfortunate interleaving breaks the atomicity assumptions made by the programmer and
leads to incorrect program behaviors. AV bugs widely exist because many programmers are used
to sequential thinking and frequently assume code regions to be atomic without proper enforcement [5].
Figure 1 shows a simplified AV bug from the Mozilla Application Suite. In this case, two threads are
handling the same shared pointer gCurrentScript. In Thread 1, gCurrentScript is assigned from
an argument pointer aspt (line 1.3) and used in function OnLoadComplete (line 1.9). In Thread 2,
gCurrentScript is set to NULL (line 2.2). If the statements execute as 1.3—1.9—2.2, no problem
occurs. However, owing to the thread-scheduling, an alternative execution order is 1.3—2.2—1.9,
which is problematic as it can cause a NULL pointer dereference.

An AV bug is particularly difficult to fix as it can be triggered by different buggy interleavings. Take
Figure 1 for an example, when the deleted pointer in Thread 2 gCurrentScript is used again, such as
being pointed to a new variable (line 2.6), this AV bug has another buggy interleaving 1.3—2.6—1.9. If
the programmer patches this bug only with the first buggy interleaving, then the patch will only modify
thelocks in Thread 1 to guarantee the atomicity as line 2.2 is already protected by the same lock. However,
the program is still buggy because another lock-free access (line 2.6) is neglected. In order to completely
fix this bug, the programmer must know the second buggy interleaving and patch line 2.6 with locks.
Thus, knowing all the buggy interleavings is of vital importance to thoroughly eliminate an AV bug.

Many approaches [6,8—14] focus on dataraces to detect AV bugs. However, these approaches are inade-
quatebecause: (1) being datarace-free does not mean bug-free (such asthe case in Figure 1),inmany cases,
what developers wantis the atomicity of code segments, not necessarily freedom from data-race [15]; (2) a
datarace is not always a bug, and some race situations are intentionally allowed for performance purpose,
such asrace-based synchronizations, thus, race-based approaches have to distinguish harmful and benign
races [16—18]; (3) race-based approaches do not consider differentbuggy interleavings of AV bugs, which
might lead to incomplete bug fix; (4) AV bugs can exist in future race-free transaction-based secure envi-
ronments [ 19], such as the Intel SGX. Thus, AV bugs are important problems that need dedicated research.

This paper proposes a prediction-based approach to comprehensively detect AV bugs. This approach
can predict unmanifested AV bugs from a non-buggy execution and comprehensively display all the
buggy interleavings for the same AV bug to assist a thorough bug fix. We use a monitored execution
to dynamically record the execution trace of the target program. Then we analyze the trace and predict
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AVPREDICTOR: COMPREHENSIVE PREDICTION AND DETECTION OF ATOMICITY VIOLATIONS 3

potential buggy interleavings based on a metric called the candidate interleaving. Finally, we actively
control the thread-scheduling to verify the predicted buggy interleavings or to replay a known bug.
In summary, we make the following contributions in this paper.

* We present the first work (to the best of our knowledge) that focuses on finding all the buggy
interleavings for the same AV bug to assist a thorough bug fix.

* We propose a metric for AV bugs called candidate interleaving, which is used to predict
unmanifested buggy interleavings from non-buggy executions.

» We propose a prediction-based approach to comprehensively detect AV bugs with all the buggy
interleavings. Our approach improves efficiency from three aspects: (1) only cover the potential
buggy interleavings by prediction; (2) prune violation-free interleavings before verification;
(3) group the candidate interleavings for verification.

* We implemented a prototype tool named AVPredictor and evaluate it with real-world test
programs. AVPredictor is now publicly available online.

The rest of the paper is organized as follows: Section 2 describes the candidate interleavings in
our approach. Section 3 gives the design of our approach and the key techniques we use. Section 4
introduces the implementation of AVPredictor. Section 5 evaluates AVPredictor by some test
experiments. Section 6 discusses the advantages and limitations of our approach. Section 7 surveys
the related works of the same background. Finally, our work is concluded in Section 8.

2. CANDIDATE INTERLEAVINGS

An AV bug involves three memory accesses to the same shared variable between two threads — two local
and one remote in the other thread, which should theoretically form eight interleaving combinations
(as Table I shows). We call the situation that the remote access occurs between the local access pair
(Column 2) as interleaved situation, and we call the situation that the remote access either occurs
before (Column 6) or after (Column 7) the local access pair as a non-interleaved situation.

Previous research [5] used serializability to detect AV bugs. An interleaving is serializable when the
final state of its local and remote accesses in an interleaved execution is equivalent to that in at least one
serial non-interleaved execution [15,20]. Serializability is an indicator used to identify AV bugs because
such bugs must be caused by unserializable interleavings and serializable interleavings won’t cause bugs.

Owing to the uncertainty of the thread-scheduling, a buggy interleaving (the interleaved situation)
in one execution might manifest as a non-buggy interleaving (the non-interleaved situation) in other
executions, which aggravates the difficulty in detecting and replaying the bug. Previous detection
work [15,21,22] focussed on the interleaved situations because they can manifest AV bugs directly.
However, since the non-interleaved situations manifest the same serializability as the interleaved
situations, they can be used to detect AV bugs from non-buggy executions.

In this paper, we propose a prediction-based approach to detect AV bugs, aiming to connect the
interleaved situations with the non-interleaved situations and predict the buggy interleavings from the
non-buggy interleavings. As Table I shows, four (No. 3, 4, 6, 7) out of the eight interleavings can cause
buggy results due to the unserializability. We name their interleaved situation as the Atomicity Violation
Interleaving (AVI) or Buggy Interleaving (BI), and name their corresponding non-interleaved situation
as the Candidate Interleaving (CI). More specifically, the Front Candidate Interleaving (FCI) stands
for the situation that the remote access executes prior to the local access pair, and the Back Candidate
Interleaving (BCI) stands for the situation that the remote access executes after the local access pair.
Since an AVI and its corresponding Cls are representing the same unserializable interleaving and
the serializability does not change across different executions, thus, the buggy interleaving can be
predicted based on the candidate interleavings identified from a non-buggy execution.

Our approach can predict and detect the unmanifested buggy interleavings from the non-buggy
executions to thoroughly fix the bug. Besides, our approach saves a large number of the verification
executions by only covering the potential buggy interleavings and skipping a majority of the
violation-free interleavings, which greatly improves the detection efficiency.
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Table I. Unserializable interleavings and candidate interleavings.

#| AVIT Description Serializable Problem FCI” BCI”
Ri: Two local reads N/A — Both FCI and BCI
1 Ri | interleaved by a Yes lead to the same state as | N/A N/A
R remote read. AVI.
Wi Local read after write
2 Ri | interleaved by a Yes N/A = BCI and AV lead N/A N/A
to the same state.
R> remote read.
R Two local reads The interleaving write w | R
. makes the two reads have
3 Wi | interleaved No . . R R>
. different views of the same
R by a remote write. . R Wi
memory location.
Wi Local read after write The local read does not get Wi | Wi
4 Wi | interleaved by a No the local result it expects Wi ke
R> remote write. pects. R>2 Wi
R Local write after read
5 Ri | interleaved by a Yes WA -FCland AVlleadto |\ N/A
the same state.
W2 remote read.
Wi Two local writes The .1nterrned1ate result Ri | Wi
. that is assumed to be
6 Ri | interleaved by a No o Wi W2
invisible to other threads
W2 remote read. . W2 Ri
is read by a remote access.
Ri Local write after read Ezﬁiéofcregr:rtgz rerléféigi?la Wi | Ri
7 Wi | interleaved by a No b 1R W2
. local read that is then over-
W2 remote write. . . W2 Wi
written by the remote write.
Wi Two local writes N/A — Both FCI and BCI
8 Wi | interleaved by a Yes lead to the same state as | N/A N/A
W2 remote write. AV

* The subscripts / and 2 indicate the two local accesses while i indicates the memory access from the remote thread.

3. APPROACH

Our approach relies on two instrumented executions of the target program, the monitored execution and
the controlled execution. We record a memory trace in the monitored execution and predict potential
buggy interleavings based on the Cls identified from the recorded trace. Then, we verify potential
bugs in the controlled execution. As Figure 2 shows, the approach is divided into five stages.

(1) Monitoring: The monitor instruments the target program and dynamically records the execution
trace into three log files (the memory access log, lock and unlock log, and synchronization log). The
trace includes all memory reads and writes as well as the standard POSIX thread (pthread) operations.
If buggy results occur during this execution, then a bug is confirmed. The monitor reports the bug
and logs the buggy interleaving for replay.

(2) Prediction: The predictor loads traces from the logs and identifies CIs from the trace. If a CI
is identified, then a potential AVI is indicated, which can cause an AV bug in another execution when
the thread-scheduling changes. The predictor records such Cls for verification.

(3) Pruning: The pruner removes the ClIs that are infeasible to convert to the corresponding AVI
by controlling the thread-scheduling. The happen-before relations that exist in the program enforce the
relative ordering of events, making some CIs deterministic, thus, they won’t have AVIs. The pruning
improves the efficiency by avoiding to execute such violation-free interleavings.

(4) Grouping: The grouper puts the non-interfere Cls in a group and verifies them one after another
in one controlled execution. The grouping improves the efficiency by reducing the number of controlled
executions.
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Monitoring memory_access_log |
Monitor [ critical_section_log | j> Buggy
Target P AVI
b [ synchronization_log |
rogram —
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Fci] | | [Ber
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L [CIqueue |
Growing | G|
[group1 | [group2 | ... [groupn |
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» Verification Thread
Buggy
& Replay Controller AVI

Figure 2. Overview of the prediction-based AV bug detection approach.

1st layer mem_traces = {addr1: addr_dicti, addr2: addr_dict2, ...}

2nd layer addr_dict = {tid1: tid_dict1, tid2: tid_dict, ... thread_num: 2}
3rd layer tid_dict = {trace_list: list, optag: 2}
4th layer trace_list = [ {tid: 1, op: "r’, time: 1, addr: 0x804e0a8, inst: 0x80499¢c5},

{tid: 2, op: "W, time: 2, addr: 0x804e0cc, inst: 0x80499d0},
e ]

Figure 3. The four-layer memory access storage structure.

(5) Verification and Reply: The thread controller loads CIs from each group and controls the
thread-scheduling to convert each CI to the corresponding AVI. If the conversion succeeds and a bug
occurs, a buggy interleaving is confirmed.

3.1. Identify Candidate Interleavings from the Trace

We identify CIs by matching the memory accesses from the trace. Since memory accesses usually have
hundreds of thousands of occurrences, we improve the matching efficiency by applying a four-layer
memory access storage and an optimized CI search algorithm.

3.1.1. Four-Layer Memory Access Storage The four-layer memory access storage (as Figure 3 shows)
is implemented based on the Python dictionary. In the first layer, memory accesses are divided by
the address, and each key-value address is mapped by a second-layer structure, which contains all
the memory accesses to this address. In the second layer, the memory accesses are further divided
by the thread id, and each key-value tid is mapped by a third-layer structure, which contains all the
memory accesses from thread tid and reference address address. Besides, the second-layer structure
also maintains a thread number counter (thread_num). The third layer has two fields, the first field
(trace_list) points to a fourth-layer structure, which is a list of the memory accesses sorted by
timestamp, and the second field (optag) is an indicator stating if the accesses in trace_list are
all reads, all writes, and mixed, respectively.

Copyright © 2019 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2019)
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Algorithm 1: Identify CIs from the trace.
In: TRACE - A structured storage for the accesses.
Out: CI - A list to collect the identified ClIs.
AVI - A list to collect the buggy AVIs.
01 CI—@,AVI —®
02  for Tadr € TRACE do
03 if ThreadNum(7adr) < 2 then continue

04 if AccessNum(7adr) < 3 then continue

05 for (A;, Aj) € Tadr do

06 if AllReads(A;) and AllReads(A;) then continue

07 if AllWrites(A;) and AllWrites(A;) then continue
08 for (an.am)€A;i, b€ Aj do

09 if (a,,.op= 1" Aa,.op=r Abj.op= W)V

10 (am.op=‘w Aay.op=‘r Abjl.op=‘w)Vv

11 (am-op=‘w Aay.op= ‘W Abj.op=T)V

12 (am-op= 1" ANay.op=‘w Abj.op=‘w’) then
13 ui < (am,an,b;)  1* unserializable interleaving */
14 if b;.time < a,,.time V b;.time > a,.time then
15 Clappend(ui)

16 elif ProgramBuggy() then

17 AVlI.append(ui)

18 return CI, AVI

3.1.2. Optimized CI Search Algorithm Instead of exhaustively searching Cls from all the access
combinations, we use an optimized searching algorithm (Algorithm 1) to improve the efficiency. The
search starts by traversing the storage first layer by address. We use Tadr to represent a set whose accesses
reference the same address. Then, in the second layer, if the number of threads in Tadr is less than 2 or the
number of accesses in Tudr is less than 3, then the accesses in Tadr won’t form an AV bug. We then skip
to the next address. In the third layer, we use Ttid to represent a subset of Tadr whose accesses are from
the same thread. For each (A;,A;) pair from two threads, if the accesses of this pair are all reads or all
writes, they won’t form an unserializable interleaving. We skip to check the next pair. In the fourth layer,
if an access pair (a,,a,) from A; and an access b; from A; can form an unserializable interleaving, then
a Cl or an already buggy AVIis identified. We record them for verification. This algorithm improves
efficiency by terminating the search for infeasible combinations early, which avoids useless searches.

3.1.3. Complexity Analysis
Time Complexity: Suppose we collect » memory accesses, which are divided into m sets (the second
layer) according to the address number (the first layer). Each set is further divided into 7 subsets (the

n
third layer) according to the thread number. Thus, each subset has — accesses on average. Since
m
we have 7 threads, they can form #(z-1) directed thread pairs. For each directed thread pair, the first
thread subset can form —(— —1) local access pairs, and for each local access pair, it can form —
m
interleavings with the accesses in the remote thread subset. Therefore, we totally have to search for

n . n n n?

1t l)zmt(mt l)mt =1t I)Z(mt)2
in practice, the four-layer data structure optimizes the algorithm by terminating the search for infeasible
combinations early, which dramatically improves the efficiency.

Space Complexity: The first layer is O(m), the second layer is O(t), the third layer is O(¢), and the
fourth layer is O(n), thus, the overall space complexity is O(m+2t+n), which is linear.

For a systematic approach that exhaustively searches for a CI from the whole interleaving space,
the time complexity is O(n) and the space complexity is O(n). Thus, in order to achieve a better
complexity tradeoff, our algorithm trades space for time.

(i —1). The time complexity is O(t2(£)3) = O(%). However,
mt mt m-t
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Ti T2 Ti T2 T T2 T T2
S1
S2
~
) S3
(a) Thread (b) Thread (c) Wait/Notify (d) Critical
Create Join Barrier Section
Figure 4. Non-convertible cases owing to the happen-before relations.
T T2 T T2 T T T T2
ai ai ai ai
ai az ar a
az ai a ai
bi bi  bi b:
b: b b2 b:
b2 b2 bi bi
\/
(a) FCI group (b) BCI group (¢) FCI group (d) BCI group
with FCI with FCI with BCI with BCI

Figure 5. Four combinations of two non-interfere CIs in one group

3.2. Pruning the Non-convertible Cls

When converting the CIs to the corresponding AVIs by controlling the thread-scheduling in the
controlled executions, some Cls are non-convertible due to the happen-before relations in the program.
These happen-before relations enforce the relative ordering of events, which makes changing the
event order to realize the desired interleaving impossible. Figure 4 lists 5 happen-before relations
that widely exist in concurrent programs. In sub figure (a) and (b), the order of statement S1 in the
parent thread and statement S2 in the child thread is enforced by thread create and join. Thus, S1 must
execute before S2 in (a), and S2 must execute before S1 in (b). In sub figure (c), the order of statement S1
and S2 is enforced by synchronization primitives, such as the barrier and the wait/notify signal. Thus,
S1 must execute before S2. In sub figure (d), statements S1 and S2 in the same critical section cannot be
interleaved by a remote statement S3 owing to the locks. Thus, S3 executes either before S1 or after S2.

We identify such happen-before relations from programs and remove non-convertible Cls before
verification. Based on the pthread interfaces, we record the thread creations and joins, the locks and
unlocks, and the invocations of synchronization primitives into log files during the monitored execution.
When the pruner finds an identified CI involved with such happen-before relations, it removes the
CI from the queue before the controlled execution. The pruning improves the efficiency by avoiding
to execute violation-free interleavings.

3.3. Grouping the Candidate Interleavings

To further improve the efficiency, our approach adopts a grouping strategy and verifies a group of
potential buggy interleavings in each controlled execution. To group the CIs, we must make sure that
the CIs in the same group (possibly have FCIs, BCIs, or both) do not interfere with each other. As
Figure 5 shows, given two Cls A (a1, a2, ai) and B (b1, b2, bi), we check whether all the accesses in

Copyright © 2019 John Wiley & Sons, Ltd.
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Ti T2 Ti T2 T T2 Ti T2
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Figure 6. Control the thread-scheduling by inserting delays.

A execute before or after all the accesses in B according to the timestamp, if yes, then A and B do not
interfere with each other and can be put into the same group.

We first build a group set G = {g:i | i = 1, 2, ...}, which includes all the existing groups. Then, we
traverse all the CIs from the queue generated by the prediction and check whether a CI ci does not
interfere with all the Cls in any group g in G. If g is found, we insert ci into g. Otherwise, we create
anew group g’, insert ci into g’, and add g’ into G. Besides, the CIs in each group are sorted by the
timestamp as they are verified by this order in the controlled execution. In order to balance the number
of ClIs in each group, we rank the groups by the number of CIs already in the group. The group with
the fewest CIs will have the highest priority to receive a new CI.

Suppose we have n CIs, when we insert the k” h CTinto a group, for the worst case, we have to
compare it with the k-1 CIs that have been previously inserted. Totally, we have to compare the CIs

(n-1)

n
forl1+2+...+n-1= times, which has a time complexity of O(nz). However, in practice, we

do not need to compare as many CIs as the worst case.

3.4. Controlling the Thread-Scheduling

We verify a predicted AV bug or replay a known AV bug by converting the CI to the corresponding
AVI. As Figure 6 shows, the conversion works by controlling the thread-scheduling. For the FCI type,
as sub figure (a) shows, we insert delays before the remote access S3 and wait for the first local access
S1 to execute first. When S3 is executed, we allow the second local access S2 to execute. The BCI
type is similar, as sub figure (b) shows: we execute S1 first, then we insert delays before S2 and wait
for S3 to execute first. Finally, we execute S2 after the execution of S3. We record the thread id (tid),
the instruction (ip), and the memory address (addr) of each access, using a three-tuple (#id, ip, addr)
to uniquely determine a memory access and precisely locate it in the controlled executions.

When a thread delay is needed, we use a loop to keep inserting time intervals to that thread. The
time interval is implemented by invoking the sleep () function to block the current thread so as to
wait for the desired thread to execute. The loop stops when either the desired instruction in the other
thread is executed or the predefined timeout is reached. A timeout implies the CI cannot be converted
to the AVI, thus, the CI is non-buggy. The time interval is set to 1ms and the timeout is set to 1s.

However, since memory accesses are usually protected by critical sections formed by locks, when we
simply add delays right before the memory accesses, deadlocks can be caused. Thus, for the memory
accesses protected by the same lock, we first identify which critical section that each access belongs
to by traversing the log, then we move the whole critical section instead of a single memory access
(as subfigure (c) and (d) show). We record the thread id (#id), the call site value (cv), and the entry point
value (ev) of each lock and unlock call. The call site value can distinguish each lock and unlock call, and
the entry point value is used to decide whether two critical sections use the same lock. We use a 3-tuple
(tid, cv, ev) to uniquely determine a critical section and precisely relocate it in the controlled executions.

Copyright © 2019 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2019)
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Table II. Description of the test cases.

Name Type Description
1 BankAccount R:W:W2 Anatomicity-violation bug caused by simultaneously withdrawal
and deposit money.

2 CircularList WiWiR2 Non-atomitically removing and adding work units to the circular
list causes a bug.

3  LogProcSweep R:WiR: An atomicity-violation bug caused by inconsistently
manipulating a shared log.

4  Stringbuffer RiWiR2  An atomicity-violation bug caused by using different locks from
different class objects.

5 MySQL R:WiW: Non-atomicity operations of the content and the log in
MySQL-1.6.9 causes inconsistency.

6 Apache R:WiW2 Non-atomicity accesses to the server log results in log corruption
of Apache Httpd-2.0.48.

7 Mozilla WiWiR2 Atomicity violation in the Mozilla Application Suite causes a
null-pointer dereference.

8  Pbzip2 WiWiR2 An atomicity-violation bug crashes Pbzip2-0.9.4 when
decompressing files.

9 Pfscan R:WiW2  An atomicity-violation bug crashes Pfscan when scanning files.

10 Aget WiRiW: An atomicity-violation bug crashes Aget-0.4 when stop the

download process by ctrl-c.

4. IMPLEMENTATION

Weimplemented AVPredictor as a prototype tool of our approach. As Figure 2 shows, AVPredictor mainly
consists of five components (the shadowed parts): the monitor, the predictor, the pruner, the grouper,
and the thread controller. The monitor dynamically records execution traces of the target program into
log files. Then the predictor loads the traces from the log files, filters CIs from it, and predicts AVIs. The
pruner removes inconvertible cases from the identified CIs. The grouper groups the remained CIs and
writes them into different files in the groupset. Finally, the thread controller loads ClIs from each group file
and launches controlled executions to verify the potential atomicity-violation bugs. The monitor and the
thread controller are implemented by C++ based on the Pin instrumentation framework [23], whereas the
predictor, the pruner, and the grouper are implemented as offline tools by Python to reduce the runtime
overhead. AVPredictor is available at https://github.com/wpengfei/AVPredictor.git.

5. EVALUATION

AVPredictor is evaluated with a number of C/C++ programs (as Table II shows). Among them, seven
(No. 1 to No. 7) are benchmarks or buggy kernels extracted from real-world programs and three (No. 8
to No. 10) are full utility programs. Each of the test cases has a known AV bug. The experiments are
conducted on a machine with a 1.4GHz, 2-core CPU, 8 GB physical memory, running Ubuntu 16.04
and Pin framework 3.7.

5.1. Effectiveness

We test both the compress and decompress modes of Pbzip2, and the results are noted as Pbzip2-com
and Pbzip2-dec, respectively. In addition to the ability to detect bugs, we also pay attention to the
effectiveness of the pruning and grouping strategies. The results are shown in Table III.

(1) False reports. AVPredictor successfully found all the known AV bugs from the test programs.
AVPredictor can produce false positives during the prediction process, however, all the false positives
are eliminated either by the pruning or the verification in the controlled executions, thus, no false
positives remained. Besides, as Column 5 shows, 72.7% (8/11) of the known AV bugs in the test
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Table III. Effectiveness test results

Name Original  Pruned  Group BI Pruning Grouping
CINum. CINum. Num. Num. Rate Rate

BankAccount 2 2 2 2 0 0
CircularList 28 3 1 3 89.3% 66.7%
LogProcSweep 4 2 2 2 50% 0
Stringbuffer 2 1 1 1 50% 0
MySQL 42 39 38 14 7.1% 2.5%
Apache 4 4 4 3 0 0
Mozilla 1 1 1 1 0 0
Pbzip2-com 26 25 22 2 3.8% 12%
Pbzip2-dec 54 52 37 7 3.7% 28.8%
Pfscan 13 5 5 1 61.5% 0
Aget 23 15 8 3 34.8% 46.7%

Column 2 and 3 show the numbers of CIs before and after pruning; Column 4 shows the number
of groups generated by the grouper; Column 5 shows the number of buggy interleavings reported;
Column 6 shows the percentage of the Cls that are pruned; Column 7 shows the percentage of
the executions that saved by the grouping strategy.

programs have more than one buggy interleaving, and AVPredictor could display all the buggy
interleavings for the same bug to assist a thorough bug fix.

(2) A new bug. In addition to exposing the known AV bugs, AVPredictor also found a new AV bug
in the decompress mode of Pbzip2. The already known bug in Pbzip2 is caused by an unserializable
access to a lock variable, in which the main thread could delete the lock variable between the lock
and unlock operations based on this lock variable in a worker thread [5]. The program crashes
(manifests as a segment fault) when the worker thread tries to acquire an already-deleted lock. However,
the new bug is caused by an unserializable access to a shared pointer that points to a dynamically
allocated buffer. Interleaved modification on this buffer could crash the program (manifests as
“munmap_chunk () invalid pointer"and amemorydump)when deleting the buffer via this pointer.

(3) Pruning. As Column 6 shows, the pruning strategy is successfully applied to four out of the
seven extracted kernels with the highest pruning rate of 89.3%; For the utility programs, all of them
are pruned with a highest pruning rate of 61.5%. Thus, the pruning strategy is effective and could
improve the efficiency by reducing the CIs need to be verified.

(4) Grouping. As Column 7 shows, the grouping strategy is effective in two out of the seven extracted
kernels. This is because the kernels are relatively small, thus, the CIs tend to interfere with each other.
However, the grouping strategy works better for the utility programs, and three out of the four tests are
successfully grouped. Nevertheless, the grouping strategy can save up to 66.7% and 46.7% of the verify
executions for the extracted kernels and utility programs, respectively, which also improves the efficiency.

5.2. Efficiency

For the efficiency tests, we use the full utility programs (Pfscan, Pbzip2, Aget) as well as programs
(FFT, RADIX, LU, FMM, OCEAN) from the prevalent Splash2 benchmarks, giving up the previous
bug kernels owning to the too short running time. Splash2 benchmarks use multithreading to do the
scientific calculations, which are memory access intensive, it also provides precise execution time,
which facilitates the measurement.

5.2.1. Runtime Overhead In order to get the precise and reasonable runtime overhead, we ignore
the initial setup of the Pin instrumentation and compute the runtime overhead in the following way:
overhead = (Ti - Tb)/Tn, where Ti is the overall execution time with instrumentation enabled, 7b is
the base execution time with Pin but without any instrumentation, and 7= is the native execution time
without Pin or any instrumentation.

The runtime overhead of the monitor is mainly introduced by the logging process when writing traces
to the log files. We implement the monitor using the fast buffering API of Pin. The fast buffering uses the
thread local buffer to store the trace data during the execution and writes out the data when the buffer is
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Table IV. Runtime overhead evaluation results.

Name References Native  Base  Monitor Controller Overheady; Overheade
Pfscan 3971578k 7.21s  19.09s 80.14s 38.32s 8.5x 2.7x
Pbzip2-com 54k 11.94s 15.68s 17.89s 19.12s 0.2x 0.3x
Pbzip2-dec 34933k  4.24s  6.76s 12.48s 7.35s 1.3x 0.1x
Aget 1k  021s  2.01s 2.07s 2.03s 0.3x 0.1x
FFT 628175k 1.59s  3.24s 32.16s 34.35s 18.2x 19.6x
RADIX 20214k 0.08s 1.01s 3.42s 1.68s 30.1x 8.4x
LU 8230582k  7.82s  9.10s 86.72s 423.72s 9.9x 53.0x
FMM 711709k  0.89s  2.28s 32.32s 28.83s 33.7x 29.8x
OCEAN 2574687k 2.31s  3.99s 42.5 119.29s 16.7x 49.9x
Average - - - - - 13x 18x

Column 2 (References) provides the memory reference number of each test program, which is used as an indicator of
the program size. Column 3 (Native) are the execution time without Pin. Column 4 (Base) shows execution time with
Pin but without any instrumentation. Column 5 (Monitor) and Column 6 (Controller) represent the execution time with
the monitor and the controller enabled, respectively; Column 7 (Overheadp, ) and Column 8 (Overheadc ) represent

the overheads introduced by the monitor and controller, respectively.

full. As the fast buffering calls the INS_InsertFillBuffer () API to directly write the data into the
buffer, it avoids calling other analysis routines that introduce extra overhead. When writing out the data,
we write the whole buffer in binary to the file, which is much faster than converting the traces to text and
writing them out line by line. All of the above optimizations significantly reduce the runtime overhead.

For the controller, the runtime overhead is mainly introduced by loading the ClIs and controlling
the thread-scheduling. When loading the ClIs, the controller opens the grouped file and read CIs from
the file, which incurs runtime overheads. The controller controls the thread-scheduling by adding
time delays before the undesired thread, which inevitably introduces additional overhead.

As Table IV shows, the average runtime overhead of AVPredictor is 13x for the monitoring and
18x for the thread-controlling. The overhead is acceptable for a prototype tool, which is lower than
the state-of-the-art approaches such as AVIO [15] (25x for the monitor) and Maple [24] (50x for the
profiler and 30x for the active scheduler).

5.2.2. Memory Overhead The monitor incurs memory overhead mainly by the buffers when logging
the trace. The memory reference buffer size is set to 4096 pages, which will be dumped into the log
file when it is full. Since the lock references and synchronization references are much fewer than
the memory references, we use fixed-size arrays to buffer the lock references and synchronization
references, and write them out when the execution finishes. Both of the two buffer lengths are set to
100k, and the space consumptions are 2.4MB and 1.6MB, respectively. For the controller, the memory
overhead is negligible as it does not need to buffer data in addition to a few local variables.

5.3. Comparison

We compare AVPredictor with the state-of-the-art works in two groups. For the open sourced tools,
we conduct the experiments by running them with the same test programs and compare the results
directly. Whereas for the tools whose source code is unavailable, we conduct the comparison indirectly
based on the already known experiment results with the same test programs.

In the first group, we compared AVPredictor with PCT and Maple. PCT [25] is a random testing
technique that provides a probabilistic guarantee in exposing concurrency bugs. Maple [24] is a
systematic-testing approach that can detect AV bugs by controlling the thread-scheduling to expose
untested interleavings. As Table V shows, both Maple and AVPredictor can expose all the known
AV bugs from the test programs, whereas PCT failed to expose four of them before timing out (within
24 hours). Thus, random-based testing without controlling the thread-scheduling is less effective in
detecting AV bugs caused by rare buggy interleavings. As for efficiency, AVPredictor exposes the
AV bug faster than Maple in each test, and the average speedup is 5.8x. This is benefited from the
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Table V. Comparison with PCT and Maple.

Name PCT Maple AVPredictor Speedup
BankAccount 17.4s 10.0s 3.6s 2.8x
CircularList 9.1s  10.6s 2.4s 4.4x
LogProcSweep | Timeout  17.1s 3.5s 4.9x
Stringbuffer 56.4s  12.8s 2.5s 5.1x
MySQL 29s  133.9s 58.8s 2.3x
Apache 24.6s  21.4s 2.4s 3.6x
Mozilla 24.6s  21.4s 24s 9x
Pbzip2-com Timeout 155.1s 42.6s 3.6x
Pbzip2-dec Timeout 168.4s 64.7s 2.6x
Pfscan Timeout 326.4s 18.5s 17.6x
Aget 355s  177.4s 23.0s 7.7x

prediction technique we adopt, which covers only the possible buggy interleavings instead of trying
to search the whole interleaving space as Maple does.

In the second group, we compare AVpredictor with AVIO and Atom-aid. AVIO [15] is an AV bug
detection tool based on an observation called the access interleaving invariant. It detects violations
of these invariants at runtime to find AV bugs in the monitored runs. Atom-Aid [26] uses hardware
signatures to both detect and survive atomicity violations by preventing their manifestation. For
the effectiveness, AVPredictor can find all the known AV bugs from the test programs as AVIO and
Atom-Aid did. However, AVIO can only report bugs that manifest in the monitored runs and cannot
predict non-exposed bugs, while AVPredictor can both detect exposed bugs and predict non-exposed
bugs (e.g., the new bug in Section 5.1). For the efficiency, AVIO introduces 25x runtime overhead
for the monitored runs, whereas AVPredictor only introduces 13x runtime overheads for the monitored
runs and 18x for the controlled runs. Although the hardware version of AVIO and Atom-Aid introduced
lower runtime overhead than AVPredictor, they rely on the support of specific hardware feature.

Therefore, AVPredictor is an effective tool to detect AV bugs with acceptable runtime overheads.
It does not rely on the additional support such as training runs or hardware features. It can predict
unmanifested AV bugs from a non-buggy execution and display all the buggy interleavings for the
same AV bug to assist a thorough bug fix.

6. DISCUSSION

Among different types of concurrency bugs, AV bugs are one of the most significant kind. They
are difficult to detect and fix when it can be triggered by different buggy interleavings introduced
by the thread-scheduling. When the program is large and complicated, even for a known AV bug,
the developer can not imagine all the possible buggy interleavings. This makes the generated patch
incomplete and ineffective under certain thread-scheduling (such as the example in Figure 1). As the
experiment shows, 72.7% (8/11) of the known AV bugs in the test programs have more than one buggy
interleaving. Therefore, comprehensively detecting all the possible buggy interleaving for the same
AV bug is important to thoroughly fix the bug.

In this paper, we propose a prediction-based approach to comprehensively detect AV bugs. Our
approach can predict unmanifested AV bugs from a non-buggy execution and display all the buggy
interleavings for the same AV bug to assist a thorough bug fix. In order to achieve this goal and improve
efficiency, our approach adopts three strategies: (1) covering only the potential buggy interleavings
by prediction; (2) pruning violation-free interleavings before verification; (3) grouping the CIs for
verification. In the future, we can further improve the efficiency by distributing the grouped CIs to
different machines and parallelize the verification executions. These strategies successfully reduce the
runtime overhead of our approach to an acceptable level of 13x for the monitored execution and 18x for the
controlled execution, which is lower than similar works [15,21,24]. As the experiments show, the pruning
strategy is applied to 8/11 of the test programs with the highest pruning rate of 89.3%; The grouping
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strategy is applied to 5/11 of the test programs, saving up to 66.7% of the verification executions. Thus,
our prediction-based approach achieves a speedup of 5.8x compared to the systematic approach of Maple.

Our approach currently focuses on the AV bugs that occur between user threads, neglecting
special types such as the double-fetch bugs [27,28] that occur between the kernel and user threads
or other concurrency bugs such as the order-violation bugs [7,29]. In the future, we would take
more concurrency bug types into consideration. The modularized design of AVPredictor provides a
portable way to integrate new bug types. We only need to add new rules to the analysis module without
modifying the monitor and thread controller. Thus, AVPredictor has good scalability. In addition,
our approach does not rely on the source code [20], the hardware support [26], or the training runs [15],
thus, it is practical for program testing even after software release.

7. RELATED WORK

Various approaches have been proposed to detect atomicity-violation bugs. Stress-testing approaches [5]
are easy but less effective due to the low probability of exposing bugs. Different runs in stress-testing
tend to cover similar interleavings. Systematic-testing approaches [30-32], such as random-based
techniques [25, 33] and the model checking techniques [34-36], are less efficient because the
interleaving space is huge and a majority of the covered interleavings are non-buggy.

Active-testing approaches control the thread-scheduling to increase the probability of bug
manifestation. Dynamic checkers such as AVIO [15], SVD [21], Atomizer [22], and ATOMFUZZER [3]
detect atomicity-violation bugs via monitored runs. However, these dynamic checkers are limited
to expose concurrency bugs that manifest in the monitored runs, whereas failing to expose the
unmonitored ones. AVPredictor can detect exposed bugs and predict non-exposed bugs. Besides,
AVPredictor does not rely on training runs as AVIO, does not produce large numbers of false reports
as Atomizer, and does not introduce severe runtime overhead as SVD.

Prediction-based active testing imporves bug manifestation by predictive algorithms. Maple [24] and
CTrigger [5] use profiling runs to collect traces and use controlled runs to expose atomicity-violation
bugs, which is similar to our approach. However, they control the thread-scheduling to exercise the
low-probability interleavings instead of to cover the potential buggy interleavings as AVPredictor does.
Thus, the buggy-exposing efficiency is still low (demonstrated in Section 5.3). Besides, AVPredictor
further improves the efficiency by a grouping strategy.

PECAN [6] uses the predictive trace analysis for detecting general access anomalies in concurrent
Java programs. It predicts access anomalies and generates “bug hatching clips” that deterministically
instruct the input program to exercise the predicted access anomalies. However, a majority of such access
anomalies are non-buggy. CCI [37] detects concurrency bugs by tracking specific thread interleavings
at runtime and using statistical models to identify strong failure predictors among them. It uses the
random sampling strategies to lower the runtime overhead, which inevitably reduces the interleaving
coverage, and misses potential bugs. Prediction-based active testing techniques are also used to detect
other types of concurrency bugs, such as data races [14] and deadlocks [38] [39]. However, none of
these approaches pays attention to the atomicity-violation characteristics. AVPredictor is specific to
the AV bugs and can expose the different buggy interleavings of the same bug to assist a thorough fix.

In addition, some inspiring works use hardware feature to detect AV bugs. Atom-Aid [26] uses
“implicit atomicity" provided by the hardware chunk to both detect and survive atomicity violations
by preventing their manifestation. Colorsafe [20] dynamically detects and avoids atomicity violations
by grouping related data into colors and monitoring access interleavings in the “color space" via
transactions. However, the implementation of such approaches relies on additional supports, such
as the hardware feature, the availability of the source code, or the prior manual efforts, thus, the
practicability is limited. AVPredictor is free from such limitations.
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8. CONCLUSION

The presented prediction-based approach to comprehensively detect atomicity-violation bugs can
predict unmanifested atomicity-violation bugs from a non-buggy execution and display all the buggy
interleavings for the same atomicity-violation bug to assist a thorough bug fix. A prototype named
AVPredictor is implemented and evaluated. Experiments show that 72.7% of the test programs
have more than one buggy interleaving and AVPredictor could effectively find all the known
atomicity-violation bugs as well as a previously unknown bug together with all the buggy interleavings.
The runtime overhead is 13x for the monitored execution and 18x for the controlled execution.
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A. RUNTIME OUTPUT OF AVPREDICTOR

This section provides the runtime output information of AVPredictor. The following information is only available
in the debug model (turn on the DEBUG macro) as printing such information slows down the execution.
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Table VI. Monitor Output

[ThreadStart] Thread O created, total number is O

[Thread——Lock] Tid: 0, time: Oxcb97128a1939, lock_callsite_v: Oxb44e3bb6, lock_entry_v: Oxb7{ff4ed.
[ThreadUnLock] Tid: 0, time: 0xcb9713b856£6, unlock_callsite_v: 0xb44e3d59, unlock_entry_v: Oxb7{ff4e4.
[ThreadStart] Thread 1 created, total number is 1

[ThreadStart] Thread 2 created, total number is 2

[ThreadStart] start logging

[Thread——Lock] Tid: 2, time: 0xcb97315eab30, lock_callsite_v: 0x8048757, lock_entry_v: 0x804fal4.
[Thread——Lock] Tid: 1, time: 0xcb9731932042, lock_callsite_v: 0x8048757, lock_entry_v: 0x804fal4.
[ThreadUnLock] Tid: 2, time: Oxcb97320f8804, unlock_callsite_v: 0x8048771, unlock_entry_v: 0x804fal4.
[Thread——Lock] Tid: 2, time: 0xcb97322f7d60, lock_callsite_v: 0x804878e, lock_entry_v: 0x804fal4.
[ThreadUnLock] Tid: 2, time: Oxcb97325182c0, unlock_callsite_v: 0x80487a8, unlock_entry_v: 0x804fal4.
[ThreadUnLock] Tid: 1, time: 0xcb97327¢7511, unlock_callsite_v: 0x8048771, unlock_entry_v: 0x804fal4.
[Thread——Lock] Tid: 1, time: 0xcb9734cb99a4, lock_callsite_v: 0x804878e, lock_entry_v: 0x804fal4.
[ThreadUnLock] Tid: 1, time: 0xcb9734d0d661, unlock_callsite_v: 0x80487a8, unlock_entry_v: 0x804fal4.
[BufferFull]pc:0x804889d,addr:0x804a044,time:0xcb972¢3cf131,tid:0x2,read:0
[BufferFull]pc:0x804875d,addr:0x804fa10,time:0xcb9731c8e311,tid:0x2,read:0
[BufferFull]pc:0x8048797,addr:0x804fa10,time:0xcb97324999d4,tid:0x2,read: 1

[ThreadFini] Thread 2 joined, total number is 2
[BufferFull]pc:0x8048850,addr:0x804a044,time:0xcb9724214b03,tid:0x1,read:0
[BufferFull]pc:0x8048866,addr:0x804a044,time:0xcb97317dc0fd,tid:0x 1 ,read:0
[BufferFull]pc:0x804875d,addr:0x804fa10,time:0xcb97327e6ee2,tid:0x 1 ,read:0
[BufferFull]pc:0x8048797,addr:0x804fa10,time:0xcb9734d0d018,tid:0x 1,read: 1

[ThreadFini] Thread 1 joined, total number is 1

[ThreadFini] stop logging.

[Thread——Lock] Tid: 0, time:0xcb973b63eb24, lock_callsite_v: Oxb7fea93d, lock_entry_v: Oxb7fff4ed.
[ThreadUnLock] Tid: 0, time:0xcb973cdac2c9, unlock_callsite_v: Oxb7feaa03, unlock_entry_v: Oxb7fff4e4.
[BufferFull]pc:0x804853f,addr:0x8049ffc,time:0xcb97 1 cdf24fd,tid:0x0,read:0
[BufferFull]pc:0x8048715,addr:0x8049f00,time:0xcb971cfd513d,tid:0x0,read:0
[BufferFull]pc:0x8048827,addr:0x804fal0,time:0xcb971ece9099,tid:0x0,read: 1
[BufferFull]pc:0x8048952,addr:0x804fa30,time:0xcb972a5d7ae8,tid:0x0,read:0

[ThreadFini] Main Thread joined, total number is 0

countMemRef =11

countLockRef =12

countSyncRef =0
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Table VII. Predictor Output

>>>>>>>>>>>>>>>>>>[loaded mem_trace]<<<<<<<<<<<<<<< <K<K LKL LKL

addr: 134520576 thread_num 1 tid_list [0]

=>tid 0 optag 1

{’tid*:0, ’ip’:134514453, op’:0, addr’:134520576, *time’:300854382745500L }

addr: 134543920 thread_num 1 tid_list [0]

=>tid 0 optag 1

{’tid’:0, ’ip’:134515026, *op’:0, addr’:134543920, *time’:300854593387006L }

addr: 134520900 thread_num 2 tid_list [1, 2]

=>tid 1 optag 1

{’tid’:1,’ip’:134514768, op’:0, addr’:134520900, ’time’:300854503377701L}

{’tid’:1, ’ip’:134514790, *op’:0, *addr’:134520900, *time’:300854731142805L}

=>tid 2 optag 1

{’tid’:2,’ip’:134514845, *op’:0, *addr’: 134520900, "time’:300854623855132L}

addr: 134543888 thread_num 3 tid_list [1, 2, 0]

=>tid 0 optag 0

{’tid*:0, ’ip’:134514727, op’:1, addr’:134543888, *time’:300854414244820L }

=>tid 1 optag 2

{’tid’:1, ’ip’:134514525, *op’:0, *addr’:134543888, *time’:300854741888865L }

{’tid’:1,’ip’:134514583, op’:1, addr’: 134543888, *time’:300854761068501L}

=>tid 2 optag 2

{’tid*:2,’ip’:134514525, *op’:0, *addr’:134543888, *time’:300854770372774L}

{’tid’:2,ip’:134514583, *op’:1, *addr’: 134543888, "time’:300854863837481L}

addr: 134543924 thread_num 1 tid_list [0]

=>tid 0 optag 1

{’tid*:0, ’ip’:134515048, op’:0, addr’:134543924, *time’:300854880252394L }

addr: 134520828 thread_num 1 tid_list [0]

=>tid 0 optag 1

{’tid*:0, ’ip’:134513983, *op’:0, *addr’:134520828, *time’:300854379934800L }

>>>>>>>>>>>>>>>>>>[loaded cs list]<<<<<<<<<<<<<<<<LL<LLLLLK<

{’1_cv’:3021282230L, ’1_ev’:3087004900L, ’ftime’:300854231871793L, *stime’:

300854216155510L, *tid’: 0, "u_cv’: 3021282649L, "u_ev’: 3087004900L }

{’1_cv’: 134514519, °1_ev’: 134543892, *ftime’: 300854751945481L, ’stime’:
300854739271508L, ’tid’: 1, ’u_cv’: 134514545, ’u_ev’: 134543892}

{’L_cv’: 134514574, °1_ev’: 134543892, *ftime’: 300854763368480L, ’stime’:
300854755321374L, °tid’: 1, ’u_cv’: 134514600, "u_ev’: 134543892}

{’Lcv’: 134514519, °1_ev’: 134543892, *ftime’: 300854770378229L, ’stime’:
300854758009206L, *tid’: 2, *u_cv’: 134514545, u_ev’: 134543892}

{’Lcv’: 134514574, °1_ev’: 134543892, *ftime’: 300854863838852L,, ’stime’:
300854863715532L, ’tid’: 2, ’u_cv’: 134514600, u_ev’: 134543892}

{’1_cv’:3086919997L, ’1_ev’:3087004900L, ’ftime’:300854937005159L, *stime’:

300854908579384L, ’tid’: 0, "u_cv’: 3086920195L, "u_ev’: 3087004900L }

>>>>>>>>>>>>>>>>>>[calculated CI list]<<<<<<<<<<<<<<<<<<<<<<<<

first: {’tid’:1, ’ip’:134514525, *op’:0, *addr’: 134543888, "time’:300854741888865L }

second: {’tid’:1, ’ip’: 134514583, ’op’:1, *addr’: 134543888, ’time’:300854761068501L }

inter: {’tid’:2, ’ip’:134514525, *op’:0, *addr’: 134543888, *time’:300854770372774L}

first: {’tid’:2, "ip’:134514525, op’:0, *addr’:134543888, ’time’:300854770372774L}
second: {’tid’:2, ’ip’:134514583, ’op’:1, *addr’: 134543888, ’time’:300854863837481L }
inter: {’tid’:1, ’ip’:134514525, *op’:0, *addr’:134543888, "time’:300854741888865L}
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Table VIII. Pruner and Grouper Output

>>>>>>>>>>>>>>>>>>[result list after prunning]<<<<<<<<<<<<<<<<<<<<<<<<
firstaccess: {’tid’:1, ’ip’:134514525, *op’:0, *addr’: 134543888, "time’:300854741888865L }
second access: {’tid’:1, ’ip’:134514583, "op’:1, *addr’: 134543888, ’time’:300854761068501L }
inter access: {’tid’:2, ’ip’:134514525, *op’:0, *addr’: 134543888, "time’:300854770372774L}
first_cs: {"1_cv’: 134514519, ’1_ev’: 134543892, *ftime’: 300854751945481L,

*stime’: 300854739271508L, ’tid’: 1, "u_cv’: 134514545, ’u_ev’: 134543892}
second_cs: {’1_cv’: 134514574, 1_ev’: 134543892, *ftime’: 300854763368480L,

stime’: 300854755321374L, ’tid’: 1, "u_cv’: 134514600, *u_ev’: 134543892}
inter_cs: {"1_cv’: 134514519, ’1_ev’: 134543892, ftime’: 300854770378229L,

*stime’: 300854758009206L, *tid’: 2, *u_cv’: 134514545, ’u_ev’: 134543892}

first access: {’tid’:2, ’ip’:134514525, *op’:0, *addr’: 134543888, time’:300854770372774L }
second access: {’tid’:2, ’ip’:134514583, "op’:1, ’addr’: 134543888, "time’:300854863837481L}
inter access: {’tid’:1, ’ip’:134514525, *op’:0, *addr’: 134543888, "time’:300854741888865L }
first_cs: {’1_cv’: 134514519, ’1_ev’: 134543892, *ftime’: 300854770378229L,

*stime’: 300854758009206L, 'tid’: 2, *u_cv’: 134514545, ’u_ev’: 134543892}
second_cs: {’1_cv’: 134514574, ’1_ev’: 134543892, ’ftime’: 300854863838852L,

*stime’: 300854863715532L, ’tid’: 2, "u_cv’: 134514600, *u_ev’: 134543892}
inter_cs: {’1_cv’: 134514519, ’1_ev’: 134543892, *ftime’: 300854751945481L,

*stime’: 300854739271508L, ’tid’: 1, "u_cv’: 134514545, ’u_ev’: 134543892}

>>>>>>>>>>>>>>>>>>[Grouping]< <<<<<<<<<<< <KL LLLL LKL
sorted lists in group 0 :
{first_interval’: [300854739271508L, 300854751945481L],
’second_interval’: [300854755321374L, 300854763368480L],
’inter_interval’: [300854758009206L, 300854770378229L],
‘msg’: "1[1]134514519,134514545; [1]1134514574,134514600; [2]134514519,134514545\n” }
sorted lists in group 1 :
{first_interval’: [300854758009206L, 300854770378229L],
’second_interval’: [300854863715532L, 300854863838852L],
’inter_interval’: [300854739271508L, 300854751945481L],
‘msg’: *1[2]134514519,134514545; [2]134514574,134514600; [1]134514519,134514545\n” }
>>>>>>>>>>>>>>>>>>[statistic result]<<<<<<<<<<<<<<<<<L<<LL<LKL
total accesses: 12
visited addresses num: 6
total CI num: 2
result CI num after prunning: 2
group num: 2
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Table IX. Controller Output

work_dir/groupset/group_0.log

Load CI0
[load CI from file]: 1[2]0x8048757,0x8048771; [2]0x804878e,0x80487a8; [1]18048757,8048771
Loaded 1 CI(s) for replay

[beforeThreadLock][enter First] callsite_v:0x8048757, tid:2

[beforeThreadLock][delay Inter] callsite_v:0x8048757, tid: 1

[beforeThreadUnLock][executed First] callsite_v:0x8048771, tid:2

[beforeThreadLock][delay Second] callsite_v:0x804878e, tid:2

[beforeThreadLock][enter Inter after delay] callsite_v:0x8048757, tid: 1
[beforeThreadUnLock][executed Inter] callsite_v:0x8048771, tid:1

[beforeThreadLock][enter Second after delay] callsite_v:0x804878e, tid:2
[beforeThreadUnLock][executed Second] callsite_v:0x80487a8, tid:2

main_bank_lock: main.cc:103: int main(int, chars:):

Assertion ‘account—>balance == 0’ failed.

Jstart_test.sh: line 85: 16702 Aborted (core dumped)
pin—3.7-97619—gcc—linux/pin —t work_dir/obj—ia32/controller.so ——

test_dir/main_bank_lock

work_dir/groupset/group_1.log

Load CI0
[load CI from file]:1[1]0x8048757,0x8048771; [ 1]0x804878e,0x80487a8; [2]18048757,8048771
Loaded 1 CI(s) for replay

[beforeThreadLock][delay Inter] callsite_v:0x8048757, tid:2

[beforeThreadLock][enter First] callsite_v:0x8048757, tid: 1

[beforeThreadUnLock][executed First] callsite_v:0x8048771, tid:1

[beforeThreadLock][enter Inter after delay] callsite_v:0x8048757, tid:2
[beforeThreadLock][delay Second] callsite_v:0x804878e, tid: 1
[beforeThreadUnLock][executed Inter] callsite_v:0x8048771, tid:2

[beforeThreadLock][enter Second after delay] callsite_v:0x804878e, tid: 1
[beforeThreadUnLock][executed Second] callsite_v:0x80487a8, tid: 1

main_bank_lock: main.cc:103: int main(int, char:):

Assertion ‘account—>balance == 0’ failed.

Jstart_test.sh: line 85: 17408 Aborted (core dumped)
pin—3.7-97619—gcc—linux/pin —t work_dir/obj—ia32/controller.so ——
test_dir/main_bank_lock
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