
Non-Blocking Two Phase Commit Using Blockchain

Paul Ezhilchelvan, Amjad Aldweesh, Aad van Moorsel
Newcastle University

Newcastle upon Tyne, UK
{paul.ezhilchelvan, A.Y.A.Aldweesh2, aad.vanmoorsel}@ncl.ac.uk

ABSTRACT
Though the 2 Phase Commit protocol (2PC) remains cen-
tral to distributed database management, it has a provably-
inevitable vulnerability to blocking even when a distributed
system guarantees the most demanding synchrony or timing-
related requirements. This paper investigates eliminating
that vulnerability by coordinating 2PC using a blockchain
that supports execution of user-defined smart contracts. It
demonstrates that the 2PC blocking can be eliminated at a
moderate financial cost, if the blockchain also meets the syn-
chrony requirements. Otherwise, despite the blockchain be-
ing a reliable state-machine, eliminating 2PC blocking may
well be impossible, depending on whether the cluster host-
ing the database is synchronous or not. Where not possible,
the practical consequences turn out to be not so serious:
unnecessary aborts occurring with a small probability.

Keywords
Atomic Commit, Blocking Protocols, Blockchain, Smart Con-
tract, Delay Bounds, Synchronous Systems.

1. INTRODUCTION
Since the advent of Bitcoin in 2009 [1], cryptocurrencies

have gained considerable interest. This is then followed by
an even larger interest being accorded to Bitcoin’s under-
lying technology, the blockchain, and to Ethereum’s devel-
opment of smart contracts that empower users to execute
custom-made programs on a blockchain. A variety of appli-
cations outside of cryptocurrency domain, such as Finance
[13], Banking and Energy Trade [15], have been leveraging
blockchain and smart contract technologies to enhance ac-
countability, auditability and trust in their core processes.

This paper investigates using these technologies to en-
hance the availability of distributed database management
systems [6]. Precisely, we revisit a well-known impossibility
result [7, 8] related to atomic commit and demonstrate that
these new technologies, under certain conditions, can help
accomplish what would otherwise be impossible and that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CryBlock 2018, June 15,2018, Munich, Germany
c© 2018 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

the conditions identified are met by the emerging blockchain
systems. If a given blockchain system cannot meet these
conditions, we assert that the impossibility cannot be ruled
out altogether, even though many desirable features of a
blockchain might tempt one to make more optimistic con-
clusions. Thus, this paper has the dual aim of presenting
the possibilities to aspire for and the pitfalls to be aware of.

When a database transaction is executed by multiple pro-
cesses in a distributed system, a commit protocol ensures
the essential requirement of that transaction execution be-
ing either committed or aborted, at all processes. The 2
phase commit protocol (2PC, for short) is a widely-used one
due to its conceptual simplicity and ease of implementation.
It is however vulnerable to periods of non-progress or block-
ing. This vulnerability is proven [7] to be inevitable even in
synchronous systems where bounds on delays (e.g., message
transfer delays) can be reliably estimated, and the only type
of undesirable events that can occur is process crash.

We define what it means for a blockchain system to be syn-
chronous and employ such a blockchain to play specific roles
in the execution of 2PC. The resulting protocol, referred to
as 2PC with blockchain, is shown to be non-blocking. It
also retains the native structure of 2PC which makes the
proposed extension easily adoptable in legacy systems. Our
contributions also include an Ethereum based implementa-
tion to assess the cost of smart contract execution which
turns out to be affordably small.

We next observe that some blockchain systems, typically
the public ones with miners having the freedom of choice in
composing their blocks, may not qualify to be synchronous.
When the blockchain used is asynchronous, we prove that
eliminating 2PC blocking is not possible, if the distributed
system hosting database processes is also asynchronous; it
remains an open problem, if the latter system is synchronous.

The structure and the contributions of the paper are as fol-
lows. Next section defines the atomic commit problem that
2PC solves, blocking and synchronous versus asynchronous
systems. Assuming a synchronous system, Section 3 de-
scribes in details the traditional version of 2PC protocol and
then explains the causes of 2PC blocking. It thus provides
the essential background for Section 4 which contains two of
our three contributions: (i) detailed presentation of a non-
blocking 2PC with a synchronous blockchain, and (ii) both
cost and correctness analyses. Final contribution is in Sec-
tion 5 which proves the impossibility of non-blocking 2PC
when both the blockchain and the distributed system are
asynchronous and then discusses this result from a practical
perspective. Finally, Section 6 concludes the paper.

2. THE ATOMIC COMMIT PROBLEM
The problem is specified in the context of a set of dis-

tributed processes Π = {P1, P2, . . . , Pn}, n > 1. A process
Pi, 1 ≤ i ≤ n, can crash at any time and recover after some
arbitrary amount of time. Information logged in the disk
prior to crash survives the crash. At any given instance,
there are two complementary subsets of Π, the crashed and
the operative. For discussions, we would assume that the
former is small and a strict subset of Π.

Each operative process autonomously evaluates a vote that
can be either yes or no. The problem is to have processes
decide either on commit or abort, subject to the following
four requirements [9]:

• Agreement : No two processes decide differently;

• Termination: All operative processes decide;

• Abort-Validity : Abort is the only possible decision if
some process votes no or does not vote at all; and,

• Commit-Validity : Commit is the only possible decision
if every process is operative and votes yes.

Agreement requires any two decided processes, be it crashed
or operative, to have decided identically. Say, Pk decides
on commit and immediately crashes; then no other process
can decide on abort even if all but Pk are operative and
deduce Pk to have crashed. By Termination, any solution is
guaranteed to be meaningful in practice.

Abort-Validity permits a process with no vote, not to ex-
ercise its vote. Commit-validity rules out trivial solutions
such as all processes perforce decide on abort irrespective
of their votes. These two requirements, as we shall see in
§ 5, together make it impossible to guarantee atomic com-
mit even in blockchain based solutions when the worst-case
delay estimates being used are not guaranteed to hold.

Observe that any non-trivial solution to atomic commit
requires operative processes of Π to interact amongst them-
selves - leading to decentralised protocols, or to a protocol
coordinator C - leading to centralised versions. The widely-
used 2-Phase Commit (2PC) protocol is a centralised one
and would be our focus here. (In practice, the role of C is
typically played by a designated process in Π.)

Definition. An atomic commit protocol is said to be
blocking, if there can exist executions in which processes
cannot decide until a subset of crashed processes ought to
recover. Blocking is thus undesirable as the progress of oper-
ative processes, normally larger in number, is dictated by the
recovery times of crashed ones. A protocol is non-blocking
if it is guaranteed never to block. Whether one can have
a non-blocking atomic commit protocol depends on if the
distributed system is synchronous or asynchronous [8, 9].

2.1 Synchronous vs Asynchronous Systems
Definition: A distributed system is said to be synchronous,

if bounds on processing delays and inter-process communi-
cation delays can be reliably estimated; otherwise, it is said
to be asynchronous [8, 9].

Typically, distributed systems where delays can fluctuate
arbitrarily and therefore have large variances, are classed
as asynchronous. Note that the bound estimates in a syn-
chronous system can be large (typically, worst-case esti-
mates) but must be finite.

It is known that non-blocking atomic commit is not pos-
sible in an asynchronous system [8], unless the latter obliges
every execution by behaving in certain desirable ways (see
[9]). It is, however, possible to have a non-blocking atomic
commit in a synchronous system; intuitively, the reason is
as follows. Reliable bound estimates in a synchronous sys-
tem enable perfect crash detection using timeouts: a crash
is always detected and an operative process is never mis-
detected (no false positive/negative). Nevertheless, 2PC is
a blocking protocol even in a synchronous system [7], i.e.,
even when a cluster hosting Π supports delay bounds to be
estimated reliably and thereby perfect crash detection!

2.2 Synchronous vs Asynchronous Blockchains
We observe that this synchronous vs asynchronous classi-

fication holds for blockchain based systems as much as for
traditional distributed systems. (Definitions are in § 4.2.)
In public ledger systems, such as Ethereum, the time taken
for a valid transaction to be confirmed or irreversibly placed
in the blockchain is determined by a variety of delay-prone
factors - both human as well as system related; for instance,
a miner being (un)willing to include a transaction in their
block [12] falls under the former category and factors such as
the required number of follow-up blocks to assure blockchain
linearity and incoming transaction rate fall under the latter.

As per [12], Ethereum blockchain confirmation time for a
transaction can be unbounded with a significant probability,
suggesting large variances in end-to-end processing delays
within the blockchain infrastructure. On the other hand,
permissioned ledger systems (e.g., HyperLedger [14]), with
their hardened modular implementation of consensus proto-
cols (e.g., [10]) over dedicated machines, appear to promise
that the delays for transaction confirmation have small mean
(in the order of milliseconds) and also small variance and
can, therefore, be reliably bounded, thus making such sys-
tems candidates for synchronous ledgers.

A significant contribution of this paper is to show that
2PC can be made non-blocking, if the ledger system being
used and the cluster hosting processes of Π are synchronous.

3. 2PC IN SYNCHRONOUS SYSTEMS
The 2-Phase Commit protocol, 2PC for short, is explained

below in the context of database transactions [6]. Shards of
a database are distributed over processes in Π. We assume
that a crash-prone process, called the coordinator and de-
noted as C, launches a multi-shard transaction that requires
every process in Π to execute a set of serialisable operations
on their respective shards. We refer to this launching by C
as each process in Π getting work from C.

Let ω and δ denote upper bound estimates on the time any
operative Pi ∈ Π takes to complete its work and on message
transfer delays between any two operative processes, respec-
tively. Since the system is assumed to be synchronous, ω and
δ always hold.
C disseminates the work and awaits on a timeout of (ω+δ)

duration which is sufficient for any operative Pi to receive
and complete the work given to it. At the expiry of the
timeout, it initiates an execution of 2PC by broadcasting
cast vote to all processes - as shown in line 1, phase 1 of
Figure 1. This is then followed by setting a timer for ∆ = 2δ
and proceeding to phase 2.

When Pi receives work from C, it computes Ti as the local
time when a duration (ω+2δ) would elapse after the receipt

Phase 1
• Coordinator C:

1. Broadcast cast vote to all P1 . . . Pn

2. Set Timeout ∆ = 2δ; go to Phase 2

• Pi:
1. IF (cast vote not received until Ti or Vi = 0)

THEN quit ELSE {Log Vi = 1; send Vi to C;
Set timer ; go to Phase 2}

Phase 2
• C on timeout ∆:

1. IF any absent Vi THEN verdict = abort
ELSE verdict = commit

2. Log verdict ; Broadcast verdict to all P1 . . . Pn

• Pi:
1. Repeat on timer : IF verdict arrived THEN Log

verdict ELSE {request C; reset timer}
2. Until verdict logged

Figure 1: Two phase commit protocol

of the work. While doing the work, Pi will either complete
it and set its vote Vi = 1 or decide that work cannot be com-
pleted in a serialisable manner and set Vi = 0. In the latter
case, by the Abort-Validity property, Pi can deduce that the
decision or verdict is abort i.e., the transaction would be
aborted systemwide; so, it quits executing 2PC as shown in
line 1 of Phase 1 for Pi in Figure 1.

If Pi has set Vi = 1, it waits to receive cast vote. If
cast vote message is not received until Ti, Pi assumes that
C has crashed, decides abort and quits its execution of 2PC.
If, on the other hand, cast vote arrives by Ti, Pi continues
in 2PC by logging its vote Vi = 1, sending Vi to C and
proceeding to Phase 2.

Note that while a given Pi may or may not enter phase
2, C always does. When its ∆-timout expires, C counts an
absent vote from any Pk as Vk = 0; it decides on commit
verdict, if Vi = 1, ∀i : 1 ≤ i ≤ n; on abort verdict, otherwise.
The verdict decided is logged and broadcast to all Pi. (See
Phase 2 of Figure 1).

Any Pi that executes phase 2, awaits verdict from C and
requests C periodically (as per the timer value), if verdict
is not forthcoming. This periodic request will prompt a
crashed C to respond after its recovery by referring to the
verdict it logged prior to the crash. If no verdict has been
logged, C must have crashed prior to computing the verdict ;
in that case, C’s response would be abort.

Similarly, if Pi crashes after sending Vi = 1 to C, it will
observe, after recovery, the log entry of Vi = 1 and request
C to send the verdict. Thus, all operative processes, includ-
ing those that crash during execution and recover, decide -
ensuring termination. It is easy to see that the other three
requirements of atomic commit are also met in 2PC.

Figure 2 depicts the state transition diagram for any Pi

where a circle denotes a state and a double circle a terminal
state; a state transition is indicated by an unidirectional
arrow with a label I

O
where I indicates the input received by

Pi which causes the transition and O any output produced
by Pi after the transition. (’-’ indicates null output.) WG,
W1 and W2 represent states where Pi is doing the work
given, waiting for cast vote (see line 1, phase 1 in Fig 1)
and for verdict (line 1, phase 2 in Fig 1, respectively; a and
c denote states where Pi aborts and commits, respectively.

3.1 Inevitability of Blocking in 2PC

WG

W1

W2

c

a

Get−Work
−

cannot complete−
completed
−

cast vote
V ote=1

Time>Ti
−

V erdict=C
−

V erdi
ct=ABORT

−

Figure 2: 2PC State Transition Diagram for Process Pi

While Skeen [7] formally proves this inevitability, we offer
an intuitive understanding of the reasons for it by presenting
three distinct execution scenarios of 2PC.
Scenario 1: In this execution of 2PC, C crashes immedi-
ately after broadcasting cast vote and all Pi vote V = 1.

Each Pi is blocked until C recovers. Suppose that blocking
is avoided by using a recovery protocol that enables opera-
tive processes to interact amongst themselves and decide on
a verdict without waiting for the crashed to recover. Next
two scenarios prove that a correct recovery cannot exist.
Scenario 2: As in scenario 1 except that one Pk could not
complete its work, decides on abort and then crashes.

If a correct recovery exists, all operative Pi, i 6= k, must
decide on abort without waiting for Pk and C to recover.
Scenario 3: In this execution, C broadcasts cast vote, all
Pi vote V = 1 and C crashes sending verdict = commit only
to Pk which crashes soon after logging the received verdict.

If a correct recovery exists, all operative Pi, i 6= k, must
decide on commit without waiting for Pk and C to recover.
Note that execution environment is identical for all operative
Pi, i 6= k in both scenarios, but the verdict reached ought
to be different; so, a correct recovery cannot be designed.

4. NON-BLOCKING WITH BLOCKCHAIN

4.1 Approach
We can observe that if C were never to crash during 2PC

execution, then blocking cannot happen. We build on this
observation by having C initiate a transaction by delegating
work to all Pi and then entrust the 2PC coordination re-
sponsibilities to a blockchain infrastructure (BC, for short)
which, being a replicated state machine, would orchestrate
the 2PC execution in a crash-free manner. To accomplish
this, several aspects of BC will be made use of and they are
listed below.
Event ordering. Events directed at a BC are also called
transactions. BC puts a total order on these events and
records them in that order; event recording is immutable and
recorded events are permanently visible to all concerned par-
ties. Event ordering in BC can also be used to ensure exactly
once execution of an action, say, A when multiple sources,
e.g., processes in Π, can request A’s execution: BC can be
programmed (see smart contract below) to accept only the
first request in the total order and ignore the duplicates.
Wall Clock. Ordered transactions are first arranged in
blocks of fixed size which are then arranged in BC in the in-
creasing order of block timestamps. Assuming that transac-

tions are being continually submitted to BC, the increasing
timestamps of the blocks being added constitute a publicly-
visible, real-time wall-clock (possibly with irregular ticks);
processes of Π can use it as a common time-service.
Smart Contract. It is a computer program stored within,
and run by, BC in response to a function call embedded
within an ordered transaction. Execution is guaranteed to
be correct and is publicly verifiable. A smart contract has
a unique address and is structured as a collection of deter-
ministic functions. Contract code is written in languages
like Serpent, LLL or Solidity (our choice in § 4.5). The code
is compiled into byte-code that will be interpreted by a BC
component, such as, Ethereum Virtual Machine.
Ethereum [2]. It is the most popular platform to support
smart contract technology and is used in our implementation
(§ 4.5). A user process, such as C, can deploy a smart con-
tract in BC by launching a transaction whose data field con-
tains the Byte-code of the smart contract with parameters
appropriately initialised. Once this transaction is accepted
in BC, any named process, such as Pi, can invoke a contract
function by submitting a transaction. The invoking trans-
action is constructed with (i) the receiver address pointing
to the contract address and (ii) the parameter values for
the function call. In addition, in Ethereum, a transaction
includes two more fields; GAS and GAS PRICE [2]. The
miner who adds the block to BC will use the GAS PRICE to
convert the amount of GAS consumed into the Ethereum’s
native currency called Ether. Thus, the sender of an invok-
ing transaction is charged for executing the contract.

4.2 Synchronous Blockchain
Similar to definitions of ω and δ, let β be the block con-

struction bound on the delay that can elapse between the
instance when a user process U launches a valid (blockchain)
transaction TXU and the instance when a block containing
TXU is (irreversibly) added in BC; let α be the awareness
bound on the delay that can elapse between the instance
when TXU enters BC irreversibly and the instance when any
interested party gets aware of TXU in BC. We call the BC
infrastructure (together with miner/consensus nodes) syn-
chronous if it supports reliable estimation of finite β and α;
otherwise, it is said to be asynchronous.

The assumption of a synchronous BC implies that several
requirements have been met: a valid transaction submitted
to BC is never lost but is always considered for entry into
the BC in a timely manner, a party interested in a given
TXU is periodically scanning BC, etc. (Just like the validity
of δ bound requires no message be lost but every message
be queued, transmitted, received and delivered - all in a
timely manner.) Note that a synchronous BC requires the
underlying distributed system to be synchronous.

4.3 2PC with Synchronous Blockchain
We explain here (i) how C hands over the coordination

responsibilities for 2PC execution to the BC infrastructure
and, (ii) how Pi interacts with BC to execute 2PC, i.e., to
register its vote and then to receive the verdict.

As in traditional 2PC, C disseminates the work to each
Pi ∈ Π; it then hands over the responsibilities to the BC
infrastructure by launching a (BC) transaction TXC that
sets up the 2PC coordination smart contract in BC with
initial state = VOTING. (Smart contract code is explained
in § 4.4.) The role of C ends with launching TXC . Note that

C may crash after work dissemination and before launching
TXC ; in this case, all operative Pi must detect this and end
up deciding abort as in traditional 2PC execution.

When Pi receives work from C, it computes Ti as the local
time when a duration that is maximum of {ω, δ + β + α},
would elapse after the receipt of the work. Ti is the earliest
local time when Pi can complete its work and become aware
of TXC being added to BC, if C had launched TXC .

Thus, if TXC does not appear in BC until a block with
timestamp > Ti is added, i.e., until BC wall-clock exceeds
Ti, then, by synchrony assumptions, Pi can deduce that C
crashed without launching TXC ; it can subsequently abort
as shown by the state transition from W1 to a in Figure 3,
where WC denotes the BC wall-clock. The transitions from
state WG in Fig 3 are identical to those shown in Fig 2.
They have here become off-chain activities [11].

If a Pi that completes its work (WG → W1 in Fig. 3),
gets aware of TXC by local time Ti, it logs locally Vi = 1
(as in Phase 1 of Fig 1) registers its vote by launching TXi

to BC. When TXi is accepted in BC, it invokes V OTER
function of the smart contract with Vi = 1 as input. (State
of Pi now transits from W1 to W2 in Fig. 3).

Let TXC .BlkT ime be the timestamp of the block contain-
ing TXC . Any operative Pi gets aware of TXC no later than
WC = TXC .BlkT ime+α and its TXi, launched in response,
would be added to BC by WC ≤ TXC .BlkT ime + α + β.
(Note: α and β are upper bounds and actual delays can be
smaller than them.)

If all Pi vote Vi = 1, then the smart contract would
compute verdict = commit and display state = COMMIT
in BC. (Details in § 4.5.) All Pi observe this state by
WC ≤ TXC .BlkT ime+ 2α+ β.

Let ∆ = 2α + β. When WC exceeds TXC .BlkT ime +
∆, if an operative Pi that sent TXi cannot see state =
COMMIT in BC, then some Pk did not launch TXk. In
that case, Pi can safely decide verdict = abort. However, our
description here assumes that Pi decides verdict = commit
or abort only in response to what is being indicated in BC,
to be consistent with the traditional 2PC description.

WhenWC > TXC .BlkT ime+∆ and state 6= COMMIT ,
Pi launches TXVi to invoke VERDICT function of the smart
contract so that verdict is computed and displayed in BC.
In Fig. 3, Pi does W2 →W3 after launching TXVi and then
to W3 → a when BC indicates state = ABORT . If several
TXV were launched, only one will be effective in executing
V ERDICT (like A in § 4.1).

WG

W1

W2 W3

c

a

Get−Work
−

TXC in BC
Submit{TXi} to BC

WC>Ti
−

Cannot complete
−

completed
−

WC>TXC .BlkTime+∆
submit{TXVi

} to BCstate=COMMIT
−

state=ABORT
−

Figure 3: State Diagram for 2PC with Blockchain

4.4 Smart Contract Pseudo Code
Table 1 presents the pseudo-code of the 2PC coordination

smart contract together with its three functions which are
called (i) REQUEST () called by TXC to initialise the con-
tract, (ii) V OTER() by TXi to enter the vote of Pi in BC
and, (iii) V ERDICT () by TXVi to request the verdict to
be computed.

The description here assumes the following. The contract
is already deployed on the blockchain with a unique address.
It has an initial state INIT , with three parameters T imeout
(initialised to zero), an initially empty set A of named par-
ticipants and an empty set V of voted participants; its func-
tions have the following interfaces: REQUEST (A, T imeout),
V OTER(boolean) and V ERDICT ().
TXC submitted by C invokes REQUEST function with

(A = Π, T imeout = ∆), where ∆ = 2α + β. This initial-
isation succeeds if C is asserted to have ownership rights
to invoke this function and the code is in the initial state
INIT - as indicated in the Assert statement. If this asser-
tion succeeds, TXC is accepted and the state of the contract
is changed to V OTING which is publicly visible in BC; oth-
erwise, TXC is ignored. (This is always the case: a TX is
rejected if the pre-invocation assertion fails; throughout this
description, assertions are assumed to succeed, except for
duplicate calls on VERDICT function.)

Each Pi in W1 checks BC for TXc; when state = VOT-
ING, Vi = Y ES is sent by submitting TXi that invokes
VOTER function. Upon receiving TXi, the contract asserts
if Pi is legitimate to vote or not. When Pi is legitimate, Pi

is recorded to have voted in the set V . If V = Π, then the
contract state is changed to COMMIT.

After WC = TXC .BlkT ime+ ∆, any Pi in W2 that still
finds the state = VOTING, invokes VERDICT function by
submitting TXVi . The invocation succeeds only if (i) Pi ∈
Π, (ii) sufficient time of ∆ = 2α+ β had elapsed since TXC

was added into BC and (iii) state = VOTING. If it succeeds,
it sets state = ABORT. An attempt to invoke VERDICT
when state = COMMIT or state = ABORT, will not meet
(iii) and not succeed.

INIT: Set state := INIT ; A := [0x000 . . . 0x000]
T imeout := 0; V := [0x000 . . . 0x000]

REQUEST: Upon C submitting TxC(Π, ∆) :
Assert (state == INIT and msg.sender == C)
Set A := Π; Set T imeout := ∆; state := V OTING.

VOTER: Upon Pi submitting Txi (V ote):
Assert (state == V OTING and msg.sender == Pi ∈ Π)
Assert (Pi /∈ V), Assert (V ote == Y ES)
Set V := V ∪ {Pi};
if (V == Π) then {state := COMMIT ; }

VERDICT: Upon Pi submitting TXVi :
Assert (state == V OTING and msg.sender == Pi ∈ Π)
Assert (block.timestamp > TxC .block.timestamp + ∆)
Set state := ABORT ;

Table 1: Smart Contract pseudo-code for 2PC coordina-
tion

4.5 Implementation
We implemented the 2PC-Blockchain contract in Solidity

0.4.10 [4] and tested them on the Ethereum private network
with Geth [3]. The experiment is run on a MacBook Pro
with a 2.8 GHz Intel i5 CPU and 8 GB RAM.

Two experiments are done with one C and two Pi. In
the first, both Pi voted. The outcome was state being set to

COMMIT. In the second, only one Pi voted and after WC =
TXC .BlkT ime+∆, the Pi that voted launched a transaction
that invoked VERDICT function to get the verdict, which
set the state = ABORT.

In Table 2, we present the cost of creating and executing
the 2PC-Blockchain contract. The cost is in the amount of
GAS consumed by each function in 2PC-Blockchain contract
converted in US dollars. We used the cheapest GAS PRICE
(i.e. 2 × 10−9 ether) in all transactions with exchange rate
1 ether = $830.61. As can be seen, the financial cost using
smart contract for non-blocking 2PC is affordably low.

Functions Cost in GAS Cost in USD

INIT 845,550 1.40361
REQUEST 190,226 0.31581
VOTING 75,472 0.12525
VERDICT 55,102 0.09147

Table 2: Cost of using 2PC-Blockchain contract

4.6 2PC with synchronous BC is non-blocking
This is so, for three reasons: (i) the entire system com-

prising Π and BC are synchronous, i.e., the bounds ω, δ,
β and α are never violated (ii) BC is crash-free, and (iii)
the BC wall-clock continues to tick as new transactions (in-
cluding those outside of 2PC execution) are assumed to be
continually submitted to BC. Therefore, if C launches TXC ,
it would never be the case that some Pi sees TXC in BC be-
fore Ti and another Pj sees it after Tj .

From (non-)blocking perspective, only two cases exist: C
does or does not launch TXC . Consider the former; all
transitions shown in blue in Fig 3 are due to Pi interact-
ing with BC in a timely environment, and must occur in
bounded time unless Pi itself crashes. If, on the other hand,
C crashes before launching TXC , it is detected by all oper-
ative Pi that completed the work, from the absence of TXC

in BC even after WC > Ti. Thus, they all unilaterally, and
also identically, decide on abort, i.e., all transit from W1 to
a in Fig 3, while those that could not complete the work
transit from WG to a. Thus, an operative Pi cannot block.

5. ASYNCHRONOUS BLOCKCHAINS
When bounds α and β cannot be reliably estimated, BC

becomes asynchronous. This can invalidate two features piv-
otal for the correctness of BC based 2PC: (i) for all opera-
tive Pi: C has crashed if BC does not add TXC latest by
WC = Ti, and (ii) commit-validity : verdict = commit when
all Pi launch TXi with V ote = 1. Invalidation of (i) occurs
when TXC takes much longer to enter BC than the esti-
mated bound; similarly, (ii) is not met when the entry of
TXj from Pj into BC is so delayed that state = VOTING
even after WC > TXC .BlkT ime+ ∆ and TXVi from some
Pi, i 6= j, meanwhile makes BC compute verdict as abort.

Note that a public BC can be asynchronous even if the
underlying distributed system is synchronous. For example,
if miners, at the time of TXC launch, also encounter several
other transactions that are more financially attractive to
work on compared to TXC , then TXC could take longer to
enter BC, if at all, than any β estimated in more favourable
environments [12]. This raises two interesting questions: can
we have a non-blocking 2PC, given that BC being used is
asynchronous and the cluster hosting Π is (1) synchronous

and (2) asynchronous? The answer to (1) is open, though
we believe it can be yes, and that to (2) is a definite no.

An Impossibility. It is not possible to have a non-
blocking 2PC protocol where the coordinator C offloads its
coordinating responsibilities to a BC, when both the BC and
the cluster hosting Π = {P1, P2, . . . , Pn} are asynchronous.

Proof (by contradiction). Let us first observe that
since the cluster is asynchronous, crash of a Pk cannot be
perfectly detected by an operative Pi. To simplify the proof,
let us assume that C never crashes and always offloads 2PC
coordinating responsibilities to BC. So, any Pi will certainly
observe TXC in BC if it waits indefinitely. (Note: if the
impossibility is shown to hold with a valid simplification, it
must also hold when the latter does not apply.)

Let us hypothesise, to the contrary, that the impossibility
claim is incorrect and that there exists a non-blocking 2PC
protocol P. Consider two executions of P in which (i) every
process, except Pk in the first execution, is operative and
wants to commit, and (ii) if a given Pi is operative in an
execution, then it observes TXC in BC in a timely manner,
i.e., before its local time Ti, and launches TXi.

Since P solves atomic commit, each operative process that
wants to commit, decides eventually; say, for some D, Pi, i 6=
k, decides before its local time Ti +D in both executions.

Execution 1 : Pk does WG→ a and then crashes. Further,
Pk does not recover in this execution until local time of Pi

exceeds Ti + D. By the hypothesis on P, Pi must decide
here on abort though Pk remains crashed until Ti +D.

Execution 2 : Pk does not crash and launches its TXk

at local time Tk. TXk does not enter BC until after the
clock of Pi reads Ti + D; this is possible because BC is
asynchronous. Moreover, any message that is ever sent by
Pk does not reach its destination until after the clock of
Pi reads Ti + D; this is also possible because the database
cluster is also asynchronous.

Execution 2 is indistinguishable for any Pi, i 6= k, from
Execution 1 until its clock time Ti +D. So, as in Execution
1, Pi must decide on abort before Ti +D. This violates (ii)
above which is also the commit-validity requirement. (See
Section 2.) Thus, the hypothesis about P is contradicted
and the impossibility proved.

5.1 Impossibility in Practice
A closer look at the proof suggests that asynchrony pre-

vents only commit-validity from being guaranteed; the other
three requirements are met when delay bound estimates are
violated. In practice, the bounds α and β can be estimated
with a reasonable accuracy that they hold with a high prob-
ability, say, p. Thus, with a probability (1 − p), TXk will
be so delayed that the verdict is computed as abort before
TXk enters BC; the verdict ought to have been commit if all
other Pi also voted yes. Similarly, if TXc is unduly delayed,
abort would be decided where synchrony could have resulted
in commit. So, abort cannot be unnecessarily decided if TXc

and n TXi are timely, which occurs with probability p(n+1);
thus, if, say, n = 4 and p = 99%, then 1 − p(n+1) = 5% is
the probability that a transaction is unnecessarily aborted.

6. CONCLUDING REMARKS
A popular choice to avoid 2PC blocking is to use 3 phase

commit. We have shown here that the extra phase is not
needed and blocking can be eliminated in a synchronous
cluster by having a synchronous blockchain to coordinate

the 2PC execution. If both blockchain and cluster are asyn-
chronous, the former being crash-free is not sufficient to
eliminate blocking. We believe that eVoting (even with-
out privacy concerns) is harder than non-blocking commit
and its blockchain implementations (e.g., [16]) must require
some synchrony guarantees to be correct.

7. REFERENCES
[1] Satoshi Nakamoto. 2009. Bitcoin: “A peer-to-peer

electronic cash system”. (2009)

[2] Gavin Wood. 2016. “Ethereum: A Secure Decentralized
Generalized Transaction Ledger”. (2016).
http://gavwood.com/Paper.pdf

[3] Geth. 2015. “Ethereum Wiki”: Geth.
https://goo.gl/TyjFta.

[4] Solidity. 2017. “Solidity Documentation”.
https://goo.gl/jdgoYi. (2017).

[5] Jim Gray. 1978. “Notes on Data Base Operating
Systems”. In: Operating Systems, An Advanced Course,
Michael J. Flynn, Jim Gray, Anita K. Jones, Klaus
Lagally, Holger Opderbeck, Gerald J. Popek, Brian
Randell, Jerome H. Saltzer, and Hans-RÃijdiger Wiehle
(Eds.). Springer-Verlag, London, UK, 393-481.

[6] Butler W. Lampson. 1981. “Atomic Transactions”. In:
Distributed Systems - Architecture and Implementation,
An Advanced Course, B. W. Lampson, M. Paul, and H.
J. Siegert (Eds.). Springer-Verlag, London, 246-265.

[7] Dale Skeen. “Nonblocking commit protocols”. In Proc.
ACM SIGMOD international conference on
Management of data, 1981 (SIGMOD 81), 133-142.

[8] V. Hadzilacos. “On the relationship between the atomic
commitment and consensus problems”. In: B. Simons,
A. Spector (ed) Fault-Tolerant Distributed Computing,
LNCS 448, Springer 1987, pp. 201-08.

[9] R Guerraoui. “Non-blocking atomic commit in
asynchronous distributed systems with failure
detectors”, Distributed Computing, 15, 2002, pp. 17-25.

[10] M. Castro, B. Liskov, “Practical Byzantine Fault
Tolerance and Proactive Recovery”, ACM Transactions
on Computer Systems., vol. 20, no. 4, pp. 398-461, 2002.

[11] Xiwei Xu, et. al. “The Blockchain as a Software
Connector”. In proceedings of the 13th Working
IEEE/IFIP Conference on Software Architecture
(WICSA), April 2016. DOI: 10.1109/WICSA.2016.21

[12] I Weber, et. al. “On Availability for Blockchain-based
Systems”. In Proceedings of the 36th Symposium on
Reliable Distributed Systems (SRDS17). IEEE, 2017.

[13] Alex Tapscott and Don Tapscott. ”How Blockchain Is
Changing Finance”, Harvard Business Review, 2017.

[14] Elli Androulaki, et. al. “Hyperledger Fabric: A
Distributed Operating System for Permissioned
Blockchains”, Cornell University Archive, January 2018.
//arxiv.org/pdf/1801.10228v1.pdf

[15] N.Z. Aitzhan and D. Svetinovic. “Security and Privacy
in Decentralized Energy Trading through
Multi-Signatures, Blockchain and Anonymous
Messaging Streams”, IEEE TDSC, DOI:
10.1109/TDSC.2016.2616861

[16] P. McCorry, S. F. Shahandashti and F. Hao., “A smart
contract for boardroom voting with maximum voter
privacy”, Intl. Conf. on Financial Cryptography and
Data Security, pp. 357-375, 2017.

