
Optimizing parameter sensitivity analysis of large-scale
microscopy image analysis workflows with multilevel
computation reuse

Willian Barreiros Jr1, Jeremias Moreira1, Tahsin Kurc2,3, Jun Kong4,5,6, Alba C.M.A. Melo1,
Joel H. Saltz2, George Teodoro1,2,7

1Department of Computer Science, University of Brasília, Brasília, Brazil

2Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York

3Scientific Data Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee

4Department of Biomedical Informatics, Emory University, Atlanta, Georgia

5Department of Computer Science, Emory University, Atlanta, Georgia

6Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia

7Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, Brazil

Summary

Parameter sensitivity analysis (SA) is an effective tool to gain knowledge about complex analysis

applications and assess the variability in their analysis results. However, it is an expensive process

as it requires the execution of the target application multiple times with a large number of different

input parameter values. In this work, we propose optimizations to reduce the overall computation

cost of SA in the context of analysis applications that segment high-resolution slide tissue images,

ie, images with resolutions of 100k × 100k pixels. Two cost-cutting techniques are combined to

efficiently execute SA: use of distributed hybrid systems for parallel execution and computation

reuse at multiple levels of an analysis pipeline to reduce the amount of computation. These

techniques were evaluated using a cancer image analysis workflow on a hybrid cluster with 256

nodes, each with an Intel Phi and a dual socket CPU. Our parallel execution method attained an

efficiency of over 90% on 256 nodes. The hybrid execution on the CPU and Intel Phi improved the

performance by 2×. Multilevel computation reuse led to performance gains of over 2.9×.

Keywords

computation reuse; microscopy imaging; parameter sensitivity analysis

Correspondence: George Teodoro, Department of Computer Science, Federal University of Minas Gerais, 31270-901 Belo
Horizonte-MG, Brazil. george@dcc.ufmg.br.

HHS Public Access
Author manuscript
Concurr Comput. Author manuscript; available in PMC 2020 July 25.

Published in final edited form as:
Concurr Comput. 2020 January 25; 32(2): . doi:10.1002/cpe.5403.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1 INTRODUCTION

Parameter sensitivity analysis (SA) examines and quantifies the impact on analysis results of

varying the input parameters of an analysis algorithm or application. Moreover, SA is

executed by comparing, correlating, and quantifying outputs from multiple application runs

as input parameters values are systematically varied. In addition, SA facilitates a better

understanding of correlations between input parameters and application output. It can help

remove sources of uncertainty, for instance, by re-factoring the application code to eliminate

or replace operations associated with parameters of high influence to output variations. It

can also simplify parameter tuning by enabling the parameter tuning process to focus on

parameters that have the highest impact on output. Finally, SA has been successfully

employed in several application domains.1–6 In this work, however, we target optimizations

for efficient execution of SA in image segmentation workflows in whole slide tissue image

analysis.

Whole slide tissue images (WSI) capture the sub-cellular structure of tissue in great detail. A

typical WSI segmentation workflow locates cells and nuclei in an image, extracts their

boundaries, and computes a set of shape and texture features for the segmented nuclei and

cells. The segmented objects and features are used in further analyses to look for spatial

patterns, correlate with genomic and clinical data, and to study the mechanisms of disease

onset and progression.7–13

WSI analysis is a complex and compute-expensive process. Figure 1 presents the image

analysis workflow employed by the example application used in this work.7 This workflow

is divided into three coarse-grain computation steps: Normalization, Segmentation, and

Feature Extraction, which are decomposed into several low-level or fine-grain operations.

The computation of each WSI may lead to the identification of about 400 000 nuclei and

will execute for hours when carried out on a single machine. Regardless of the number of

opportunities and advantages in using information automatically computed from WSIs, there

are still aspects that need to be better addressed in order to make these analyses more robust

and reliable. For instance, image analysis algorithms are typically parameterized, and

changes on input parameters may significantly affect the output results/quality.14 In this

context, understanding the correlations between input parameters and the application outputs

is of main importance.

The use of SA in the context of pathology image analysis can lead to a better understanding

of the algorithms and improve results in terms of robustness, but its execution is very

challenging due to its high computational costs. SA studies typically require the application

to be executed several times as parameter values are varied. A method such as Variance

Based Decomposition (VBD),4 which is widely used for SA, may require hundreds to

thousands of runs per parameter in order to adequately quantify the correlations between

parameters and output. Each run would process hundreds of WSIs in a moderate scale

experiment, segmenting hundreds of millions cell nuclei, which, in turn, should be compared

to a reference dataset to quantify changes in the output results or objects detected. An

experiment at this scale would take years if executed sequentially.14

Barreiros et al. Page 2

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Our work addresses the challenges of executing large scale SA in pathology image analysis

workflows. We propose methods for efficient execution on hybrid distributed memory

compute systems and novel runtime optimizations targeting SA. In particular, we propose

smart computation reuse strategies. The computation reuse opportunities are raised as the

application is executed multiple times over the same datasets with different parameter sets.

In this setting, there are parts of the application (stages or fine-grain tasks/operations) that

may be computed using the same data and parameters values, which leads to the re-

execution of these operations or tasks multiple times. In the context of fine-grain operations/

tasks within an application coarse-grain stage, computation reuse may be complex since the

reuse is attained by merging stage instances to avoid duplicate computations. However, this

merging creates coarser-grain stages that may demand more resources (eg, memory). As a

consequence, this limits the number of stage instances that could be merged together since a

stage instance is executed within the scope of a node. Moreover, the merging impacts the

available parallelism due to the smaller number of stage instances available for execution,

which, depending on the system scale and number of workflow instances dispatched for

execution (ie, the type of the SA method used), may affect the application scalability.

This paper extends our previous work on the domain15 with the introduction of a

computation reuse strategy called Task-Balanced Reuse-Tree Merging Algorithm (TRTMA).

TRTMA is able to handle the trade-offs between merging and parallelism availability. As

presented in the results, TRTMA has similar or superior performance (up to about 1.7×) than

our previous approaches. We also performed additional evaluations to identify the impact of

multiple sampling strategies to the reuse, extended the background discussion of sensitivity

analysis on the proposed framework, and presented a comparative review of related works.

The main contributions of this work can be summarized as follows.

• We present a system for efficient execution of SA of pathology image analysis

workflows, which leverages the use of large-scale distributed environments, as

further described in Section 3. This system also includes a number of commonly

used SA methods, a custom multilayered storage system and provides graphical

tools to simplify its use.

• We propose computation reuse algorithms that exploit multiple levels of reuse

(coarse-grain and fine-grain). The algorithms developed and evaluated include:

Smart-Cut Algorithm (SCA), Reuse-Tree Merging Algorithm (RTMA), and

TRTMA (see Section 4). The computation time reductions observed in the

experimental results with the proposed strategies as compared to not reusing

computation are of up to 2.9×. Furthermore, the fine-grain reuse improved the

performance of the coarse-grain only case in about 1.5×.

• We experimentally evaluated the motivating application7 on hybrid machines

equipped with CPU and Intel Phi. As presented in the experimental results, the

cooperative use of these processors with adequate scheduling strategies improved

the application performance in about 2×, as compared to the CPU only

execution. We executed large-scale studies on hybrid machines with 256 nodes (a

total of 4096 CPU cores and 256 Intel Phis), in which a parallel efficiency of

over 90% has been achieved.

Barreiros et al. Page 3

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The aggregate improvement attained with the proposed optimizations and scalability of the

solution should enable SA in large-scale studies. These studies have the potential to

significantly help the development of more robust applications, which are critical in the

biomedical domain. The remainder of this paper is organized as follows: Section 2 describes

the motivating application and the Region Templates (RT)16 infrastructure in which our

solutions were built. The overview of the proposed strategy to perform SA in the pathology

image analysis domain is described in Section 3. The optimizations for computation reuse

are detailed in Section 4. Further, we carry out the experimental evaluation in Section 5,

describe the related work in Section 6, and conclude the paper and present the future

directions in Section 7.

2 BACKGROUND

This section details the motivating pathology image analysis application workflow used in

our SA studies (Section 2.1) and presents the Region Templates system in which our

solutions were built for efficient and scalable execution (Section 2.2).

2.1 Motivating application

The use of modern high-resolution whole slide scanners is transforming the pathology image

analysis domain. Their capacity of quickly acquiring high-resolution slides has motivated

several recent works on tissue biomarker and image-based diagnostics.7,9,17 These scanners

capture very large 2D color images with resolutions of over 100K×100K pixels with about

50 GB in size or z-stacked images with several channels. Technology improvements, as slide

loaders, allowed for several scans to be performed in a day, and as a consequence, multiple

large private and public repositories of WSIs such as The Cancer Genome Atlas (TCGA)

that contains over 30 000 such images were developed. In this context, the human-based data

analysis may be inefficient due to the large amount of data available, the known subjective

assessment of the data, the need for reproducing analysis, etc. Thus, the support and

development of automated analysis tools are becoming a critical aspect for the progress of

the domain.

A pathology image analysis workflow may consist of several computing steps (or stages),

but Normalization, Segmentation, and Feature Extraction are typically employed on this

class of applications. The development of efficient implementations of workflows with these

stages has been the focus of our research in the recent years.14,16 The Normalization is

executed with the goal of reducing differences between images due to mechanisms in the

acquisition process, which may lead, for instance, to different color intensities. The

Segmentation, on the other hand, identifies objects of interest and delineates their

boundaries. In our case, these objects consist of cells’ nuclei. The Feature Extraction

computes a vector of characteristics on a per object basis containing information that

includes texture, shape, etc.

The motivating image analysis workflow used in this work is presented in Figure 1, which

shows the decomposition of the workflow stages into their fine-grain internal operations.

The operations in these stages have been developed, targeting CPU and Intel Phi for

cooperative execution on hybrid systems.18 One of the main concerns with the use of

Barreiros et al. Page 4

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

automated microscopy image analysis refers to the robustness of the outputted information

or results. This occurs because these application workflows are typically parameterized, and

changes in the input parameters values may significantly affect the output results. For the

segmentation stage, the parameters are presented in Table 1, along with the possible values

that each parameter may assume, as suggested by an application expert. The number of

parameters is high, making it very challenging and error-prone to vary them manually to

identify changes in the output (eg, segmentation results). This creates a demand for using

systematic methods to perform the parameter studies. It is important to highlight that this

work has focused on studying parameters of the Segmentation stage of the application. This

has been our choice because the Segmentation is the most parameterized stage, and it also

extracts critical information (objects boundaries) used in the remaining of the downstream

analyses.

The internal operations used in each of the computation stages presented in Figure 1 are

detailed in Table 2. We have tried to employ existing works/tools in the implementation of

the operations to assert their efficiency and implemented the ones not found in the literature

(marked as “Ours” in the “Source code ref.” table column). The operations in the

Normalization stage are typically data (pixel) parallel. The Segmentation stage has a few

initial data parallel operations but uses irregular operations, for instance, based on flood-fill

algorithms.19 The Feature Extraction stage computes features based on objects identified in

the Segmentation stage and, as such, employs object parallelism.

2.2 Region templates (RT)

This section describes the RT framework16 used in this work as a baseline tool in which our

proposals were built. RT supports the efficient execution of workflow applications in a

distributed memory hybrid setting. The RT workflows are described in a hierarchical

manner, such that a coarse-grain workflow formed of computation stages may have each of

the stages implemented using another workflow of fine-grain tasks. This representation

raises opportunities in terms of scheduling for efficient use of hybrid machines (eg, equipped

with CPUs and accelerators), since heterogeneity in the performance of tasks at a fine

granularity is exposed to the runtime.

An overview of the Region Templates architecture and execution scheme is presented in

Figure 2. The RT is developed on top of the following core components: the runtime system,

the data storage layer, and the data abstraction. The runtime system includes scheduling

strategies for dispatching the execution of application stages and tasks. In RT, application

stages are instantiated into the Manager process, which distributes them in a demand-driven

fashion among the Worker processes. Each Worker is then responsible for the execution of

stage instances assigned to it.

The execution of a stage instance within a Worker starts by reading input RT data objects,

whereas its end is followed by a step in which RT objects produced/modified are pushed to

the storage layer. As such, applications developed on top of RT do not have to handle

communication among stage instances via traditional send/receive mechanisms. Instead,

communication is performed by reading/writing RT objects from/to the storage. This

approach alleviates the application development effort and also allows for the runtime

Barreiros et al. Page 5

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

system to control the data placement, enabling the implementation of transparent data-aware

scheduling of stage instances. The Region Templates data abstraction or data objects

supported consist of data structures found in applications that compute data elements

represented in low-dimensional spaces (1D, 2D, or 3D spaces) with or without a temporal

dimension. Some of the data structures/elements used are: pixels, points, arrays (for images

and 3D volumes), and polygons to represent segmented and annotated objects.

Moreover, during the execution of a stage within a Worker, tasks can be processed using all

computing elements available in the machine hosting that Worker (ie, CPU cores or

accelerators). This design creates a single Worker process per compute node on distributed

memory machines, reducing process management overheads as fine-grain tasks executed by

a stage instance are scheduled locally by Workers. The fine-grain scheduling is important to

exploit the heterogeneity among the performance of tasks in hybrid systems. In real-world

complex applications, it is expected that several operations will be used, and the different

computation and data access patterns of these operations will make them benefit differently

from the available processors. As such, not all tasks/operations will have the same speedups

when executed on an accelerator. Thus, taking these variations into consideration can lead to

a more efficient use of the system’s available resources. In order to optimize the execution of

fine-grain tasks in each Worker, we have employed Performance Aware Task Scheduling

(PATS) strategies proposed in our previous work.18,24 With PATS, tasks are assigned to either

a CPU core or an accelerator based on the estimated acceleration of the task to each device

and the current devices load, prioritizing the execution of a task in the processor in which it

attains the highest speedup. For this sake, we maintain a list of tasks ordered by their

expected speedups for the accelerator in each Worker and select those with highest and

smallest speedups, respectively, for execution in the accelerator and the CPU.

Several other runtime systems have developed scheduling approaches for efficient use of

hybrid machines.25–29 However, most of the solutions focus on applications whose internal

tasks have similar performance (speedups) when executed on an accelerator, as compared to

the execution using a CPU. The PATS strategy, as described, considers variability in the

tasks performance to better use the available processors. In our earlier work,16 we evaluated

PATS using a two-stage application analysis workflow consisting of segmentation and

feature computation stages. In this work, the application analysis workflow consists of

normalization, segmentation, and comparison stages. We target the execution of this

workflow for algorithm SA and compare the scheduling to time-based approaches.

3 THE FRAMEWORK FOR EFFICIENT PARAMETER SENSITIVITY

ANALYSIS

This section describes our framework for executing parameter studies in microscopy image

analysis, whereas the optimizations targeting this class of applications are described in the

next section. The overall design of our framework is presented in Figure 3. The system is

built from several building blocks: the Region Templates runtime system, graphical

interfaces for facilitating the application deployment, code generation tools, spatial indexing

Barreiros et al. Page 6

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

for comparison of segmentation results, and methods for computing sensitivity analysis

(SA).

In order to perform a parameter sensitivity analysis study, the system receives as input the

imaging dataset, a representation of the application workflow described using the graphical

interface, a list of parameters to be varied along with their value ranges, the SA method to be

employed, and a comparison metric chosen by the user to evaluate changes in the application

output. The SA method then generates parameter sets (parameter sampling) that should be

used in the application execution. These parameters are passed through a computation reuse

analysis (described in Section 4) to eliminate redundant processing, and after that, the

application is instantiated for execution on top of the Region Templates (RT) environment.

The RT executes the application in a distributed memory machine and manages the input,

output, and intermediary data used/generated by the application stages.

After the actual segmentation is computed and objects of interest (cells’ nuclei) are

identified, such objects are compared to a set of reference objects computed using the

application default parameters. In this phase, objects are loaded in efficient indexing

structures (eg, R-trees30) to speedup this phase by avoiding, for instance, each object found

in the segmented image to be compared to each other in the set of reference objects. All

application stages, including the indexing, may have multiple instances in the distributed

environment to allow for a scalable execution. Finally, the comparison phase is finalized

with an output metric value (Dice, Jaccard, etc) that quantifies the variation in the

segmentation results computed with a given parameter set as compared to the reference data.

This information is inputted to the SA methods, which then output the correlations among

input parameters and the segmentation output.

The sensitivity analysis may be carried out using a single method or by combining multiple

methods. The main SA methods supported in our system are Morris One-At-A-Time

(MOAT),3 methods to compute importance measures as Pearson’s and Spearman’s

correlation coefficients,31 and the Variance-based Decomposition (VBD) method.4 The

MOAT computes global sensitivity analysis by varying one input parameter per time,

resulting in a number of r changes for each studied parameter with r typically in the range of

5 to 15. This method is less compute demanding (smaller number of parameter samples/

evaluations need) as compared to the other ones, but it is also less informative and is a good

candidate to be used in the beginning of studies, for instance, to filter out unimportant

parameters before other methods are applied. The methods that compute importance

measures, eg, Pearson’s correlation coefficient (CC) and partial correlation coefficients

(PCC), vary multiple input parameter values at a time in order to identify non-linear effects,
31 but they are more demanding with respect to the parameter sampling size. Furthermore,

the most demanding approach is VBD. It is able to split uncertainty in the output among

parameters and can also account for non-linear relationships among them. It requires a large

number of application runs, with the per parameter sample size in the order of hundreds to

thousands. Regardless of the SA method employed, the user can choose different techniques

to build the parameter sets. The ones we support include: Monte Carlo sampling, Latin

hyper-cube sampling (LHS),32 and quasi-Monte Carlo sampling with Halton or Hammersley

sequences. These strategies are known to cover or explore well the parameter space. Table 3

Barreiros et al. Page 7

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

shows an example output for both the MOAT and VBD methods applied to our motivating

application. In this example, we have first executed MOAT to reduce the number of

parameters studied by VBD.The VDB results show, for instance, that G2 explains alone

(main effect) 73% of the output variation, whereas parameters such as T2, MinSize,

MinSizePl, and Watershed have very small effect on the output. The total value includes also

the impact interactions with other parameters.

We have also developed a graphical interface to simplify the development of the analysis

workflows on top of our system and make it more accessible for non-experts in high-

performance computing. Our tool uses the workflow model descriptions and tools available

in the Taverna Workbench,33 extending them to allow for hierarchical workflows and to

include parameters to be evaluated in a SA study.

4 MULTILEVEL COMPUTATION REUSE

This section describes the proposed computation reuse techniques. In SA studies, the

application is executed multiple times over the same dataset as input parameter values are

varied. However, the multiple parameter sets generated for execution may have subsets of

values that are common, which raises opportunities to reuse the computation. A common

computation is defined here as a set of deterministic stages or tasks that have the same input

data and parameter values, thus resulting in the same output. This is illustrated in Figure 4

that exemplifies two schemes for instantiating the application workflow for execution of a

SA. The first creates a copy of the entire workflow for each parameter set, whereas the

second shows a compact workflow execution with computation reuse.

As discussed, the opportunities for reuse in our hierarchical workflows occur at both stage

and task levels. The reuse of stages can be attained through the removal of repeated/common

stage instances with the correct routing of output from the remaining stages and changes in

dependencies. The reuse level can be improved by searching for partial stage (tasks) reuse

opportunities. For instance, if only a subset of the parameters is common among stage

instances, the reuse will not be viable at the stage level, but parts of the computation carried

out by the stage’s internal tasks may still be reused. In order to do it, stage instances with

partial reuse opportunities can be merged together into a single, more coarse-grained, stage

instance to have the reusable tasks executed only once.

Reuse at the task level is, however, more challenging since the stage instance resulting from

the merging of multiple instances is executed within a single node. Thus, the merging

algorithm needs to take into account that (i) the merging may generate a stage with higher

resource demands (eg, memory requirement) and (ii) the merging reduces the parallelism

available as the number of stage instances is decreased. In this case, given that a limited

number of stage instances can be merged together, an efficient merging algorithm should

search for the merging choice that optimizes the amount of reuse. The algorithm should also

take into account the impact of the merging to the parallelism. Our strategies for

computation reuse are described in the remaining of this section.

Barreiros et al. Page 8

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.1 Stage-level computation reuse

The computation reuse at the level of stages is performed by identifying stage instances that

use the same input data and parameter set. In cases in which it occurs, the duplicate stage

instance is removed, and a compact workflow is built (Figure 4). This process is presented in

Algorithm 1. The algorithm receives as input the application workflow (appGraph) and the

set of parameters (parSets) to be evaluated. The compact workflow (comGraph) is then

created by merging to it instances of the workflow created for each of the parameter sets to

be evaluated (lines 3–6).

The MergeGraph is responsible for adding each workflow instance to the compact graph

representation. This is computed by simultaneously exploring the received workflow

instance entry point (appVer) and the compact graph (comVer) to identify stages from

appVer that are already in comVer and, as such, should not be inserted again in the compact

representation. This is computed in the main loop of the procedure (lines 8–29), which will

find each child node of appVer and check whether it is also available in comGraph (line 9).

If this is the case, the merging procedure is called recursively to children nodes of v and v′

or to the rest of the workflow on that branch. The find method will check the input data,

stage name, and input parameter values to compute the matching.

When a corresponding vertex of appVer has not been found in comVer.children, two cases

should be taken into consideration (lines 11–28). The first is the most obvious configuration

in which the node from appVer has not been added to comVer, and as such, it is created and

added to the compact graph (lines 13–19). To verify if this is the case, the algorithm needs to

assert that the node v being added has not already been included in the graph in the merging

of another path of the workflow. This could occur for nodes with multiple dependencies as it

did with D from the example presented in Figure 4. If the entire path A, B, and D is added to

comVer, when processing C, D should not be added again. When this case is identified (lines

21–26), only the dependencies are correctly set. The PendingVer look-up table is used to

store and identify those stage instances with multiple dependencies. Before inserting a stage

instance, PendingVer is first consulted to check whether that stage was not yet created (line

12).

Algorithm 1

compact Graph Construction Algotithm

1: Input: appGraph; parSets;

2: Output: comGraph;

3: for set ∈ parSets do

4: appGraphInst ← instantiateAppGraph(set);

5: MergeGraph(appGraphInst.root, comGraph.root);

6: end for

7: function MERGEGRAPH(appVer, comVer)

8: for v ∈ appVer.children do

9: if (v′ ← find(v, comVer.children)) then

Barreiros et al. Page 9

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

10: MergeGraph (v, v′);

11: else

12: if ((v′ ← find(v, PendingVer))==∅) then

13: v′ ← clone(v)

14: v′.depsSolved ← 1

15: insert(v′, comVer.children)

16: if |v′.deps| ≥ 1 then

17: insert (v′, PendingVer)

18: end if

19: MergeGraph(v, v′);

20: else

21: insert(v′, comVer.children)

22: v′.depsSolved ← v′.depsSolved+1

23: if v′.depsSolved == v′.deps then

24: removed (v′, PendingVer)

25: end if

26: MergeGraph(v, v′)

27: end if

28: end if

29: end for

30: end function

As presented, for each instance of the application workflow (appGraphInst) using different

parameter values, the k stage instances of that workflow need to be merged into the compact

graph. Each of the k stage instances is merged via a MergeGraph call, which has the

complexity dominated by the find in comVer.children that has up to n parameters sets

elements (see Figure 4, node A on the compact composition: 1 child for each parameter set).

However, by employing a hash table to compute the find operation, the complexity is O(1).
The n workflow instances (one for each parameter set) will insert k stage instances each for

an overall cost of O(kn).

4.2 Task-level computation reuse

This level of reuse allows for partial inter-stage (tasks) reuse when only a subset of

parameters used by stage instances match. In the proposed strategies, stages with partial

reuse are merged into a single more coarse-grain stage, and common internal tasks of those

stages are reused to avoid duplicate computations. An obvious solution to the problem

would be maximizing reuse and merge all stage instances with any possible level of reuse.

This strategy, however, may result into very coarse-grain stages, which would require more

resources than those available in a node (Worker). Moreover, it may substantially reduce

parallelism (number of stage instances) even when the reuse gains are small.

In order to address the first issue, we have redefined the reuse problem by creating a limit to

the number of stage instances that are merged together (MaxBucketSize). This value can be

chosen, for instance, to ensure that merged stages will not oversubscribe the resources or to

Barreiros et al. Page 10

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

guarantee that a minimum number of stage instances will be available for parallel execution.

In the rest of this section, we present four approaches to the problem.

4.2.1 Naïve merging algorithm—This approach is the simplest strategy. It iterates

through the list of application parameters for each stage and group subsequent stages

instances into buckets of size MaxBucketSize. A bucket holds stage instances that are

merged together. As may be noticed, this strategy relies on the order that parameter sets are

inputted, which limits its reuse performance. This algorithm has a complexity O(n) in which

n is the number of parameter sets or workflow instances to be merged.

4.2.2 Smart cut algorithm (SCA)—The second approach to the problem uses a graph

to represent stage instances and the benefits (computation reuse amount) due to their

merging. The representation employed is a fully connected undirected graph in which the

stage instances are the nodes and each edge is the degree of reuse between two stage

instances (see Figure 5B). The degree of reuse is defined as the number of tasks that would

be reused by merging a pair of stage instances. After that, we define the stage instances to be

merged by partitioning the graph in subgraphs until the subgraph has at most

MaxBucketSize stage instances/nodes. This is carried out by employing successive min-

cut34 operations in the graph.

Our approach recursively employs the 2-min-cut algorithm (ie, cuts the graph in two

subgraphs, minimizing the sum of the weights of edges crossing the cut34,35) as illustrated in

Figure 5. Given the input parameters and intra-stage workflow of tasks, the fully connected

graph in Figure 5B is created. The first 2-min-cut is then performed (Figure 5C) to remove c,

which is the stage instance least related to the subgraph with the remaining nodes. The 2-

min-cut is then applied again to the largest subgraph, removing nodes a and b from the main

subgraph. This process is repeated until a bucket of size 2 (MaxBucketSize=2) or smaller is

reached (see Figures 5C and 5D). Those nodes selected to be merged together (d and e) are

removed from the originally graph, and the process is repeated with the remaining stages

until all stages are grouped into buckets.

This procedure is presented in Algorithm 2. SCA starts with a graph containing all stages

(stages) and iterates through the cutting process until all stages are assigned to the bucketList
(lines 3–14). Successive 2-min-cut operations are performed on the current graph (stages),

which divides it into two disconnected subgraphs (s1 and s2 in lines 4 and 7). This is done

until the largest subgraph resulting from a cut (lines 5 and 8) does not fit into a bucket (ie,

contains over MaxBucketSize stage instances, as shown in line 6). When it fits, the largest

subgraph s1 is defined as a bucket and added to the output list of buckets (line 10). Those

nodes (or stage instances) are then removed from the original graph (lines 11–13). The entire

process is repeated until all stage instances are assigned to a bucket.

Algorithm 2

smart Cut Algorithm(SCA)

1: Input: stages; MaxBucketSize;

Barreiros et al. Page 11

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2: Output: bucketList;

3: while |stages| > 0 do

4: {s1,s2} ← 2minCut(stages)

5: s1 ← max(s1, s2)

6: while |s1| > MaxBucketSize do

7: {s1,s2} ← 2minCut(s1)

8: s1 ← max(s1, s2)

9: end while

10: insert(s1, bucketList)

11: for each s ∈ s1 do

12: remove(s, stages)

13: end for

14: end while

15: return solution

In the worst case, if n stage instances are available for merging, the 2-min-cut is applied O(n)
times for each bucket created, and about n∕MaxBucketSize buckets would be generated. This

results in total of O n2 2-min-cuts. The implementation of the 2-min-cut used in our work

employs a Fibonacci heap34 with a per-cut complexity of O(E + V log V). Since the graph is

fully connected, a cut will cost O n2 . Therefore, the entire SCA is O n4 . Although

interesting, as presented in Section 5, the SCA is not useful in practice in several scenarios

because of the high complexity/execution time.

4.2.3 Reuse-tree merging algorithm (RTMA)

The RTMA describes and organizes stage instances as a tree structure. In order to do that in

a way reuse can be identified, we proposed a novel tree structure called reuse-tree. In this

tree, stage instances are organized according to the parameter used and, as a consequence,

by their internal workflow of tasks. In essence, stage instances with common tasks share

parents on the tree, and each level of tree represents a parameterized task. Stage instances

having tasks with same parameter values are stored into the same branch of the tree.

An example reuse-tree is presented in Figure 6B. In this example, the application stage is

implemented using three tasks organized into a pipeline. During the insertion of x, for

instance, starting from the root node (black node), it is checked if another task t1 has already

been inserted using the same parameter value (annotated in each edge) (Figure 6C). In our

example, t1 with p1 = 8 already exists. Thus, we follow that path in tree and search for the

next parameter (or multiple parameters if the tasks use more than one) on the right subtree

(Figure 6D). Since node’s 2 only child (node 5) cannot be reused for stage instance x,

because the second parameter value p2 of x differs from the one used in node 5, a new node

representing this non-reusable task is created (node 6) as shown in Figure 6E. Finally, since

node 6 is new, there cannot be any more reuse opportunities from that point forward.

Thereby, a single child node must be created for each of the remaining tasks (Figure 6F).

Barreiros et al. Page 12

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The algorithm implemented on top of the reuse-tree merges stage instances in buckets of

MaxBucketSize elements by traversing the tree in an bottom-up fashion. This process is

illustrated in Figure 7 and Algorithm 3, which starts with a reuse-tree with 12 stage

instances (S1 to S12) and employs a MaxBucketSize = 3. On Algorithm 3, parents of leaf

nodes are selected and have their children grouped in buckets of exactly MaxBucketSize
elements (lines 6 and 7). Thus, if a parent has less than MaxBucketSize children, nothing is

done. However, if more than MaxBucketSize nodes exist and they are not multiple of

MaxBucketSize, the remaining nodes that do not fill a bucket are kept in the tree. Examples

of these cases can be seen in the transition from Figure 7B to Figure 7C, where, for instance,

the buckets (S1, S2, and S3) and (S4, S5, and S6) are created and S7 is kept in the tree.

This process continues by removing merged nodes from the tree. If a parent node ends up

grouping all of its children in buckets, it must be removed from the tree (node 5 on Figure

7C). This process is performed recursively by removing the childless parent nodes and then

checking if the removal of a node makes its parent childless. The final step of the merging is

to move the leaf nodes up one level in order to enable the creation of new buckets. The

operation MoveReuseTreeUp (Algorithm 3, line 9) that moves remaining leaves to their

parents’ ancestors (eg, nodes S7, S8 and S9 of Figure 7D are placed as children of node 2 on

Figure 7E). Further, the same merging process is re-executed until the tree height becomes 1.

The rest of the nodes are then added into new buckets of size not larger than MaxBucketSize

(lines 11–14).

Algorithm 3

Reuse-Tree Merging Algorithm(RTMA)

1: Input: stages; maxBucketSize;

2: Output: bucketList;

3: bucketList ← ∅;

4: rTree ← GENERATEREUSETREE(stages)

5: while rTree.height > 2 do

6: leafsPList ← GenerateLeafsParentList(rTree)

7: newBuckets ← PruneLeafLevel(rTree, leafsPList, maxBucketSize)

8: insert(newBuckets, bucketList)

9: MoveReuseTreeUp(reuseTree, leafsPList)

10: end while

11: if rTree.rootchildren ≠ ∅ then

12: newBuckets ← rTree.root.children

13: insert(newBuckets, bucketList)

14: end if

15: return bucketList

In RTMA, the tree is created by adding n stage instances with k tasks each

(GENERATEREUSETREE). Each task insertion may look for tasks with the same parameter

values in that level (using a look-up table) in O(1), which results in O(k) cost for inserting

each stage instance. Given that n stage instances are inserted, this phase is O(kn). Further, the

Barreiros et al. Page 13

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

actual merging is performed in lines 5–10 of Algorithm 3. The GenerateLeafsParentList is

O(kn) per iteration in the worst case, with k − 1 iterations. As such, the entire cost of all

iterations is O k2n . The pruning (PRUNELEAFLEVEL) cost is constant per node added to a

bucket; thus, its complexity is O(n) for all iterations of the loop. The MOVEREUSETREEUP

worst case takes place when no reuse exists. In this case, all leaf nodes are moved up k − 1

times, resulting in a complexity of O(kn). As such, the algorithm’s execution time

complexity is O k2n Because k is a fixed value per stage and n ≫ k, the algorithm is close to

linear in practice. In the case studied in this work, the segmentation workflow has k = 7 tasks

only and n ranges from 160 to 10 000 according to the SA method used.

4.2.4 Task-balanced reuse-tree merging algorithm (TRTMA)

As previously discussed, stage merging may impact the application scalability by

substantially reducing the ratio of stage instances available by computing cores used. This

scenario is likely to occur when the computing environment is large and/or a small to

moderate parameter sample size is used. On these cases, two problems may emerge: (i)

merging could lead to load imbalance among nodes because some stage instances may be

more costly and (ii) the number of stage instances (after merging) could be insufficient to

use all nodes/computing cores available. The TRTMA algorithm proposed in this section

addresses these aspects.

TRTMA performs merging while attempting to balance the buckets’ cost, which, in our case,

are estimated by the number of tasks to be executed in that bucket after merging. As such,

TRTMA considers the compromise between merging stages and the potential imbalance it

could cause, performing this analysis on top of a reuse-tree. The algorithm is implemented

into three phases: Full-Merge, Fold-Merge, and Balance. The first two perform an initial

computation of the buckets (stages to be merged), whereas the last phase minimizes

imbalance or difference in cost among buckets.

The Full-Merge traverses the reuse-tree on a top-down fashion, attempting to find a tree

level in which there are at least MaxBuckets (the number of buckets that the algorithm will

create) nodes. This process can be seen on Figure 8 for MaxBuckets = 3. The first level of

the tree is visited and 4 nodes are found: 1, 2, 3, and 4 (see Figure 8B). In this case, a single

bucket is created per node, each of them containing stage instances stored in leaf nodes on

the subtrees rooted on nodes at that level (see Figure 8C). If the number of buckets created is

greater than MaxBuckets, which is the case of our example, the Fold-Merge operation will

be executed to combine buckets and reduce their number to MaxBuckets. Otherwise, if the

number of buckets is already MaxBuckets, nothing is done in the Fold-Merge phase.

The Fold-Merge phase sorts the buckets according to their cost (number of tasks after merge,

ie, the number of nodes of the subtree) and combines buckets with the smaller costs to the

buckets with higher costs. This process is presented in Figure 9, where after the folding pivot

point the buckets are merged. In the example, the folding has resulted in merging buckets

pairs <b4, b5> and <b3, b6>. This merging algorithm is an attempt to create an initial

solution with the exact number of required buckets (MaxBuckets) while reducing the

imbalance. If the number of buckets after Full-Merge is greater than 2 × MaxBuckets, the

Barreiros et al. Page 14

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fold-Merge is executed multiple times until the MaxBuckets number of buckets is reached.

In the example of Figure 8, the initial 4 buckets of Figure 8C have costs 5, 9, 5, and 3, which

results in the 3 buckets of Figure 8D with costs 8, 9, and 5, after the Fold-Merge.

The Balance phase of our algorithm will try to move stage instances among buckets

previously generated with the goal of minimizing the buckets imbalance. This is

implemented in our algorithm through improvement operations, which are repeatedly

applied to pairs of buckets. The actual buckets used in each improvement operation are the

least and most expensive ones, which are called here, respectively, smallRT and bigRT. The

improvement operation will then move stage instances from bigRT to smallRT and check if

there is a reduction in the overall imbalance between these buckets. In addition, it also

checks if moving stages between the buckets has reduced the cost of the most expensive

bucket (bigRT). The transfer of stage instances is only carried out or committed if both

imbalance and maximum cost are reduced.

The Balance phase of the TRTMA is presented in Algorithm 4. The main loop (lines 3–12)

identifies the most and least expensive buckets and tries to improve the current solution by

moving stage instances from bigRT to smallRT with calls to the function SingleBalance. If a

better solution is found, the tree node branch from BigRT that should be transferred to

smallRT is returned (improvement), and all stage instances in that tree branch are moved to

smallRT (line 8). In this case, smallRT and bigRT are modified and reinserted in the

bucketList so that the list remains sorted (lines 9 and 10). If no improvement is returned, the

algorithm ends and returns the bucketList (line 13) for execution.

Algorithm 4

The Balance step of the TRTM

1: Input/Output: bucketList;

2: bucketList is a sorted data structure by descending cost (e.g., multiset)

3: Repeat

4: bigRT ← firstElement(bucketList)

5: smallRT ← lastElement(bucketList)

6: improvement ← SingleBalance(bigRT, smalIRT)

7: if improvement ≠ ∅ then

8: TransferSubtree(improvement, bigRT, smalIRT)

9: update(bigRT, bucketList)

10: update(smallRT, bucketList)

11: end if

12: until improvement ≠ ∅

13: return bucketList

4: function SINGLEBALANCE(bigRT, smallRT)

15: improvement ← ∅

16: imbal ← | TaskCost(bigRT) − TaskCost(smallRT) |

17: while (c ← NextDFSNode(bigRT)) ≠ ∅ and imbal ≠ 0 do

18: newBigRT ← bigRT

Barreiros et al. Page 15

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

19: newSmallRT ← smallRT

20: TransferSubtree(c, newBigRT, newSmallRT)

21: newlmbal ← | TaskCost(newBigRT) − TaskCost(newSmallRT) |

22: newMakespan ← max(TaskCost(newBigRT), TaskCost(newSmallRT))

23: if newlmbal < imbal and newMakespan < TaskCost(bigRT) then

24: improvement ← c

25: imbal ← newlmbal

26: end if

27: end while

28: return improvement

29: end function

The SingleBalance function receives two buckets as input and searches for stage instances

on bigRT to be sent to smallRT in an attempt to improve the solution. It searches for

improvements in a depth-first walk manner in BigRT (line 17) by evaluating all subtrees in

bigRT and testing if their transfer to smallRT characterizes an improvement (lines 17–27).

For each node c, new buckets (newBigRT and newSmallRT) are computed (line 20), and it is

checked if the transfer of the subtree with root c from newBigRT to newSmallRT results in a

better solution than the current one. For this sake, the algorithm evaluates if the new buckets

have a smaller imbalance and if the maximum cost of the new buckets is smaller than the

original (lines 19–21). In case a better solution is found, the improvement node and

imbalance are updated, and the algorithm continues the search for better solutions. The

algorithm then returns the least imbalanced improvement that also reduces the maximum

cost as compared to the input buckets if one exists (line 28).

Figure 10 presents an overview of the balance phase along with examples of the

improvement operation. First, the bigRT and smallRT buckets (see Figure 10B) are selected

as the candidate pair for improvement. The Balance will try to send one of the subtrees of

bigRT along with all stage instances it stores to smallRT. The first attempt of improvement

is to move the subtree rotted at node 6 to smallRT, as shown in Figure 10C. However, if this

is performed, the imbalance among those buckets would increase to 7, and thus, this

operation is not executed. Further, it tries to move the subtree starting in node 7 to smallRT.

In this case, the imbalance decreases from 4 to 3. As such, the next test is performed to

check whether the maximum cost between smallRT and bigRT was reduced. Unfortunately,

this is not the case because this movement would make smallRT to have 9 tasks, which was

already the value of the original bigRT. As such, this operation may not benefit the

application makespan. Finally, by applying the improvement of leaf-node S9, the resulting

buckets would be {S4, S5, S6, S7, S8} and {S9, S10, S11}, both with cost 8 (see Figure

10E). It is worth noting that the selection of node S9 is only for the sake of presentation in

Figure 10E, being this node interchangeable with nodes S4-S8 without impacting the

algorithm outcome. Since this improvement operation also reduces the maximum cost as

compared to the original configuration and is the best solution found, it is applied (see

Figure 10F). In this example, the Balance operation will then finish since the new imbalance

is 0.

Barreiros et al. Page 16

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Complexity: The TRTMA cost is dominated by the Balance step. This phase applies

SINGLEBALANCE until the buckets cannot be further balanced. Thus, the TRTMA complexity

can be derived from the number SINGLEBALANCE executions. For that sake, we rely on the

Sum of Imbalances (SI), which is defined here as the sum of differences in imbalance

between pairs of buckets in a list (BL) of size n sorted by their costs:

SI(BL) = ∑i = 1
n/2 |BLi| − |BLn − (i − 1)| The module of a bucket (|BLi|) is defined as the cost of

the bucket or the number of tasks it executes (eg, given a sorted bucket list with 4 buckets of

costs 9, 5, 5 and 3, SI(BL) = (9 − 3) + (5 − 5) = 6).

A SINGLEBALANCE either reduces the SI, if an improvement is found, or terminates the

TRTMA. In case of an improvement, SI is reduced by at least 2 in the worst case when a

stage instance is moved between the two buckets (the costs of the moved stage on both

buckets is 1 either because the stage have a single task or if the reuse is maximum on both

buckets). Therefore, for a given SI, TRTMA finishes in at most SI∕2 SINGLEBALANCE calls.

The SINGLEBALANCE attempts to find improvements through TRANSFERSUBTREE calls (see

Algorithm 4, line 20) that move the c subtree from bigRT to smallRT. The TRANSFERSUBTREE

will insert each stage instance rooted at c in smallRT with a cost of k (fixed) for each

instance. A subtree c on its turn may have O(n) nodes, being n the number of stage instances.

Thus, each TRANSFERSUBTREE call is O(kn) in the worst case. As SINGLEBALANCE will try to

move each of the tree nodes from bigRT to smallRT, and bigRT may have O(n) nodes, each

SINGLEBALANCE call is O kn2 in the worst case. Further, the SI is bound by n, and the worst

case of TRTMA is O kn3 .

Discussion: In practice, we have observed that the worst case is unlikely to occur due to

the aspects discussed below.

• The number of MaxBuckets employed is typically high and computed with

respect to the number of computing cores available in the system. We have

experimentally found the best value to be about 3× the number of computing

cores. Thus, a large number of buckets is created in the first two phases of

TRTMA, which, as a consequence, reduces the imbalance among buckets and the

SI.

• The parameter sampling strategies employed are expected to sample the

parameter space with minimal bias, which is especially true for quasi-Monte

Carlo sampling strategies using low-discrepancy sequences.36,37 As a

consequence, the reuse trees built by the TRTMA are expected to contain a

similar number of stages instances stored in all branches at each level of the

reuse tree. If this occurs, buckets inputted to the Balance step will have a

maximum imbalance between pairs of buckets smaller than n∕MaxBuckets. This

reduces the number of required SingleBalance calls.

• Multiple optimizations were implemented in SINGLEBALANCE and

TRANSFERSUBTREE to improve their performance. For instance, during the walk

through the bigRT decedents in SINGLEBALANCE, if a node c has only a single

child, its descendant node does not need to be evaluated as possible improvement

Barreiros et al. Page 17

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

since moving it results in the same solution as moving c to smallRT. Moreover,

the performance of TRANSFERSUBTREE can be improved in case a node being move

from bigRT has no more reuse with any node in smallRT in a given level during

the insertion. In that case, the entire subtree branch with all nodes it stores can be

moved from bigRT to smallRT in a single insertion/operation.

For sake of profiling the performance of TRTMA, we have executed it with different

MaxBuckets and n values. As is presented in Section 5.4 (Figure 16), its cost is subquadratic

in our experiments and smaller for higher MaxBuckets values that, as discussed above,

reduce imbalance. In addition, we also want to highlight that as the TRTMA algorithm

considers the MaxBuckets to compute the merging and reuse, and values of MaxBuckets can

be setup considering the number of computing devices available (ie, CPU cores). Thus, we

expect that TRTMA will work well for machines with different hardware configurations or

number of computing cores.

5 EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of our optimizations for SA, which were

implemented on top of the Region Templates for parallel execution. We first analyze the

system scalability, the impact of the scheduling on hybrid systems and further discuss the

gains with the computation reuse algorithms proposed in this work. For sake of the

evaluation, we have employed an application workflow used in brain cancer studies7

(Section 2.1). It consists of the Normalization, Segmentation, and Comparison stages. The

comparison is carried out in our experiments as the Dice values of objects in the reference

and computed segmentation results (masks). The input data (see Table 4) consists of

Glioblastoma Multiforme (GBM) WSIs downloaded from The Cancer Genome Atlas

(TCGA) repository, which were partitioned into 4K×4 K image tiles for parallel execution.

Most of the experiments were conducted on TACC Stampede cluster. Each node has a dual-

socket Intel Xeon E5–2680 processors, an Intel Xeon Phi SE10P or MIC (Many Integrated

Core) co-processor, and 32GB RAM. Because Stampede was upgraded for an Intel Phi–only

system during the development of this work, the experiments on Section 5.3, which evaluate

our proposed TRTMA algorithm, were executed on the PSC Bridges cluster. Each node on

Bridges is comprised of two Intel Xeon E5–2695 v3 with 128GB of RAM. The application

and middleware codes were compiled using Intel Compiler 13.1 with “-O3” flag. The

experiments were replicated five times and claims for equivalence or difference between

results in this paper are made based on t-test (two-tailed) with P < 0.001. The main dataset

used in our evaluations is presented in Table 4, but subsets of the data are used in some of

the experiments are described in each of the following sections.

5.1 Benefits of the cooperative execution using CPUs and Intel Phi

This section evaluates the application performance and scalability in distributed memory

settings equipped with CPU and Intel Phi. The evaluation was carried out using the

motivating application described as a hierarchical workflow. The tasks inside the

Normalization and Segmentation are presented in Section 2.1. Further, the following

application versions were used: CPU-only that employs all CPU cores available in the

machine, MIC-only that employs the Intel Phi coprocessors in the execution, and CPU-MIC

Barreiros et al. Page 18

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

that uses the CPU cores and Intel Phi in cooperation and multiple scheduling strategies to

distribute tasks among processors in each node: First-Come, First-Served (FCFS),

Heterogeneous Earliest Finish Time (HEFT), and PATS. The experiments in this section

have been carried out using a weak scaling setting in which the number of computing nodes

and dataset increase proportionately. For the configuration with 256 nodes, a dataset with

136 568 4K×4 K image tiles (6.5 TB of uncompressed data) was used. In the cases on which

Phi is used, its number is equal to that of nodes. The experimental results are presented in

Figure 11.

The application scaled well regardless of the configuration or version. Moreover, the

cooperative execution of the CPU and Intel Phi (CPU-MIC) improved the performance of a

single processor in all cases. However, the appropriate workload division among devices is

significant as, for instance, the performance gains of PATS on top of FCFS are about 1.32×

on average. As compared to HEFT, which is known to be an efficient scheduling strategy for

hybrid systems, PATS is still 1.2× faster. The superior performance of PATS is a

consequence of its capacity of taking into account that particular tasks may be more

appropriate for different devices.

5.2 Effect of multilevel computation reuse for different SA methods and sampling
strategies

In this section, we evaluate the impact of the proposed computation reuse algorithms for the

MOAT and VBD SA methods. MOAT is used with all application parameters to identify the

non-influential ones, and VBD is further applied with the remaining parameters. This

particular set of experiments was executed using only 16 nodes because it intended to

evaluate only the gains of the reuse optimizations. Experiments with a larger number of

nodes with reuse strategies are presented in Section 5.3.

The reuse algorithms were first executed with MOAT using a MaxBucketSize of 7 and

parameter sample sizes varying from 160 to 640. The MaxBucketSize of 7 was

experimentally detected as an optimal value in this setup. The parameter sets were created

with a quasi-Monte Carlo sampling using a Halton sequence. The execution times measured

refer to the application makespan. The cost of performing the reuse analysis is highlighted in

the upper part of the graphs bars. Five configuration were evaluated: “No reuse” that

employs the replica based scheme, the “Stage level” that reuses only stage instances with the

same parameters, and the “Task Level” that reuses fine-grain tasks and is executed with the

Naïve, SCA, and RTMA algorithms. The TRTMA was not included on the results because it

attains the same performance as RTMA in small scale settings.

The performance results are presented in Figure 12. As shown, the gains with reuse were

significant in all configurations as compared to the “No reuse” case. The “Stage Level” was

up to 1.8× faster than not reusing computation, whereas the “Task Level - Naïve” improves

on the “Stage Level” 1.08×; this gain is significant according to the t test. The task level

reuse with SCA and RTMA have, respectively, improved the “Stage Level” reuse in up to

1.39× and 1.5×. It is also possible to notice that the performance gains of RTMA are higher

with larger sample sizes. The SCA, on the other hand, suffers from its high computational

complexity as the sample size is increased and spends a significant amount of time

Barreiros et al. Page 19

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

computing the reuse. This offsets the gains with reuse in this approach. Finally, in the best

case, RTMA is about 2.6× faster than not performing reuse.

We have also analyzed the same set of algorithms in a VBD SA experiment. The VBD used

the eight most significant parameters detected in the MOAT SA (Table 3). The main

difference between MOAT and VBD in this evaluation regards the number of parameter sets

executed. VBD demands hundreds to thousands runs per parameter; thus, we varied the

parameter sample size or the number of parameter sets from 2000 to 10 000. To speedup this

experiment, the number of nodes used was increased to 32. The results are shown in Figure

13. The gains with the computation reuse are also significant in this case. However, as

expected, because of the larger number of parameter sets used, the SCA method could not

even finish the reuse analysis within 14 000 secs. The RTMA had speedups of at most 2.9×

against the “No Reuse” approach and 1.51× on top of “Stage Level.”

Further, we have varied the parameter sampling strategy used to generate the parameter sets

during a SA analysis to measure the reuse opportunities with different strategies. In this

experiment, the Latin hyper-cube sampling (LHS), Monte Carlo (MC), and quasi–Monte

Carlo using a Halton sequence (QMC) methods were analyzed. In this experiment, we

calculate the maximum reuse available at the fine-grain tasks, meaning that coarse-grain

reuse has been performed before this analysis. It is measured in number of tasks that could

be reused. The results are presented in Table 5. In essence, there is a small variability in the

amount of reuse across sampling strategies or as the parameter sample set increases. These

results are interesting as they show that the reuse is not limited to the use of a specific

parameter sampling method/sample size.

5.3 The effect of the merging to scalability

This section evaluates the impact of merging to the scalability of the application in SA

studies. As discussed before, the merging reduces the number of stage instances and,

consequently, the parallelism available for execution on distributed memory systems. In

order to evaluate this aspect, we have used a MOAT SA with a parameter sample size of

1000 and a VBD SA with 10 000 runs. For both studies, the number of nodes is varied to

evaluate the performance. In essence, the MOAT study will represent a case in which the

parallelism may not be high enough to fully utilize the system as the number of nodes used

increases, whereas VBD is a very demanding study in which the parallelism available

(number of stage instances) will continue to be sufficient to fully exploit the target machine

even after stage merging. In these experiments, four versions of the application were

executed: No reuse as a baseline, Stage Level reuse only, and fine-grain computation reuse

with RTMA and TRTMA.

The experimental results for the MOAT are presented in Figure 14. As can be observed, the

Stage Level reuse can attain good scalability as the number of nodes increases, which is a

result of high level of parallelism available. The RTMA was set up to use MaxBucketSize of

10 (best value for 8 machines). The TRTMA, on the other hand, was configured to create a

number of buckets of 3× the number cores available. The results show that RTMA and

TRTMA have better performance than Stage Level only reuse until 32 machines are

employed. After that, the performance of RTMA degrades as compared to the Stage Level

Barreiros et al. Page 20

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and TRTMA versions of the application. When 256 machines are used, TRTMA is close to

2× faster than RTMA and has a better performance than the Stage Level reuse. The RTMA

performance degradation is a result of the low number of stages per core after merging. For

TRTMA, this value is kept fixed (3× the number cores) for all configurations. As such,

TRTMA can benefit of reuse in case of sufficient parallelism, similarly to RTMA, but can

handle cases in which the parallelism may affect the performance.

Figure 15 presents the SA study using VBD with 10 000 runs. Here, as expected, the RTMA

performance degradation never occurs because the number of stage instances available is

high even after merging. Thus, the RTMA scalability is not affected and it attains speedups

between 1.26× and 1.35× as compared with Stage Level only reuse. When comparing

RTMA and TRTMA, their performances are equivalent, showing that TRTMA improves

RTMA in cases of insufficient parallelism and does not degrade the performance when

enough parallelism is available.

5.4 The performance of TRTMA as the parameter sample size and MaxBuckets are varied

This section evaluates the TRTMA execution time as the number of parameter sets (n) and

the MaxBuckets are varied. As previously described in Section 4.2.4, the complexity of

TRTMA in the worst case is cubic, but several optimizations were implemented to avoid this

case. Thus, we wanted to evaluate its performance in practice. The execution times spent by

TRTMA to perform the merging are presented in Figure 16. As presented, the execution

time increases with n and reduces as MaxBuckets increases. However, the execution time

growth with n observed is subquadratic in practice. Moreover, the reduction as the number

of MaxBuckets increases was also expected because it reduces the imbalance of the initial

solution used by the Balance step of the TRTMA.

6 RELATED WORK

The computation reuse, also known as value locality,38,39 has been employed in several

domains40–42 using multiple techniques as value prediction,43 dynamic instruction reuse,44

and memoization.45 We summarized the main related work and their features in Table 6. The

reuse may be implemented in hardware using specific components specialized for this task

or in software platforms. Further, the works are categorized here according to the approach

employed: memoization and analytic. Memoization uses a cache-based solution to save/read

results from previous computations. The analytic approach identifies reuse in the

application, linking the output of operations to places in which it is reused to minimize or

avoid caching. The next aspect is the granularity of the reuse. We have classified this aspect

into two classes: Fine-Grain (instruction and compute inexpensive/small subroutines) and

Coarse-grain (expensive routines or collections of subroutines and full applications). We

differentiate fine-/coarse-grain because we leverage both levels in our approach; however, it

is not explicitly distinguished in most of the related works. We have also analyzed if the

solutions deal with large-scale datasets. Finally, the scope of reuse differs according to the

applicability of the strategies to local or distributed computing environments.

Sodani and Sohi44 employ a computation reuse buffer to optimize instructions execution

with a memory cache. Their approach aims to reduce computational cost through reuse by

Barreiros et al. Page 21

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(i) ending the instruction pipeline earlier, thus also reducing resource conflicts, and (ii) by

breaking dependencies of next instructions, which can be executed earlier since the

necessary inputs are already available. The reuse buffer was initially proposed as a strategy

to reduce branch misdirection penalties, but it was extended to other types of instructions.

This work has been implemented in a superscalar pipeline, and has the limitation of being

able of employing only small buffers in practice.

The work on by Richardson45 deals with the fast execution of the called trivial

computations, which occur for instance with a division by two that result in redundant

computations and lead to opportunities of reuse. With respect to reuse, it quantifies the

amount of redundant computation in several popular benchmarks, showing the benefits of

memoization on those cases. Although this work focuses on quantifying the potential gains

of reuse, it is performed on the scope of a hardware based solution. Wang and

Raghunathan40 attempt to reduce the energy consumption in embedded devices through a

profiling-based reuse technique with memoization. The profiling identifies computation

reuse regions and quantifies the benefits at different reuse granularities. Interesting

discussions on the appropriate granularity of tasks are presented along with the limitations of

a hardware based solution. In the works of Alvarez et al46 and Modarressi et al,47 a domain-

specific strategy is proposed for reusing floating-point operations when operands are similar

enough. The similarity metric in this case is a key aspect that affects reuse opportunities. As

such, there is a trade-off between the precision of the computations and the reuse potential.

The work by Riera et al48 leverages the error tolerance of deep neural networks (DNN) on a

hardware implementation of a reuse-based DNN accelerator. By using the proposed

accelerator, an improvement on energy utilization was observed. Since this approach for

computation reuse specifically relies on temporal reuse of DNN layers, its use is limited to

workflows in the DNN domain.

The work by Mood et al41 enables computation reuse in a distributed environment. It caches

secure-function evaluation (SFE) in a buffer to be used by multiple clients. In order to

improve scalability, the buffer could be distributed among server nodes. This approach may

not be generalized for several domains since the granularity of the reused tasks must be

rather coarse to achieve good speedups. The work of Goecks et al49 also enables reuse in

distributed environments with bioinformatics applications. The granularity of reuse is at full

application, which limits the potential gains with reuse. Another approach for reuse in

bioinformatics is presented in the work of Santos and Santos,50 which employs memoization

to store partial results during protein comparisons.

Connors and Hwu38 exploit value locality with a combination of a hardware buffer and a

profile-guided compiler that groups instructions into reusable tasks as to optimize their

granularity. This is a flexible and efficient approach in terms of reuse. However, the

implementation may be complex because of the extensions required in the hardware,

compiler, and profiling that cooperate to provide the solution.

Guo et al51 propose to reduce the computation cost of image and audio recognition

applications through approximate computation reuse. In their work, IoT devices can attain

Barreiros et al. Page 22

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

reduced computation latency and energy consumption by using a distributed cache system

that attempts to reuse results of similar functions previously executed. Although it has shown

to be efficient, this approach can only be employed for applications that tolerate approximate

results for coarser-grained operations.

In the work of Xu et al,52 an analytic approach has been proposed for the framework of

Isogeometric Analysis (IGA) in which complex matrix calculations may be reused. In

essence, it reuses three-dimensional fully calculated models with similar semantic features.

The template model, which was previously solved, can export some matrix solutions (when

calculating the stiffness matrix) that are proven to be reusable for these similar models.

Given that this reuse method was developed for IGA applications and it relies on their

features, its use on other domains may be limited.

Li et al53 Liam tackle the problem of optimizing parameter tuning applications through

computation reuse. On their work, the applications being tuned are represented as directed

acyclic graphs (DAGs), which may have their atomic stages representation reused at

runtime. This reuse is conditional to finding the results cached. They integrate the

computation reuse and parameter tuning by steering the generation of an execution DAG

containing all pipeline executions for parameter values evaluated. The behavior of this

approach on large-scale distributed execution environments was not discussed; it only

handles coarse-grain tasks with a memoization-based strategy. These aspects are a limitation

to the use in our application domain.

Although a large number of works have been developed in different domains, none of them

could be directly applied to our problem. First, we target at having an approach that could be

reused in parameter studies, so we have built it on top of a distributed memory domain-

specific runtime system. Further, the amount of data employed by these application is very

high; as such, classic memoization would not be a practical solution because of the large size

of the sub-products generated by application stages. In our solution, tasks that use the same

input are bundled into the same stage instances; thus all data are directly forwarded to them

without the need for large caching. As presented in the experimental results, the multilevel

reuse results in significant performance improvements to our use case application, whereas

most of the works have focused on either fine-grain–only or coarse-grain–only approaches.

7 CONCLUSIONS

The execution of SA applied to the context of pathology image analysis has been shown to

be an effective tool for improving the understanding of applications on this domain.14

Although this class of applications could strongly benefit from SA, its use in practice is

limited due to the high computational demands.

In this paper, we have leveraged high-performance computing platforms equipped with

CPUs and accelerators to efficiently execute SA of a complex cancer image analysis

application. Our solution includes an efficient parallelization framework with several

optimizations. It was empirically shown the actual benefits of using the hybrid configuration

of CPU-MIC (using Intel Phi) on a large-scale distributed environment. We have evaluated

Barreiros et al. Page 23

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

multiple strategies for performing computation reuse in SA of pathology image analysis

applications, which resulted in strong performance improvements (2.9×) as compared to not

reusing computation. Further, we have shown that, although the RTMA can be effectively

used on most cases, its performance degrades on certain scaling cases (see Section 5.3),

making the new TRTMA the best all-round choice for computation reuse optimization. As

such, the combination of all these optimizations led to a very efficient execution platform

that enables the systematic execution of SA in our target application domain.

As future work, we plan to develop novel algorithms for task level merging and evaluate the

proposed strategies in other application domains. We will also leverage features found in the

related work to improve our approaches. For instance, we are interested in investigating

profiling-based approaches to automatically define tasks/stages granularities. The target in

this case will be to define granularities that maximize performance, considering data

transfers and the benefits of reuse with specific application partitions/decompositions.

ACKNOWLEDGMENTS

This work was supported in part by U24CA180924, U24CA215109, and 1UG3CA225021 from the NCI,
R01LM011119-01 and R01LM009239 from the NLM, CNPq, Capes/Brazil grant PROCAD-183794, and NIH
K25CA181503. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation grant number ACI-1548562. Specifically, it used the Bridges system,
which is supported by NSF award number ACI-1445606, at the Pittsburgh Supercomputing Center (PSC).

REFERENCES

1. Ioannou A, Itard L. Energy performance and comfort in residential buildings: sensitivity for building
parameters and occupancy. Energy Build. 2015;92:216–233.

2. Hamby DM. A review of techniques for parameter sensitivity analysis of environmental models.
Environ Monit Assess. 1994;32(2):135–154. [PubMed: 24214086]

3. Morris MD. Factorial sampling plans for preliminary computational experiments. Technometrics.
1991;33(2):161–174.

4. Weirs VG, Kamm JR, Swiler LP, et al. Sensitivity analysis techniques applied to a system of
hyperbolic conservation laws. Reliab Eng Syst Saf. 2012;107:157–170.

5. Campolongo F, Cariboni J, Saltelli A. An effective screening design for sensitivity analysis of large
models. Environ Model Softw. 2007;22(10):1509–1518.

6. Iooss B, Lemaître P. A review on global sensitivity analysis methods In: Dellino G, Meloni C, eds.
Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and
Applications. New York, NY: Springer Science + Business Media; 2015.

7. Kong J, Cooper LAD, Wang F, et al. Machine-based morphologic analysis of glioblastoma using
whole-slide pathology images uncovers clinically relevant molecular correlates. PLoS ONE.
2013;8(11):e81049. [PubMed: 24236209]

8. Mezheyeuski A, Hrynchyk I, Karlberg M, et al. Image analysis-derived metrics of
histomorphological complexity predicts prognosis and treatment response in stage II-III colon
cancer. Scientific Reports. 2016;6:36149. [PubMed: 27805003]

9. Kothari S, Phan JH, Stokes TH, Wang MD. Pathology imaging informatics for quantitative analysis
of whole-slide images. J Am Med Inf Assoc JAMIA. 2013;20(6):1099–1108.

10. Irshad H, Veillard A, Roux L, Racoceanu D. Methods for nuclei detection, segmentation, and
classification in digital histopathology: a review—current status and future potential. IEEE Rev
Biomed Eng. 2014;7:97–114. [PubMed: 24802905]

11. Yuan Y, Failmezger H, Rueda OM, et al. Quantitative image analysis of cellular heterogeneity in
breast tumors complements genomic profiling. Sci Transl Med. 2012;4(157):157ra143.

Barreiros et al. Page 24

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

12. Xing F, Yang L. Robust nucleus/cell detection and segmentation in digital pathology and
microscopy images: a comprehensive review. IEEE Rev Biomed Eng. 2016;9:234–263. [PubMed:
26742143]

13. Xu Y, Jia Z, Ai Y, et al. Deep convolutional activation features for large scale brain tumor
histopathology image classification and segmentation. Paper presented at: 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP); 2015; Brisbane, Australia.

14. Teodoro G, Kurç T, Taveira LFR, et al. Algorithm sensitivity analysis and parameter tuning for
tissue image segmentation pipelines. Bioinformatics. 2017;33(7):1064–1072. [PubMed:
28062445]

15. Barreiros W, Teodoro G, Kurç T, Kong J, Melo AC, Saltz J. Parallel and efficient sensitivity
analysis of microscopy image segmentation workflows in hybrid systems. Paper presented at: 2017
IEEE International Conference on Cluster Computing (CLUSTER); 2017; Honolulu, HI.

16. Teodoro G, Pan T, Kurç T, et al. Region templates: data representation and management for high-
throughput image analysis. Parallel Computing. 2014;40(10):589–610. [PubMed: 26139953]

17. Saltz J, Gupta R, Hou L, et al. Spatial organization and molecular correlation of tumor-infiltrating
lymphocytes using deep learning on pathology images. Cell Reports. 2018;23(1):181–193. e7.
[PubMed: 29617659]

18. Teodoro G, Kurc T, Kong J, Cooper L, Saltz J. Comparative Performance Analysis of Intel (R)
Xeon Phi (TM), GPU, and CPU: A Case Study from Microscopy Image Analysis. Paper presented
at: 2014 IEEE 28th International Parallel and Distributed Processing Symposium; 2014; Phoenix,
AZ.

19. Teodoro G, Pan T, Kurç TM, Kong J, Cooper LAD, Saltz JH. Efficient irregular wavefront
propagation algorithms on hybrid CPU-GPU machines. Parallel Computing. 2013;39(4–5):189–
211. [PubMed: 23908562]

20. Bradski G The OpenCV Library. 2000 http://www.drdobbs.com/open-source/the-opencv-library/
184404319

21. Vincent L Morphological grayscale reconstruction in image analysis: applications and efficient
algorithms. IEEE Trans Image Process. 1993;2:176–201. [PubMed: 18296207]

22. Oliveira VMA, Alencar Lotufo R. A study on connected components labeling algorithms using
GPUs. Paper presented at: 23rd SIBGRAPI - Conference on Graphics, Patterns and Images; 2010;
Gramado, Brazil.

23. Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Anal
Quant Cytol Histol. 2001;23(4):291–299. [PubMed: 11531144]

24. Teodoro G, Kurç T, Andrade G, Kong J, Ferreira R, Saltz J. Application performance analysis and
efficient execution on systems with multi-core CPUs, GPUs and MICs: a case study with
microscopy image analysis. Int J High Perform Comput Appl. 2017;31(1):32–51. [PubMed:
28239253]

25. Bosilca G, Bouteiller A, Herault T, et al. Performance portability of a GPU enabled factorization
with the DAGuE framework. Paper presented at: 2011 IEEE International Conference on Cluster
Computing; 2011; Austin, TX.

26. Bueno J, Planas J, Duran A, et al. Productive programming of GPU clusters with OmpSs. Paper
presented at: 2012 IEEE 26th International Parallel and Distributed Processing Symposium; 2012;
Shanghai, China.

27. He B, Fang W, Luo Q, Govindaraju NK, Wang T. Mars: a MapReduce framework on graphics
processors. Paper presented at: 2008 International Conference on Parallel Architectures and
Compilation Techniques (PACT); 2008; Toronto, Canada.

28. Linderman MD, Collins JD, Wang H, Meng TH. Merge: a programming model for heterogeneous
multi-core systems. SIGPLAN Notices. 2008;43(3):287–296.

29. Mittal S, Vetter JS. A survey of CPU-GPU heterogeneous computing techniques. ACM Comput
Surv. 2015;47(4):69.

30. Aji A, Teodoro G, Wang F. Haggis: Turbocharge a MapReduce based spatial data warehousing
system with GPU engine. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop
on Analytics for Big Geospatial Data; 2014; Dallas, TX.

Barreiros et al. Page 25

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.drdobbs.com/open-source/the-opencv-library/184404319
http://www.drdobbs.com/open-source/the-opencv-library/184404319

31. Saltelli A, Tarantola S, Campolongo F, Ratto M. Sensitivity Analysis in Practice: A Guide to
Assessing Scientific Models. Chichester, UK: Wiley; 2004.

32. McKay MD, Beckman RJ, Conover WJ. A comparison of three methods for selecting values of
input variables in the analysis of output from a computer code. Technometrics. 1979;42(1):55–61.
ISBN 00401706.

33. Wolstencroft K, Haines R, Fellows D, et al. The Taverna workflow suite: designing and executing
workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res.
2013;41(W1):W557–W561. [PubMed: 23640334]

34. Stoer M, Wagner F. A simple min-cut algorithm. J ACM. 1997;44(4):585–591.

35. Goldschmidt O, Hochbaum DS. Polynomial algorithm for the k-cut problem. In: [Proceedings
1988] 29th Annual Symposium on Foundations of Computer Science; 1988; White Plains, NY.

36. Halton JH. Algorithm 247: radical-inverse quasi-random point sequence. Commun ACM.
1964;7(12):701–702.

37. Sobol IM. Uniformly distributed sequences with an additional uniform property. USSR Comput
Math Math Phys. 1976;16(5):236–242.

38. Connors DA, Hwu W-MW. Compiler-directed dynamic computation reuse: Rationale and initial
results. In: Proceedings of the 32nd Annual ACM/IEEE International Symposium on
Microarchitecture; 1999; Haifa, Israel.

39. Lepak KM, Lipasti MH. On the Value locality of store instructions. SIGARCH Comput Archit
News. 2000;28(2):182–191.

40. Wang W, Raghunathan A, Jha NK. Profiling driven computation reuse: An embedded software
synthesis technique for energy and performance optimization. In: Proceedings of the 17th
International Conference on VLSI Design; 2004; Mumbai, India.

41. Mood B, Gupta D, Butler K, Feigenbaum J. Reuse it or lose it: More efficient secure computation
through reuse of encrypted values. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security; 2014; Scottsdale, AZ.

42. Steen JV, Coenders JL, Pasterkamp S, Rolvink A, Steekelenburg JV. Computational reuse
optimisation for stadium design. In: Proceedings of the International Association for Shell and
Spatial Structures; 2015; Amsterdam, The Netherlands.

43. Nakra T, Gupta R, Soffa M. Value prediction in VLIW machines. In: Proceedings of the 26th
Annual International Symposium on Computer Architecture; 1999; Atlanta, GA.

44. Sodani A, Sohi GS. Dynamic instruction reuse. In: Proceedings of the 24th Annual International
Symposium on Computer Architecture; 1998; Denver, CO.

45. Richardson SE. Caching Function Results: Faster Arithmetic by Avoiding Unnecessary
Computation. Technical Report. Mountain View, CA: Sun Microsystems, Inc; 1992

46. Alvarez C, Corbal J, Valero M. Fuzzy memoization for floating-point multimedia applications.
IEEE Trans Comput. 2005;54(7):922–927.

47. Modarressi M, Nikounia SH, Jahangir A-H. Low-power arithmetic unit for DSP applications.
Paper presented at: 2011 International Symposium on System on Chip (SoC); 2011; Tampere,
Finland.

48. Riera M, Arnau JM, González A. Computation Reuse in DNNs by Exploiting Input Similarity
ISCA ‘18. Piscataway, NJ: IEEE Press; 2018:57–68.

49. Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehensive approach for supporting accessible,
reproducible, and transparent computational research in the life sciences. Genome Biology.
2010;11(8):R86. [PubMed: 20738864]

50. Santos EE, Santos E Jr. Effective computational reuse for energy evaluations in protein folding. Int
J Artif Intell Tools. 2006;15(5):725–739.

51. Guo P, Hu B, Li R, Hu W. FoggyCache: Cross-Device Approximate Computation Reuse MobiCom
‘18. New York, NY: ACM; 2018:19–34.

52. Xu G, Kwok T-H, Wang CCL. Isogeometric computation reuse method for complex objects with
topology-consistent volumetric parameterization. Comput-Aided Des. 2017;91:1–13.

53. Li L, Sparks ER, Jamieson KG, Talwalkar A. Exploiting reuse in pipeline-aware hyperparameter
tuning. 2019 arXiv preprint arXiv:1903.05176.

Barreiros et al. Page 26

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 1.
The workflow of the motivating microscopy image analysis application with the high-level

stages (Normalization, Segmentation, and Feature Extraction) and their internal operations.

The input parameters used by the operations in the Segmentation stage are also shown in

boxes below the name of the operations. The inter-task data transfers are presented close to

the arrows pointing the origin and destination of the data

Barreiros et al. Page 27

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 2.
Overview of the Region Templates framework architecture and execution scheme. On the

left side of the Figure, we have a global view of the framework (distribution of stages from

the manager to the worker nodes), whereas on the right side, the execution on the worker

node side is presented. The process of executing a single stage, from its assignment to the

request of another stage, is further detailed16

Barreiros et al. Page 28

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 3.
The parameter SA framework. The system receives an application and parameters to be

studied along with input data and the selected SA method as input. It then generates the

application code and executes it on top of the Region Templates system using parallel

machines. Results from segmentation outputs for different parameter values are compared

using an optimized spatial indexing, and these differences or detected variations in the

output results are used by the SA method to compute sensitivity of the output with respect to

input parameter changes

Barreiros et al. Page 29

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 4.
Example of a workflow composition based on a simple application. The application is

described as a workflow of stages, each stage having as its inputs their respective parameters

(p1-p5) and the output data of the previous stages (if there is any). This application is

instantiated with three parameter sets, which can be composed either by fully replicating the

application workflow for each parameter set, or by performing a compact composition,

which avoids replicating stages that would return the same result (ie, same input data and

parameters)

Barreiros et al. Page 30

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 5.
An example on which SCA executes on five instances of a workflow application of six tasks,

with MaxBucketSize = 2. On this depiction of the merging problem, each node represents a

stage instance (same stages with different parameters) with the edges as the degree of reuse

between two stage instances. A, Example application with the stages’ parameters

instantiations; B, Initial graph of the example with all stages instances and their respective

degree of reuse; C, First cut is performed by removing node c, which is a cut of weight 4; D,

After the next min-cut of weight 10, node a is removed; E, After final cut of node b, a

MaxBucketSize sized subgraph is found and set apart on the solution list; F, After the

formation of a bucket the cutting process starts over with the remaining nodes. This

procedure continues until all nodes are assigned to a bucket

Barreiros et al. Page 31

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 6.
An example in which node x is inserted on the existing reuse-tree. Figure 6A defines the

tasks of which each stage is composed by and presents the parameters’ values for each stage

instance. A, Example application; B, Initial reuse-tree for the instance example; C,

Searching for reuse on the first task; D, Searching for reuse on the second task; E, Inserting

a new node 6; F, Inserting the leaf node x

Barreiros et al. Page 32

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 7.
An example of RTMA with MaxBucketSize 3. The merged stages of each step are shown

below the tree on the bucket list. A, Initial reuse-tree; B, Reuse-Tree after select procedure;

C, Reuse-Tree after the selected merged leaf nodes are pruned and added to the bucket list;

D, Reuse tree after the childless parents are recursively removed; E, Reuse tree after move-

up procedure

Barreiros et al. Page 33

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 8.
An example of the buckets generated by the first two phases of the algorithm: Full-Merge

and Fold-Merge, using MaxBuckets = 3. A, Initial reuse-tree; B, Attempt of Full-Merge

from root node results in four buckets, which is greater than MaxBuckets = 3; C, After Full-

Merge, the minimum number of four buckets are created. Still, we need to be reduce the

number of buckets to MaxBuckets through Fold-Merging; D, Fold-Merge, the merges first

and last buckets of the previous tree to achieve the correct number of three buckets

Barreiros et al. Page 34

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 9.
An example of a Fold-Merging of buckets b1–b6. Initially, we start with b = 6 buckets,

trying to achieve MaxBuckets = 4 buckets. The task cost of the buckets follows the ordering

b1 ≥ b2 ≥ b3 ≥ b4 ≥ b5 ≥ b6. The pairs of buckets b4 and b5, as well as b6 and b3, are

merged together

Barreiros et al. Page 35

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 10.
An example of the Balance step on which there are 3 buckets to be balanced. A, Initial

reuse-tree with 3 buckets of costs 8, 9, and 5, respectively; B, Buckets of greatest and

smallest costs are selected, with current imbalance of 4 and max cost 9; C, The algorithm

attempts to send node 6 to smallRT, but it is aborted because the result has a greater

imbalance of 7; D, The attempt with node 7 is also done, and this is also aborted because a

bucket with cost 9 (not smaller than the original solution) is created; E, By sending node S9

to smallRT, we have an imbalance of 0 and max cost 8, making it a viable balancing

operation; F, After the balancing operation of sending node S9 to smallRT, we have the

buckets with updated costs 8, 8, and 8

Barreiros et al. Page 36

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 11.
Performance of the application in a weak scaling execution for multiple application versions

and scheduling strategies. The number of MICs is the same as the Number of Nodes, with

all 16 CPU cores of each Stampede node being used when this processor is employed

Barreiros et al. Page 37

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 12.
Performance of multiple computation reuse algorithms for a MOAT SA experiment as the

parameter set sample size is varied from 75 (s75) to 640 (s640)

Barreiros et al. Page 38

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 13.
Impact of the computation reuse strategies for the VBD SA method as parameter set sample

size is varied from 2000 (s2000) to 10 000 (s10000)

Barreiros et al. Page 39

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 14.
Performance of different reuse strategies for MOAT with 1000 parameter samples. The

scalability of RTMA is compromised due to the merging

Barreiros et al. Page 40

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 15.
Performance of different reuse strategies for VBD with 10 000 parameter samples

Barreiros et al. Page 41

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 16.
Execution time of TRTMA for different as the parameter sample size and MaxBuckets are

varied

Barreiros et al. Page 42

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Barreiros et al. Page 43

TABLE 1

List of parameters used by operations in the Segmentation stage of our motivating application and their range

values. The search space formed is of about 21 trillion points

Parameter Description Range values

B/G/R Background detection thresholds [210, 220, …, 240]

T1/T2 Red blood cell thresholds [2.5, 3.0, …, 7.5]

G1 Thresholds to identify candidate nuclei [5, 10, …, 80]

G2 Thresholds to identify candidate nuclei [2, 4, …, 40]

MinSize (minS) Candidate nuclei area threshold [2, 4, …, 40]

MaxSize (maxS) Candidate nuclei area threshold [900, …, 1500]

MinSizePl(minSPL) Area threshold before watershed [5, 10, …, 80]

MinSizeSeg (maxSS) Area threshold in final output [2, 4, …, 40]

MaxSizeSeg (minSS) Area threshold in final output [900, …, 1500]

FillHoles (FH) Propagation neighborhood [4-conn, 8-conn]

MorphRecon (RC) Propagation neighborhood [4-conn, 8-conn]

Watershed (WConn) Propagation neighborhood [4-conn, 8-conn]

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Barreiros et al. Page 44

TABLE 2

Operations used in each of the application main stages and their parallelism strategy

Operations Description Source code ref.

Normalization phase

Seg FG dist Segment foreground from background w/ discriminant functions Ours

RGB2LAB Convert from RGB to LAB Ours

TransferI Map color distribution of an image to that of the target image Ours

LAB2RGB Convert from LAB to RGB Ours

Segmentation phase

GetRBC Covert RGB image to grayscale and estimate background coverage OpenCV20

Morphological open Opening removes small objects and fills holes in foreground OpenCV20

Morphological reconstruction Flood-fill a marker image that is limited by a mask image Vincent21

Area threshold Remove objects outside an area range IWPP19

Fill holes Fill holes objects w/ a flood-fill starting at selected points Vincent21

Distance transform Compute min distance from foreground pixels to background Ours

Watershed Separate overlapping objects OpenCV20

Feature extraction phase

BWLabel Label components (objects) of a mask image with the same value Oliveira22

Color deconvolution23 Separate multistained biological images in different channels Ours

Gradient Compute image gradient in x,y OpenCV20

Sobel edge Compute Sobel edge OpenCV20

Object features Compute statistics (mean, median, max, etc) for each object Ours

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Barreiros et al. Page 45

TABLE 3

Example output of a MOAT analysis with all 15 parameters and a VBD analysis with a selection of the eight

most influential parameters. The influence of a parameter is bounded in the interval [−1,1] and is proportional

to its distance from 0 (ie, 1 and −1 are the greatest values and 0 the smallest)

Parameter MOAT Effect VBD

First-order effect (main) Higher-order effects (total)

B −0.0108 - -

G −0.0064 - -

R −0.0189 - -

T1 0.0207 - -

T2 0.0417 0.0006 0.0001

G1 0.8157 0.2251 0.2371

G2 0.9197 0.7305 0.7886

MinSize 0.0889 0.0025 0.0056

MaxSize 0.1820 0.0150 0.0086

MinSizePI 0.0341 0.0021 0.0022

MinSizeSeg −0.0155 - -

MaxSizeSeg −0.0184 - -

FillHoles −0.0276 - -

MorphRecon 0.1321 0.0146 0.0149

Watershed 0.0530 0.0018 0.0016

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Barreiros et al. Page 46

TABLE 4

Specification of the images and the native database used as test inputs

Images source: The Cancer Genome Atlas (TCGA) database

Images type: Glioblastoma Multiforme (GBM) whole slide tissue image (WSI)

Images size: Approximately 120K×120K pixels

Images tiling: About 136,568 tiles of 4K×4K pixels

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Barreiros et al. Page 47

TABLE 5

Maximum computation reuse potential for the parameter sampling methods MC, LHS, and QMC with

different parameter sample sizes. The reuse percentages represent reuse only at fine-grain reuse after coarse-

grain reuse is computed

Sampling strategy
Number of nodes

2000 6000 10000

MC 36.35% 36.46% 36.40%

LHS 36.62% 36.44% 36.44%

QMC 35.10% 34.44% 33.48%

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Barreiros et al. Page 48

TABLE 6

Comparative of computation reuse approaches

Reference Granularity Reuse strategy Hardware independent Large Scale dataset Distributed

44 Fine-grain Memoization ✗ ✗ ✗

45 Fine-grain Memoization ✗ ✗ ✗

46 Fine-grain Memoization ✗ ✗ ✗

47 Fine-grain Memoization ✗ ✗ ✗

48 Fine-grain Analytic ✗ ✓ ✗

40 Fine-grain Analytic
Memoization ✗ ✗ ✗

41 Coarse-grain Memoization ✓ ✗ ✓

49 Coarse-grain Memoization ✓ ✗ ✓

50 Coarse-grain Memoization ✓ ✗ ✗

38 Coarse-grain
Fine-grain Memoization ✗ ✗ ✗

51 Coarse-grain Memoization ✓ ✗ ✓

52 Coarse-grain Analytic ✓ ✗ ✗

53 Coarse-grain Memoization ✓ ✓ ✗

Our Work Coarse-grain
Fine-grain Analytic ✓ ✓ ✓

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

	Summary
	INTRODUCTION
	BACKGROUND
	Motivating application
	Region templates (RT)

	THE FRAMEWORK FOR EFFICIENT PARAMETER SENSITIVITY ANALYSIS
	MULTILEVEL COMPUTATION REUSE
	Stage-level computation reuse

	Algorithm 1
	Task-level computation reuse
	Naïve merging algorithm
	Smart cut algorithm (SCA)

	Algorithm 2
	Reuse-tree merging algorithm (RTMA)

	Algorithm 3
	Task-balanced reuse-tree merging algorithm (TRTMA)

	Algorithm 4
	EXPERIMENTAL EVALUATION
	Benefits of the cooperative execution using CPUs and Intel Phi
	Effect of multilevel computation reuse for different SA methods and sampling strategies
	The effect of the merging to scalability
	The performance of TRTMA as the parameter sample size and MaxBuckets are varied

	RELATED WORK
	CONCLUSIONS
	References
	FIGURE 1
	FIGURE 2
	FIGURE 3
	FIGURE 4
	FIGURE 5
	FIGURE 6
	FIGURE 7
	FIGURE 8
	FIGURE 9
	FIGURE 10
	FIGURE 11
	FIGURE 12
	FIGURE 13
	FIGURE 14
	FIGURE 15
	FIGURE 16
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4
	TABLE 5
	TABLE 6

