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Summary

Parameter sensitivity analysis (SA) is an effective tool to gain knowledge about complex analysis 

applications and assess the variability in their analysis results. However, it is an expensive process 

as it requires the execution of the target application multiple times with a large number of different 

input parameter values. In this work, we propose optimizations to reduce the overall computation 

cost of SA in the context of analysis applications that segment high-resolution slide tissue images, 

ie, images with resolutions of 100k × 100k pixels. Two cost-cutting techniques are combined to 

efficiently execute SA: use of distributed hybrid systems for parallel execution and computation 

reuse at multiple levels of an analysis pipeline to reduce the amount of computation. These 

techniques were evaluated using a cancer image analysis workflow on a hybrid cluster with 256 

nodes, each with an Intel Phi and a dual socket CPU. Our parallel execution method attained an 

efficiency of over 90% on 256 nodes. The hybrid execution on the CPU and Intel Phi improved the 

performance by 2×. Multilevel computation reuse led to performance gains of over 2.9×.
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1 INTRODUCTION

Parameter sensitivity analysis (SA) examines and quantifies the impact on analysis results of 

varying the input parameters of an analysis algorithm or application. Moreover, SA is 

executed by comparing, correlating, and quantifying outputs from multiple application runs 

as input parameters values are systematically varied. In addition, SA facilitates a better 

understanding of correlations between input parameters and application output. It can help 

remove sources of uncertainty, for instance, by re-factoring the application code to eliminate 

or replace operations associated with parameters of high influence to output variations. It 

can also simplify parameter tuning by enabling the parameter tuning process to focus on 

parameters that have the highest impact on output. Finally, SA has been successfully 

employed in several application domains.1–6 In this work, however, we target optimizations 

for efficient execution of SA in image segmentation workflows in whole slide tissue image 

analysis.

Whole slide tissue images (WSI) capture the sub-cellular structure of tissue in great detail. A 

typical WSI segmentation workflow locates cells and nuclei in an image, extracts their 

boundaries, and computes a set of shape and texture features for the segmented nuclei and 

cells. The segmented objects and features are used in further analyses to look for spatial 

patterns, correlate with genomic and clinical data, and to study the mechanisms of disease 

onset and progression.7–13

WSI analysis is a complex and compute-expensive process. Figure 1 presents the image 

analysis workflow employed by the example application used in this work.7 This workflow 

is divided into three coarse-grain computation steps: Normalization, Segmentation, and 

Feature Extraction, which are decomposed into several low-level or fine-grain operations. 

The computation of each WSI may lead to the identification of about 400 000 nuclei and 

will execute for hours when carried out on a single machine. Regardless of the number of 

opportunities and advantages in using information automatically computed from WSIs, there 

are still aspects that need to be better addressed in order to make these analyses more robust 

and reliable. For instance, image analysis algorithms are typically parameterized, and 

changes on input parameters may significantly affect the output results/quality.14 In this 

context, understanding the correlations between input parameters and the application outputs 

is of main importance.

The use of SA in the context of pathology image analysis can lead to a better understanding 

of the algorithms and improve results in terms of robustness, but its execution is very 

challenging due to its high computational costs. SA studies typically require the application 

to be executed several times as parameter values are varied. A method such as Variance 

Based Decomposition (VBD),4 which is widely used for SA, may require hundreds to 

thousands of runs per parameter in order to adequately quantify the correlations between 

parameters and output. Each run would process hundreds of WSIs in a moderate scale 

experiment, segmenting hundreds of millions cell nuclei, which, in turn, should be compared 

to a reference dataset to quantify changes in the output results or objects detected. An 

experiment at this scale would take years if executed sequentially.14
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Our work addresses the challenges of executing large scale SA in pathology image analysis 

workflows. We propose methods for efficient execution on hybrid distributed memory 

compute systems and novel runtime optimizations targeting SA. In particular, we propose 

smart computation reuse strategies. The computation reuse opportunities are raised as the 

application is executed multiple times over the same datasets with different parameter sets. 

In this setting, there are parts of the application (stages or fine-grain tasks/operations) that 

may be computed using the same data and parameters values, which leads to the re-

execution of these operations or tasks multiple times. In the context of fine-grain operations/

tasks within an application coarse-grain stage, computation reuse may be complex since the 

reuse is attained by merging stage instances to avoid duplicate computations. However, this 

merging creates coarser-grain stages that may demand more resources (eg, memory). As a 

consequence, this limits the number of stage instances that could be merged together since a 

stage instance is executed within the scope of a node. Moreover, the merging impacts the 

available parallelism due to the smaller number of stage instances available for execution, 

which, depending on the system scale and number of workflow instances dispatched for 

execution (ie, the type of the SA method used), may affect the application scalability.

This paper extends our previous work on the domain15 with the introduction of a 

computation reuse strategy called Task-Balanced Reuse-Tree Merging Algorithm (TRTMA). 

TRTMA is able to handle the trade-offs between merging and parallelism availability. As 

presented in the results, TRTMA has similar or superior performance (up to about 1.7×) than 

our previous approaches. We also performed additional evaluations to identify the impact of 

multiple sampling strategies to the reuse, extended the background discussion of sensitivity 

analysis on the proposed framework, and presented a comparative review of related works. 

The main contributions of this work can be summarized as follows.

• We present a system for efficient execution of SA of pathology image analysis 

workflows, which leverages the use of large-scale distributed environments, as 

further described in Section 3. This system also includes a number of commonly 

used SA methods, a custom multilayered storage system and provides graphical 

tools to simplify its use.

• We propose computation reuse algorithms that exploit multiple levels of reuse 

(coarse-grain and fine-grain). The algorithms developed and evaluated include: 

Smart-Cut Algorithm (SCA), Reuse-Tree Merging Algorithm (RTMA), and 

TRTMA (see Section 4). The computation time reductions observed in the 

experimental results with the proposed strategies as compared to not reusing 

computation are of up to 2.9×. Furthermore, the fine-grain reuse improved the 

performance of the coarse-grain only case in about 1.5×.

• We experimentally evaluated the motivating application7 on hybrid machines 

equipped with CPU and Intel Phi. As presented in the experimental results, the 

cooperative use of these processors with adequate scheduling strategies improved 

the application performance in about 2×, as compared to the CPU only 

execution. We executed large-scale studies on hybrid machines with 256 nodes (a 

total of 4096 CPU cores and 256 Intel Phis), in which a parallel efficiency of 

over 90% has been achieved.
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The aggregate improvement attained with the proposed optimizations and scalability of the 

solution should enable SA in large-scale studies. These studies have the potential to 

significantly help the development of more robust applications, which are critical in the 

biomedical domain. The remainder of this paper is organized as follows: Section 2 describes 

the motivating application and the Region Templates (RT)16 infrastructure in which our 

solutions were built. The overview of the proposed strategy to perform SA in the pathology 

image analysis domain is described in Section 3. The optimizations for computation reuse 

are detailed in Section 4. Further, we carry out the experimental evaluation in Section 5, 

describe the related work in Section 6, and conclude the paper and present the future 

directions in Section 7.

2 BACKGROUND

This section details the motivating pathology image analysis application workflow used in 

our SA studies (Section 2.1) and presents the Region Templates system in which our 

solutions were built for efficient and scalable execution (Section 2.2).

2.1 Motivating application

The use of modern high-resolution whole slide scanners is transforming the pathology image 

analysis domain. Their capacity of quickly acquiring high-resolution slides has motivated 

several recent works on tissue biomarker and image-based diagnostics.7,9,17 These scanners 

capture very large 2D color images with resolutions of over 100K×100K pixels with about 

50 GB in size or z-stacked images with several channels. Technology improvements, as slide 

loaders, allowed for several scans to be performed in a day, and as a consequence, multiple 

large private and public repositories of WSIs such as The Cancer Genome Atlas (TCGA) 

that contains over 30 000 such images were developed. In this context, the human-based data 

analysis may be inefficient due to the large amount of data available, the known subjective 

assessment of the data, the need for reproducing analysis, etc. Thus, the support and 

development of automated analysis tools are becoming a critical aspect for the progress of 

the domain.

A pathology image analysis workflow may consist of several computing steps (or stages), 

but Normalization, Segmentation, and Feature Extraction are typically employed on this 

class of applications. The development of efficient implementations of workflows with these 

stages has been the focus of our research in the recent years.14,16 The Normalization is 

executed with the goal of reducing differences between images due to mechanisms in the 

acquisition process, which may lead, for instance, to different color intensities. The 

Segmentation, on the other hand, identifies objects of interest and delineates their 

boundaries. In our case, these objects consist of cells’ nuclei. The Feature Extraction 

computes a vector of characteristics on a per object basis containing information that 

includes texture, shape, etc.

The motivating image analysis workflow used in this work is presented in Figure 1, which 

shows the decomposition of the workflow stages into their fine-grain internal operations. 

The operations in these stages have been developed, targeting CPU and Intel Phi for 

cooperative execution on hybrid systems.18 One of the main concerns with the use of 
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automated microscopy image analysis refers to the robustness of the outputted information 

or results. This occurs because these application workflows are typically parameterized, and 

changes in the input parameters values may significantly affect the output results. For the 

segmentation stage, the parameters are presented in Table 1, along with the possible values 

that each parameter may assume, as suggested by an application expert. The number of 

parameters is high, making it very challenging and error-prone to vary them manually to 

identify changes in the output (eg, segmentation results). This creates a demand for using 

systematic methods to perform the parameter studies. It is important to highlight that this 

work has focused on studying parameters of the Segmentation stage of the application. This 

has been our choice because the Segmentation is the most parameterized stage, and it also 

extracts critical information (objects boundaries) used in the remaining of the downstream 

analyses.

The internal operations used in each of the computation stages presented in Figure 1 are 

detailed in Table 2. We have tried to employ existing works/tools in the implementation of 

the operations to assert their efficiency and implemented the ones not found in the literature 

(marked as “Ours” in the “Source code ref.” table column). The operations in the 

Normalization stage are typically data (pixel) parallel. The Segmentation stage has a few 

initial data parallel operations but uses irregular operations, for instance, based on flood-fill 

algorithms.19 The Feature Extraction stage computes features based on objects identified in 

the Segmentation stage and, as such, employs object parallelism.

2.2 Region templates (RT)

This section describes the RT framework16 used in this work as a baseline tool in which our 

proposals were built. RT supports the efficient execution of workflow applications in a 

distributed memory hybrid setting. The RT workflows are described in a hierarchical 

manner, such that a coarse-grain workflow formed of computation stages may have each of 

the stages implemented using another workflow of fine-grain tasks. This representation 

raises opportunities in terms of scheduling for efficient use of hybrid machines (eg, equipped 

with CPUs and accelerators), since heterogeneity in the performance of tasks at a fine 

granularity is exposed to the runtime.

An overview of the Region Templates architecture and execution scheme is presented in 

Figure 2. The RT is developed on top of the following core components: the runtime system, 

the data storage layer, and the data abstraction. The runtime system includes scheduling 

strategies for dispatching the execution of application stages and tasks. In RT, application 

stages are instantiated into the Manager process, which distributes them in a demand-driven 

fashion among the Worker processes. Each Worker is then responsible for the execution of 

stage instances assigned to it.

The execution of a stage instance within a Worker starts by reading input RT data objects, 

whereas its end is followed by a step in which RT objects produced/modified are pushed to 

the storage layer. As such, applications developed on top of RT do not have to handle 

communication among stage instances via traditional send/receive mechanisms. Instead, 

communication is performed by reading/writing RT objects from/to the storage. This 

approach alleviates the application development effort and also allows for the runtime 
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system to control the data placement, enabling the implementation of transparent data-aware 

scheduling of stage instances. The Region Templates data abstraction or data objects 

supported consist of data structures found in applications that compute data elements 

represented in low-dimensional spaces (1D, 2D, or 3D spaces) with or without a temporal 

dimension. Some of the data structures/elements used are: pixels, points, arrays (for images 

and 3D volumes), and polygons to represent segmented and annotated objects.

Moreover, during the execution of a stage within a Worker, tasks can be processed using all 

computing elements available in the machine hosting that Worker (ie, CPU cores or 

accelerators). This design creates a single Worker process per compute node on distributed 

memory machines, reducing process management overheads as fine-grain tasks executed by 

a stage instance are scheduled locally by Workers. The fine-grain scheduling is important to 

exploit the heterogeneity among the performance of tasks in hybrid systems. In real-world 

complex applications, it is expected that several operations will be used, and the different 

computation and data access patterns of these operations will make them benefit differently 

from the available processors. As such, not all tasks/operations will have the same speedups 

when executed on an accelerator. Thus, taking these variations into consideration can lead to 

a more efficient use of the system’s available resources. In order to optimize the execution of 

fine-grain tasks in each Worker, we have employed Performance Aware Task Scheduling 

(PATS) strategies proposed in our previous work.18,24 With PATS, tasks are assigned to either 

a CPU core or an accelerator based on the estimated acceleration of the task to each device 

and the current devices load, prioritizing the execution of a task in the processor in which it 

attains the highest speedup. For this sake, we maintain a list of tasks ordered by their 

expected speedups for the accelerator in each Worker and select those with highest and 

smallest speedups, respectively, for execution in the accelerator and the CPU.

Several other runtime systems have developed scheduling approaches for efficient use of 

hybrid machines.25–29 However, most of the solutions focus on applications whose internal 

tasks have similar performance (speedups) when executed on an accelerator, as compared to 

the execution using a CPU. The PATS strategy, as described, considers variability in the 

tasks performance to better use the available processors. In our earlier work,16 we evaluated 

PATS using a two-stage application analysis workflow consisting of segmentation and 

feature computation stages. In this work, the application analysis workflow consists of 

normalization, segmentation, and comparison stages. We target the execution of this 

workflow for algorithm SA and compare the scheduling to time-based approaches.

3 THE FRAMEWORK FOR EFFICIENT PARAMETER SENSITIVITY 

ANALYSIS

This section describes our framework for executing parameter studies in microscopy image 

analysis, whereas the optimizations targeting this class of applications are described in the 

next section. The overall design of our framework is presented in Figure 3. The system is 

built from several building blocks: the Region Templates runtime system, graphical 

interfaces for facilitating the application deployment, code generation tools, spatial indexing 

Barreiros et al. Page 6

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for comparison of segmentation results, and methods for computing sensitivity analysis 

(SA).

In order to perform a parameter sensitivity analysis study, the system receives as input the 

imaging dataset, a representation of the application workflow described using the graphical 

interface, a list of parameters to be varied along with their value ranges, the SA method to be 

employed, and a comparison metric chosen by the user to evaluate changes in the application 

output. The SA method then generates parameter sets (parameter sampling) that should be 

used in the application execution. These parameters are passed through a computation reuse 

analysis (described in Section 4) to eliminate redundant processing, and after that, the 

application is instantiated for execution on top of the Region Templates (RT) environment. 

The RT executes the application in a distributed memory machine and manages the input, 

output, and intermediary data used/generated by the application stages.

After the actual segmentation is computed and objects of interest (cells’ nuclei) are 

identified, such objects are compared to a set of reference objects computed using the 

application default parameters. In this phase, objects are loaded in efficient indexing 

structures (eg, R-trees30) to speedup this phase by avoiding, for instance, each object found 

in the segmented image to be compared to each other in the set of reference objects. All 

application stages, including the indexing, may have multiple instances in the distributed 

environment to allow for a scalable execution. Finally, the comparison phase is finalized 

with an output metric value (Dice, Jaccard, etc) that quantifies the variation in the 

segmentation results computed with a given parameter set as compared to the reference data. 

This information is inputted to the SA methods, which then output the correlations among 

input parameters and the segmentation output.

The sensitivity analysis may be carried out using a single method or by combining multiple 

methods. The main SA methods supported in our system are Morris One-At-A-Time 

(MOAT),3 methods to compute importance measures as Pearson’s and Spearman’s 

correlation coefficients,31 and the Variance-based Decomposition (VBD) method.4 The 

MOAT computes global sensitivity analysis by varying one input parameter per time, 

resulting in a number of r changes for each studied parameter with r typically in the range of 

5 to 15. This method is less compute demanding (smaller number of parameter samples/

evaluations need) as compared to the other ones, but it is also less informative and is a good 

candidate to be used in the beginning of studies, for instance, to filter out unimportant 

parameters before other methods are applied. The methods that compute importance 

measures, eg, Pearson’s correlation coefficient (CC) and partial correlation coefficients 

(PCC), vary multiple input parameter values at a time in order to identify non-linear effects,
31 but they are more demanding with respect to the parameter sampling size. Furthermore, 

the most demanding approach is VBD. It is able to split uncertainty in the output among 

parameters and can also account for non-linear relationships among them. It requires a large 

number of application runs, with the per parameter sample size in the order of hundreds to 

thousands. Regardless of the SA method employed, the user can choose different techniques 

to build the parameter sets. The ones we support include: Monte Carlo sampling, Latin 

hyper-cube sampling (LHS),32 and quasi-Monte Carlo sampling with Halton or Hammersley 

sequences. These strategies are known to cover or explore well the parameter space. Table 3 
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shows an example output for both the MOAT and VBD methods applied to our motivating 

application. In this example, we have first executed MOAT to reduce the number of 

parameters studied by VBD.The VDB results show, for instance, that G2 explains alone 

(main effect) 73% of the output variation, whereas parameters such as T2, MinSize, 

MinSizePl, and Watershed have very small effect on the output. The total value includes also 

the impact interactions with other parameters.

We have also developed a graphical interface to simplify the development of the analysis 

workflows on top of our system and make it more accessible for non-experts in high-

performance computing. Our tool uses the workflow model descriptions and tools available 

in the Taverna Workbench,33 extending them to allow for hierarchical workflows and to 

include parameters to be evaluated in a SA study.

4 MULTILEVEL COMPUTATION REUSE

This section describes the proposed computation reuse techniques. In SA studies, the 

application is executed multiple times over the same dataset as input parameter values are 

varied. However, the multiple parameter sets generated for execution may have subsets of 

values that are common, which raises opportunities to reuse the computation. A common 

computation is defined here as a set of deterministic stages or tasks that have the same input 

data and parameter values, thus resulting in the same output. This is illustrated in Figure 4 

that exemplifies two schemes for instantiating the application workflow for execution of a 

SA. The first creates a copy of the entire workflow for each parameter set, whereas the 

second shows a compact workflow execution with computation reuse.

As discussed, the opportunities for reuse in our hierarchical workflows occur at both stage 

and task levels. The reuse of stages can be attained through the removal of repeated/common 

stage instances with the correct routing of output from the remaining stages and changes in 

dependencies. The reuse level can be improved by searching for partial stage (tasks) reuse 

opportunities. For instance, if only a subset of the parameters is common among stage 

instances, the reuse will not be viable at the stage level, but parts of the computation carried 

out by the stage’s internal tasks may still be reused. In order to do it, stage instances with 

partial reuse opportunities can be merged together into a single, more coarse-grained, stage 

instance to have the reusable tasks executed only once.

Reuse at the task level is, however, more challenging since the stage instance resulting from 

the merging of multiple instances is executed within a single node. Thus, the merging 

algorithm needs to take into account that (i) the merging may generate a stage with higher 

resource demands (eg, memory requirement) and (ii) the merging reduces the parallelism 

available as the number of stage instances is decreased. In this case, given that a limited 

number of stage instances can be merged together, an efficient merging algorithm should 

search for the merging choice that optimizes the amount of reuse. The algorithm should also 

take into account the impact of the merging to the parallelism. Our strategies for 

computation reuse are described in the remaining of this section.

Barreiros et al. Page 8

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.1 Stage-level computation reuse

The computation reuse at the level of stages is performed by identifying stage instances that 

use the same input data and parameter set. In cases in which it occurs, the duplicate stage 

instance is removed, and a compact workflow is built (Figure 4). This process is presented in 

Algorithm 1. The algorithm receives as input the application workflow (appGraph) and the 

set of parameters (parSets) to be evaluated. The compact workflow (comGraph) is then 

created by merging to it instances of the workflow created for each of the parameter sets to 

be evaluated (lines 3–6).

The MergeGraph is responsible for adding each workflow instance to the compact graph 

representation. This is computed by simultaneously exploring the received workflow 

instance entry point (appVer) and the compact graph (comVer) to identify stages from 

appVer that are already in comVer and, as such, should not be inserted again in the compact 

representation. This is computed in the main loop of the procedure (lines 8–29), which will 

find each child node of appVer and check whether it is also available in comGraph (line 9). 

If this is the case, the merging procedure is called recursively to children nodes of v and v′ 

or to the rest of the workflow on that branch. The find method will check the input data, 

stage name, and input parameter values to compute the matching.

When a corresponding vertex of appVer has not been found in comVer.children, two cases 

should be taken into consideration (lines 11–28). The first is the most obvious configuration 

in which the node from appVer has not been added to comVer, and as such, it is created and 

added to the compact graph (lines 13–19). To verify if this is the case, the algorithm needs to 

assert that the node v being added has not already been included in the graph in the merging 

of another path of the workflow. This could occur for nodes with multiple dependencies as it 

did with D from the example presented in Figure 4. If the entire path A, B, and D is added to 

comVer, when processing C, D should not be added again. When this case is identified (lines 

21–26), only the dependencies are correctly set. The PendingVer look-up table is used to 

store and identify those stage instances with multiple dependencies. Before inserting a stage 

instance, PendingVer is first consulted to check whether that stage was not yet created (line 

12).

Algorithm 1

compact Graph Construction Algotithm

1: Input: appGraph; parSets;

2: Output: comGraph;

3: for set ∈ parSets do

4:  appGraphInst ← instantiateAppGraph(set);

5:  MergeGraph(appGraphInst.root, comGraph.root);

6: end for

7: function MERGEGRAPH(appVer, comVer)

8:  for v ∈ appVer.children do

9:   if (v′ ← find(v, comVer.children)) then
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10:    MergeGraph (v, v′);

11:   else

12:    if ((v′ ← find(v, PendingVer))==∅) then

13:     v′ ← clone(v)

14:     v′.depsSolved ← 1

15:     insert(v′, comVer.children)

16:     if |v′.deps| ≥ 1 then

17:      insert (v′, PendingVer)

18:     end if

19:     MergeGraph(v, v′);

20:    else

21:     insert(v′, comVer.children)

22:     v′.depsSolved ← v′.depsSolved+1

23:     if v′.depsSolved == v′.deps then

24:      removed (v′, PendingVer)

25:     end if

26:     MergeGraph(v, v′)

27:    end if

28:   end if

29:  end for

30: end function

As presented, for each instance of the application workflow (appGraphInst) using different 

parameter values, the k stage instances of that workflow need to be merged into the compact 

graph. Each of the k stage instances is merged via a MergeGraph call, which has the 

complexity dominated by the find in comVer.children that has up to n parameters sets 

elements (see Figure 4, node A on the compact composition: 1 child for each parameter set). 

However, by employing a hash table to compute the find operation, the complexity is O(1). 
The n workflow instances (one for each parameter set) will insert k stage instances each for 

an overall cost of O(kn).

4.2 Task-level computation reuse

This level of reuse allows for partial inter-stage (tasks) reuse when only a subset of 

parameters used by stage instances match. In the proposed strategies, stages with partial 

reuse are merged into a single more coarse-grain stage, and common internal tasks of those 

stages are reused to avoid duplicate computations. An obvious solution to the problem 

would be maximizing reuse and merge all stage instances with any possible level of reuse. 

This strategy, however, may result into very coarse-grain stages, which would require more 

resources than those available in a node (Worker). Moreover, it may substantially reduce 

parallelism (number of stage instances) even when the reuse gains are small.

In order to address the first issue, we have redefined the reuse problem by creating a limit to 

the number of stage instances that are merged together (MaxBucketSize). This value can be 

chosen, for instance, to ensure that merged stages will not oversubscribe the resources or to 
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guarantee that a minimum number of stage instances will be available for parallel execution. 

In the rest of this section, we present four approaches to the problem.

4.2.1 Naïve merging algorithm—This approach is the simplest strategy. It iterates 

through the list of application parameters for each stage and group subsequent stages 

instances into buckets of size MaxBucketSize. A bucket holds stage instances that are 

merged together. As may be noticed, this strategy relies on the order that parameter sets are 

inputted, which limits its reuse performance. This algorithm has a complexity O(n) in which 

n is the number of parameter sets or workflow instances to be merged.

4.2.2 Smart cut algorithm (SCA)—The second approach to the problem uses a graph 

to represent stage instances and the benefits (computation reuse amount) due to their 

merging. The representation employed is a fully connected undirected graph in which the 

stage instances are the nodes and each edge is the degree of reuse between two stage 

instances (see Figure 5B). The degree of reuse is defined as the number of tasks that would 

be reused by merging a pair of stage instances. After that, we define the stage instances to be 

merged by partitioning the graph in subgraphs until the subgraph has at most 

MaxBucketSize stage instances/nodes. This is carried out by employing successive min-

cut34 operations in the graph.

Our approach recursively employs the 2-min-cut algorithm (ie, cuts the graph in two 

subgraphs, minimizing the sum of the weights of edges crossing the cut34,35) as illustrated in 

Figure 5. Given the input parameters and intra-stage workflow of tasks, the fully connected 

graph in Figure 5B is created. The first 2-min-cut is then performed (Figure 5C) to remove c, 

which is the stage instance least related to the subgraph with the remaining nodes. The 2-

min-cut is then applied again to the largest subgraph, removing nodes a and b from the main 

subgraph. This process is repeated until a bucket of size 2 (MaxBucketSize=2) or smaller is 

reached (see Figures 5C and 5D). Those nodes selected to be merged together (d and e) are 

removed from the originally graph, and the process is repeated with the remaining stages 

until all stages are grouped into buckets.

This procedure is presented in Algorithm 2. SCA starts with a graph containing all stages 

(stages) and iterates through the cutting process until all stages are assigned to the bucketList 
(lines 3–14). Successive 2-min-cut operations are performed on the current graph (stages), 

which divides it into two disconnected subgraphs (s1 and s2 in lines 4 and 7). This is done 

until the largest subgraph resulting from a cut (lines 5 and 8) does not fit into a bucket (ie, 

contains over MaxBucketSize stage instances, as shown in line 6). When it fits, the largest 

subgraph s1 is defined as a bucket and added to the output list of buckets (line 10). Those 

nodes (or stage instances) are then removed from the original graph (lines 11–13). The entire 

process is repeated until all stage instances are assigned to a bucket.

Algorithm 2

smart Cut Algorithm(SCA)

1: Input: stages; MaxBucketSize;
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2: Output: bucketList;

3: while |stages| > 0 do

4:  {s1,s2} ← 2minCut(stages)

5:  s1 ← max(s1, s2)

6:  while |s1| > MaxBucketSize do

7:   {s1,s2} ← 2minCut(s1)

8:   s1 ← max(s1, s2)

9:  end while

10:  insert(s1, bucketList)

11:  for each s ∈ s1 do

12:   remove(s, stages)

13:  end for

14: end while

15: return solution

In the worst case, if n stage instances are available for merging, the 2-min-cut is applied O(n)
times for each bucket created, and about n∕MaxBucketSize buckets would be generated. This 

results in total of O n2  2-min-cuts. The implementation of the 2-min-cut used in our work 

employs a Fibonacci heap34 with a per-cut complexity of O(E + V log V ). Since the graph is 

fully connected, a cut will cost O n2 . Therefore, the entire SCA is O n4 . Although 

interesting, as presented in Section 5, the SCA is not useful in practice in several scenarios 

because of the high complexity/execution time.

4.2.3 Reuse-tree merging algorithm (RTMA)

The RTMA describes and organizes stage instances as a tree structure. In order to do that in 

a way reuse can be identified, we proposed a novel tree structure called reuse-tree. In this 

tree, stage instances are organized according to the parameter used and, as a consequence, 

by their internal workflow of tasks. In essence, stage instances with common tasks share 

parents on the tree, and each level of tree represents a parameterized task. Stage instances 

having tasks with same parameter values are stored into the same branch of the tree.

An example reuse-tree is presented in Figure 6B. In this example, the application stage is 

implemented using three tasks organized into a pipeline. During the insertion of x, for 

instance, starting from the root node (black node), it is checked if another task t1 has already 

been inserted using the same parameter value (annotated in each edge) (Figure 6C). In our 

example, t1 with p1 = 8 already exists. Thus, we follow that path in tree and search for the 

next parameter (or multiple parameters if the tasks use more than one) on the right subtree 

(Figure 6D). Since node’s 2 only child (node 5) cannot be reused for stage instance x, 

because the second parameter value p2 of x differs from the one used in node 5, a new node 

representing this non-reusable task is created (node 6) as shown in Figure 6E. Finally, since 

node 6 is new, there cannot be any more reuse opportunities from that point forward. 

Thereby, a single child node must be created for each of the remaining tasks (Figure 6F).
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The algorithm implemented on top of the reuse-tree merges stage instances in buckets of 

MaxBucketSize elements by traversing the tree in an bottom-up fashion. This process is 

illustrated in Figure 7 and Algorithm 3, which starts with a reuse-tree with 12 stage 

instances (S1 to S12) and employs a MaxBucketSize = 3. On Algorithm 3, parents of leaf 

nodes are selected and have their children grouped in buckets of exactly MaxBucketSize 
elements (lines 6 and 7). Thus, if a parent has less than MaxBucketSize children, nothing is 

done. However, if more than MaxBucketSize nodes exist and they are not multiple of 

MaxBucketSize, the remaining nodes that do not fill a bucket are kept in the tree. Examples 

of these cases can be seen in the transition from Figure 7B to Figure 7C, where, for instance, 

the buckets (S1, S2, and S3) and (S4, S5, and S6) are created and S7 is kept in the tree.

This process continues by removing merged nodes from the tree. If a parent node ends up 

grouping all of its children in buckets, it must be removed from the tree (node 5 on Figure 

7C). This process is performed recursively by removing the childless parent nodes and then 

checking if the removal of a node makes its parent childless. The final step of the merging is 

to move the leaf nodes up one level in order to enable the creation of new buckets. The 

operation MoveReuseTreeUp (Algorithm 3, line 9) that moves remaining leaves to their 

parents’ ancestors (eg, nodes S7, S8 and S9 of Figure 7D are placed as children of node 2 on 

Figure 7E). Further, the same merging process is re-executed until the tree height becomes 1. 

The rest of the nodes are then added into new buckets of size not larger than MaxBucketSize 

(lines 11–14).

Algorithm 3

Reuse-Tree Merging Algorithm(RTMA)

1: Input: stages; maxBucketSize;

2: Output: bucketList;

3: bucketList ← ∅;

4: rTree ← GENERATEREUSETREE(stages)

5: while rTree.height > 2 do

6:  leafsPList ← GenerateLeafsParentList(rTree)

7:  newBuckets ← PruneLeafLevel(rTree, leafsPList, maxBucketSize)

8:  insert(newBuckets, bucketList)

9:  MoveReuseTreeUp(reuseTree, leafsPList)

10: end while

11: if rTree.rootchildren ≠ ∅ then

12:  newBuckets ← rTree.root.children

13:  insert(newBuckets, bucketList)

14: end if

15: return bucketList

In RTMA, the tree is created by adding n stage instances with k tasks each 

(GENERATEREUSETREE). Each task insertion may look for tasks with the same parameter 

values in that level (using a look-up table) in O(1), which results in O(k) cost for inserting 

each stage instance. Given that n stage instances are inserted, this phase is O(kn). Further, the 
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actual merging is performed in lines 5–10 of Algorithm 3. The GenerateLeafsParentList is 

O(kn) per iteration in the worst case, with k − 1 iterations. As such, the entire cost of all 

iterations is O k2n . The pruning (PRUNELEAFLEVEL) cost is constant per node added to a 

bucket; thus, its complexity is O(n) for all iterations of the loop. The MOVEREUSETREEUP 

worst case takes place when no reuse exists. In this case, all leaf nodes are moved up k − 1 

times, resulting in a complexity of O(kn). As such, the algorithm’s execution time 

complexity is O k2n  Because k is a fixed value per stage and n ≫ k, the algorithm is close to 

linear in practice. In the case studied in this work, the segmentation workflow has k = 7 tasks 

only and n ranges from 160 to 10 000 according to the SA method used.

4.2.4 Task-balanced reuse-tree merging algorithm (TRTMA)

As previously discussed, stage merging may impact the application scalability by 

substantially reducing the ratio of stage instances available by computing cores used. This 

scenario is likely to occur when the computing environment is large and/or a small to 

moderate parameter sample size is used. On these cases, two problems may emerge: (i) 

merging could lead to load imbalance among nodes because some stage instances may be 

more costly and (ii) the number of stage instances (after merging) could be insufficient to 

use all nodes/computing cores available. The TRTMA algorithm proposed in this section 

addresses these aspects.

TRTMA performs merging while attempting to balance the buckets’ cost, which, in our case, 

are estimated by the number of tasks to be executed in that bucket after merging. As such, 

TRTMA considers the compromise between merging stages and the potential imbalance it 

could cause, performing this analysis on top of a reuse-tree. The algorithm is implemented 

into three phases: Full-Merge, Fold-Merge, and Balance. The first two perform an initial 

computation of the buckets (stages to be merged), whereas the last phase minimizes 

imbalance or difference in cost among buckets.

The Full-Merge traverses the reuse-tree on a top-down fashion, attempting to find a tree 

level in which there are at least MaxBuckets (the number of buckets that the algorithm will 

create) nodes. This process can be seen on Figure 8 for MaxBuckets = 3. The first level of 

the tree is visited and 4 nodes are found: 1, 2, 3, and 4 (see Figure 8B). In this case, a single 

bucket is created per node, each of them containing stage instances stored in leaf nodes on 

the subtrees rooted on nodes at that level (see Figure 8C). If the number of buckets created is 

greater than MaxBuckets, which is the case of our example, the Fold-Merge operation will 

be executed to combine buckets and reduce their number to MaxBuckets. Otherwise, if the 

number of buckets is already MaxBuckets, nothing is done in the Fold-Merge phase.

The Fold-Merge phase sorts the buckets according to their cost (number of tasks after merge, 

ie, the number of nodes of the subtree) and combines buckets with the smaller costs to the 

buckets with higher costs. This process is presented in Figure 9, where after the folding pivot 

point the buckets are merged. In the example, the folding has resulted in merging buckets 

pairs <b4, b5> and <b3, b6>. This merging algorithm is an attempt to create an initial 

solution with the exact number of required buckets (MaxBuckets) while reducing the 

imbalance. If the number of buckets after Full-Merge is greater than 2 × MaxBuckets, the 
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Fold-Merge is executed multiple times until the MaxBuckets number of buckets is reached. 

In the example of Figure 8, the initial 4 buckets of Figure 8C have costs 5, 9, 5, and 3, which 

results in the 3 buckets of Figure 8D with costs 8, 9, and 5, after the Fold-Merge.

The Balance phase of our algorithm will try to move stage instances among buckets 

previously generated with the goal of minimizing the buckets imbalance. This is 

implemented in our algorithm through improvement operations, which are repeatedly 

applied to pairs of buckets. The actual buckets used in each improvement operation are the 

least and most expensive ones, which are called here, respectively, smallRT and bigRT. The 

improvement operation will then move stage instances from bigRT to smallRT and check if 

there is a reduction in the overall imbalance between these buckets. In addition, it also 

checks if moving stages between the buckets has reduced the cost of the most expensive 

bucket (bigRT). The transfer of stage instances is only carried out or committed if both 

imbalance and maximum cost are reduced.

The Balance phase of the TRTMA is presented in Algorithm 4. The main loop (lines 3–12) 

identifies the most and least expensive buckets and tries to improve the current solution by 

moving stage instances from bigRT to smallRT with calls to the function SingleBalance. If a 

better solution is found, the tree node branch from BigRT that should be transferred to 

smallRT is returned (improvement), and all stage instances in that tree branch are moved to 

smallRT (line 8). In this case, smallRT and bigRT are modified and reinserted in the 

bucketList so that the list remains sorted (lines 9 and 10). If no improvement is returned, the 

algorithm ends and returns the bucketList (line 13) for execution.

Algorithm 4

The Balance step of the TRTM

1: Input/Output: bucketList;

2: bucketList is a sorted data structure by descending cost (e.g., multiset)

3: Repeat

4:  bigRT ← firstElement(bucketList)

5:  smallRT ← lastElement(bucketList)

6:  improvement ← SingleBalance(bigRT, smalIRT)

7:  if improvement ≠ ∅ then

8:   TransferSubtree(improvement, bigRT, smalIRT)

9:   update(bigRT, bucketList)

10:   update(smallRT, bucketList)

11:  end if

12: until improvement ≠ ∅

13: return bucketList

4: function SINGLEBALANCE(bigRT, smallRT)

15:  improvement ← ∅

16:  imbal ← | TaskCost(bigRT) − TaskCost(smallRT) |

17:  while (c ← NextDFSNode(bigRT)) ≠ ∅ and imbal ≠ 0 do

18:   newBigRT ← bigRT
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19:   newSmallRT ← smallRT

20:   TransferSubtree(c, newBigRT, newSmallRT)

21:   newlmbal ← | TaskCost(newBigRT) − TaskCost(newSmallRT) |

22:   newMakespan ← max(TaskCost(newBigRT), TaskCost(newSmallRT))

23:   if newlmbal < imbal and newMakespan < TaskCost(bigRT) then

24:    improvement ← c

25:    imbal ← newlmbal

26:   end if

27:  end while

28:  return improvement

29: end function

The SingleBalance function receives two buckets as input and searches for stage instances 

on bigRT to be sent to smallRT in an attempt to improve the solution. It searches for 

improvements in a depth-first walk manner in BigRT (line 17) by evaluating all subtrees in 

bigRT and testing if their transfer to smallRT characterizes an improvement (lines 17–27). 

For each node c, new buckets (newBigRT and newSmallRT) are computed (line 20), and it is 

checked if the transfer of the subtree with root c from newBigRT to newSmallRT results in a 

better solution than the current one. For this sake, the algorithm evaluates if the new buckets 

have a smaller imbalance and if the maximum cost of the new buckets is smaller than the 

original (lines 19–21). In case a better solution is found, the improvement node and 

imbalance are updated, and the algorithm continues the search for better solutions. The 

algorithm then returns the least imbalanced improvement that also reduces the maximum 

cost as compared to the input buckets if one exists (line 28).

Figure 10 presents an overview of the balance phase along with examples of the 

improvement operation. First, the bigRT and smallRT buckets (see Figure 10B) are selected 

as the candidate pair for improvement. The Balance will try to send one of the subtrees of 

bigRT along with all stage instances it stores to smallRT. The first attempt of improvement 

is to move the subtree rotted at node 6 to smallRT, as shown in Figure 10C. However, if this 

is performed, the imbalance among those buckets would increase to 7, and thus, this 

operation is not executed. Further, it tries to move the subtree starting in node 7 to smallRT. 

In this case, the imbalance decreases from 4 to 3. As such, the next test is performed to 

check whether the maximum cost between smallRT and bigRT was reduced. Unfortunately, 

this is not the case because this movement would make smallRT to have 9 tasks, which was 

already the value of the original bigRT. As such, this operation may not benefit the 

application makespan. Finally, by applying the improvement of leaf-node S9, the resulting 

buckets would be {S4, S5, S6, S7, S8} and {S9, S10, S11}, both with cost 8 (see Figure 

10E). It is worth noting that the selection of node S9 is only for the sake of presentation in 

Figure 10E, being this node interchangeable with nodes S4-S8 without impacting the 

algorithm outcome. Since this improvement operation also reduces the maximum cost as 

compared to the original configuration and is the best solution found, it is applied (see 

Figure 10F). In this example, the Balance operation will then finish since the new imbalance 

is 0.
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Complexity: The TRTMA cost is dominated by the Balance step. This phase applies 

SINGLEBALANCE until the buckets cannot be further balanced. Thus, the TRTMA complexity 

can be derived from the number SINGLEBALANCE executions. For that sake, we rely on the 

Sum of Imbalances (SI), which is defined here as the sum of differences in imbalance 

between pairs of buckets in a list (BL) of size n sorted by their costs: 

SI(BL) = ∑i = 1
n/2 |BLi| − |BLn − (i − 1)| The module of a bucket (|BLi|) is defined as the cost of 

the bucket or the number of tasks it executes (eg, given a sorted bucket list with 4 buckets of 

costs 9, 5, 5 and 3, SI(BL) = (9 − 3) + (5 − 5) = 6).

A SINGLEBALANCE either reduces the SI, if an improvement is found, or terminates the 

TRTMA. In case of an improvement, SI is reduced by at least 2 in the worst case when a 

stage instance is moved between the two buckets (the costs of the moved stage on both 

buckets is 1 either because the stage have a single task or if the reuse is maximum on both 

buckets). Therefore, for a given SI, TRTMA finishes in at most SI∕2 SINGLEBALANCE calls. 

The SINGLEBALANCE attempts to find improvements through TRANSFERSUBTREE calls (see 

Algorithm 4, line 20) that move the c subtree from bigRT to smallRT. The TRANSFERSUBTREE 

will insert each stage instance rooted at c in smallRT with a cost of k (fixed) for each 

instance. A subtree c on its turn may have O(n) nodes, being n the number of stage instances. 

Thus, each TRANSFERSUBTREE call is O(kn) in the worst case. As SINGLEBALANCE will try to 

move each of the tree nodes from bigRT to smallRT, and bigRT may have O(n) nodes, each 

SINGLEBALANCE call is O kn2  in the worst case. Further, the SI is bound by n, and the worst 

case of TRTMA is O kn3 .

Discussion: In practice, we have observed that the worst case is unlikely to occur due to 

the aspects discussed below.

• The number of MaxBuckets employed is typically high and computed with 

respect to the number of computing cores available in the system. We have 

experimentally found the best value to be about 3× the number of computing 

cores. Thus, a large number of buckets is created in the first two phases of 

TRTMA, which, as a consequence, reduces the imbalance among buckets and the 

SI.

• The parameter sampling strategies employed are expected to sample the 

parameter space with minimal bias, which is especially true for quasi-Monte 

Carlo sampling strategies using low-discrepancy sequences.36,37 As a 

consequence, the reuse trees built by the TRTMA are expected to contain a 

similar number of stages instances stored in all branches at each level of the 

reuse tree. If this occurs, buckets inputted to the Balance step will have a 

maximum imbalance between pairs of buckets smaller than n∕MaxBuckets. This 

reduces the number of required SingleBalance calls.

• Multiple optimizations were implemented in SINGLEBALANCE and 

TRANSFERSUBTREE to improve their performance. For instance, during the walk 

through the bigRT decedents in SINGLEBALANCE, if a node c has only a single 

child, its descendant node does not need to be evaluated as possible improvement 
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since moving it results in the same solution as moving c to smallRT. Moreover, 

the performance of TRANSFERSUBTREE can be improved in case a node being move 

from bigRT has no more reuse with any node in smallRT in a given level during 

the insertion. In that case, the entire subtree branch with all nodes it stores can be 

moved from bigRT to smallRT in a single insertion/operation.

For sake of profiling the performance of TRTMA, we have executed it with different 

MaxBuckets and n values. As is presented in Section 5.4 (Figure 16), its cost is subquadratic 

in our experiments and smaller for higher MaxBuckets values that, as discussed above, 

reduce imbalance. In addition, we also want to highlight that as the TRTMA algorithm 

considers the MaxBuckets to compute the merging and reuse, and values of MaxBuckets can 

be setup considering the number of computing devices available (ie, CPU cores). Thus, we 

expect that TRTMA will work well for machines with different hardware configurations or 

number of computing cores.

5 EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of our optimizations for SA, which were 

implemented on top of the Region Templates for parallel execution. We first analyze the 

system scalability, the impact of the scheduling on hybrid systems and further discuss the 

gains with the computation reuse algorithms proposed in this work. For sake of the 

evaluation, we have employed an application workflow used in brain cancer studies7 

(Section 2.1). It consists of the Normalization, Segmentation, and Comparison stages. The 

comparison is carried out in our experiments as the Dice values of objects in the reference 

and computed segmentation results (masks). The input data (see Table 4) consists of 

Glioblastoma Multiforme (GBM) WSIs downloaded from The Cancer Genome Atlas 

(TCGA) repository, which were partitioned into 4K×4 K image tiles for parallel execution. 

Most of the experiments were conducted on TACC Stampede cluster. Each node has a dual-

socket Intel Xeon E5–2680 processors, an Intel Xeon Phi SE10P or MIC (Many Integrated 

Core) co-processor, and 32GB RAM. Because Stampede was upgraded for an Intel Phi–only 

system during the development of this work, the experiments on Section 5.3, which evaluate 

our proposed TRTMA algorithm, were executed on the PSC Bridges cluster. Each node on 

Bridges is comprised of two Intel Xeon E5–2695 v3 with 128GB of RAM. The application 

and middleware codes were compiled using Intel Compiler 13.1 with “-O3” flag. The 

experiments were replicated five times and claims for equivalence or difference between 

results in this paper are made based on t-test (two-tailed) with P < 0.001. The main dataset 

used in our evaluations is presented in Table 4, but subsets of the data are used in some of 

the experiments are described in each of the following sections.

5.1 Benefits of the cooperative execution using CPUs and Intel Phi

This section evaluates the application performance and scalability in distributed memory 

settings equipped with CPU and Intel Phi. The evaluation was carried out using the 

motivating application described as a hierarchical workflow. The tasks inside the 

Normalization and Segmentation are presented in Section 2.1. Further, the following 

application versions were used: CPU-only that employs all CPU cores available in the 

machine, MIC-only that employs the Intel Phi coprocessors in the execution, and CPU-MIC 
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that uses the CPU cores and Intel Phi in cooperation and multiple scheduling strategies to 

distribute tasks among processors in each node: First-Come, First-Served (FCFS), 

Heterogeneous Earliest Finish Time (HEFT), and PATS. The experiments in this section 

have been carried out using a weak scaling setting in which the number of computing nodes 

and dataset increase proportionately. For the configuration with 256 nodes, a dataset with 

136 568 4K×4 K image tiles (6.5 TB of uncompressed data) was used. In the cases on which 

Phi is used, its number is equal to that of nodes. The experimental results are presented in 

Figure 11.

The application scaled well regardless of the configuration or version. Moreover, the 

cooperative execution of the CPU and Intel Phi (CPU-MIC) improved the performance of a 

single processor in all cases. However, the appropriate workload division among devices is 

significant as, for instance, the performance gains of PATS on top of FCFS are about 1.32× 

on average. As compared to HEFT, which is known to be an efficient scheduling strategy for 

hybrid systems, PATS is still 1.2× faster. The superior performance of PATS is a 

consequence of its capacity of taking into account that particular tasks may be more 

appropriate for different devices.

5.2 Effect of multilevel computation reuse for different SA methods and sampling 
strategies

In this section, we evaluate the impact of the proposed computation reuse algorithms for the 

MOAT and VBD SA methods. MOAT is used with all application parameters to identify the 

non-influential ones, and VBD is further applied with the remaining parameters. This 

particular set of experiments was executed using only 16 nodes because it intended to 

evaluate only the gains of the reuse optimizations. Experiments with a larger number of 

nodes with reuse strategies are presented in Section 5.3.

The reuse algorithms were first executed with MOAT using a MaxBucketSize of 7 and 

parameter sample sizes varying from 160 to 640. The MaxBucketSize of 7 was 

experimentally detected as an optimal value in this setup. The parameter sets were created 

with a quasi-Monte Carlo sampling using a Halton sequence. The execution times measured 

refer to the application makespan. The cost of performing the reuse analysis is highlighted in 

the upper part of the graphs bars. Five configuration were evaluated: “No reuse” that 

employs the replica based scheme, the “Stage level” that reuses only stage instances with the 

same parameters, and the “Task Level” that reuses fine-grain tasks and is executed with the 

Naïve, SCA, and RTMA algorithms. The TRTMA was not included on the results because it 

attains the same performance as RTMA in small scale settings.

The performance results are presented in Figure 12. As shown, the gains with reuse were 

significant in all configurations as compared to the “No reuse” case. The “Stage Level” was 

up to 1.8× faster than not reusing computation, whereas the “Task Level - Naïve” improves 

on the “Stage Level” 1.08×; this gain is significant according to the t test. The task level 

reuse with SCA and RTMA have, respectively, improved the “Stage Level” reuse in up to 

1.39× and 1.5×. It is also possible to notice that the performance gains of RTMA are higher 

with larger sample sizes. The SCA, on the other hand, suffers from its high computational 

complexity as the sample size is increased and spends a significant amount of time 
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computing the reuse. This offsets the gains with reuse in this approach. Finally, in the best 

case, RTMA is about 2.6× faster than not performing reuse.

We have also analyzed the same set of algorithms in a VBD SA experiment. The VBD used 

the eight most significant parameters detected in the MOAT SA (Table 3). The main 

difference between MOAT and VBD in this evaluation regards the number of parameter sets 

executed. VBD demands hundreds to thousands runs per parameter; thus, we varied the 

parameter sample size or the number of parameter sets from 2000 to 10 000. To speedup this 

experiment, the number of nodes used was increased to 32. The results are shown in Figure 

13. The gains with the computation reuse are also significant in this case. However, as 

expected, because of the larger number of parameter sets used, the SCA method could not 

even finish the reuse analysis within 14 000 secs. The RTMA had speedups of at most 2.9× 

against the “No Reuse” approach and 1.51× on top of “Stage Level.”

Further, we have varied the parameter sampling strategy used to generate the parameter sets 

during a SA analysis to measure the reuse opportunities with different strategies. In this 

experiment, the Latin hyper-cube sampling (LHS), Monte Carlo (MC), and quasi–Monte 

Carlo using a Halton sequence (QMC) methods were analyzed. In this experiment, we 

calculate the maximum reuse available at the fine-grain tasks, meaning that coarse-grain 

reuse has been performed before this analysis. It is measured in number of tasks that could 

be reused. The results are presented in Table 5. In essence, there is a small variability in the 

amount of reuse across sampling strategies or as the parameter sample set increases. These 

results are interesting as they show that the reuse is not limited to the use of a specific 

parameter sampling method/sample size.

5.3 The effect of the merging to scalability

This section evaluates the impact of merging to the scalability of the application in SA 

studies. As discussed before, the merging reduces the number of stage instances and, 

consequently, the parallelism available for execution on distributed memory systems. In 

order to evaluate this aspect, we have used a MOAT SA with a parameter sample size of 

1000 and a VBD SA with 10 000 runs. For both studies, the number of nodes is varied to 

evaluate the performance. In essence, the MOAT study will represent a case in which the 

parallelism may not be high enough to fully utilize the system as the number of nodes used 

increases, whereas VBD is a very demanding study in which the parallelism available 

(number of stage instances) will continue to be sufficient to fully exploit the target machine 

even after stage merging. In these experiments, four versions of the application were 

executed: No reuse as a baseline, Stage Level reuse only, and fine-grain computation reuse 

with RTMA and TRTMA.

The experimental results for the MOAT are presented in Figure 14. As can be observed, the 

Stage Level reuse can attain good scalability as the number of nodes increases, which is a 

result of high level of parallelism available. The RTMA was set up to use MaxBucketSize of 

10 (best value for 8 machines). The TRTMA, on the other hand, was configured to create a 

number of buckets of 3× the number cores available. The results show that RTMA and 

TRTMA have better performance than Stage Level only reuse until 32 machines are 

employed. After that, the performance of RTMA degrades as compared to the Stage Level 
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and TRTMA versions of the application. When 256 machines are used, TRTMA is close to 

2× faster than RTMA and has a better performance than the Stage Level reuse. The RTMA 

performance degradation is a result of the low number of stages per core after merging. For 

TRTMA, this value is kept fixed (3× the number cores) for all configurations. As such, 

TRTMA can benefit of reuse in case of sufficient parallelism, similarly to RTMA, but can 

handle cases in which the parallelism may affect the performance.

Figure 15 presents the SA study using VBD with 10 000 runs. Here, as expected, the RTMA 

performance degradation never occurs because the number of stage instances available is 

high even after merging. Thus, the RTMA scalability is not affected and it attains speedups 

between 1.26× and 1.35× as compared with Stage Level only reuse. When comparing 

RTMA and TRTMA, their performances are equivalent, showing that TRTMA improves 

RTMA in cases of insufficient parallelism and does not degrade the performance when 

enough parallelism is available.

5.4 The performance of TRTMA as the parameter sample size and MaxBuckets are varied

This section evaluates the TRTMA execution time as the number of parameter sets (n) and 

the MaxBuckets are varied. As previously described in Section 4.2.4, the complexity of 

TRTMA in the worst case is cubic, but several optimizations were implemented to avoid this 

case. Thus, we wanted to evaluate its performance in practice. The execution times spent by 

TRTMA to perform the merging are presented in Figure 16. As presented, the execution 

time increases with n and reduces as MaxBuckets increases. However, the execution time 

growth with n observed is subquadratic in practice. Moreover, the reduction as the number 

of MaxBuckets increases was also expected because it reduces the imbalance of the initial 

solution used by the Balance step of the TRTMA.

6 RELATED WORK

The computation reuse, also known as value locality,38,39 has been employed in several 

domains40–42 using multiple techniques as value prediction,43 dynamic instruction reuse,44 

and memoization.45 We summarized the main related work and their features in Table 6. The 

reuse may be implemented in hardware using specific components specialized for this task 

or in software platforms. Further, the works are categorized here according to the approach 

employed: memoization and analytic. Memoization uses a cache-based solution to save/read 

results from previous computations. The analytic approach identifies reuse in the 

application, linking the output of operations to places in which it is reused to minimize or 

avoid caching. The next aspect is the granularity of the reuse. We have classified this aspect 

into two classes: Fine-Grain (instruction and compute inexpensive/small subroutines) and 

Coarse-grain (expensive routines or collections of subroutines and full applications). We 

differentiate fine-/coarse-grain because we leverage both levels in our approach; however, it 

is not explicitly distinguished in most of the related works. We have also analyzed if the 

solutions deal with large-scale datasets. Finally, the scope of reuse differs according to the 

applicability of the strategies to local or distributed computing environments.

Sodani and Sohi44 employ a computation reuse buffer to optimize instructions execution 

with a memory cache. Their approach aims to reduce computational cost through reuse by 
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(i) ending the instruction pipeline earlier, thus also reducing resource conflicts, and (ii) by 

breaking dependencies of next instructions, which can be executed earlier since the 

necessary inputs are already available. The reuse buffer was initially proposed as a strategy 

to reduce branch misdirection penalties, but it was extended to other types of instructions. 

This work has been implemented in a superscalar pipeline, and has the limitation of being 

able of employing only small buffers in practice.

The work on by Richardson45 deals with the fast execution of the called trivial 

computations, which occur for instance with a division by two that result in redundant 

computations and lead to opportunities of reuse. With respect to reuse, it quantifies the 

amount of redundant computation in several popular benchmarks, showing the benefits of 

memoization on those cases. Although this work focuses on quantifying the potential gains 

of reuse, it is performed on the scope of a hardware based solution. Wang and 

Raghunathan40 attempt to reduce the energy consumption in embedded devices through a 

profiling-based reuse technique with memoization. The profiling identifies computation 

reuse regions and quantifies the benefits at different reuse granularities. Interesting 

discussions on the appropriate granularity of tasks are presented along with the limitations of 

a hardware based solution. In the works of Alvarez et al46 and Modarressi et al,47 a domain-

specific strategy is proposed for reusing floating-point operations when operands are similar 

enough. The similarity metric in this case is a key aspect that affects reuse opportunities. As 

such, there is a trade-off between the precision of the computations and the reuse potential.

The work by Riera et al48 leverages the error tolerance of deep neural networks (DNN) on a 

hardware implementation of a reuse-based DNN accelerator. By using the proposed 

accelerator, an improvement on energy utilization was observed. Since this approach for 

computation reuse specifically relies on temporal reuse of DNN layers, its use is limited to 

workflows in the DNN domain.

The work by Mood et al41 enables computation reuse in a distributed environment. It caches 

secure-function evaluation (SFE) in a buffer to be used by multiple clients. In order to 

improve scalability, the buffer could be distributed among server nodes. This approach may 

not be generalized for several domains since the granularity of the reused tasks must be 

rather coarse to achieve good speedups. The work of Goecks et al49 also enables reuse in 

distributed environments with bioinformatics applications. The granularity of reuse is at full 

application, which limits the potential gains with reuse. Another approach for reuse in 

bioinformatics is presented in the work of Santos and Santos,50 which employs memoization 

to store partial results during protein comparisons.

Connors and Hwu38 exploit value locality with a combination of a hardware buffer and a 

profile-guided compiler that groups instructions into reusable tasks as to optimize their 

granularity. This is a flexible and efficient approach in terms of reuse. However, the 

implementation may be complex because of the extensions required in the hardware, 

compiler, and profiling that cooperate to provide the solution.

Guo et al51 propose to reduce the computation cost of image and audio recognition 

applications through approximate computation reuse. In their work, IoT devices can attain 
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reduced computation latency and energy consumption by using a distributed cache system 

that attempts to reuse results of similar functions previously executed. Although it has shown 

to be efficient, this approach can only be employed for applications that tolerate approximate 

results for coarser-grained operations.

In the work of Xu et al,52 an analytic approach has been proposed for the framework of 

Isogeometric Analysis (IGA) in which complex matrix calculations may be reused. In 

essence, it reuses three-dimensional fully calculated models with similar semantic features. 

The template model, which was previously solved, can export some matrix solutions (when 

calculating the stiffness matrix) that are proven to be reusable for these similar models. 

Given that this reuse method was developed for IGA applications and it relies on their 

features, its use on other domains may be limited.

Li et al53 Liam tackle the problem of optimizing parameter tuning applications through 

computation reuse. On their work, the applications being tuned are represented as directed 

acyclic graphs (DAGs), which may have their atomic stages representation reused at 

runtime. This reuse is conditional to finding the results cached. They integrate the 

computation reuse and parameter tuning by steering the generation of an execution DAG 

containing all pipeline executions for parameter values evaluated. The behavior of this 

approach on large-scale distributed execution environments was not discussed; it only 

handles coarse-grain tasks with a memoization-based strategy. These aspects are a limitation 

to the use in our application domain.

Although a large number of works have been developed in different domains, none of them 

could be directly applied to our problem. First, we target at having an approach that could be 

reused in parameter studies, so we have built it on top of a distributed memory domain-

specific runtime system. Further, the amount of data employed by these application is very 

high; as such, classic memoization would not be a practical solution because of the large size 

of the sub-products generated by application stages. In our solution, tasks that use the same 

input are bundled into the same stage instances; thus all data are directly forwarded to them 

without the need for large caching. As presented in the experimental results, the multilevel 

reuse results in significant performance improvements to our use case application, whereas 

most of the works have focused on either fine-grain–only or coarse-grain–only approaches.

7 CONCLUSIONS

The execution of SA applied to the context of pathology image analysis has been shown to 

be an effective tool for improving the understanding of applications on this domain.14 

Although this class of applications could strongly benefit from SA, its use in practice is 

limited due to the high computational demands.

In this paper, we have leveraged high-performance computing platforms equipped with 

CPUs and accelerators to efficiently execute SA of a complex cancer image analysis 

application. Our solution includes an efficient parallelization framework with several 

optimizations. It was empirically shown the actual benefits of using the hybrid configuration 

of CPU-MIC (using Intel Phi) on a large-scale distributed environment. We have evaluated 
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multiple strategies for performing computation reuse in SA of pathology image analysis 

applications, which resulted in strong performance improvements (2.9×) as compared to not 

reusing computation. Further, we have shown that, although the RTMA can be effectively 

used on most cases, its performance degrades on certain scaling cases (see Section 5.3), 

making the new TRTMA the best all-round choice for computation reuse optimization. As 

such, the combination of all these optimizations led to a very efficient execution platform 

that enables the systematic execution of SA in our target application domain.

As future work, we plan to develop novel algorithms for task level merging and evaluate the 

proposed strategies in other application domains. We will also leverage features found in the 

related work to improve our approaches. For instance, we are interested in investigating 

profiling-based approaches to automatically define tasks/stages granularities. The target in 

this case will be to define granularities that maximize performance, considering data 

transfers and the benefits of reuse with specific application partitions/decompositions.

ACKNOWLEDGMENTS

This work was supported in part by U24CA180924, U24CA215109, and 1UG3CA225021 from the NCI, 
R01LM011119-01 and R01LM009239 from the NLM, CNPq, Capes/Brazil grant PROCAD-183794, and NIH 
K25CA181503. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is 
supported by National Science Foundation grant number ACI-1548562. Specifically, it used the Bridges system, 
which is supported by NSF award number ACI-1445606, at the Pittsburgh Supercomputing Center (PSC).

REFERENCES

1. Ioannou A, Itard L. Energy performance and comfort in residential buildings: sensitivity for building 
parameters and occupancy. Energy Build. 2015;92:216–233.

2. Hamby DM. A review of techniques for parameter sensitivity analysis of environmental models. 
Environ Monit Assess. 1994;32(2):135–154. [PubMed: 24214086] 

3. Morris MD. Factorial sampling plans for preliminary computational experiments. Technometrics. 
1991;33(2):161–174.

4. Weirs VG, Kamm JR, Swiler LP, et al. Sensitivity analysis techniques applied to a system of 
hyperbolic conservation laws. Reliab Eng Syst Saf. 2012;107:157–170.

5. Campolongo F, Cariboni J, Saltelli A. An effective screening design for sensitivity analysis of large 
models. Environ Model Softw. 2007;22(10):1509–1518.

6. Iooss B, Lemaître P. A review on global sensitivity analysis methods In: Dellino G, Meloni C, eds. 
Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and 
Applications. New York, NY: Springer Science + Business Media; 2015.

7. Kong J, Cooper LAD, Wang F, et al. Machine-based morphologic analysis of glioblastoma using 
whole-slide pathology images uncovers clinically relevant molecular correlates. PLoS ONE. 
2013;8(11):e81049. [PubMed: 24236209] 

8. Mezheyeuski A, Hrynchyk I, Karlberg M, et al. Image analysis-derived metrics of 
histomorphological complexity predicts prognosis and treatment response in stage II-III colon 
cancer. Scientific Reports. 2016;6:36149. [PubMed: 27805003] 

9. Kothari S, Phan JH, Stokes TH, Wang MD. Pathology imaging informatics for quantitative analysis 
of whole-slide images. J Am Med Inf Assoc JAMIA. 2013;20(6):1099–1108.

10. Irshad H, Veillard A, Roux L, Racoceanu D. Methods for nuclei detection, segmentation, and 
classification in digital histopathology: a review—current status and future potential. IEEE Rev 
Biomed Eng. 2014;7:97–114. [PubMed: 24802905] 

11. Yuan Y, Failmezger H, Rueda OM, et al. Quantitative image analysis of cellular heterogeneity in 
breast tumors complements genomic profiling. Sci Transl Med. 2012;4(157):157ra143.

Barreiros et al. Page 24

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12. Xing F, Yang L. Robust nucleus/cell detection and segmentation in digital pathology and 
microscopy images: a comprehensive review. IEEE Rev Biomed Eng. 2016;9:234–263. [PubMed: 
26742143] 

13. Xu Y, Jia Z, Ai Y, et al. Deep convolutional activation features for large scale brain tumor 
histopathology image classification and segmentation. Paper presented at: 2015 IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP); 2015; Brisbane, Australia.

14. Teodoro G, Kurç T, Taveira LFR, et al. Algorithm sensitivity analysis and parameter tuning for 
tissue image segmentation pipelines. Bioinformatics. 2017;33(7):1064–1072. [PubMed: 
28062445] 

15. Barreiros W, Teodoro G, Kurç T, Kong J, Melo AC, Saltz J. Parallel and efficient sensitivity 
analysis of microscopy image segmentation workflows in hybrid systems. Paper presented at: 2017 
IEEE International Conference on Cluster Computing (CLUSTER); 2017; Honolulu, HI.

16. Teodoro G, Pan T, Kurç T, et al. Region templates: data representation and management for high-
throughput image analysis. Parallel Computing. 2014;40(10):589–610. [PubMed: 26139953] 

17. Saltz J, Gupta R, Hou L, et al. Spatial organization and molecular correlation of tumor-infiltrating 
lymphocytes using deep learning on pathology images. Cell Reports. 2018;23(1):181–193. e7. 
[PubMed: 29617659] 

18. Teodoro G, Kurc T, Kong J, Cooper L, Saltz J. Comparative Performance Analysis of Intel (R) 
Xeon Phi (TM), GPU, and CPU: A Case Study from Microscopy Image Analysis. Paper presented 
at: 2014 IEEE 28th International Parallel and Distributed Processing Symposium; 2014; Phoenix, 
AZ.

19. Teodoro G, Pan T, Kurç TM, Kong J, Cooper LAD, Saltz JH. Efficient irregular wavefront 
propagation algorithms on hybrid CPU-GPU machines. Parallel Computing. 2013;39(4–5):189–
211. [PubMed: 23908562] 

20. Bradski G The OpenCV Library. 2000 http://www.drdobbs.com/open-source/the-opencv-library/
184404319

21. Vincent L Morphological grayscale reconstruction in image analysis: applications and efficient 
algorithms. IEEE Trans Image Process. 1993;2:176–201. [PubMed: 18296207] 

22. Oliveira VMA, Alencar Lotufo R. A study on connected components labeling algorithms using 
GPUs. Paper presented at: 23rd SIBGRAPI - Conference on Graphics, Patterns and Images; 2010; 
Gramado, Brazil.

23. Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Anal 
Quant Cytol Histol. 2001;23(4):291–299. [PubMed: 11531144] 

24. Teodoro G, Kurç T, Andrade G, Kong J, Ferreira R, Saltz J. Application performance analysis and 
efficient execution on systems with multi-core CPUs, GPUs and MICs: a case study with 
microscopy image analysis. Int J High Perform Comput Appl. 2017;31(1):32–51. [PubMed: 
28239253] 

25. Bosilca G, Bouteiller A, Herault T, et al. Performance portability of a GPU enabled factorization 
with the DAGuE framework. Paper presented at: 2011 IEEE International Conference on Cluster 
Computing; 2011; Austin, TX.

26. Bueno J, Planas J, Duran A, et al. Productive programming of GPU clusters with OmpSs. Paper 
presented at: 2012 IEEE 26th International Parallel and Distributed Processing Symposium; 2012; 
Shanghai, China.

27. He B, Fang W, Luo Q, Govindaraju NK, Wang T. Mars: a MapReduce framework on graphics 
processors. Paper presented at: 2008 International Conference on Parallel Architectures and 
Compilation Techniques (PACT); 2008; Toronto, Canada.

28. Linderman MD, Collins JD, Wang H, Meng TH. Merge: a programming model for heterogeneous 
multi-core systems. SIGPLAN Notices. 2008;43(3):287–296.

29. Mittal S, Vetter JS. A survey of CPU-GPU heterogeneous computing techniques. ACM Comput 
Surv. 2015;47(4):69.

30. Aji A, Teodoro G, Wang F. Haggis: Turbocharge a MapReduce based spatial data warehousing 
system with GPU engine. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop 
on Analytics for Big Geospatial Data; 2014; Dallas, TX.

Barreiros et al. Page 25

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.drdobbs.com/open-source/the-opencv-library/184404319
http://www.drdobbs.com/open-source/the-opencv-library/184404319


31. Saltelli A, Tarantola S, Campolongo F, Ratto M. Sensitivity Analysis in Practice: A Guide to 
Assessing Scientific Models. Chichester, UK: Wiley; 2004.

32. McKay MD, Beckman RJ, Conover WJ. A comparison of three methods for selecting values of 
input variables in the analysis of output from a computer code. Technometrics. 1979;42(1):55–61. 
ISBN 00401706.

33. Wolstencroft K, Haines R, Fellows D, et al. The Taverna workflow suite: designing and executing 
workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res. 
2013;41(W1):W557–W561. [PubMed: 23640334] 

34. Stoer M, Wagner F. A simple min-cut algorithm. J ACM. 1997;44(4):585–591.

35. Goldschmidt O, Hochbaum DS. Polynomial algorithm for the k-cut problem. In: [Proceedings 
1988] 29th Annual Symposium on Foundations of Computer Science; 1988; White Plains, NY.

36. Halton JH. Algorithm 247: radical-inverse quasi-random point sequence. Commun ACM. 
1964;7(12):701–702.

37. Sobol IM. Uniformly distributed sequences with an additional uniform property. USSR Comput 
Math Math Phys. 1976;16(5):236–242.

38. Connors DA, Hwu W-MW. Compiler-directed dynamic computation reuse: Rationale and initial 
results. In: Proceedings of the 32nd Annual ACM/IEEE International Symposium on 
Microarchitecture; 1999; Haifa, Israel.

39. Lepak KM, Lipasti MH. On the Value locality of store instructions. SIGARCH Comput Archit 
News. 2000;28(2):182–191.

40. Wang W, Raghunathan A, Jha NK. Profiling driven computation reuse: An embedded software 
synthesis technique for energy and performance optimization. In: Proceedings of the 17th 
International Conference on VLSI Design; 2004; Mumbai, India.

41. Mood B, Gupta D, Butler K, Feigenbaum J. Reuse it or lose it: More efficient secure computation 
through reuse of encrypted values. In: Proceedings of the 2014 ACM SIGSAC Conference on 
Computer and Communications Security; 2014; Scottsdale, AZ.

42. Steen JV, Coenders JL, Pasterkamp S, Rolvink A, Steekelenburg JV. Computational reuse 
optimisation for stadium design. In: Proceedings of the International Association for Shell and 
Spatial Structures; 2015; Amsterdam, The Netherlands.

43. Nakra T, Gupta R, Soffa M. Value prediction in VLIW machines. In: Proceedings of the 26th 
Annual International Symposium on Computer Architecture; 1999; Atlanta, GA.

44. Sodani A, Sohi GS. Dynamic instruction reuse. In: Proceedings of the 24th Annual International 
Symposium on Computer Architecture; 1998; Denver, CO.

45. Richardson SE. Caching Function Results: Faster Arithmetic by Avoiding Unnecessary 
Computation. Technical Report. Mountain View, CA: Sun Microsystems, Inc; 1992

46. Alvarez C, Corbal J, Valero M. Fuzzy memoization for floating-point multimedia applications. 
IEEE Trans Comput. 2005;54(7):922–927.

47. Modarressi M, Nikounia SH, Jahangir A-H. Low-power arithmetic unit for DSP applications. 
Paper presented at: 2011 International Symposium on System on Chip (SoC); 2011; Tampere, 
Finland.

48. Riera M, Arnau JM, González A. Computation Reuse in DNNs by Exploiting Input Similarity 
ISCA ‘18. Piscataway, NJ: IEEE Press; 2018:57–68.

49. Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehensive approach for supporting accessible, 
reproducible, and transparent computational research in the life sciences. Genome Biology. 
2010;11(8):R86. [PubMed: 20738864] 

50. Santos EE, Santos E Jr. Effective computational reuse for energy evaluations in protein folding. Int 
J Artif Intell Tools. 2006;15(5):725–739.

51. Guo P, Hu B, Li R, Hu W. FoggyCache: Cross-Device Approximate Computation Reuse MobiCom 
‘18. New York, NY: ACM; 2018:19–34.

52. Xu G, Kwok T-H, Wang CCL. Isogeometric computation reuse method for complex objects with 
topology-consistent volumetric parameterization. Comput-Aided Des. 2017;91:1–13.

53. Li L, Sparks ER, Jamieson KG, Talwalkar A. Exploiting reuse in pipeline-aware hyperparameter 
tuning. 2019 arXiv preprint arXiv:1903.05176.

Barreiros et al. Page 26

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1. 
The workflow of the motivating microscopy image analysis application with the high-level 

stages (Normalization, Segmentation, and Feature Extraction) and their internal operations. 

The input parameters used by the operations in the Segmentation stage are also shown in 

boxes below the name of the operations. The inter-task data transfers are presented close to 

the arrows pointing the origin and destination of the data
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FIGURE 2. 
Overview of the Region Templates framework architecture and execution scheme. On the 

left side of the Figure, we have a global view of the framework (distribution of stages from 

the manager to the worker nodes), whereas on the right side, the execution on the worker 

node side is presented. The process of executing a single stage, from its assignment to the 

request of another stage, is further detailed16
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FIGURE 3. 
The parameter SA framework. The system receives an application and parameters to be 

studied along with input data and the selected SA method as input. It then generates the 

application code and executes it on top of the Region Templates system using parallel 

machines. Results from segmentation outputs for different parameter values are compared 

using an optimized spatial indexing, and these differences or detected variations in the 

output results are used by the SA method to compute sensitivity of the output with respect to 

input parameter changes
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FIGURE 4. 
Example of a workflow composition based on a simple application. The application is 

described as a workflow of stages, each stage having as its inputs their respective parameters 

(p1-p5) and the output data of the previous stages (if there is any). This application is 

instantiated with three parameter sets, which can be composed either by fully replicating the 

application workflow for each parameter set, or by performing a compact composition, 

which avoids replicating stages that would return the same result (ie, same input data and 

parameters)
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FIGURE 5. 
An example on which SCA executes on five instances of a workflow application of six tasks, 

with MaxBucketSize = 2. On this depiction of the merging problem, each node represents a 

stage instance (same stages with different parameters) with the edges as the degree of reuse 

between two stage instances. A, Example application with the stages’ parameters 

instantiations; B, Initial graph of the example with all stages instances and their respective 

degree of reuse; C, First cut is performed by removing node c, which is a cut of weight 4; D, 

After the next min-cut of weight 10, node a is removed; E, After final cut of node b, a 

MaxBucketSize sized subgraph is found and set apart on the solution list; F, After the 

formation of a bucket the cutting process starts over with the remaining nodes. This 

procedure continues until all nodes are assigned to a bucket
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FIGURE 6. 
An example in which node x is inserted on the existing reuse-tree. Figure 6A defines the 

tasks of which each stage is composed by and presents the parameters’ values for each stage 

instance. A, Example application; B, Initial reuse-tree for the instance example; C, 

Searching for reuse on the first task; D, Searching for reuse on the second task; E, Inserting 

a new node 6; F, Inserting the leaf node x
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FIGURE 7. 
An example of RTMA with MaxBucketSize 3. The merged stages of each step are shown 

below the tree on the bucket list. A, Initial reuse-tree; B, Reuse-Tree after select procedure; 

C, Reuse-Tree after the selected merged leaf nodes are pruned and added to the bucket list; 

D, Reuse tree after the childless parents are recursively removed; E, Reuse tree after move-

up procedure
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FIGURE 8. 
An example of the buckets generated by the first two phases of the algorithm: Full-Merge 

and Fold-Merge, using MaxBuckets = 3. A, Initial reuse-tree; B, Attempt of Full-Merge 

from root node results in four buckets, which is greater than MaxBuckets = 3; C, After Full-

Merge, the minimum number of four buckets are created. Still, we need to be reduce the 

number of buckets to MaxBuckets through Fold-Merging; D, Fold-Merge, the merges first 

and last buckets of the previous tree to achieve the correct number of three buckets
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FIGURE 9. 
An example of a Fold-Merging of buckets b1–b6. Initially, we start with b = 6 buckets, 

trying to achieve MaxBuckets = 4 buckets. The task cost of the buckets follows the ordering 

b1 ≥ b2 ≥ b3 ≥ b4 ≥ b5 ≥ b6. The pairs of buckets b4 and b5, as well as b6 and b3, are 

merged together
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FIGURE 10. 
An example of the Balance step on which there are 3 buckets to be balanced. A, Initial 

reuse-tree with 3 buckets of costs 8, 9, and 5, respectively; B, Buckets of greatest and 

smallest costs are selected, with current imbalance of 4 and max cost 9; C, The algorithm 

attempts to send node 6 to smallRT, but it is aborted because the result has a greater 

imbalance of 7; D, The attempt with node 7 is also done, and this is also aborted because a 

bucket with cost 9 (not smaller than the original solution) is created; E, By sending node S9 

to smallRT, we have an imbalance of 0 and max cost 8, making it a viable balancing 

operation; F, After the balancing operation of sending node S9 to smallRT, we have the 

buckets with updated costs 8, 8, and 8
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FIGURE 11. 
Performance of the application in a weak scaling execution for multiple application versions 

and scheduling strategies. The number of MICs is the same as the Number of Nodes, with 

all 16 CPU cores of each Stampede node being used when this processor is employed
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FIGURE 12. 
Performance of multiple computation reuse algorithms for a MOAT SA experiment as the 

parameter set sample size is varied from 75 (s75) to 640 (s640)
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FIGURE 13. 
Impact of the computation reuse strategies for the VBD SA method as parameter set sample 

size is varied from 2000 (s2000) to 10 000 (s10000)
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FIGURE 14. 
Performance of different reuse strategies for MOAT with 1000 parameter samples. The 

scalability of RTMA is compromised due to the merging
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FIGURE 15. 
Performance of different reuse strategies for VBD with 10 000 parameter samples

Barreiros et al. Page 41

Concurr Comput. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 16. 
Execution time of TRTMA for different as the parameter sample size and MaxBuckets are 

varied
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TABLE 1

List of parameters used by operations in the Segmentation stage of our motivating application and their range 

values. The search space formed is of about 21 trillion points

Parameter Description Range values

B/G/R Background detection thresholds [210, 220, …, 240]

T1/T2 Red blood cell thresholds [2.5, 3.0, …, 7.5]

G1 Thresholds to identify candidate nuclei [5, 10, …, 80]

G2 Thresholds to identify candidate nuclei [2, 4, …, 40]

MinSize (minS) Candidate nuclei area threshold [2, 4, …, 40]

MaxSize (maxS) Candidate nuclei area threshold [900, …, 1500]

MinSizePl(minSPL) Area threshold before watershed [5, 10, …, 80]

MinSizeSeg (maxSS) Area threshold in final output [2, 4, …, 40]

MaxSizeSeg (minSS) Area threshold in final output [900, …, 1500]

FillHoles (FH) Propagation neighborhood [4-conn, 8-conn]

MorphRecon (RC) Propagation neighborhood [4-conn, 8-conn]

Watershed (WConn) Propagation neighborhood [4-conn, 8-conn]
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TABLE 2

Operations used in each of the application main stages and their parallelism strategy

Operations Description Source code ref.

Normalization phase

Seg FG dist Segment foreground from background w/ discriminant functions Ours

RGB2LAB Convert from RGB to LAB Ours

TransferI Map color distribution of an image to that of the target image Ours

LAB2RGB Convert from LAB to RGB Ours

Segmentation phase

GetRBC Covert RGB image to grayscale and estimate background coverage OpenCV20

Morphological open Opening removes small objects and fills holes in foreground OpenCV20

Morphological reconstruction Flood-fill a marker image that is limited by a mask image Vincent21

Area threshold Remove objects outside an area range IWPP19

Fill holes Fill holes objects w/ a flood-fill starting at selected points Vincent21

Distance transform Compute min distance from foreground pixels to background Ours

Watershed Separate overlapping objects OpenCV20

Feature extraction phase

BWLabel Label components (objects) of a mask image with the same value Oliveira22

Color deconvolution23 Separate multistained biological images in different channels Ours

Gradient Compute image gradient in x,y OpenCV20

Sobel edge Compute Sobel edge OpenCV20

Object features Compute statistics (mean, median, max, etc) for each object Ours
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TABLE 3

Example output of a MOAT analysis with all 15 parameters and a VBD analysis with a selection of the eight 

most influential parameters. The influence of a parameter is bounded in the interval [−1,1] and is proportional 

to its distance from 0 (ie, 1 and −1 are the greatest values and 0 the smallest)

Parameter MOAT Effect VBD

First-order effect (main) Higher-order effects (total)

B −0.0108 - -

G −0.0064 - -

R −0.0189 - -

T1 0.0207 - -

T2 0.0417 0.0006 0.0001

G1 0.8157 0.2251 0.2371

G2 0.9197 0.7305 0.7886

MinSize 0.0889 0.0025 0.0056

MaxSize 0.1820 0.0150 0.0086

MinSizePI 0.0341 0.0021 0.0022

MinSizeSeg −0.0155 - -

MaxSizeSeg −0.0184 - -

FillHoles −0.0276 - -

MorphRecon 0.1321 0.0146 0.0149

Watershed 0.0530 0.0018 0.0016
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TABLE 4

Specification of the images and the native database used as test inputs

Images source: The Cancer Genome Atlas (TCGA) database

Images type: Glioblastoma Multiforme (GBM) whole slide tissue image (WSI)

Images size: Approximately 120K×120K pixels

Images tiling: About 136,568 tiles of 4K×4K pixels
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TABLE 5

Maximum computation reuse potential for the parameter sampling methods MC, LHS, and QMC with 

different parameter sample sizes. The reuse percentages represent reuse only at fine-grain reuse after coarse-

grain reuse is computed

Sampling strategy
Number of nodes

2000 6000 10000

MC 36.35% 36.46% 36.40%

LHS 36.62% 36.44% 36.44%

QMC 35.10% 34.44% 33.48%
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TABLE 6

Comparative of computation reuse approaches

Reference Granularity Reuse strategy Hardware independent Large Scale dataset Distributed

44 Fine-grain Memoization ✗ ✗ ✗

45 Fine-grain Memoization ✗ ✗ ✗

46 Fine-grain Memoization ✗ ✗ ✗

47 Fine-grain Memoization ✗ ✗ ✗

48 Fine-grain Analytic ✗ ✓ ✗

40 Fine-grain Analytic
Memoization ✗ ✗ ✗

41 Coarse-grain Memoization ✓ ✗ ✓

49 Coarse-grain Memoization ✓ ✗ ✓

50 Coarse-grain Memoization ✓ ✗ ✗

38 Coarse-grain
Fine-grain Memoization ✗ ✗ ✗

51 Coarse-grain Memoization ✓ ✗ ✓

52 Coarse-grain Analytic ✓ ✗ ✗

53 Coarse-grain Memoization ✓ ✓ ✗

Our Work Coarse-grain
Fine-grain Analytic ✓ ✓ ✓
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