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Abstract

A distributed system consisting of a huge number of computational entities is prone
to faults, because faults in a few nodes cause the entire system to fail. Consequently,
fault tolerance of distributed systems is a critical issue. Checkpoint-rollback recovery is a
universal and representative technique for fault tolerance; it periodically records the entire
system state (configuration) to non-volatile storage, and the system restores itself using the
recorded configuration when the system fails. To record a configuration of a distributed
system, a specific algorithm known as a snapshot algorithm is required. However, many
snapshot algorithms require coordination among all nodes in the system; thus, frequent
executions of snapshot algorithms require unacceptable communication cost, especially if
the systems are large. As a sophisticated snapshot algorithm, a partial snapshot algorithm
has been introduced that takes a partial snapshot (instead of a global snapshot). However,
if two or more partial snapshot algorithms are concurrently executed, and their snapshot
domains overlap, they should coordinate, so that the partial snapshots (taken by the
algorithms) are consistent. In this paper, we propose a new efficient partial snapshot
algorithm with the aim of reducing communication for the coordination. In a simulation,
we show that the proposed algorithm drastically outperforms the existing partial snapshot
algorithm, in terms of message and time complexity.

1 Introduction

A distributed system consists of computational entities (i.e., computers), usually called nodes,
which are connected to each other by (communication) links. Each node can communicate
with the other nodes by exchanging messages through these links. In large-scale distributed
systems, node faults are inevitable, and the faults of only a few nodes (probably a single node)
may cause the entire system to fail. Therefore, the fault tolerance of distributed systems is a
critical issue to ensure system dependability.

Checkpoint-rollback recovery [3] is a universal and representative method for realizing the
fault tolerance of distributed systems. Each node periodically (or when necessary) records its
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local state in non-volatile storage, from which the node recovers its past non-faulty state when
faults occur. This recorded state is called a checkpoint and restoring the node state using
its checkpoint is called a rollback. However, in distributed systems, to guarantee consistency
after a rollback (i.e., a global state constructed from the checkpoints), nodes must cooperate
with each other to record their checkpoints. A configuration is inconsistent [4,5] if it contains
an orphan message, which is received but is not sent in the configuration. To resolve the
inconsistency, the receiver of the orphan message must restore an older checkpoint. This
may cause a domino effect [6] of rollbacks, which is an unbounded chain of local restorings
to attain a consistent global state. A consistent global state can be formed by every node’s
mutually concurrent local state (which means that there are no causal relationships between
any two local states in the global state) and all in-transit messages. A snapshot algorithm is for
recording a consistent global configuration called a snapshot which ensures that all nodes record
their checkpoints cooperatively. Checkpoint-rollback recovery inherently contains a snapshot
algorithm to record the checkpoints of the nodes, forming a consistent global state, and its
efficiency strongly depends on that of the snapshot algorithm.

Many sophisticated snapshot algorithms have been proposed [7–11]. As the scale (the
number of nodes) of a distributed system increases, the efficiency of the snapshot algorithm
becomes more important. Especially in a large-scale distributed system, frequent captures of
global snapshots incur an unacceptable communication cost. To resolve the problem of global
snapshot algorithms, partial snapshot algorithms have been proposed, which take a snapshot of
some portion of a distributed system, rather than the entire system. Most snapshot algorithms
(whether global or partial) cannot deal with dynamic distributed systems where nodes can
freely join and leave the system at any time.

In this paper, we propose a new cooperative partial snapshot algorithm which (a) takes
a partial snapshot of the communication-related subsystem (called a snapshot group), so its
message complexity does not depend on the total number of nodes in the system; (b) allows
concurrent initiations of the algorithm by two or more nodes, and takes a consistent snapshot
using elaborate coordinations among the nodes with a low communication cost; and (c) is appli-
cable to dynamic distributed systems. Our simulation results show that the proposed algorithm
succeeds in drastically decreasing the message complexity of the coordinations compared with
previous works.

The rest of this paper is organized as follows: Section 2 introduces related work. Section 3
presents the system model and details of a previous work on which our algorithm is based. The
proposed algorithm designed to take concurrent partial snapshots and detect the termination is
described in Section 4. Section 5 discusses the correctness of the algorithm. The performance
of the algorithm is experimentally evaluated in comparison with that of an existing algorithm
in Section 6. Finally, Section 7 concludes the paper.

2 Related Work

Chandy and Lamport [12] proposed a distributed snapshot algorithm that takes a global snap-
shot of an entire distributed system. This global snapshot algorithm ensures its correctness
when a distributed system is static: No node joins or leaves, and no (communication) link
is added or removed. Moreover, the algorithm assumes that all links guarantee the First in
First out (FIFO) property, and each node knows its neighbor nodes. Chandy and Lamport’s
snapshot algorithm uses a special message named Marker, and each node can determine the
timing to record its own local state using the Marker message. Some snapshot algorithms for
distributed systems with non-FIFO links have also been proposed [13]. These global snapshot
algorithms are easy to implement and take a snapshot of the distributed system. However,
the algorithms require O(m) messages (where m is the number of links), because every pair
of neighboring nodes has to exchange Marker messages. Therefore, these algorithms are not
practically applicable to large-scale distributed systems which consist of a huge number of
nodes.

Some researchers have tried to reduce the number of messages of snapshot algorithms
[14–16], e.g., O(n log n), but the complexity depends on n, the number of nodes in the entire
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system. This implies that the scalability of snapshot algorithms remains critical. Not only the
scalability problem but also applicability to dynamic distributed systems (where nodes can join
and leave the distributed system at any time) are important for global snapshot algorithms.

An alternative approach to scalable snapshot algorithms called communication-induced
checkpointing has been studied [9,17–19]. In this approach, not all nodes are requested to record
their local states (as their checkpoints), but some are, depending on the communication pattern.
For distributed applications mainly based on local coordination among nodes, communication-
induced checkpoint algorithms can reduce the communication and time required for recording
the nodes’ checkpoints. However, these algorithms cannot guarantee that the latest checkpoints
of the nodes form a consistent global state. This forces each node to keep multiple checkpoints
in the node’s non-volatile storage, and requires an appropriate method to find a set of node
checkpoints that forms a consistent global state. Thus, from a practical viewpoint, these
snapshot algorithms cannot solve the scalability problem.

Moriya and Araragi [10,20] introduced a partial snapshot 1 algorithm, which takes a snap-
shot of the subsystem consisting only of communication-related nodes, named Sub-SnapShot
(SSS) algorithm. They also proved that the entire system can be restored from faults, using
the latest checkpoint of each node. A communication-related subsystem can be transitively
determined by the communication-relation, which is dynamically created by (application layer)
communications (exchanging messages) among the nodes. In practical distributed systems, the
number of nodes in a communication-related subsystem is expected to be much smaller than
the total number of nodes in the distributed system. This implies that the number of messages
required for SSS algorithm does not depend on the total number of nodes. Therefore, SSS algo-
rithm can create checkpoints efficiently, so that SSS algorithm makes the checkpoint-rollback
recovery applicable to large-scale distributed systems. However, SSS algorithm cannot guar-
antee the consistency of the (combined) partial snapshot, if two or more nodes concurrently
initiate SSS algorithm instances, and their snapshot groups (communication-related subsys-
tems) overlap.

Spezialetti [7] presented snapshot algorithms to allow concurrent initiation of two or more
snapshot algorithms, and an improved variant was proposed by Prakash [8]. However, their
algorithms still target the creation of a global snapshot, and their algorithms are not appli-
cable to dynamic distributed systems. SSS algorithm is applicable to dynamic distributed
systems, where nodes can join and leave the system freely, because the algorithm uses only the
communication-relation, which changes dynamically, and requires no a priori knowledge about
the topology of the entire system.

Another snapshot algorithm for dynamic distributed systems was introduced by Koo and
Toueg [3]. However, this communication-induced checkpoint algorithm has to suspend execu-
tions of all applications while taking a snapshot, to guarantee the snapshot’s consistency. In
contrast, SSS algorithm allows execution of any applications while a snapshot is taken, with
some elaborate operations based on the communication-relation.

Kim et al., proposed a new partial snapshot algorithm, named Concurrent Sub-Snapshot
(CSS) algorithm [11, 21], based on SSS algorithm. They called the problematic situation
caused by the overlap of the subsystems a collision and presented an algorithm that can
resolve collisions by combining colliding SSS algorithm instances. In CSS algorithm, to resolve
the collision, leader election among the initiating nodes of the collided subsystems is executed,
and only one leader node becomes a coordinator. The coordinator and the other initiators
are called the main-initiator and sub-initiators, respectively. This leader election is executed
repeatedly, to elect a new coordinator when a new collision occurs. All sub-initiators forward
all information collected about the subsystems to the main-initiator, so that all the snapshot
algorithm instances are coordinated to behave as a single snapshot algorithm which is initiated
by the main-initiator.

CSS algorithm successfully realizes an efficient solution for the collision problem, by consis-
tently combining two or more concurrent SSS algorithm executions. However, if a large number
of nodes concurrently initiate CSS algorithm instances, and the nodes collide with each other

1In [7], they called a portion of a global snapshot a partial snapshot; however, the notion of a partial snapshot
is different from that in our algorithm, SSS algorithm [10, 20], and CSS algorithm [11, 21]. In this paper, a
partial snapshot is not a part of a global snapshot, but a snapshot of a subsystem.

3



many times, leader elections are executed concurrently and repeatedly, and an enormous num-
ber of messages are forwarded to the main-initiator. This overhead for combining snapshot
groups and forwarding snapshot information for coordination is the most critical drawback of
CSS algorithm.

3 Preliminaries

3.1 System model

Here, we describe the system model we assumed in the paper. The model definition follows
that of SSS algorithm [10,20]. We consider distributed systems consisting of nodes that share
no common (shared) memory or storage. Nodes in the system can communicate with each
other asynchronously, by exchanging messages (known as the message-passing model). We
assume that each node can send messages to any other node if the node knows the destination
node’s ID: It can be realized if its underlying network supports appropriate multi-hop routing,
even though the network is not completely connected. Each node is a state machine and has
a unique identifier (ID) drawn from a totally ordered set. We assume a numerous but finite
number of nodes can exist in the system.

We consider dynamic distributed systems, where nodes can frequently join and leave the
distributed system. This implies that the network topology of the system can change, and each
node never recognizes the entire system’s configurations in real time. In our assumption, each
node can join or leave the system freely, but to guarantee the consistency of the checkpoints,
the node can leave the system only after taking a snapshot. This implies that to leave, the
node must initiate a snapshot algorithm. If a message is sent to a node that has already left
the system, the system informs the sender of the transmission failure. On the other hand, a
new coming node can join the system anytime.

Every (communication) link between nodes is reliable, which ensures that all the messages
sent through the same link in the same direction are received, each exactly once, in the order
they were sent (FIFO). A message is received only when it is sent. Because we assume an
asynchronous distributed system, all messages are received in finite time (as long as the receiver
exists), but with unpredictable delay.

3.2 SSS algorithm

In this subsection, we briefly introduce SSS algorithm [10, 20] which takes a partial snapshot
of a subsystem consisting of nodes communication-related to a single initiator. This implies
that SSS algorithm efficiently takes a partial snapshot; that is, the algorithm’s message and
time complexities do not depend on the total number of nodes in the distributed system. SSS
algorithm is also applicable to dynamic distributed systems, where nodes join and leave freely,
because it does not require knowledge of the number of nodes or the topology of the system,
but requires only a dynamically changing communication-relation among nodes.

In SSS algorithm, every node records its dependency set (DS ), which consists of the IDs
of nodes with which it has communicated (sent or received messages). SSS algorithm assumes
that only a single node (called an initiator) can initiate the algorithm, and to determine the
subsystem, an initiator traces the communication-relation as follows: When a node pi initiates
SSS algorithm, the node records its current local state (as its checkpoint) and sends Markers
with its ID to all nodes in its dependency set DSi. When a node pj receives a Marker message
with the ID of pi for the first time, the node also records its current local state. After that,
pj forwards the Markers with the ID of pi to all nodes in its dependency set DSj and sends
DSj to the initiator pi. The initiator can trace the communication-relation by referring the
dependency sets received from other nodes: The initiator maintains the union of the received
dependency sets, including its own dependency set, and the set of the senders of the dependency
sets. When these two sets become the same, the nodes in the sets constitute the subsystem
communication-related to the initiator. The initiator informs each node pj in the determined
subsystem of the node set of the subsystem; pj should receive Markers from every node in the
set.
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Figure 1: An (overlay) initiator network consisting of initiators

Recording in-transit messages in SSS algorithm is basically the same as in traditional dis-
tributed snapshot algorithms (Chandy and Lamport’s manner). Each node joining the partial
snapshot algorithm records messages which are received before receipt of the Marker in each
link.

4 CPS Algorithm: The Proposed Algorithm

4.1 Overview

When two or more nodes concurrently initiate SSS algorithm instances, the subsystems (called
snapshot group) may overlap, which is called a collision. CSS algorithm has been proposed
with the aim of resolving this collision. This algorithm combines the collided snapshot groups,
using leader election repeatedly. This allows concurrent initiations by two or more initiators;
however, it causes a huge amount of communication cost for leader elections, if collisions
occur frequently. Moreover, to guarantee the consistency of the combined partial snapshot,
every initiator must forward all information, e.g., the node list, the dependency set, and the
collision-related information, to the leader. This forwarding causes additional communication
cost.

To reduce the communication cost, we propose a new partial snapshot algorithm, CPS
algorithm, which stands for Concurrent Partial Snapshot. This algorithm does not execute
leader election to resolve a collision every time a collision is detected. Instead, CPS algorithm
creates a virtual link between the two initiators of the two collided groups, which is realized
by making each initiator just store the other’s ID as its neighbor’s. These links construct the
overlay network which consists only of initiators. We called this overlay network an initiator
network, and no information is forwarded among initiators in this network. Figure 1 illustrates
an example of an initiator network for a case where three snapshot groups collide with each
other.

CPS algorithm consists of two phases: Concurrent Partial Snapshot Phase (Phase 1) and
Termination Detection Phase (Phase 2). In Phase 1, an initiator sends Marker messages to its
communication-related nodes to determine its snapshot group. If the snapshot group collides
with another group, the initiator and the collided initiator create a virtual link between them
for their initiator network. When the snapshot group is determined, the initiator of the group
proceeds to Phase 2 to guarantee the consistency of the checkpoints in all (overlapped) snapshot
groups. In Phase 2, to achieve the guarantee, each initiator communicates with each other in
the initiator network to check all the initiators have already determined their snapshot groups.
After this check is completed, an initiator tells the termination condition of each node in the
initiator’s snapshot group and goes back to Phase 1 to finish the algorithm. Note that all
nodes in the snapshot groups execute Phase 1 on the real network, and only initiators execute
Phase 2 on the initiator network that is constructed in Phase 1.

In this section, we describe the proposed CPS algorithm. First, Section 4.2 explains how
the proposed algorithm handles events of sending/receiving an application message. Then,
Section 4.3 and Section 4.4 provide details of the two phases of the algorithm, i.e., Concurrent
Partial Snapshot Phase and Termination Detection Phase.
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Algorithm 1 Basic actions of Phase 1
1: procedure Before pi sends a message to pj
2: if init 6= null ∧ pj /∈ pDS ∪DS ∧ InPhase2 = false then
3: // Send Marker before sending a message
4: Send 〈Marker, init〉 to pj
5: end if
6: DS ← DS ∪ {pj} // Add pj to its DS
7: end procedure
8: procedure Before pi receives a message from pj
9: DS ← DS ∪ {pj}// Add pj to its DS

10: if init 6= null ∧ pj /∈ RcvMk then
11: Add (pj , message) to MsgQ
12: end if
13: end procedure

4.2 Basic operation

To take a snapshot safely, CPS algorithm must handle events of sending or receiving an ap-
plication message (as other snapshot algorithms do). Algorithm 1 shows the operations that
each node executes before sending (lines 1–7) or receiving (lines 8–13) an application message.
When node pi currently executing CPS algorithm (initi 6= null) sends a message to node pj
which is not in the DSi, pi has to send Marker to pj before sending the message. Variable
pDS stores DS when a node receives the first Marker to restore the content of DS when a
snapshot algorithm is canceled.

Figure 2 depicts why this operation is necessary: Let pk be the node which is communication-
related to pi and pj (pi and pj are not communication-related with each other). When each
node receives Marker for the first time, the node broadcasts Marker to all the nodes in its
DS. Therefore, pi already sent Marker to pk, and pk sends Marker to pj when these nodes
receive the Markers. However, if pi sends a message mij to pj without sending Marker to
pj , the message might be received before the Marker from pk, and it makes mij an orphan
message. Let us consider another case in Fig. 2 where pj sends mji to pi before pj stores its
checkpoint. When pi receives mji, pi adds mji into MsgQ as defined in Algorithm 1 because
pi is executing CPS algorithm and has not received a Marker message from pj . After finishing
CPS algorithm, mji is stored as one of the in-transit messages with the checkpoint. Therefore,
mji never becomes an orphan message.

4.3 Phase 1: Concurrent Partial Snapshot Phase

This phase is basically the same as that in SSS algorithm, except for the collision-handling
process. Each node can initiate a snapshot algorithm at any time, by sending a special message
Marker to the node’s communication-related nodes, and the other nodes record their local
states when they receive Marker for the first time. An initiator of CPS algorithm traces the
communication-relation to determine its partial snapshot group.

In Phase 1, each node pi maintains the following variables:

• initi: Initiator’s ID. An initiator sets this variable as its own ID. A normal node (not
initiator) sets this variable to the initiator ID of the first Marker message it receives.
Initially null.
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• DSi: A set of the IDs of the (directly) communicate-related nodes. This set is updated
when pi sends/receives an application message as described in Section 4.2.

• pDSi: A set variable that stores the DSi temporarily. Initially ∅.
• RcvMki: A set of the IDs of the nodes from which pi (already) received Marker messages.

Initially ∅.
• MkListi: A set of the IDs of the nodes from which pi has to receive Marker messages

to terminate the algorithm. Initially ∅.
• fini: A boolean variable that denotes whether the partial snapshot group is determined

or not. Initially false. An initiator updates this variable to true when Phase 1 terminates,
while a non-initiator node updates this when the node receives a Fin message.

• MsgQi: A message queue that stores a sequence of the messages for checkpoints, as the
pairs of the ID of the sender node and the message. Initially null.

• CollidedNodesi: A set of the IDs of the nodes from which pi received collision Marker
messages. Initially ∅.

• MkFromi (Initiator only): A set of the IDs of the nodes that send Marker to its DS.
Initially ∅.

• MkToi (Initiator only): The union set of the DSes of the nodes in MkFrom. Initially ∅.
• DSInfoi (Initiator only): A set of the pairs of a node ID and its DS. Initially ∅.
• Waiti (Initiator only): A set of the IDs of the nodes from which pi is waiting for a reply

to create a virtual link of the initiator network. Initially ∅.
• Ni (Initiator only): A set of the neighbor nodes’ IDs in the initiator network. Initially ∅.

We use the following message types in Phase 1. We denote the algorithm messages by
〈MessageType, arg1, arg2, . . .〉. Note that some messages have no argument. We assume that
every message includes the sender ID and the snapshot instance ID, which is a pair of an ini-
tiator ID and a sequence number of the snapshot instances the initiator invoked, to distinguish
snapshot algorithm instances that are or were executed.

• 〈Marker, init〉: A message which controls the timing of the recording of the local state.
Parameter init denotes the initiator’s ID.

• 〈MyDS, DS〉: A message to send its own DS (all nodes communication-related to this
node) to its initiator.

• 〈Out〉: A message to cancel the current snapshot algorithm. When a node who has been
an initiator receives a MyDS message of the node’s previous instance, the node sends
this message to cancel the sender’s snapshot algorithm instance.

• 〈Fin, List〉: A message to inform that its partial snapshot group is determined. List
consists of the IDs of the nodes from which the node has to receive Marker messages to
terminate the algorithm.

• 〈NewInit, p, Init〉: A message to inform that a different initiator has been detected. Init
denotes the ID of the detected initiator, and p denotes the ID of the node which sends
Marker with Init.

• 〈Link, p, q〉: A message sent by an initiator to another initiator to confirm whether a link
(of the overlay network) can be created between the two initiators or not. p denotes the
ID of the node which received a collided Marker, and q denotes the ID of the sender
node.

• 〈Ack, p, q〉: A reply message for a 〈Link, p, q〉 message when the link can be created.

• 〈Deny, p, q〉: A reply message for a 〈Link, p, q〉 message when the link cannot be created.

• 〈Accept, p, Init〉: A reply message for a 〈NewInit, p, Init〉 message when the link between
its initiator and Init is successfully created.
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Algorithm 2 presents the pseudo-code of Phase 1. By this algorithm, each node stores, as
a checkpoint, a local application state in line 11 and in-transit messages in line 66.

We briefly present how an initiator determines its partial snapshot group when no collision
occurs. Figure 3 describes an example of a distributed system consisting of 10 nodes, p0 to
p9, and some pairs are communication-related: For example, p7 has communication-relations
with p0, p6, and p8; i.e., DS7 = {p0, p6, p8}. In this example, p0 initiates CPS algorithm. p0
initializes all variables, and records its local state; then, p0 sends 〈Marker, p0〉 to all nodes in
DS0 = {p2, p3, p6, p7} (lines 6–13). When p3 receives the first Marker from p0, p3 records its
local state, and sets p0 as its initiator (variable init3) (lines 6–11). Then, p3 sends its DS3 to
its initiator p0 using the 〈MyDS, DS3〉 message (line 12). After that, p3 sends 〈Marker, p0〉 to
all nodes in DS3 = {p0, p8}(line13). Note that node p8, which is not directly communication-
related to p0, also receives 〈Marker, p0〉 from p3 (or p7) and records its local state. If the initiator
p0 receives a 〈MyDS, DSi〉message from pi, it adds the ID pi and DSi to MkFrom0 and MkTo0
respectively, and inserts (i,DSi) into DSInfo0 (lines 33–35). When MkTo0 ⊆ MkFrom0

2

holds, this means that all nodes which are communication-related to the initiator already
received the Marker. Thus, the initiator determines its partial snapshot group as the nodes in
MkFrom0, and proceeds to Phase 2 (lines 57–59), named the Termination Detection Phase,
which is presented in the next subsection. When Phase 2 finishes, the initiator sends the
〈Fin,MkListi〉 message to each pi ∈MkFrom0 (lines 43–46 of Algorithm 4), where MkListi
is the set of the IDs from which pi has to receive Markers. If node pi has received Marker
messages from all the nodes in MkListi, pi terminates the algorithm (lines 62–72).

Algorithm 3 presents the pseudo-code of the collision-handling procedures in Phase 1. In the
algorithm, we change some notations of node IDs for ease of understanding. Our assumption
is depicted in Figure 4. We assume that a collision occurs between two snapshot groups, and
let px and py be the nodes executing the snapshot algorithm by receiving Marker from the
initiators pa and pb, respectively. Node px receives 〈Marker, pb〉 from py, and px informs its
initiator pa of a collision by sending a NewInit message, because initx 6= pb.

Figure 5 illustrates an example of the message flow when a collision occurs. In the example,
we assume that two initiators, p0 and p6, concurrently initiate CPS algorithm instances, and
p4 detects a collision as follows. Node p4 receives 〈Marker, p0〉 from p3, and 〈Marker, p6〉 from
p5 in this order. Because p4 receives Marker with initiator p6 different from its initiator p0, p4

2If DS0 remains unchanged, MkTo0 = MkFrom0 holds. However, each node pi can send a message to a
node not in DSi (which adds the node to DSi) even while CPS algorithm is being executed. This may cause
MkTo0 ⊂MkFrom0; refer to Algorithm 1 for details.
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Figure 5: Collision-handling example in CPS algorithm

sends 〈NewInit, p5, p6〉 to its initiator p0 (line 25 of Algorithm 2). When p0 receives the NewInit,
if p0 has not determined the partial snapshot group yet, p0 sends a 〈Link, p4, p5〉 message to
opponent initiator p6 (line 6). As a reply to the Link message, p6 sends a 〈Ack, p4, p5〉 message
(line 26), if p6 also has not determined its partial snapshot group yet. Otherwise, p6 sends a
〈Deny, p4, p5〉message to p0

3 (line 31). Finally, p0 sends 〈Accept, p5, p6〉 to p4 which detected the
collision (line 60), and p4 sends 〈Marker, p6〉 to p5 (line 50). Note that this Marker is necessary
to decide which messages should be recorded in the checkpoint in p5. In this example, we also
notice the following points: (1) In Figure 5, p5 may also detect a collision by 〈Marker, p0〉 from
p4. This causes additional message communications between p0 and p6; e.g., p6 also sends a
Link message to p0. (2) Even if there is no communication-relation between p4 and p5, when
two initiators invoke CPS algorithm instances, p4 or p5 can send Marker in advance to send
a message (refer to Algorithm 1). In this case, a virtual link between p0 and p6 may not be
created, because either of them may have already determined their partial snapshot groups
(note that p5 and p4 are not included in DS4 and DS5, respectively).

4.4 Phase 2: Termination Detection Phase

Only the initiators, which determine their partial snapshot groups, execute Phase 2. Note that
Phase 2 is executed on the initiator network that was constructed in Phase 1. The goal of this
phase is to confirm that all initiators in the initiator network have already determined their
snapshot groups4. In other words, all initiators in the initiator network completed Phase 1,
and are executing Phase 2. In this phase, the proposed algorithm elects one initiator as the
leader, and constructs a breadth-first spanning tree rooted at the leader. From the leaves to the
root, each initiator notifies its parent initiator in the tree that it is in Phase 2 (convergecast),
and when the convergecast terminates, the leader broadcasts the termination of Phase 2 to all
other initiators (broadcast).

In Phase 2, each initiator pi maintains the following variables:

• rIDi: The ID of the root initiator the initiator currently knows. Initially, null.

• disti: The distance to the root initiator rIDi. Initially, ∞.

• pIDi: The ID of the parent initiator in the (spanning) tree rooted at the root initiator
rIDi. Initially, null.

• Childi: A set of the IDs of the child initiators in the (spanning) tree. Initially, ∅.
• LTi: A set of the IDs of the initiator from which the initiator received LocalTerm mes-

sages. Initially, ∅.
3In the Deny case, p6 has determined its snapshot group and has sent Fin messages to the nodes in the group

including p5. Node p5 eventually receives the Fin message and terminates the snapshot algorithm. While p4
cannot receive any response for the NewInit message p4 sent, the node also eventually receives its Fin message
from p0. If there exists an application message m54 sent from p5 to p4, the sent must be after taking the
checkpoint of p5 for p6’s snapshot (otherwise, the two snapshot groups of p0 and p6 are merged). Node p4 also
receives m54 after taking its checkpoint for p0’s snapshot. If p4 receives the message before its checkpoint, p5
send a Marker to p4 before m54, p4 should join in p6’s snapshot group. The application message m54 is sent
and received after the checkpoints of p4 and p5; thus, the message never becomes an orphan. We can have the
same discussion for an application message sent in the opposite direction.

4If an initiator has not experienced any collision in Phase 1, the initiator terminates Phase 2 immediately
because the initiator does not need to wait other snapshot groups.
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• CKi: A set of the IDs of the initiator from which the initiator received Check messages.
Initially, ∅.

• InPhase2i: A boolean variable. This is true if pi is in Phase 2; otherwise, false.

In addition, the following Phase 1 variables are also used. Note that these variables are never
updated in Phase 2.

• MKFromi

• DSInfoi

The following messages are used in Phase 2.

• 〈Check, rID, dist, pID〉: A message to inform its neighbors of the smallest ID that the
initiator currently knows. rID is the initiator that has the smallest ID (the initiator
currently knows), dist is the distance to rID, and pID is the parent initiator’s ID to
rID.

• 〈LocalTerm〉: A message for a convergecast.

• 〈GlobalTerm〉: The leader initiator (which has the smallest ID) broadcasts this message
to all other initiators when a convergecast is successfully finished.

Algorithm 4 presents the pseudo-code of the proposed algorithm of Phase 2. In Phase 2,
each initiator repeatedly broadcasts a Check message to its neighbor initiators, to find the
leader. The Check message includes the smallest ID (denoted by rID) that the initiator ever
knows and the distance to it. When an initiator starts Phase 2, the initiator sends a Check
message containing its ID as the minimum ID rID to its all neighbor initiators (line 5). When
the initiator receives Check messages, it updates its root, its distance, and its parent initiator
(line 15), if it finds a smaller ID or a smaller distance with the smallest ID it ever knows. If there
is some update on these variables, it sends the Check message with the updated information to
all its neighbor initiators again (line 16). By repeating these broadcasts and updates, initiators
construct a breadth-first spanning tree rooted at the initiator with the smallest ID.

This naive technique is widely used to find the leader in the distributed system. However,
this technique is hardly applicable when the diameter of the network is unknown, because
the broadcast of the Check message has to be repeated as many times as the diameter of
the network. To resolve this difficulty, in the proposed algorithm, we allow an initiator pi
to stop broadcasting Check and start convergecast toward the leader (the initiator currently
knows), when the following conditions are satisfied (line 25): (1) an initiator pi receives Check
messages from its all neighbor initiators, and (2) there are no child initiators in the neighbors.
This implies that initiator pi is a leaf initiator of the tree rooted at the leader. Even after
an initiator begins the convergecast, the initiator stops it when the initiator receives a Check
message from any neighbor initiator, and the initiator restarts the convergecast when the
conditions above are satisfied.

The convergecast uses a LocalTerm message that is repeatedly sent from a leaf initiator
to the root initiator (the leader) through the tree. When the initiator receives a LocalTerm
message, the initiator adds the sender’s ID to its set variable LT (line 29), which is a set vari-
able that stores the IDs of the initiators from which the initiator received LocalTerm messages.
Therefore, the parent initiator (which has one or more child initiators) starts the convergecast
when the initiator receives LocalTerm messages from all its child initiators (line 25). The
convergecast is terminated when the leader receives LocalTerm messages from all its neighbor
initiators (note that all neighbor initiators of the leader eventually become the leader’s chil-
dren), and the leader broadcast GlobalTerm messages to finish Phase 2 (line 31). This implies
that to terminate the convergecast, all initiators have to start convergecasts, and this means all
initiators have the same rID. If some initiators start convergecasts with wrong information,
e.g., the rID of the initiator is not the smallest ID, these initiators will stop the convergecast,
and send Check messages again when they detect a smaller initiator ID (line 16). This wrong
convergecast can be executed at most d times, where d is the diameter of the initiator network
at the time when all the initiators in the initiator network are in Phase 2.
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4.5 Rollback Algorithm

Here, we describe the rollback algorithm of CPS algorithm. Actually, the algorithm is the
same as RB algorithm of SSS algorithm [10, 20]; thus, we just introduce RB algorithm in our
style below.

First, we give the overview of RB algorithm. The rollback algorithm can be invoked anytime
by any node, even if some node in its snapshot was leaved from the system. When a rollback
of a snapshot is triggered by a rollback initiator pi, first pi sends a RbMarker message to every
node in pi’s DS to determine its rollback group similar to SSS algorithm described briefly in
Section 3.2. After the rollback group is determined, each node in the group first restores its
state to the latest checkpoint5 and recovers every link of the node with the stored in-transit
messages. Then, the node resumes to the execution of its application.

We enumerate the variables and the message types that RB algorithm uses below. They are
mostly the same for those of CPS algorithm. In the rollback algorithm, each node pi maintains
the following variables.

• RbIniti: Rollback initiator’s ID. An initiator sets this variable as its own ID. A normal
node (not initiator) sets this variable to the initiator ID of the first RbMarker message
it receives. Initially null.

• RbRcvMki: A set of the IDs of the nodes from which pi (already) received RbMarker
messages. Initially ∅.

• RbMkListi: A set of the IDs of the nodes from which pi has to receive RbMarker messages
to terminate the algorithm. Initially ∅.

• RbFini: A boolean variable that denotes whether the rollback group is determined or
not. Initially false.

• RbMkFromi (Initiator only): A set of the IDs of the nodes that send RbMarker to its
DS. Initially ∅.

• RbMkToi (Initiator only): The union set of the DSes of the nodes in RbMkFrom.
Initially ∅.

• RbDSInfoi (Initiator only): A set of the pairs of a node ID and its DS. Initially ∅.

The algorithm also uses the following Phase 1 variables:

• DSi

• MsgQi

We use the following message type for the rollback algorithm.

• 〈RbMarker, init〉: A message which controls the timing of a rollback of the local state.
Parameter init denotes the initiator’s ID.

• 〈RbMyDS, DS〉: A message to send its own DS (all nodes communication-related to this
node) to its initiator.

• 〈RbOut〉: A message to cancel the current rollback algorithm. When a node who has
been an initiator receives a RbMyDS message of the node’s previous instance, the node
sends this message to cancel the sender’s rollback algorithm instance.

• 〈RbFin, List〉: A message to inform that its rollback group is determined. List consists of
the IDs of the nodes from which the node has to receive RbMarker messages to terminate
the algorithm.

Algorithm 5 is the pseudo-code of the rollback algorithm. As you can see, this is mostly
the same as Algorithm 2, but the algorithm is simpler than that. This is because the rollback
algorithm does not support concurrent rollbacks of multiple groups, which requires collision
handling of these groups like CPS algorithm.

5If the node has not stored any checkpoint yet, the node rolls back to its initial state.
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5 Correctness

In this section, we show the correctness of the proposed algorithm. First, we show the con-
sistency of the recorded checkpoints (the snapshot). The consistency of the snapshot can be
guaranteed by the following conditions: (a) the recorded checkpoints are mutually concurrent,
which means that no causal relation, e.g., message communications, exists between any two
checkpoints, and (b) in-transit messages are correctly recorded.

We denote the k-th event of node pi as eki . Si denotes the recorded checkpoint of node pi.
When a snapshot algorithm correctly terminates, Si is updated to the latest checkpoint, and
the previous recorded checkpoint is discarded. Thus, Si is uniquely defined, if pi recorded its
local state at least once. From the proposed algorithm (and many other snapshot algorithms
using Marker), Si is usually created when the node receives the first Marker.

Definition 1. (A causal relation) eni ≺ emj denotes that eni causally precedes emj . This causal
relation is generated in three cases: (1) eni and emj are two internal computations on the same
node (i = j) and n < m. (2) eni and emj are the sending and the receiving events of a message,

respectively. (3) eni ≺ elk and elk ≺ emj (transitive).

Now we show the following lemma using the notation and definition above.

Lemma 1. For any two checkpoints Si and Sj recorded at distinct nodes pi and pj by the
proposed algorithm, neither Si ≺ Sj nor Sj ≺ Si holds (or they are concurrent).

Proof. For contradiction, we assume Si ≺ Sj holds without loss of generality. It follows that a
message chain m1,m2, · · · ,mk (k ≥ 1) exists such that m1 is sent by pi after Si, ml is received
before sending ml+1 (1 ≤ l < k) at a node, and mk is received by pj before Sj .

If Si and Sj are recorded by Markers from the same initiator, we can show that Marker
is sent along the same link before each ml. This is because Marker is (a) sent to every
communication-related node when a node records a checkpoint, and (b) sent to a communication-
irrelated node before a message is sent to the node (which becomes communication-related).
Therefore, pj records its checkpoint at the latest before it receives mk, which is a contradiction.

Even if Si and Sj are recorded by Markers from two different initiators, px and py, re-
spectively, Marker from px is received by pj before the receipt of mk for the same reason as
above. Thus, pj never records its checkpoint, when Marker from py is received by it (a collision
occurs).

Therefore, Lemma 1 holds.

Next, we present the following lemma about the recorded in-transit messages.

Lemma 2. A message m sent from pi to pj is recorded as an in-transit message by pj, if and
only if m is sent before Si and received after Sj.

Proof. (only if part) A message m from pi to pj is recorded as an in-transit message by pj
only when it is received after Sj , but before Marker from pi. Marker is sent from pi to pj
immediately after Si; thus, the above implies from the FIFO property of the communication
link that m is sent before Si. The only if part holds.

(if part) Let m be the message that is sent from pi before Si, and received by pj after Sj .
First, we assume that Si and Sj are recorded on receipt of Markers from the same initiator
(i.e., they are in the same partial snapshot group). Because m is sent before Si, pi adds pj to
its DSi, and then pi sends Marker to pj when Si is recorded (i.e., when the first Marker is
received). Node pi sends not only Marker but also its DSi to its initiator. This implies when
the snapshot group is determined, pi is included in MkListj , which is the set of the IDs of the
nodes from which pj has to receive Markers. Therefore, pj cannot terminate the algorithm,
until pj receives Marker from pi. Because m is received by pj before Marker from pi (due to
the FIFO property), m is always recorded as an in-transit message.

Next, we assume that Si and Sj are recorded on receipt of Markers from different initiators
(denoted by px and py, respectively). In this case, when pj receives Marker from pi (pi has to
send Marker to pj when it records Si), it sends NewInit to its initiator py because it detects a
collision. We have to consider the following two cases when py receives NewInit from pj . Note
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that, at this time, px has not determined its snapshot group, because pj is included in DSi,
and px has not received DSj yet.

(1) py has not determined its snapshot group: py sends Link to px, and a virtual
link between the two nodes is created in the initiator network. This causes pi to be added to
MkListj , when py determines its snapshot group. Because pi ∈ MkListj , pj has to wait for
Marker from pi, and records m as an in-transit message.

(2) py already determined its snapshot group: If pi is in the snapshot group of py,
we can show with an argument similar to (1) that m is recorded as an in-transit message. If pi
is not in py’s snapshot group, then the snapshot group is determined using DSj that does not
contain pi. This implies pj never sends Marker to pi, when checkpoint Sj is recorded. In this
case, because py has already sent a Fin message to pj before the receipt of NewInit, pj never
records m in Sj , because pi is not included in MkListj . However, in this case, pj records a
new checkpoint, say S′

j , on receipt of Marker from pi that was sent when Si is recorded, and
receives m before S′

j . As a result, m is not an in-transit message, and is never recorded in Sj

or S′
j .

Lemmas 1 and 2 guarantee the consistency of the recorded checkpoints and in-transit mes-
sages by the proposed algorithm. Now we discuss about the termination of Phase 1 using the
following lemma.

Lemma 3. Every initiator eventually terminates Phase 1 and proceeds to Phase 2.

Proof. To terminate Phase 1 (and start Phase 2), each initiator has to execute procedure
CanDetermineSG() (lines 55 to 61 in Algorithm 2) and satisfies two conditions (line 56 in
Algorithm 2): (1) MkToi is a subset of or equal to MkFromi and (2) Waiti is an empty set.
Note that whenever MkToi, MkFromi, or Waiti is updated, an initiator executes procedure
CanDetermineSG() (refer Algorithm 2). Therefore, if any initiator cannot terminate Phase 1,
it implies that, two conditions are not satisfied and the variables in the two conditions are
never updated (i.e., deadlock), or the two conditions are never satisfied forever even if they are
repeatedly updated (i.e., livelock).

(1) Condition MkToi ⊆MkFromi: Assume for contradiction that MkFromi ⊂MkToi
and no more update occurs. Let px be the node that is included in its initiator pi’s MkToi,
but not in MkFromi. This means that px received (or will receive) a Marker message from
the node whose DS contains px. When px receives the Marker message, px does one of the
following (lines 4 to 28 in Algorithm 2): (a) If it is the first Marker message (lines 6 to 13),
px sends its DSx to its initiator pi, which is a contradiction. (b) If it is the second or later
Marker message (lines 15 to 19), px already sent its DSx to its initiator pi when px received
the first Marker message, this is also a contradiction. (c) If a collision happens (lines 21 to 26),
we must take care with MkFrom of two initiators, px’s initiator pi and the opponent collided
initiator, say pj . For the initiator pi, when px receives a collided Marker, px sends a NewInit
message to its initiator pi. This implies that px processed the case (a) to recognize pi as its
initiator before, and the case (a) contradicts the assumption as we proved. For the opponent
initiator pj , when pi receives the NewInit message, the initiator sends a Link message, which
leads px ∈MkFromj (line 21 of Algorithm 3). This also contradics the assumption.

(2) Condition Waiti = ∅: Assume for contradiction that there is an element in Waiti, and
the element is never removed from Waiti. Note that an element can be added to Waiti only
when a collision occurs for the first time between two snapshot groups (line 5 in Algorithm 3).
Therefore, when an initiator pi adds an element to Waiti, pi also sends a Link message to the
opponent colliding initiator pj . The initiator pj sends either an Ack message or a Deny message
as its reply (lines 19 to 33 in Algorithm 3). Both of these two messages cause the corresponding
element to remove from Waiti; thus, each element in Waiti is removed eventually. This is a
contradiction. Note that if once two distinct initiators are connected in an initiator network
by exchanging Link and Ack messages, they never add the opponent initiator in their Wait
each other. If a Deny message is sent as the reply, the collision never occurs again between
the two collided nodes. Therefore, an element is added to Waiti only a finite number of times,
because the total number of the nodes in the system is finite.

From Lemmas 1 to 3, the following theorem holds.
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Theorem 1. Phase 1 eventually terminates, and all checkpoints and in-transit messages
recorded by the proposed algorithm construct a consistent snapshot of the subsystem.

Now, we prove the following theorem regarding the correctness of Phase 2.

Theorem 2. Every initiator in an initiator network terminates, after all of the initiators in
the network determine their snapshot groups.

To prove the theorem, we will show that the convergecast in Phase 2 never terminates, if
an initiaor executing Phase 1 exists. The reason is as follows: An initiator terminates Phase
2 when it receives a GlobalTerm message. The root node of the spanning tree constructed on
the initiator network sends GlobalTerm messages, when the node receives LocalTerm messages
from all its neighbor nodes (they all are children of the node on the tree). LocalTerm messages
are sent by a convergecast from the leaf nodes of the tree to the root, when (1) a node received
Check messages from all its neighbor nodes, and no neighbor node was a child of the node
(or the node is a leaf), or (2) a node received Check messages from all its neighbor nodes and
LocalTerm messages from all its child nodes. Therefore, it is sufficient for the correctness of
Phase 2 to prove the following lemma.

Lemma 4. The convergecast in Phase 2 never terminates, if an initiator node executing Phase
1 exists.

Proof. We assume that only one node is executing Phase 1 in the initiator network, and let pi
be the node. We denote all nodes with distance d from pi as Nd

i ; e.g., N3
i is the set of all nodes

with distance 3 from pi (trivially, N1
i = Ni). Let ps be the node that has the smallest ID in the

initiator network. To terminate the convergecast, ps must receive LocalTerm from all nodes in
Ns and become the root of the spanning tree. Assuming that ps ∈ Ni, the convergecast never
terminates, because pi is executing Phase 1, and never sends LocalTerm to ps. Even if ps ∈ N2

i ,
the convergecast cannot terminate, because a node in Ni that cannot receive LocalTerm from pi
does not send LocalTerm to ps. In the same way, if ps ∈ Nx

i for some x(≥ 1), the convergecast
never terminates.

If the convergecast does not terminate, which implies that an initiator is still executing
Phase 1 and has not determined its snapshot group yet, no node can terminate Phase 2,
because no GlobalTerm is sent. Therefore, Theorem 2 holds.

6 Evaluation

In this section, we evaluate the performance of the proposed algorithm with CSS algorithm
[11, 21]. CSS algorithm is a representative of partial snapshot algorithms, as described in
Section 2, and the two algorithms have the same properties: (1) The algorithms do not suspend
an application execution on a distributed system while taking a snapshot, (2) the algorithms
take partial snapshots (not snapshots of the entire system), (3) the algorithms can take multiple
snapshots concurrently, and (4) the algorithms can handle dynamic network topology changes.
In addition, both algorithms are based on SSS algorithm [10, 20]. For these reasons, CSS
algorithm is a reasonable baseline for CPS algorithm. We also analyze time and message
complexities of CPS algorithm theoretically in Section 6.4.

6.1 CSS algorithm summary

Before showing the simulation results, we briefly explain CSS algorithm. For details, please
refer the original paper [21].

The basic operation when no collision happens is almost the same as Phase 1 of CPS
algorithm. An initiator sends Marker messages to the nodes in its DS, and the nodes reply
by sending DSinfo messages with their DS. If the initiator receives DSes from all of its nodes,
it sends Fin messages to let the nodes know the sets of nodes from which they must receive
Markers, before terminating the snapshot algorithm.
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Figure 6: A collision-handling example of CSS algorithm

In the algorithm, when a collision occurs, two collided initiators merge their snapshot
groups into one group, and one of them becomes a main-initiator and the other becomes a
sub-initiator. The main-initiator manages all of the DSes of the nodes in the merged snapshot
group and determines when the nodes terminate the snapshot algorithm. The sub-initiator
just forwards all the DSinfo and collision-related messages to its main-initiator, if it receives.
If another collision occurs and the main-initiator’s snapshot group is merged into that of the
merging initiator, the merged initiator resigns the main-initiator, and becomes a sub-initiator
of the merging initiator. These relations among a main-initiator and sub-initiators form a
tree rooted at the main-initiator, and in this paper, we call it an initiator network, like CPS
algorithm.

Figure 6 (a) illustrates the actual message flow of CSS algorithm when a collision happens.
When a node px receives a collided Marker message from a neighbor node py, px sends a
NewInit message to its initiator. This NewInit message is forwarded to the initiator’s initiator
if it exists. This forwarding repeats until the NewInit message reaches the main-initiator. The
main-initiator pa sends an Accept message to px, to allow resolution of this collision. Then, px
sends a Combine message to py, and this Combine message is also forwarded to the opponent
main-initiator pb. When the opponent main-initiator pb receives the Combine message, the
node compares its ID with ID of pa. If pa < pb, pb recognizes pa as its initiator, and sends an
InitInfo message to pa with all of the information about the snapshot algorithm, including the
set of all DSes that pb has ever received. Otherwise, pb sends a CompInit message to pa and
requests pa to become pb’s sub-initiator, by considering pb as its main-initiator. The collision
is resolved with these message exchanges, and finally, one of the initiators pa or pb manages
both snapshot groups. When pb becomes the main-initiator by sending the CompInit message,
the initiator network of this example can be illustrated as in Figure 6 (b).

When another collision happens during this collision handling, the main initiator stores the
NewInit message that provides the notification of the collision in a temporary message queue,
and processes the message after the current collision is resolved. In other words, CSS algorithm
can handle at most one collision at the same time. We think this drawback largely degrades
the performance of CSS algorithm.

In the simulation, we modified CSS algorithm slightly from the original, because we discov-
ered during implementing the simulator that the original algorithm lacked some mechanisms
that were necessary to take snapshots consistently. First, we introduced Out messages, which
was not described in CSS algorithm paper [21]. This helps a node (not an initiator) to shut
down the current snapshot algorithm and join the next one. Second, we altered it to forward
CompInit and InitInfo messages to a main-initiator, in addition to DSinfo and Combine. This
was necessary to avoid deadlocking, when two or more collisions occur at the same time.
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Table 1: Message types. The initiator network-type messages of CSS algorithm (i.e., DSinfo,
NewInit, etc.) are counted only when these messages are forwarded from a sub-initiator to its
main-initiator.
Type CPS algorithm CSS algorithm

Marker Marker Marker
Normal MyDS, Fin, Out DSinfo, Fin, Out
Collision NewInit, Link, Ack, Deny, Accept NewInit, Accept, Combine, CompInit, InitInfo
Initiator network Check, LocalTerm, GlobalTerm DSinfo, NewInit, Combine, CompInit, InitInfo

6.2 Simulation settings

The evaluation is performed by simulating node behaviors on a single computer. Although
both algorithms can take a snapshot on an asynchronous distributed system, for simplicity, a
simulation is conducted in synchronous rounds. In a round, all nodes receive messages, process
them, and send new messages, which will be delivered in the next round.

Before each simulation of the algorithms, a communication-relation on nodes is gener-
ated, which has influence on the performance of the snapshot algorithms. Although actual
communication-relations depend on distributed applications to which snapshot algorithms are
applied, we generate communication-relations randomly with probability C for every pair of
nodes for simplicity. After generating a communication-relation, we start simulation exe-
cutions, one of each of the algorithms. In the first round, each node becomes an initiator
with probability F, and starts execution (by storing its state and sending Markers to its
communication-related nodes) of the snapshot algorithms if it becomes an initiator. We ter-
minate the simulation when all the initiated snapshot algorithm instances terminate.

We have three parameters for the simulation: communication probability C, initiation prob-
ability F , and the number of nodes N . As described, parameters C and F probabilistically
determine the communication-relations and the snapshot algorithm initiations, respectively.
The larger C generates denser communication-relations; thus, a (partial) snapshot group be-
comes larger. The larger F makes more nodes behave as initiators. N indicates the number of
nodes in a simulation. If C or F is large, a collision occurs more easily.

We evaluate these snapshot algorithms with three measures. The first measure is the total
number of messages sent in a simulation. As described in Section 3.1, a node can send a
message to any other node if the node knows the destination node’s ID. Additionally, in this
simulation, we assume that every node can send messages (including messages sent in Phase 2
of CPS algorithm, e.g., Check) to every other node in one hop. In other words, we do not take
into account any relaying message for this measure. The second measure is the total number
of rounds from the initiations of the snapshot algorithms until the termination of all snapshot
algorithm instances. The last measure is the number of messages by type. This is a complement
of the first measure, to discuss which parts of the algorithms dominate their communication
complexity. For this purpose, we classify the messages of both algorithms into four types,
as shown in Table 1. The normal-type messages are used to decide a snapshot group. The
collision-type messages are sent to resolve collisions that occurred during a snapshot algorithm.
The initiator network-type messages are sent between initiators, to coordinate their instances.
In CPS algorithm, this type of message is used in Phase 2, to synchronize their termination. In
contrast, CSS algorithm uses this type to forward collision-related messages from a sub-initiator
to its main-initiator.

We run at least 100 simulations for each parameter setting and show the average of the
simulations.

6.3 Simulation results

First, we show the simulation results for different numbers of nodes N , in Figure 7. As Figure
7 (a) indicates, CPS algorithm can take snapshots with fewer messages than CSS algorithm.
For instance, when N = 200, CPS algorithm reduced 44.1% of messages from that of CSS
algorithm. Figure 7 (b) shows the running time of these algorithms (note that only this graph
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uses a logarithmic scale). Although the running time of CPS algorithm was always less than 40
rounds, that of CSS algorithm drastically increased, and it took 34,966 rounds when N = 200.
This huge difference came from the fact that CSS algorithm can handle at most one collision
at the same time; thus, collisions must wait until the collision being processed (if it exists) is
resolved. In contrast, an initiator of CPS algorithm can handle multiple collisions concurrently,
and then CPS algorithm drastically improves the total rounds. We discuss later why the huge
differences in the total numbers of messages and rounds exist.

The total number of collisions of both algorithms are displayed in Figure 7 (c). Interestingly,
CPS algorithm has more collisions than CSS algorithm, although CPS algorithm sends fewer
messages than CSS algorithm. This is because, CPS algorithm reprocesses a Marker message
again when a node receives Out to resolve a collision consistently. However, if the node is in
another snapshot group than that of the Marker message, this reprocess leads to a collision.

Figure 7 (d) shows the total numbers of partial snapshot groups6, which are controlled by
initiation probability C. Both the algorithms have the same numbers because we provided the
same seed of the pseudo random number generator (PRNG) in the simulator to each iteration of
both the algorithms; we used i as the seed for the i-th iteration of each algorithm. Moreover,
the initiation of each node is calculated with the PRNG in the same manner between the
algorithms; thus, the same set of nodes become initiators for the same iteration.

Figure 7 (e) depicts the size of their initiator networks in the simulations. Here, we define
the initiator network size of CPS algorithm and CSS algorithm by the diameter of the initia-
tor network and the depth of the initiator network tree, respectively, because these metrics
can estimate the message processing load of the initiator network. We can observe that the
increasing ratio of CSS algorithm is larger than that of CPS algorithm.

Figures 7 (f) and (g) display the ratio of the message types, which were defined in Section
6.2, of the algorithms in their simulations. The ratios of marker-type messages of the two
algorithms are mostly the same, while those of collision- and initiator network-type messages
are different. In CPS algorithm, Initiator network-type messages are sent on the initiator
network only to construct a breath-first-search (BFS) spanning tree, and to synchronize the
termination of the initiators’ instances. However, CSS algorithm requires sub-initiators to
forward every collision-related message, in which these forwarding messages are counted as
initiator network-type messages, to their main-initiators. This forwarding is a very heavy task
in terms of the message counts. In fact, 40.9% of messages were sent on the initiator network
of CSS algorithm when N = 200, although the total numbers of collision-type messages are
mostly the same for the algorithms.

To discuss why there exist such huge differences in the total numbers of messages and rounds
between CPS algorithm and CSS algorithm, we examine their representative executions, and
analyze their execution details. As the representative, we chose an execution whose total
number of messages is almost the same as the average of each algorithm when N = 200,
C = 10, and F = 10.

First, we see the BFS spanning tree on the initiator network of CPS algorithm in the
execution, which is illustrated in Figure 8. There are 17 initiators in the network, and its
topology is almost a complete graph (the network has a clique of size 16, and its diameter is
two). Therefore, the convergecast in Phase 2 with Check messages terminates at most two
rounds after all the initiators finish Phase 1, and the root node can broadcast GlobalTerm
immediately. We can confirm this in Figure 7 (d), and this is not a special case for the
execution.

The initiator network of CSS algorithm is depicted in Figure 9. The tree has 16 nodes
(initiators), and its depth is five, which means a collision-related message (e.g., Combine or
NewInit) will forward four times at most. To reveal the reason for the large number of messages
and rounds of CSS algorithm, let us assume that a Marker message is sent from the snapshot
group of initiator p173 to the snapshot group of initiator p171, and this tree has been constructed
when this collision happens. This is the worst case on the network. First, the collided node
in p171’s snapshot group sends a NewInit message to p171, and this message is forwarded four
times to p0; then p0 sends an Accept message to p171. When p171 receives this Accept message,

6These are equal to the numbers of initiators
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Figure 7: Simulation results for different numbers of nodes N . Communication probability C
and initiation probability F are fixed at 10%
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Figure 8: An initiator network example of CPS algorithm
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Figure 10: The total number of processed messages of the top 10 nodes in the simulation

it sends a Combine message to the colliding node in p173’s snapshot group, and this Combine
message is also forwarded four times to p0. 7 Then, p0 receives the Combine message from p0,
and p0 replies with an InitInfo message to p0, because p0 6< p0. Finally, the collision between
the initiators that share the same parent is resolved, thanks to 12 messages and 12 rounds
(remember, the simulation is conducted by synchronous round, and it always takes a round
to deliver a message). Moreover, CSS algorithm must resolve collisions one by one. Although
this is a worst-case analysis, and typically, CSS algorithm can handle a collision with fewer
messages and rounds, this is why CSS algorithm consumes a large number of messages and
rounds.

Figure 10 shows the top 10 nodes that process the largest number of messages in the two
executions of CSS algorithm and CPS algorithm. Apparently, most of the messages in CSS
algorithm are processed by two nodes (p0 and p33 in Figure 9). This is unfavorable, because
the nodes are exhausted by processing these messages, and can no longer run an application.
However, these tasks are distributed equally in CPS algorithm.

Finally, we observe the results for different communication probability C and initiation
probability F . These results are shown in Figures 11 and 12. Similarly to the case for different
number of N , CPS algorithm outperforms CSS algorithm in terms of the total numbers of
messages and rounds.

6.4 Theoretical Performance

Finally, we analyze the theoretical performance of CPS algorithm in terms of time and message
complexities in the worst scenario where there are n nodes in the system, and all of them invoke
the algorithm. We also assume the invocations happen at the same time for simplicity.

First, we analyse the time complexity with asynchronous rounds. In an asynchronous round,
every node receives messages sent in the previous round, processes the messages, and sends
new messages to other nodes. We assume that communication-relations of all the nodes form a
line graph of n nodes, and one end of the graph has the smallest ID for the worst case of time

7Remember that the initiator network in Fig. 9 has been constructed when this collision happens. This
means that p0 is the main-initiator of both p173 and p171. In other words, p0 behaves as the main-initiator of
the collided snapshot group and as that of the colliding snapshot group.
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Figure 11: Simulation results for different communication probability C. The number of nodes
N and initiation probability F are fixed at 150 and 10%, respectively
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Figure 12: Simulation results for different initiation probability F . The number of nodes N
and communication probability C are fixed at 150 and 10%, respectively

complexity. In this case, each initiator determines its partial snapshot group in five rounds8,
and enters Phase 2. The leader election of Phase 2 takes n−1 rounds because it requires n−1
rounds to propagate the smallest ID from one end to the other end on the line graph. With
the same discussion, the relay transmissions of LocalTerm and GlobalTerm messages also takes
n − 1 rounds each. After the termination of Phase 2, each initiator sends Fin messages and
terminates CPS algorithm in the next round. Therefore, CPS algorithm can take a snapshot
within 3n + 3 rounds.

Next, we consider message complexity of CPS algorithm. The worst case is a situation
where all the initiators are communication-related each other. In Phase 1 of the case, each
node sends n Marker messages and one MyDS message before collisions happen. Since a
collision requires four messages and n collisions happen in this situation, 4n messages are sent
to resolve the collisions in total. In the leader election process of Phase 2, m Check messages
are sent in a round, and the election finish within ∆ rounds, where m is the number of edges
in the initiator network, and ∆ is the diameter of the network when Phase 2 terminates.
LocalTerm and GlabalTerm messages are sent once in every edge; then the total number of
these messages is m. Since we assume in Phase 1 that collisions happen between every two
initiators, the initiator network is a complete graph of degree n, that is, m = n(n− 1)/2 and
∆ = 1. Therefore, the message complexity of CPS algorithm is O(n2).

7 Conclusion

We proposed a new partial snapshot algorithm named CPS algorithm to realize efficient
checkpoint-rollback recovery in large-scale and dynamic distributed systems. The proposed
partial snapshot algorithm can be initiated concurrently by two or more initiators, and an over-
lay network among the initiators is constructed to guarantee the consistency of the snapshot
obtained when some snapshot groups overlap. CPS algorithm realizes termination detection

8Each initiator sends messages in the following order: Marker (round 1), MyDS and NewInit (round 2),
Link (round 3), Ack (round 4), and Accept (round 5).
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to consistently terminate the algorithm instances that are initiated concurrently.
In a simulation, we confirmed that the proposed CPS algorithm outperforms the existing

partial snapshot algorithm CSS in terms of the message and time complexities. The simulation
results showed that the message complexity of CPS algorithm is better than that of CSS
algorithm for all the tested situations, e.g., 44.1% better when the number of nodes in a
distributed system is 200. This improvement was mostly due to the effective use of the initiator
network. The time complexity was also drastically improved, because CPS algorithm can
handle multiple collisions concurrently, while CSS algorithm must handle collisions sequentially.
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Algorithm 2 Pseudo code of CPS algorithm for node pi (normal operations of Phase 1)

1: procedure Initiate( )
2: OnReceive(〈Marker, pi〉)
3: end procedure

4: procedure OnReceive(〈Marker, px〉 from pj)
5: if initi = null then
6: // This is the first Marker
7: initi ← px, RcvMki ← RcvMki ∪ {pj}
8: pDSi ← DSi, DSi ← ∅
9: MkListi ← ∅, fini ← false

10: MsgQi ← ∅
11: Record its own local state
12: Send 〈MyDS, pDSi〉 to initi
13: Send 〈Marker, px〉 to ∀pk ∈ pDSi

14: else if initi = px then
15: // Marker from the same snapshot group
16: RcvMki ← RcvMki ∪ {pj}
17: if fini = true then
18: CheckTermination()
19: end if
20: else if initi 6= px then
21: // A collision occurs
22: RcvMki ← RcvMki ∪ {pj}
23: CollidedNodesi ← CollidedNodesi ∪ {(pj , px)}
24: if fini = false then
25: Send 〈NewInit, pj , px〉 to initi
26: end if
27: end if
28: end procedure

29: procedure OnReceive(〈MyDS, DSj〉 from pj)
30: if initi = null ∨ fini = true then
31: Send 〈Out〉 to pj
32: else
33: MkFromi ←MkFromi ∪ {pj}
34: MkToi ←MkToi ∪ {DSj}
35: DSInfoi ← DSInfoi ∪ (pj , DSj)
36: CanDetermineSG()
37: end if
38: end procedure

39: procedure OnReceive(〈Out〉 from pj)
40: // Cancel its snapshot algorithm
41: initi ← null
42: DSi ← DSi ∪ pDSi

43: Delete recorded local state and received messages in MsgQi

44: ReProcessMarker()
45: end procedure

46: procedure OnReceive(〈Fin, List〉 from pj)
47: MkListi ← List
48: // My initiator notifies the determination of its snapshot group
49: fini ← true
50: CheckTermination()
51: end procedure

52: procedure OnTermination( )
53: ReProcessMarker()
54: end procedure
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Algorithm 2 Pseudo code of CPS algorithm for node pi (normal operations of Phase 1)
(Cont’d)

55: procedure CanDetermineSG()
56: if MkToi ⊆MkFromi ∧Waiti = ∅ then
57: // Initiator pi determines its snapshot group
58: fini ← true
59: StartPhase2()
60: end if
61: end procedure

62: procedure CheckTermination()
63: if MkListi ⊆ RcvMki then
64: for each (pj ,m) in MsgQi do
65: if pj ∈MkListi then
66: Record m as an in-transit message
67: end if
68: end for
69: Wait until InPhase2i = false
70: Terminate this snapshot algorithm
71: end if
72: end procedure

73: procedure ReProcessMarker( )
74: if CollidedNodesi 6= ∅ then
75: // Process Markers again for collisions that is not resolved
76: for each (py , pb) ∈ CollidedNodesi do
77: OnReceive(〈Marker, pb〉 from py)
78: end for
79: end if
80: end procedure
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Algorithm 3 Pseudo code of CPS algorithm (collision handling of Phase 1)

1: // From the view of pa in Fig. 4
2: procedure OnReceive(〈NewInit, py , pb〉 from px)
3: if fina = false then
4: if pb /∈ Na then
5: Waita ←Waita ∪ (px, py , pb)
6: Send 〈Link, px, py〉 to pb
7: else
8: MkFroma ←MkFroma ∪ {py}
9: MkToa ←MkToa ∪ {px}

10: DSInfoa ← DSInfoa ∪ (py , {px})
11: Send 〈Link, px, py〉 to pb
12: Send 〈Accept, py , pb〉 to px
13: end if
14: else if pb ∈ Na then
15: Send 〈Link, px, py〉 to pb
16: end if
17: end procedure

18: // From the view of pb in Fig. 4
19: procedure OnReceive(〈Link, px, py〉 from pa)
20: if finb = false then
21: MkFromb ←MkFromb ∪ {px}
22: if pa /∈ Nb then
23: Nb ← Nb ∪ {pa}
24: MkTob ←MkTob ∪ {py}
25: DSInfob ← DSInfob ∪ (px, {py})
26: Send 〈Ack, px, py〉 to pa
27: AcceptColliededNodes(pa)
28: CanDetermineSG()
29: end if
30: else
31: Send 〈Deny, px, py〉 to pa
32: end if
33: end procedure
34: // From the view of pa in Fig. 4
35: procedure OnReceive(〈Ack, px, py〉 from pb)
36: Na ← Na ∪ {pb}
37: AcceptColliededNodes(pb)
38: CanDetermineSG()
39: end procedure

40: // From the view of pa in Fig. 4
41: procedure OnReceive(〈Deny, px, py〉 from pb)
42: Waita ←Waita \ {(px, py , pb)}
43: if pb /∈ Na then
44: CanDetermineSG()
45: end if
46: end procedure

47: // From the view of px in Fig. 4
48: procedure OnReceive(〈Accept, py , pb〉 from pa)
49: if py /∈ pDSx then
50: Send 〈Marker, pb〉 to py
51: end if
52: CollidedNodesx ← CollidedNodesx \ {(py , pb)}
53: end procedure

54: // From the view of pa in Fig. 4
55: procedure AcceptCollidedNodes(pb)
56: for each (pi, pj , pb) ∈Wait do
57: MkFrom←MkFrom ∪ {pj}
58: MkTo←MkTo ∪ {pi}
59: DSInfo← DSInfo ∪ (pj , {pi})
60: Send 〈Accept, pj , pk〉 to pi
61: Wait←Wait \ {(pi, pj , pk)}
62: end for
63: end procedure
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Algorithm 4 Pseudo code of CPS algorithm for initiator pi (Phase 2)

1: procedure StartPhase2()
2: if Ni 6= ∅ then
3: rIDi ← pi, disti ← 0, pIDi ← pi, Childi ← ∅
4: LTi ← ∅, CKi ← ∅, InPhase2i ← true
5: Send 〈Check, rIDi, disti, pIDi〉 to ∀pj ∈ Ni

6: Process the messages arrived before entering Phase 2
7: else
8: // There are no neighbors on the initiator network
9: FinishPhase2()

10: end if
11: end procedure

12: procedure OnReceive(〈Check, rIDj , distj , pIDj〉 from pj ∈ Ni)
13: CKi ← CKi ∪ {pj}
14: if rIDj < rIDi ∨ (rIDj = rIDi ∧ distj + 1 < disti) then
15: rIDi ← rIDj , disti ← distj + 1, pIDi ← pj
16: Send 〈Check, rIDi, disti, pIDi〉 to ∀pj ∈ Ni

17: end if
18: if pIDj = pi then
19: Childi ← Childi ∪ {pj}
20: else if pj ∈ Childi then
21: Childi ← Childi \ {pj}
22: LTi ← LTi \ {pj}
23: end if
24: if CKi = Ni ∧ Childi = ∅ then
25: Send 〈LocalTerm〉 to pIDi

26: end if
27: end procedure

28: procedure OnReceive(〈LocalTerm〉 from pj ∈ Ni)
29: LTi ← LTi ∪ {pj}
30: if Childi = CKi = LTi = Ni ∧ pIDi = pi then
31: Send 〈GlobalTerm〉 to ∀pj ∈ Childi
32: FinishPhase2()
33: else if Childi = LTi ∧ CKi = Ni then
34: Send 〈LocalTerm〉 to pIDi

35: end if
36: end procedure

37: procedure OnReceive(〈GlobalTerm〉 from pj ∈ Ni)
38: Send 〈GlobalTerm〉 to ∀pj ∈ Childi
39: FinishPhase2()
40: end procedure

41: procedure FinishPhase2()
42: InPhase2i ← false
43: for each pk ∈MkFromi do
44: MkListk ← {∀px | pk ∈ DSx, (px, DSx) ∈ DSInfoi}
45: Send 〈Fin,MkListk〉 to pk
46: end for
47: end procedure
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Algorithm 5 Pseudo code of CPS algorithm for node pi (Rollback)

1: procedure Initiate( )
2: OnReceive(〈RbMarker, pi〉)
3: end procedure

4: procedure OnReceive(〈RbMarker, px〉 from pj)
5: if RbIniti = null then
6: Stop the execution of its application
7: RbIniti ← px, RbRcvMki ← RbRcvMki ∪ {pj}
8: RbMkListi ← ∅, RbFini ← false
9: Send 〈RbMyDS, DSi〉 to RbIniti

10: Send 〈RbMarker, px〉 to ∀pk ∈ DSi

11: else if RbIniti = px then
12: RbRcvMki ← RbRcvMki ∪ {pj}
13: if RbFini = true then
14: CheckRbTermination()
15: end if
16: end if
17: end procedure

18: procedure OnReceive(〈RbMyDS, DSj〉 from pj)
19: if RbIniti = null ∨RbFini = true then
20: Send 〈RbOut〉 to pj
21: else
22: RbMkFromi ← RbMkFromi ∪ {pj}
23: RbMkToi ← RbMkToi ∪ {DSj}
24: RbDSInfoi ← RbDSInfoi ∪ (pj , DSj)
25: if RbMkToi ⊆ RbMkFromi then
26: // Initiator pi determines its rollback group
27: RbFini ← true
28: for each pk ∈ RbMkFromi do
29: RbMkListk ← {∀px | pk ∈ DSx, (px, DSx) ∈ RbDSInfoi}
30: Send 〈RbFin, RbMkListk〉 to pk
31: end for
32: end if
33: end if
34: end procedure

35: procedure OnReceive(〈RbOut〉 from pj)
36: // Cancel this rollback algorithm
37: RbIniti ← null
38: end procedure

39: procedure OnReceive(〈RbFin, List〉 from pj)
40: RbMkListi ← List
41: // My initiator notifies the determination of its rollback group
42: RbFini ← true
43: CheckRbTermination()
44: end procedure

45: procedure CheckRbTermination()
46: if RbMkListi ⊆ RbRcvMki then
47: Restore its state to the latest checkpoint
48: Restore in-transit messages stored with the checkpoint to its links
49: for each (pj ,m) in MsgQi do
50: if pj /∈ RbMkListi then
51: Add m into the corresponding link
52: end if
53: end for
54: Resume the execution of its application.
55: Terminate this rollback algorithm
56: end if
57: end procedure
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