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Abstract—The oil and gas industry is awash with sub-surface
data, which is used to characterize the rock and fluid properties
beneath the seabed. This in turn drives commercial decision
making and exploration, but the industry currently relies upon
highly manual workflows when processing data. A key question is
whether this can be improved using machine learning to comple-
ment the activities of petrophysicists searching for hydrocarbons.
In this paper we present work done, in collaboration with Rock
Solid Images (RSI), using supervised machine learning on a
Cray XC30 to train models that streamline the manual data
interpretation process. With a general aim of decreasing the
petrophysical interpretation time down from over 7 days to 7
minutes, in this paper we describe the use of mathematical models
that have been trained using raw well log data, for completing
each of the four stages of a petrophysical interpretation workflow,
along with initial data cleaning. We explore how the predictions
from these models compare against the interpretations of human
petrophysicists, along with numerous options and techniques that
were used to optimise the prediction of our models. The power
provided by modern supercomputers such as Cray machines is
crucial here, but some popular machine learning framework are
unable to take full advantage of modern HPC machines. As such
we will also explore the suitability of the machine learning tools
we have used, and describe steps we took to work round their
limitations. The result of this work is the ability, for the first time,
to use machine learning for the entire petrophysical workflow.
Whilst there are numerous challenges, limitations and caveats,
we demonstrate that machine learning has an important role to
play in the processing of sub-surface data.

I. INTRODUCTION

The oil and gas industry is awash with sub-surface data,
which is used to characterize the rock and fluid properties
beneath the seabed. This information in turn drives commer-
cial decision making, exploration and exploitation planning.
However the business and technology models employed in
upstream geology and geophysics have scarcely changed since
the 1980s and are entirely unsuitable for the modern digital
world. As such, the wealth of available data is currently poorly
utilized and the full value seldom realized. Making better
use of information, using modern data analytics techniques,
and presenting this information in a way that is immediately
useful to geologists and decision makers has the potential to

dramatically reduce time to decision and the quality of the
decisions that are made.

In this paper we concentrate on one aspect of the problem,
streamlining petrophysical workflows [10]. In such workflows
well log data is used to quantitatively characterise the rock,
providing a ground truth from which rock physics relationships
can be constructed, and providing calibration between measur-
able geophysical properties and the underlying rock and fluid
properties of interest. Using such relationships, geophysical
attributes can be used to determine properties such as the
porosity, total Clay volume or fluid saturation. Examples of
manual use of well log data in this context are provided by
[11] and [12].

Well log data itself is collected from drilled boreholes,
where numerous physical measurements are collected are
collected downhole. Raw data is collected and then manually
interpreted, via a petrophysical workflow, into processed log
suites containing mineralogy, lithology and fluid content of the
sub-surface. In a regional context, well log databases provide
valuable insights into the variations in rock and fluid properties
of the sub-surface and underlying control factors, which can
be used to better understand existing acreage and prospects,
along with exploring new areas. For example previous work in
[13] and [14] demonstrated the application of a regional rock
physics relationships to understand electrical anisotropy in the
Barents Sea and Malay basin respectively.

In order to be useful in such an analysis, raw well log
data must be conditioned, erroneous data corrected and miss-
ing data estimated. Mineralogy, lithology, porosity and fluid
properties must be determined and from this rock physics
models can then be constructed. This can be lengthy process,
typically carried out by specialist petrophysicists. A number
of the steps in a petrophysical workflow, if distilled down to
their fundamentals, are pattern recognition problems: we have
a known set of input curves (usually physical measurements
of the earth such as gamma ray, neutron porosity, density, and
resistivity among others), and we want to predict a series of
output curves (for example porosity, clay content, and fluid
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saturation) based on the characteristics of the measurements.
In this paper we present an investigation into the use of super-
vised machine learning approaches to dramatically streamline
this petrophysical workflow.

Supervised machine learning approaches rely on labelled
training data, from which relationships between the predictor
variables, and the target variables are built. In general the use
of these techniques in the oil and gas industry [5][1] is still
very much in its infancy. Previous work has demonstrated
some success around using supervised learning for one part
of the workflow, for instance [2] studied the prediction of
the fractional composition of two minerals, which is part
of the overall mineralogy composition, but crucially these
studies only include a small set of wells to train and test the
model from. Furthermore, the quality of data in these wells
is uncertain which is largely driven by a lack of access to
high quality wider ranging data sets. Crucially, such a small
set of wells tends to make the problem much simpler as these
often represent wells close together and very similar from a
geological perspective. Additionally, with such a small dataset
it is often fairly easy to manually clean up all the missing or
suspected erroneous input values before these are fed into the
machine learning algorithm. In contrast, Rock Solid Images
(RSI) have a database of over 2000 wells that have been fully
conditioned for geophysical analysis and are available for use
in training our models.

The wells that we have access to span many, geologically
different, regions from the mid-Norway North Sea to the
Barents. They also contain such a volume of real world data
(many millions of rows) collected from borehole drilling that it
simply is not possible to recreate missing or erroneous values.
If you add to this the fact that these interpretations have been
conducted by many different people, in some cases going back
over 20 years, the data itself is in a challenging state to use as
a basis for supervised learning. In this paper we describe the
potential benefit that supervised machine learning can bring
to streamlining the petrophysical workflow. The contributions
of this paper are:

• An investigation into the applicability of machine learn-
ing for the full petrophysical workflow which involves
a number of interlinked steps. Previous efforts around
machine learning to well log analysis concentrate on one
specific step, or portions of a well (see Section II-A) and
in this paper we focus on the much more wide ranging
workflow across the entire well, feeding our predictions
from one stage to the next.

• Well log data is proprietary and obtaining access to
high quality data can be challenging. Previous work
has concentrated on a small number of wells that the
researchers had access to, with the quality of this data
uncertain. In contrast, RSI are world renowned for the
quality of their well log data and interpretation. As-such
we have access to a very large, high quality, well database
to train and test our models with. This is the first time that
machine learning has been applied to such high quality
well log data in the oil and gas industry.

• The exploration of a comparison and combination of
different machine learning techniques to best optimise
our predictions

• Insight into some of the limitations of common machine
learning tools when it comes to HPC machines, such as
Crays. We describe work done to mitigate and improve
the suitability of some of these tools, to enable them to
take full advantage of modern supercomputers.

• A case study of using HPC for machine learning, as
success stories like this are very important to convince
the community of the benefits that fusing HPC and ML
can deliver.

The layout of this paper is as follows, in Section II we
highlight some of the related work and state of the art
using machine learning for sub-surface data in the oil and
gas industry as well as provide more context around the
petrophysical workflow that our machine learning algorithms
are targeting. In Section III we describe the general machine
learning approach adopted, some of the technologies used
and the initial data cleaning steps undertaken to prepare the
data. Sections IV, V, VI and VII describe our use of machine
learning to predict the mineralogy composition, porosity, fluid
saturation and lithology stages of the petrophysical workflow,
before we discuss the challenge of hyper-parameter optimisa-
tion and parallelisation work done to enable full use of the
Cray XC30 in Section VIII. Finally, conclusions are drawn
and further work discussed in Section IX.

II. BACKGROUND

A. Related work

Whilst the use of machine learning in the oil and gas
industry is still in its infancy, there have been a number of
efforts and success stories. An early use of machine learning
was in [3], where the authors used a neural network, with a
single hidden layer, to predict the lithology of wells. Lithology
is the general physical characteristics of a rock and in this
work the authors aimed to solve a classification problem which
predicted whether specific point of the well was one of seven
types of rock including limestone, dolomite, sandstone, and
shale. They trained their network using density, gamma ray
return and neutron porosity input curves from the raw well
log data. Whilst they only had very limited amounts of data
to train the model with, typically a single well or less, they
were still able to demonstrate predictions that picked up the
major patterns in lithology. This work concluded that certainly
machine learning, and neural networks in their experience,
have a role to play in conditioning well log data, but noted
that the human was still critical for quality control and more
general interpretation due to limits in their predictions.

The prediction of Clay and Total Organic Content (TOC),
which are part of the mineralogy composition, was investigated
in [2] where the authors used a combination of well log data
with mudstone logs, the latter being the physical samples
extracted from the borehole, as input to a neural network.
Again, with only one hidden layer, this network used the raw



well log input curves gamma ray, resistivity, sonic curve (s-
wave), density and borehole tool size as inputs as well as a
number of derived curves and the geographical location of
the well. In initial experimentation they tested their trained
models on a subset of the same wells that their models had
already seen, and 85% of their Clay predictions were within
plus or minus 10% of the truth value, with 95% of their TOC
predictions within plus or minus 1% of the truth value. In
reality this testing, based on data the model had already seen,
is of limited use and of more relevance to our work here is
that they then ran a series of blind experiments. In this set-up
the training and test data was separated and predictions were
preformed on test data that the model had never seen before.
Whilst their accuracy exploration of these blind experiments
was far more limited in detail, from their discussions it was
clear that their results matched the truth values fairly closely,
and the major patterns of Clay and TOC were picked up by
their neural network.

There are a number of interesting points to highlight in
the work done in [2]. Firstly, they included the mudstone
logs and from discussions with petrophysicists this adds a
significant extra level of complexity. These logs are PDFs of
handwritten notes and photographs made during drilling and
later analysis, and as such, extracting useful information is far
more complex and error prone than the digital well log data.
Whilst a petrophysicist does refer to these during their manual
interpretation, the use of this data is far more subjective and
driven by intuition than the well log data. It is our hypothesis
that much of this intuition can be captured in the labelled data
that we use to train our models with, and as such the well log
data is enough. Whilst the authors of [2] do highlight that the
use of a number of wells is advantageous, the total amount
of data that they are using to train their models with is still
relatively small. This is important because they are using a
neural network and that machine learning approach requires
all input data to be present. In the paper they do not state
whether they rely on raw data without any missing values,
manually clean their relatively small amount of data, or only
include levels in the well where all values are present, but in
our work we do not have the luxury of any of these approaches
due to the use of very large amounts of real world data and
so face additional challenges.

On the topic of handling real-world, missing data, the Soci-
ety of Exploration Geophysicists (SEG) held a competition [7]
in 2016 to predict the lithology of rocks, based upon labelled
real-world well log data. Solving a classification problem
with eight possible inputs curves from the well-logs (depth,
gamma ray return, resistivity, photoelectric effect, neutron
porosity, density, marine indicator and geographical position),
the participants developed models that would predict lithology
as accurately as possible. One of the major challenges of
this competition was that there were significant amounts of
missing data, which is typical for well logs, and the top three
winners used a boosted trees approach. Further analysis of
the competition results [4] highlighted that boosted trees were
so advantageous here because they are able to handle missing

data and still generate predictions, which deep neural networks
(DNNs) are unable to do. As such those who relied on DNNs
had to perform extra data interpolation, to fill in the blanks,
and due to the sporadic, and unpredictable, nature of geology
this added significant amounts of noise which induced further
errors. This is a very important observation for our work,
because we have similar challenges when it comes to missing
data. In many ways our data is more complex because we
have much more of it, and it is interesting that boosted trees
performed universally better than the DNNs in [7].

RSI, the industrial collaborators in this research, studied
predicting electrical anisotropy in the Barents Sea [1] using
machine learning. Whilst outside of the core petrophysical
workflow, this is useful as it provides key information that
can be used to understand regional variations in rock physics
properties. They used a multivariate statistics approach to
understand which of the raw data log measurements best
characterise vertical resistivity measured at the borehole and
from this were then able to predict vertical resistivity through a
regression model using the Scikit-learn (Sklearn) library [23].
The authors found that this simple approach works reasonable
well for predicting vertical resistivity and electrical anisotropy
which, whilst the results do not match exactly, are broadly
consistent throughout the well.

As described in this section, the state of the art is that
researchers have been focused on small, fairly simple, stages
in the petrophysical workflow, such as lithology classification.
In this work we are much more ambitious and focus on
the entire workflow including aspects such as porosity and
fluid saturation which have never before been tackled for
the entire well in this context using machine learning. Still,
the lessons learnt and approaches described here are very
useful to consider and build upon. One important observation
from all these papers is that, whilst some authors do use
numerical metrics to explore the accuracy of their predictions,
without exception all authors mainly use vertical plots of their
test wells, with their predicted value curves plotted against
the truth values descending by depth. The reason for this
is that a single accuracy number can only provide so much
information and in a large, deep well, a specific geological
entity might have been missed that is extremely important
to the petrophysicists, but a single numeric value might not
communicate this effectively.

B. Petrophysical interpretation

To construct a rock physics model, which is required to
accurately understand the geological properties of a well and
support activities including oil and gas exploration, a petro-
physical interpretation must be performed. This is performed
by an experienced petrophysicist and follows a workflow with
a number of steps running consecutively, each using the results
of previous steps. On average it takes over seven days of
human effort to complete the interpretation for one well, and
this manually intensive process means that, whilst raw data
for many wells is available, the staff effort to process these is
often overwhelming. In fact, if raw data for over 20,000 wells



is available, it could take in excess of 200 years of effort to
provide a complete petrophysical interpretation of each.

The petrophysical interpretation workflow that we concen-
trate on in this work is illustrated in Figure 1. Starting from
the top, as an initial step the petrophysicist must clean the
p-wave and density curves where possible. These two curves
are actually a bit of an anomaly because, unlike other input
curves, it is often possible for an experienced individual
to fairly accurately fill in the blanks, although this is time
consuming and not always done for the entire well due to time
pressure or uncertainty. Once initial cleaning is completed, the
petrophysicist then calculates the mineralogy composition of
the rock which is what fraction of the rock is one of a number
of different minerals. This is then followed by calculating the
porosity of the rock, a measure of the empty spaces in the
material, and then calculation of the fluid saturation of the
rock, determining whether specific reservoirs contain oil, gas
or water and what proportion of each. The last stage of the
workflow, lithoclass determination, classifies the rock as one
of a number of general categories which describe the physical
make up of the rock. In each of these stages, the petrophysicist
relies on information deduced in previous stages and also
often iterates round to further improve their interpretation.
Whilst significant skill and experience is required to perform
this work, fundamentally the human is performing a pattern
matching exercise, albeit a very advanced one. Therefore a
key question of the work described in this paper is whether
mathematical models can learn to perform these workflow
steps and capture the knowledge and experience of the human
expert.

In this work we concentrate on supervised learning, where
models are taught based upon labelled training data. The inputs
to our mathematical models are raw data input curves coming
from the well logs and results of previous workflow steps.
Labelled result data trains the model and this comes from
previous manual interpretation of the well by petrophysicists
from RSI. The well log data we have to work with are text
files, formatted in the industry standard, LAS, file format. With
one file per well, each row in a file represents measurements at
a specific depth in that well, starting from the seabed and then
descending down through the rock. Typically, measurements
are made every few centimetres, although this does vary
and there is an explicit depth measurement that we can rely
on. Whilst there are over twenty possible input curves, and
many more which can be derived from these raw values,
the petrophysicist concentrate on six main features which are
depth, gamma ray return, neutron porosity, log of electric
deep resistivity, p-wave, and pressure. From experimentation
at each stage in the workflow we have found these curves to be
sufficient in generating optimal predictions and so concentrate
on using these as input curves in our models and in the results
presented in this paper.

RSI have a wealth of well log data, and whilst there are
over 2000 wells in their database to choose from, in this
work we have focused on using wells from the Norwegian
and North Sea. The reason for limiting ourselves to a specific

Fig. 1. Illustration of petrophysical interpretation workflow

region is that different areas contain very different geology and
behaviours. For instance the pattern that one would expect
to see in the North Sea will different drastically from that
seen in the Barrents. As such, concentrating on a specific area
means that, whilst geological formations do still vary within
a region, wells will behave much more similarly than they
would across multiple regions. Due to the significant amount
of high quality data, we have been able to pick a region which
is of huge commercial value to RSI, the data is abundant
and high quality, and importantly the region is one which the
petrophysicist involved in this project have experience in. This
last point is very important because the truth value that we
train our models with are themselves a manual interpretation.
Therefore discrepancies between truth and prediction might
not necessarily mean that our models are wrong and so
having the expertise to interpret and contextualise our results
is crucial. Focusing on RSI’s wells from the Norwegian and
North Sea, we use over one hundred wells in this work which
provides just over 1.2 million rows of data that we can use to
train and test our models. In terms of the amount of data, this
is by far the largest data set used so far in machine learning
for well log conditioning.

Raw well log data is captured by instruments run down
boreholes and this real world data is challenging, both in
terms of missing values and also potential noise. Out of these



two concerns, it is the missing data that is most problematic.
This is because it is very common for a drill not to record
values for a variety of results, for instance due to the expense
of gathering data for the entirety of the well, a well casing
point or reliability issues with the tool. Furthermore, the
input curves vary significantly throughout a well, which is
the nature of geology and as such petrophysicists try to avoid
simple interpolation to fill in the missing values as this often
adds significant uncertainty and error, which corresponds to
observations made in [4]. As such petrophysicists tend to live
with missing values and perform their interpretation in the
presence of these.

When it comes to machine learning, as highlighted in
[4], missing data is a challenge to some models. Neural
networks, arguably one of the most popular machine learning
approaches, require all the input data to be present in order to
make a prediction. To this end, building on the experiences of
[4], in this work we use boosted trees [8]. Otherwise known as
gradient boosting, this approach relies on the idea of decision
tree ensembles where a model consists of a set of classification
or regression trees and features of the problem are split up
amongst tree leaves. Each leaf holds a score associated with
that feature and as one walks the tree, scores are combined
which then form the basis of an overall prediction answer.
Generally speaking, usually a single tree is not sufficient for
the level of accuracy required in practice, and so an ensemble
of trees, where the model sums the prediction of multiple trees
together, is used. As one trains a boosted trees model, the trees
are built one at a time, with each new tree helping to correct
the errors made by previously built trees. This is one of the
factors that makes boosted trees so powerful and they have
been used to solve many different machine learning challenges
[15][16][17]. Most importantly in this work, boosted trees
handle missing data values, as the corresponding tree is simply
down weighted, but a major challenge is that they are more
difficult to tune and highly sensitive to their hyper-parameters
[24]

III. GENERAL APPROACH AND INITIAL DATA CLEANING

For this work we use Python 3 and in our machine learning
scripts we initially load up our well log data files into a Pandas
data frame which makes it trivial to perform data manipulation
in code. Throughout the experiments detailed in this paper the
data is randomly split up on a well by well basis, with 80% of
the wells in the training set and 20% of the wells in the test set.
This means that, without exception, our experiments are blind
and the trained models are tested, sight unseen, by predicting
on the test set and then comparing against the true values in
this test data to determine prediction performance (accuracy).
We use the XGBoost library [9] which is an open source
software framework aiming to provide a scalable, portable and
distributed gradient boosting library for Python and numerous
other languages. Whilst this is mature when run on CPUs, one
of the challenges we initially faced was that XGBoost is rather
buggy when it comes to running on GPUs. This is likely due
to the large amount of raw data that we have available for

training, because after one or two runs of our model the GPU
runs out of memory and raises an error. From exploration we
found that there is a documented issue around memory leakage
with the library on GPUs and at the time of writing this is
currently outstanding.

Hence, for this work, we limited our models to running on
CPU and for this we used ARCHER, a homogeneous Cray
XC30 and used the Anaconda module as a base Python setup.
The XGBoost library has been parallelised with OpenMP,
which is far more mature than their GPU implementation and
we run a single boosted trees model per NUMA region (12
cores of Ivy Bridge in the XC30.) On average it takes around
ten to fifteen minutes to train each single model, however
training times grow very significantly when we increase the
number of input curves. The ability to thread over 12 cores is
useful here, otherwise the runtime would have been far longer.
Additionally, the large amount of memory provided by the
XC30 meant we could fit all the raw data into RAM. Once
trained, the model takes around a second to make predictions
on each test well. In terms of our aim, reducing petrophysical
interpretation time down from over 7 days to 7 minutes, it is
this prediction, or inference, time rather than the training time
that counts, because the assumption is that the models used
for interpreting a well have already been trained and validated
across RSI’s regional data-set.

In all of our boosted trees model runs, we use the Root
Mean Square Error (RMSE) as the evaluation metric for
XGBoost. This, along with the choice of boosting algorithm is
provided as configuration options to the XGBoost API and we
found that the default, gbtree, boosting algorithm works best.
There are seven hyper-parameters that control the training of
the model and, due to the sensitive nature of boosted trees,
setting these is not trivial. Not only do the most appropriate
hyper-parameter values vary on a model by model basis, but
also whenever we experiment with using the same model in
different ways, such as changing the input curves, new hyper-
parameters need to be found. See Section VIII for a detailed
discussion of how we pick the appropriate settings in this
work.

The first step in Figure 1, and a preliminary stage in the
petrophysical workflow, is the cleaning of p-wave and density
curves. The petrophysicists are actually doing two activities
here, firstly they are cleaning the curves to remove any obvious
errors and secondly attempting to fill in any blanks in these
curves. Due to the challenging nature of real-world geology,
this is often a time consuming process and requires significant
expertise. We investigated whether machine learning could be
used to accurately clean the two curves and as an input to our
boosted trees models, we use depth, gamma ray return, neutron
porosity, the log of the deep resistivity, and the original density
and p-wave curves.

Figure 2 illustrates the results of our model cleaning the
p-wave curve on one of our test wells. Plots such as the three
in Figure 2 are a standard way of presenting the values of
curve(s) in a well. The vertical axis is depth, with the top
of the plot representing the seabed floor, and depth increases



Fig. 2. Cleaning of the p-wave curve, the manually cleaned curve is the left
plot (black curve), our model prediction is the middle plot (red curve) and
the original raw data curve is the plot on the right (blue curve)

as we go down the plot and effectively descend through the
rock. The horizontal axis is the range of values of the curve(s)
being presented. Some wells require far more work than others
and, whilst the predicted cleaned curve which comes from our
model (red) in the middle plot of Figure 2 looks to closely
match the manually cleaned curve (black) on the left (the
truth), in-fact it can be seen that there is little to do here
because the original curve (blue, right plot) is complete and the
petrophysicist made very few modifications. However this is
still useful to note for two reasons, firstly the reader can see the
reduction in spike about two thirds the way down the well, at
3000m which our model performed but the manual interpreter
did not. Upon further investigation the petrophysicist deduced
that actually our model is most accurate here and the manual
interpretation should have included a similar adjustment. Even
though this well is fairly simple for our model to work with, it
is also important to highlight that our approach has not applied
false adjustments which would make the cleaned curve worse.
Furthermore, the observation we made in Section II-A applies
here too, where the best way of comparing prediction accuracy
is by plotting by depth and comparing them. Not only would a
single metric number likely hide the reduced spike at 3000m,
but also bearing in mind the accuracy of the original curve this
would mean little in terms of the accuracy of the prediction.

Where things become far more interesting is in Figure 3,
which illustrates the cleaning of the density curve for the same
well. In this case things are far more challenging because
the vast majority of the raw curve is missing (right plot,
blue curve.) It is a much more time intensive process for
the petrophysicist to reconstruct the entire curve based on the
small section present at the bottom of the well, and this is
where the use of machine learning can be of most benefit.
It can be seen from comparing the manually interpreted truth
(left plot, black curve) against our model’s prediction (middle

Fig. 3. Cleaning of the density curve, the manually cleaned curve is the left
plot (black curve), our model prediction is the middle plot (red curve) and
the original raw data curve is the plot on the right (blue curve)

plot, red curve) in Figure 3 that our model was able to predict
the density curve for the rest of the well matching fairly
closely against the manually interpreted version. Whilst this
is not quite a perfect match, it falls within the general bounds
provided by the petrophysicists, as their own interpretation
contains some degree of error, and is considered sufficient
for use in later stages of the petrophysical workflow. Bearing
in mind that cleaning such curves is challenging and time-
consuming for a manual interpreter, the fact that our model
can generate these fairly accurately in a matter of seconds is
very useful.

IV. MINERALOGY

Once the p-wave and density input curves have been cleaned
then the petrophysicists can start on the main petrophysical in-
terpretation. The first stage here is to determine the mineralogy
composition of rock and effectively they are deducing what
fraction of the rock is one of thirteen minerals. For each row
of data, corresponding to a level in the well and most often
on a metre by metre basis, the overall values of minerals at
that level will sum up to a total of one. For instance a level
might have 0.35 Clay, 0.2 Calcite, 0.15 Coal and 0.3 Quartz,
which sums to 1.0.

As described in Section II-B, from previous work, experi-
mentation and domain knowledge, we know that there are six
crucial input curves, which the petrophysicists themselves use,
when it comes to predicting the mineralogy and petrophysical
workflow in general. These are used as the input to our boosted
regression trees model, including the cleaned p-wave and
density curves of Section III and we train separate models for
each mineral. Figure 9 illustrates the prediction accuracy for
separate models trained for each mineral, using the Root Mean
Square Error (RMSE) for each type of mineral across the entire



Mineral RMS error
Clay 0.136427

Quartz 0.145153
Calcite 0.049276
Pyrite 0.004348

Dolomite 0.011489
Coal 0.050087
TOC 0.000394

Anhydrite 0.003198
Volcanic 0.005829
Feldspar 0.023668
Siderite 0.000772
Halite 0.000514

Fig. 4. Model prediction accuracy across all wells in the test set

test set. For brevity, the rest of this section concentrates on only
three minerals, Clay, Quartz and Calcite, as the patterns and
behaviours exhibited here also apply to the other minerals.

Figure 5 illustrates our model’s Clay prediction, where
the middle plot (red curve) is our prediction and should be
compared against the left plot (black curve) which is the
manually interpreted, true value. It can be seen that, whilst
the prediction picks up the majority of the shape of the Clay
curve, these are not an exact match, especially when it comes
to the magnitude. It is however important to be aware of two
factors: Firstly it takes over eight hours for an experienced
petrophysicist to produce the mineralogy curves, whereas our
trained model generates them in the order of a few seconds,
and secondly the truth is itself an interpretation and hence
there is some degree of subjectivity. The right most plot of
Figure 5 illustrates the number of predictions that fall within
a specific percentage accuracy range range relative to the truth.
It can be seen that the vast majority of our model’s predictions
fall within plus or minus 20% of the truth value. When bearing
in mind the work done in [2], as described in Section II-A,
their wells tended to be within plus or minus 10% of the truth
value, but crucially for this measure they were testing on wells
that their model had already seen, whereas in our approach we
are testing on wells that the model has never seen previously
and-so it is a much more difficult problem.

Figures 6 and 7 illustrate the predictions against true values
for Quartz and Calcite respectively. Quartz is a similar story to
the Clay prediction, where the general shape is picked up but
the magnitude can deviate at specific points. From discussions
with the petrophysicists they have identified that our Clay
predictions are more accurate than Quartz predictions. The
Calcite predictions are interesting as, from Figure 9 and the
differences plot in the right of Figure 7, one might assume
that this would be by far the most accurate prediction out of
the three minerals we are focusing on in this paper. However
it goes back to the point made in Section II-A, that these
numbers are heavily influenced by the fact that the majority
of the well has zero Calcite, which our model picks up. When
Calcite starts to appear towards the bottom of the well then our

Fig. 5. Fraction of Clay by depth, left plot (black curve) illustrates the
manually interpreted truth, our model’s prediction is the middle plot (red
curve) and the histogram on the right illustrates the number of predictions
that fall within a specific percentage accuracy relative to the truth

Fig. 6. Fraction of Quartz by depth, left plot (black curve) illustrates the
manually interpreted truth, our model’s prediction is the middle plot (red
curve) and the histogram on the right illustrates the number of predictions
that fall within a specific percentage accuracy relative to the truth

model struggles to predict it accurately. Once again, our model
is identifying that there is some Calcite present but struggles
with the magnitude and this illustrates the use of studying
these depth plots, because patterns and inconsistencies can be
highlighted that a single error numeric value masks.

From detailed investigation we found that the quality of
mineral prediction depends heavily on the available data. But
crucially not all input data is of equal importance. Figure 8



Fig. 7. Fraction of Calcite by depth, left plot (black curve) illustrates the
manually interpreted truth, our model’s prediction is the middle plot (red
curve) and the histogram on the right illustrates the number of predictions
that fall within a specific percentage accuracy relative to the truth

illustrates the weight feature importance score for each input
curve for Clay predictions, as reported by the XGBoost library.
It is a very similar story for the prediction of other minerals,
and it can be seen that by far the most important feature is
the neutron porosity input curve, followed by the pressure and
gamma ray. This is important information, because in the well
we have studied in this paper, between 1500m and 2300m, the
neutron porosity curve is entirely missing and the availability
of the gamma ray curve is sporadic. Hence, whilst the boosted
trees model is able to still generate a prediction regardless of
this missing data, the first and third most important features
are missing in this range. From looking at the Clay and Quartz
predictions of Figures 5 and 6, it can be seen that the prediction
is especially inaccurate in this range and the missing input
data, whilst the model can still make a prediction, is limiting
the accuracy.

A key question is why our Calcite model struggled with the
curve magnitude towards the bottom of the well. The main
reason for this is that geology is inherently biased, where
some minerals such as Clay and Quartz are simply seen much
more regularly than others. Hence these models have more
experience in how to handle and deal with the more abundant
minerals and can therefore make a better job of predicting
them. The fact that the vast majority of wells contain large
sections of zero Calcite means that the model biases no Calcite
over some being present and hence it has a tendency to under
predict or even miss the Calcite all together, especially if there
is some degree of uncertainty.

A. Inclusion of formations

An interesting observation of Figure 8 is that depth is the
least important feature. This is very interesting because the

Fig. 8. Weight feature importance scores for Clay prediction, as reported by
the XGBoost library

petrophysicists use depth for providing context to the other
curves. However, depth is really just a symptom of the fact
that they are actually concerned with the underlying geological
formation. This makes a lot of sense, because different geology
will result in different input curve values that can mean the
same thing. A number of the research activities described
in Section II-A use geographical location as an input curve,
but we found that this gave no improvement to the overall
prediction. However, effectively what we were trying to do was
include a notion of the underlying geological formations and
these are not directly linked to the geographical location. This
is because in one area the geology can change significantly
whereas in other areas formations can remain very stable.
Certainly the wells we are using from across the Norwegian
and North Sea region do encounter many areas of changing
formations and so an important experiment was to investigate
whether including these formations in our data improved the
quality of prediction or not. Whilst the formations themselves
are not included in the raw data files, these are freely available
from Norwegian Petroleum Directorate’s website (NPD) [19].
Amongst other things, the website contains a database of well
information which covers the Norwegian sea and based on
this there are twenty seven possible formations. Per row in
the well logs, formations are mutually exclusive, so there is
exactly one formation per level. We represent each formation
as an extra numeric input curve, one being that formation is
present and zero the formation is absent.

Figure 9 illustrates the RMS error across our test set for
each mineral’s model when the models are trained and tested
with and without formation information. It can be seen that
the inclusion of formations makes little difference: In some
situations it slightly improves the overall accuracy and in
other situation the prediction is slightly worse. The same
conclusions can be drawn from Figure 10, which illustrates
the Clay prediction. The manually interpreted (truth) value is
the left plot, our previous model prediction without formations



Mineral
No formations

RMS error
Formations
RMS error

Clay 0.136427 0.132107
Quartz 0.145153 0.140282
Calcite 0.049276 0.049098
Pyrite 0.004348 0.004628

Dolomite 0.011489 0.017524
Coal 0.050087 0.040587
Toc 0.000394 0.000394

Anhydrite 0.003198 0.003360
Volcanic 0.005829 0.005829
Feldspar 0.023668 0.024003
Siderite 0.000772 0.001289
Halite 0.000514 0.001185

Fig. 9. Model prediction accuracy across all wells in the test set with and
without geological formation information

is in the middle (red curve) and the prediction of our new
model which includes formations is on the right (blue curve).
From this plot it can be seen that, whilst there are some
minor differences, the inclusion of formations has very little
overall impact in a systematic manner and the same is true
for all minerals. This was a very interesting result because
the petrophysicists thought that formations could make a
significant improvement to the overall mineralogy prediction,
whereas in reality when examining the predictions they found
very little qualitative change. This observation was further
strengthened by an exploration of the boosted trees feature
importance report, where the ranking of the raw input curves
of Figure 8 remain unchanged and formations are considered
less important by the model than the well log raw data input
curves.

B. Alternative machine learning approaches

Another important question regarding improving the accu-
racy of our mineralogy predictions is the machine learning
method to use. We chose boosted trees due to the significant
amount of missing data, and whilst it is possible to perform
some interpretation on the p-wave and density curves to fill in
the blanks, this is not possible for the other input curves. But,
for experimentation purposes, if we limit ourselves to the rows
of the wells where all input data is present, this also opens up
the possibility of using neural networks to do our prediction.
Generally speaking, the restriction of processing only parts of
the well where all input curves are present means that this
is not particularly useful to the petrophysicists in the real-
world, because on average only around half of each well can
be predicted. This is still useful to explore and understand
because a question is, if we were in an ideal world with
complete data, then would other methods provide improved
prediction capabilities?

Figure 11 illustrates the accuracy of Clay prediction based
on models built using a number of different machine learning
methods, processing just on levels in the wells that contain all

Fig. 10. Fraction of Clay by depth, left plot (black curve) illustrates the
manually interpreted truth, our model’s prediction without formations is the
middle plot (red curve), and our model’s prediction with formations is the
right plot (blue curve)

the input data. The base entry represents the RMS error of the
Clay prediction across our test wells as described previously.
The first method we tried was a Multi Layer Perceptron (MLP)
using the Sklearn toolkit for regression. From experimentation
we found that two hidden levels, each with 20 neurons, and
using a relu activation layer along with adam solver, an
activation hyper-parameter of 0.1, and 1000 iterations gave
the best prediction performance. The Deep Neural Network
(DNN) entry of Figure 11 represents a deep neural network
using the PyTorch machine learning framework. In contrast to
the MLP model, PyTorch provides far more control over the
general configuration and each of the layers. For this DNN
we used four hidden layers, each with thirty neurons, 500
epochs, a batch size of 2000 and learning rate of 0.001. We
are using a softmax activation layer and the mean squared
error loss function. The last two entries in Figure 11 refer
to our existing boosted trees model, the first of these is only
trained and tested on levels in the wells with all the data. The
second boosted trees entry, Boosted trees (missing data for
training), is trained on all levels in the wells of the training
set, regardless of whether they contain missing data, but only
predicts on levels in the test set wells where all input curves are
present. These two configurations link back to the observations
made about mineralogy predictions earlier, where the accuracy
of prediction is impacted by missing input data, especially if
these are important features. In theory predicting only on levels
which contain all the input curves will provide more accuracy
and the question was whether it is beneficial to still train the
model on all the data in the training set, even if this contains
missing data, as the model will experience a wide variety of
data. The results of Figure 11 illustrate that it is beneficial to
use as much data as possible when training the boosted trees



Method Clay prediction RMS error
Base 0.136427

MLP (Sklearn) 0.1772
DNN (PyTorch) 0.0651

Boosted trees 0.1033

Boosted trees
(missing data for training) 0.0838

Fig. 11. Model prediction accuracy using different methods across test wells
for Clay prediction

model.
It can be seen in Figure 11 that, when we limit our Clay

predictions to levels in the well where all input curves are
present, the DNN is by far the most accurate approach.
Interestingly the MLP is the least accurate, but it is the ability
to tune the configuration of the neural network model here
that makes a big difference. It can also be seen that boosted
trees predictions are better than the base prediction when we
exclude levels in the test well that have missing input values.
This is to be expected, but it is interesting that the prediction
improves when we include the partial data in the training set.
Note that due to the significant amount of missing data, a
depth plot of the prediction vs truth curves is not particularly
useful in this situation because so many points are missing
and hence key features are lost.

V. POROSITY

Porosity of the rock measures the void, or empty, spaces
that are present. In our context this is reported as a fraction
between 0 and 1 of the volume of voids over the total volume.
We initially trained a boosted trees regression model on the
measurements directly from the raw data, as they come from
the borehole. The idea was to have a base model that doesn’t
require any cleaning of p-ware or density curves, or previous
petrophysical stages, as this helps us to understand whether
this stage in the workflow can be performed separately of
whether it requires data cleaning and/or mineralogy composi-
tion. Bearing in mind some of the challenges around accurate
mineralogy prediction, this also enabled us to understand how
useful our mineralogy predictions are when it comes to using
them as inputs to further stages in the workflow.

Figure 12 illustrates the RMS error for our boosted trees
regression model across the entire test set, run on the raw
curves (i.e. no p-wave or density cleaning) with and without
mineralogy information provided as additional inputs to the
model. When it came to providing the mineralogy we explored
a number of different options ranging from supplying just
Clay, the most abundant mineral, to supplying a subset of
the minerals, to providing the full mineralogy. It can be seen
that, whilst providing mineralogy improves the accuracy, the
difference between the clay only and full mineralogy cases is
small. If anything, providing Clay, Quartz and Calcite rather
than just Clay or the full mineralogy is slightly beneficial.
This is most likely because these are the three most common

Configuration RMS error
No mineralogy 0.045896

Clay only 0.040109
Clay, Quartz, Calcite 0.039610

Full mineralogy 0.040583

Fig. 12. Porosity prediction error rate and presence of mineralogy

Configuration RMS error
No mineralogy 0.0316558

Clay only 0.026754
Clay, Quartz, Calcite 0.025536

Full mineralogy 0.023891

Fig. 13. Porosity prediction error rate and presence of mineralogy for cleaned
p-wave and density curves

minerals, so not only do these have the greatest impact
generally on the porosity, but also our mineralogy regression
model as described in Section IV is most confident predicting
these minerals.

Figure 13 illustrates the RMS error against use of mineral-
ogy when the cleaned p-wave and density curves are used
instead of their raw counterparts. It can be seen that this
significantly improves the accuracy of all configurations, and
the inclusion of our previous mineralogy predictions is still
advantageous in reducing the prediction error. In contrast to
using the raw curves, when using the processed curves in-
fact including the full mineralogy, predictions for all thirteen
minerals, is the optimal configuration to use, although the
difference in error between that and using only Clay, Quartz
and Calcite is fairly small.

Clearly, using the cleaned p-wave and density curves is
beneficial here and Figure 14 illustrates the porosity prediction
by our model for a single well in the test set. The middle
plot (red curve) is our prediction using the processed curves
and full mineralogy, against the manually interpreted, truth,
value (left plot, black curve). The RMS error for this well’s
prediction is 0.022392, so fairly average for the wells in the
test set. From the histogram on the right of Figure 14, it can
be seen that the vast majority of predictions are with in 10%
of the truth value and the petrophysicists consider that the
prediction matches very closely here. Figure 15 illustrates the
same experiment, where no mineralogy information is fed to
the model, but still with the processed curves. For comparison
the RMS error here is 0.033002, so again a fairly average
error for the wells in the test set. Interestingly for this well,
removing the mineralogy information has made the prediction
RMS error go from slightly better than average to slightly
worse than average. From comparing the difference histograms
in Figures 14 and 15, it can be seen that removing mineralogy
results in predictions that are less accurate, as would be
expected from the errors reported in Figure 13. Whilst a
detailed comparison of the prediction curves does highlight
some qualitative differences, these are considered minor by the



Fig. 14. Fraction of porosity by depth using cleaned p-wave and density
curves and full mineralogy information. The left plot (black curve) illustrates
the manually interpreted truth, our model’s prediction is the middle plot (red
curve) and the histogram on the right illustrates the number of predictions
that fall within a specific percentage accuracy relative to the truth

petrophysicists and also within the acceptable accuracy range
that they have dictated. This is an important result because
it means that, in-fact, whilst the porosity calculation must use
the cleaned p-wave and density curves, the impact of not using
the mineralogy prediction is fairly minimal. From this section
we can conclude that predicting porosity is highly accurate
and reliable, even though our mineralogy predictions contained
some errors, they are still accurate enough to be used by this
stage if needed.

VI. FLUID SATURATION

When calculating the fluid saturation of rock, the petro-
physicist is focusing on specific reservoirs that could contain
hydrocarbons (oil or gas), which is what they are looking
for, or water which is uninteresting to them. Unfortunately
for the oil and gas industry, water is much more common in
these reservoirs than hydrocarbons, so they need to be able
to accurately determine the nature of the fluid. We use the
six normal input curves, with cleaned p-wave and density,
in combination with the porosity from predictions in Section
V and full mineralogy from predictions in Section IV. We
are again using boosted trees regression, with three separate
models. One trained to calculate the water saturation of the
rock, another to calculate the oil saturation of the rock and
the third to calculate the gas saturation of the rock.

Figure 16 illustrates the water saturation by depth for both
the manually interpreted, truth, saturation on the left (black
curve) and our prediction on the right (red curve). From
comparing these images it can be seen that our model picks up
most of the water, but has a tendency to under predict water
at specific points in the well (the plot ranges from 0% water

Fig. 15. Fraction of porosity by depth using cleaned p-wave and density
curves but no mineralogy information. The left plot (black curve) illustrates
the manually interpreted truth, our model’s prediction is the middle plot (red
curve) and the histogram on the right illustrates the number of predictions
that fall within a specific percentage accuracy relative to the truth

Fig. 16. Water saturation by depth, manually interpreted (truth) saturation in
the plot on the left (black curve) and our prediction in the plot on the right
(red curve)

on the left to 100% water on the right). Figures 17 and 18
illustrate the prediction of oil and gas respectively by depth.
The reader can see that there are some major issues with these
predictions, for instance whilst it is known that there is no oil
in the well, our model predicts oil, and the other model trained
on gas has a tendency to under-predict. The reason for this is
that the markers for oil and gas are actually very similar, and
the petrophysicists are not able themselves to use only well
log data to accurately identify whether it is oil or gas.

Figure 19 illustrates the combination of predictions from
our oil and gas models in Figures 17 and 18. Comparing the
manually interpreted, truth, hydrocarbon values in the plot on
the left (black curve) against the predicted hydrocarbon values



Fig. 17. Oil saturation by depth, manually interpreted (truth) saturation in
the plot on the left (black curve) and our prediction in the plot on the right
(red curve)

Fig. 18. Gas saturation by depth, manually interpreted (truth) saturation in
the plot on the left (black curve) and our prediction in the plot on the right
(red curve)

in the plot on the right (red curve), it can be seen that, whilst
this prediction is still not perfect, it is far more accurate than
when the predictions were split out. A question we had going
into this work was whether the extra intuition required for
distinguishing between oil and gas could be captured by the
labelled training data. From experimentation we have found
that, whilst it is possible to train our models to identify water
from hydrocarbons, it is not possible to sub categorise the
hydrocarbons group into oil or gas. It is our conclusion that,
based on well log data alone, the best one can hope for is
water vs hydrocarbons, which itself is extremely useful.

So far we have used a regression model to predict the fluid
saturation, which outputs a number representing the fraction
between 0 and 1 of saturation at each depth. A limitation of
this is that our predictions are rarely 100% water saturation or
0% hydrocarbon saturation, but the situation where the rock
is entirely saturated with water is by far the most common
configuration in the real world. Instead our water prediction
has a tendency to wiggle around the 100% water saturation
point, as can be seen in Figure 16. Additionally, up until this

Fig. 19. Hydrocarbons saturation by depth, manually interpreted (truth)
saturation in the plot on the left (black curve) and our prediction in the plot
on the right (red curve)

point we have assumed two separate models, one to predict
water saturation and the one to predict hydrocarbon saturation.
However, this is not actually necessary because the amount of
water plus the amount of hydrocarbons must be equal to 1 at
each depth in the well. Effectively this means we can predict
only the water saturation, and then derive the hydrocarbon
saturation by then inverting it.

We therefore decided to test a different approach where we
use two separate models. First a binary classification problem
is solved and this decides, for each level in the well, whether
it is fully water-saturated, or whether it contains some amount
of hydrocarbons. For each level that is classified as water-
only, the water saturation is simply set at one (100%) and
hydrocarbon saturation to zero. For each level that the classifier
predicts contains some hydrocarbons, we run a regression
model to predict the amount of water at that depth and set
the hydrocarbon amount as the inverse of this accordingly.
The idea of this approach is that the parts of the well that
are water-only, which tends to be the vast majority of levels,
will have their predicted saturation value set to precisely one
which avoids noise in the predictions and false positives for
the hydrocarbons.

Figure 20 illustrates the prediction of water saturation using
boosted trees for both the classification and regression models.
It can be seen that this really does not help and the accuracy of
predictions, in comparison to the water predictions of Figure
16, are way off. This is because the boosted trees classifier
is seeing very many false positives of levels which it thinks
contain some amount of hydrocarbons. These levels are then
fed into the regression, and because it knows that the value
will definitely not be 100% water, values are predicted and
errors introduced. We have a further option here because,
unlike the vast majority of the well, these reservoirs tend to
be very well covered by the measurements and-so missing
input curves are rare. As such we can experiment with using
a Deep Neural Network (DNN) instead of boosted trees to
explore whether this can provide any improvement in accuracy.



Fig. 20. Hydrocarbons saturation by depth using two models, boosted trees
classification and regression, manually interpreted (truth) saturation in the plot
on the left (black curve) and our prediction in the plot on the right (red curve)

Fig. 21. Hydrocarbons saturation by depth using two models, Deep Neural
Network (DNN) for classification and regression, manually interpreted (truth)
saturation in the plot on the left (black curve) and our prediction in the plot
on the right (red curve)

Figure 21 illustrates the same experiment but where we use a
DNN for both the classification and regression. It can be seen
that, unlike the boosted trees prediction which under-predicts
water, the DNN is over-predicting water and missing situations
where hydrocarbons are present. Whilst the DNN is more
conservative than boosted trees in predicting hydrocarbons,
this conservatism is far more extreme in the DNN regression
model, and there are a number of situations where the DNN
classifier is predicting the presence of hydrocarbons but the
DNN regression model then incorrectly predicts these to be a
tiny amount.

So in fact we have a situation where the DNN classifier is
more accurate than boosted trees classifier, and the boosted
trees regression is more accurate than the DNN regression.
Therefore, we decided to combine the best of both approaches,
using our DNN for classification and boosted trees model for
regression. Results from water saturation predictions using this
hybrid DNN classification, boosted trees regression approach
are illustrated in Figure 22. As can be seen this combines

Fig. 22. Hydrocarbons saturation by depth using two models, deep neural net-
work for classification and boosted trees for regression, manually interpreted
(truth) saturation in the plot on the left (black curve) and our prediction in
the plot on the right (red curve)

the best of both worlds, and whilst the accuracy of our fluid
saturations predictions are not quite as good as those of our
porosity predictions, this is the most accurate configuration we
have found, they are still fairly accurate, and within accuracy
limits set by the petrophysicists. Additionally, because of the
nature of our boosted trees regression, this approach tends to
favour over predicting hydrocarbons. This is useful as it is
more important for the petrophysicists to have false positive
for oil or gas that they can then explore and discount, rather
than missing these areas altogether. Whilst our fluid saturations
still require some form of human interpretation, analysis and
validation, this provides them with a strong starting point.

VII. LITHOCLASS DETERMINATION

In this last stage of the petrophysical workflow, lithology
class or faces, which is the general geological rock type, is
determined. This is a classification problem and categorises the
rock as one of a number of different types. Out of the entirety
of the workflow this is the simplest stage and as described
in Section II-A, numerous other supervised learning studies
have looked at this in detail. To some extent the problem of
using supervised learning for lithology prediction has been
largely solved. Therefore, instead we decided to investigate
whether a more general approach could be used where we start
from data without explicit lithoclass labels, apply some general
lithoclass categorisation rules which have been provided by
the petrophysicists, which effectively labels the data, and then
train our model on this data. This is not unsupervised learning,
which is where inferences are drawn from data-sets that have
no labelled data to train on, because we are explicitly labelling
some unlabelled data based on some generic rules and seeing
how accurately we can make predictions based on this. But
it is a useful technique to explore because often the well log
data does not have lithology explicitly labelled, like other work
in Section II-A assumes. Therefore a question is whether we
can make accurate predictions from models trained on a set



Fig. 23. The mean classification error (percentage of miss-classified cases)
against k, the number of nearest neighbours to use in the classification.

of generic membership rules which are based on mineralogy
composition.

For this stage we are using the k-nearest neighbours al-
gorithm for classification and the output of this algorithm is
an item’s class membership based on the properties of its
neighbours, with each item being assigned to the class most
common among its k nearest neighbours. We use the same six
input curves, with cleaned p-wave and density curves, along
with mineralogy and are focused on classifying records as
hydrocarbon (HC) sand, shale, shaly sand, and wet sand using
relationships provided to use by the petrophysicists.

A key configuration with k-nearest neighbours is what value
of k to use, i.e. the number of closest neighbours to each point
that need to be considered in the classification. Using the K
nearest neighbours classifier from Sklearn, to build our clas-
sification prediction, we then use a cross-validation approach
to randomly pick samples and check that the classification is
correct. Figure 23 illustrates how the mean classification error,
which is the percentage of miss classified cases, relates to the
number of neighbours to use in the classification (the value of
k). From these results we can see that the miss classification
error reduces until between 200 and 300 neighbours, and at
this point appears to level off. Therefore, for the lithology
classification we choose k to be 300 and train the classifier on
the whole training set.

Figure 24 illustrates the number of rows in our test wells
that have predicted with a specific lithology (columns) against
the true lithology (rows), where we ideally want the max-
imum value for each prediction in the corresponding truth
cell. Bearing in mind these predictions are based on general
membership rules, the predictions for hydrocarbon sand, shale
and wet sand are fairly reliable. However the model struggles
with shaly sand. Whilst the accuracy of these predictions
is lower than those of [4], they are using data where the
lithology is explicitly labelled by the petrophysicists to train
their models. Instead we are applying a set of very simple
rules and are able to generate predictions which are reasonable.
This is interesting as it can be very quickly applied to large,
unlabelled, data sets and then used for training. In such cases,

Facies HC Sand Shale Shaly Sand Wet Sand
HC Sand 673 8 0 13

Shale 2 27833 2259 653
Shaly Sand 4 1735 2431 1228
Wet Sand 18 306 2313 9369

Fig. 24. Lithology prediction, number of rows in the test wells with a
predicted and/or truth value. The columns are the predicted lithology and
rows are the true lithology

apart from shaly sand, the petrophysicist can have a reasonable
confidence in their predictions as a first step.

VIII. HYPER-PARAMETER SEARCH PARALLELISATION

As described briefly in Section III there are seven hyper-
parameters that we must set for our boosted trees models.
These are summarised in Figure 25 and they are intercon-
nected, such that modifying the value of one parameter will
impact the most suitable value of other parameters. This is
especially challenging when it comes to boosted trees because
they are sensitive to these hyper-parameters [24], where there
is a fairly small window of optimal hyper-parameters and
outside this either the model under or over fits. The big
challenge is that it is not clear what the correct hyper-
parameter settings should be, nor how far from optimal they
are. As such throughout this work we used Hyperopt [20], a
Python library for automatically searching the hyper-parameter
space and making optimal choices. Providing both a random
search and tree of Parzen estimators [21], the user provides
a description of their hyper-parameters, including the range
of appropriate values. An objective function is also provided
which returns a user defined loss value, which is effectively
what the framework aims to minimise.

Therefore in this paper we have not explicitly mentioned
the settings of these 7 hyper-parameters for each of our
boosted trees models, because we ran ensembles of boosted
trees models when training, relying on Hyperopt to search
the parameter space and identify the most appropriate hyper-
parameter settings for us. Hence when we talk about training
a boosted trees model in this paper, we implicitly mean
performing this ensemble run of many individual boosted
trees models and hyper-parameter optimisation because it is
so important. Hyper-parameter searching can take a long time,
especially because the code is serial when it comes to HPC
machines such as the Cray XC30 we used in this work. Whilst
the Hyperopt developers do claim to have a distributed version
of the framework, crucially it is distributed via AWS YARN
or Spark, neither of which are available on the Cray we are
using. We found on average it required between 120 and 160
hyper-parameters settings to be searched before we could be
confident that our hyper-parameters were a good match to the
model. Bearing in mind that training a single boosted trees
model takes between ten and fifteen minutes then we are
looking at around 20 hours in the best case and over double
that in the worst case to train the models that we have used
in this paper. The optimal hyper-parameters change not only



Name Description

colsample bytree
Sub sample ratio of columns
when constructing each tree

eta
Step size shrinkage,

to prevent over-fitting

gamma
Minimum loss reduction required

to further partition a node

max depth
Maximum tree depth, the deeper

the tree the more complex
the model and likely to overfit

min child weight
Minimum sum of instance
weight needed in a child

num rounds
Number of boosting
rounds to perform

subsample
Sub sample ratio of the training

instances, useful to prevent over-fitting

Fig. 25. Applicable boosted trees hyper-parameters and their description

on a model by model basis, e.g. a model that is trained for
predicting Clay will require very different hyper-parameters
to one predicting Quartz or Calcite, but also whenever we
experimented with aspects such as the number or type of input
curves.

In order to address this issue we developed an MPI im-
plementation of the Hyperopt distribution layer. Using the
MPI4Py Python library [22], we used the master-worker
pattern as illustrated in Figure 26, to distribute the searching of
hyper-parameters across the nodes of the Cray. The master and
each worker is a separate MPI process, and the master starts
off by generating initial parameters settings for each worker
to use as the settings when training their boosted trees model
concurrently (one worker per NUMA region, as XGBoost uses
OpenMP to parallelise across threads in this NUMA region).
As workers feed back their resultant loss values the master
will use this to then influence existing and further parameter
choices which are then sent out to idle workers as they become
available.

This is a very simple parallelisation strategy and, partly due
to the maturity of MPI4Py took less than an hour to implement.
However we found this ability to distribute over the nodes of
ARCHER, the Cray XC30 used for this work, very useful
when it came to productivity and taking full advantage of
the XC30. From a parallelism perspective this design is
fairly embarrassingly parallel, with the only communications
between the master and workers needed at the start of each
model iteration to communicate the hyper-parameter settings
and at the end to send the resulting loss value back. Hence
this scales well and typically we run over twenty nodes (480
cores), with two workers (boosted trees models) per node

Fig. 26. Parallelisation of Hyperopt using master-worker pattern

(as there are two NUMA regions per node in ARCHER.)
This reduced the overall training runtime of our boosted trees
models, including hyper-parameter optimisation, down from
between 20 to 40 hours, to between 40 minutes and an hour.
This was important because it resulted in a very significant
increase in productivity.

IX. CONCLUSION

In this paper we have studied the role that machine learning
can play in tackling the entire petrophysical workflow for
conditioning well log data. This is the first time that machine
learning has been applied to the entire workflow and we have
demonstrated reasonable prediction capabilities across the va-
riety of workflow activities. Whilst using machine learning for
some of the petrophysical activities, such as the cleaning of
p-wave and density curves, along with the prediction of poros-
ity and fluid saturations is highly accurate, it does struggle
more with other aspects such as the mineralogy composition.
Generally speaking this was not entirely unexpected, as the
petrophysicists rely on more intuition from sources external
to the well log data for mineralogy in comparison to the
other stages. Whilst undoubtedly some of their knowledge and
experience can be taught to a mathematical model by machine
learning, our mineralogy predictions illustrate that there are
limitations to this. These are important, novel, insights, both
in terms of successes such as the combination of DNN
classification and boosted trees regression providing accurate
fluid saturations, and also the limitations of machine learning
in this context such as the fact that geological formations
doesn’t really help improve mineralogy predictions.

In terms of the petrophysical interpretation time, we have
not quite gone down from 7 days to 7 minutes, but once trained
our models do very quickly, in a matter of seconds, provide
predictions that can take humans many hours to equal. Whilst
it is clear that machine learning is not going to replace the
petrophysicists with such trained models any time soon, we
do believe that machine learning has an important role to play
in petrophysical interpretation and the use of this technique
will continue to grow rapidly in the oil and gas industry. RSI
petrophysicists have identified, based upon this research, two



general benefits that machine learning provides here. Firstly
as an initial, but very important, step in the interpretation
where the use of the human is optimised by our models
performing much of the time consuming mundane work. The
idea being that the experienced petrophysicst is then presented
with an estimation of mineralogy composition, porosity, fluid
saturation, and lithology and from this can then tune and
tweak the predictions to make them more robust. The second
application of machine learning that has been identified from
this work is as a quick, rough and ready pass, to determine
whether a specific well is likely to contain features of interest
(i.e. oil or gas), and warrant an in-depth manual interpretation
or not. This fits in with a common industrial use-case, where
the large oil and gas companies will provide geological experts
at companies such as RSI with a variety of wells and up
until this point there is little option but to perform a full
interpretation. The ability to quickly and cheaply prioritise
the most interesting wells is an important capability which
machine learning provides.

We believe that it is a very exciting time for machine
learning in the oil and gas industry, and there is plenty of
further work that follows on from this study that will not only
improve the accuracy of predictions but also apply machine
learning to the wider area of sub-surface data analysis. From
the mineralogy it is clear that the inclusion of mudlog data
would be useful to provide additional context and improve
prediction accuracy. The inclusion of this handwritten mudlog
information will increase the complexity significantly, with
advanced data extraction and pre-processing needing to be
performed. But in conjunction with our existing well log
mineralogy model we believe that there is significant potential
here and this work will act as a baseline to understand the
improved prediction accuracy that this affords.

It is clear from our mineralogy experimentation that, given
complete data, there is potential to improve the prediction
accuracy using DNNs. One option here might be to use
boosted trees as a first pass to estimate missing values and then
feed these estimates into a DNN model. Even if the estimated
value used is still fairly rough, this might be enough to gain
good predictions with the DNN model.

When parallelising Hyeropt with MPI it surprised us at
how much low hanging fruit there is when it comes to these
machine learning frameworks running on HPC machines. The
fact that we were able, with a trivial amount of effort, to
increase our productivity so significantly, illustrates the role
that the HPC community and their expertise has to play in
the engineering of these machine learning frameworks and
enabling them to take advantage of large scale distributed
machines.
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