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Summary

The precise named entity recognition is a key component in Chinese clinical natural
language processing. Though clinical NER systems have attracted widespread atten-
tion and been studied for decades, the latest NER research usually relies on a shallow
text representation with one-layer neural encoding, which fails to capture deep fea-
tures and limits its performance improvement. To capture more features and encode
the clinical text efficiently, we propose a deep stacked neural network for Chinese
clinical NER. The neural network stacks two bidirectional LSTM and GRU layers to
encode the text twice, followed by a CRF layer to recognize named entities in Chinese
clinical text. Extensive empirical results on three real-world data sets demonstrate
that the proposed method significantly outperforms six state-of-the-art NER meth-
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ods. Especially, compared with the conventional CRF model, our method has at least

3.75% F,-score improvement on these public data sets.
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1 | INTRODUCTION

Clinical named entity recognition (NER) is the task of identifying entities like symptoms, diseases, exams, treatments, medica-
tions and body parts in clinical text’2. A large amount of important medical information is contained in the narrative clinical
text, which is not directly accessed by biomedical processing systems that rely on the structured data. Recognizing clinical
named entities is usually implemented as the first step in clinical text mining, which is the key foundation to support the down-
stream biomedical processing systems and tasks. For the biomedical relation extraction task, NER is critical to find the target
entities”. For the hospital mortality prediction task, NER is necessary to analyze clinical notes®. Clinical NER can benefit
many applications in medical data mining, such as clinical surveillance, comorbidity analysis, pharmacovigilance and drug
interactions~'©.

With the development of medical informationization and hospital information system, more and more electronic health records
(EHR) are generated. EHR systems store large amounts of data associated with patients, including diagnoses, laboratory test,
prescriptions, clinical notes, etc., which have been used for such tasks as clinical decision support systems, disease inference,
medical concept extraction'’. For example, a piece of clinical text is patients’ color ultrasound results show moderate fatty liver,
where fatty liver is the name of the disease and liver is the name of body part. Another text is Memory loss began 3 years ago,
where memory loss is the name of clinical symptom. It is obvious that to recognize clinical named entities accurately is critical
for all the downstream tasks. However, build a NER system is not easy because of the richness and diversity of clinical text in
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EHR systems. Moreover, NER in Chinese clinical text is more difficult because it lacks word boundaries and is more complex
than Romance languages.

Early NER systems are rule-based systems that rely on the prepared clinical dictionaries, such as cTAKES® and MetaMap?,
which implement NER by looking up terminology dictionary. The performance of rule-based methods depends on the quality
and coverage of the clinical vocabulary and labeling rules. As new terminologies emerge in endlessly, it is hard to maintain an
exhaustive dictionary and update the labeling rules in time.

Traditional supervised learning methods view NER as a sequence labeling problem. In NER systems, a various of supervised
machine learning algorithms are applied, such as conditional random fields (CRF) and support vector machine (SVM)™*12, The
performance of traditional supervised methods depends on the manually pre-defined features. As the diversity and complexity
of clinical text, it is impossible to design a perfect feature set containing all features.

Recently, along with the development of deep learning methods!?"1419. a series of neural network models have been applied in
clinical NER task, which usually combine long-short term memory (LSTM) and CREF to find the best label sequences (i.e., BIO
format labels"2) for an input sequence (i.e., words in clinical text)1%Z. Neural network models are popular because they do not
require any prepared resources like rules and dictionaries, and manually defined features. Though various neural architectures
have been proposed, most NER works usually rely on a shallow text representation with one-layer neural encoding, which are
unable to capture more deep features and limit their performance improvement.

In order to achieve an outstanding performance in clinical NER task, the complex text features should be captured as more
as possible. In this paper, we propose a deep stacked neural network for Chinese clinical NER. The neural network stacks two
bidirectional LSTM and gated recurrent unit (GRU) layers to encode the clinical text twice, then employs a CRF layer to find
optimal tag sequences so as to recognize named entities. The extensive experiments on three real-world data sets demonstrate
the superiority of our proposed model.

The main contributions of this paper are as follows:

e We propose Chinese clinical named entity recognition method based on stacked neural network. Our model stacks bidi-
rectional LSTM and GRU layers hierarchically to encode the clinical text twice to capture the deep features and generate a
more ideal text representation, then employs a CRF layer to predict the right tag of each word to recognize named entities
in clinical text.

e We implement a series of NER models and carry on an extensive comparative study for clinical NER task on three real-
world data sets. This may provide an objective reference for related researchers to evaluate the abilities of different NER
models.

e Extensive experiments on the real-world data sets demonstrate that our proposed NER method significantly outperforms
the state-of-the-art methods.

The rest of the paper is structured as follows. We discuss the related work about clinical NER in Section 2] Section[3]describes
our proposed model based on stacked neural network in detail, followed by the experiments in Section d Finally, we conclude
the paper and outline the future work in Section 5]

2 | RELATED WORK

Briefly, we generally divide related work into the following categories: (1) rule-based methods, (2) feature-engineered supervised
methods and (3) neural network methods.

Rule-based methods. Due to the complexity and specialization of medical domain, the early NER methods are implemented
based on manually created rules and domain dictionaries, which work well when the rules and dictionaries are exhaustive.
Gaizauskas et al. 18 design LaSIE system for information extraction, which identifies named entities by matching the input against
the pre-stored lists of proper names and common nouns that act as named entities. Guergana et al.® realize cTAKES system for
clinical text analysis, which recognizes named entities by looking up terminology dictionary. Aronson et al.” introduce MetaMap
system, which provides the access to the concepts in the unified medical language system Metathesaurus from biomedical text,
which can be viewed as a dictionary for clinical rule-based NER system. The performance of rule-based methods depends on
the quality and coverage of the clinical dictionary and labeling rule. Because new terminologies and language phenomenons
emerge in endlessly, rule-based methods are hard to maintain an exhaustive dictionary and labeling rule system, which lead to
narrow and limited applications.
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Feature-engineered supervised methods. Based on the labeled training data, feature-engineered supervised methods are
trained to make expected predictions on example inputs, and predict right tags on unknown inputs, which rely on the manual
defined features and training data'?22ll Conditional random fields (CRF), maximum entropy models (MEM), support vector
machines(SVM) and hidden markov models (HMM) are applied widely in NER task. Settles et al.’” propose to recognize
biomedical named entities with CRF and a variety of novel features, including orthographic features and semantic features.
Skeppstedt et al.'2 apply CRF model on Swedish clinical text to recognize disorder, finding, pharmaceutical drug and body
structure entites. Wang et al.*? propose a NER method for electronic medical records, which establishes a hierarchical CRFs
framework, and separates the complicated electronic medical records into relatively simple and interrelated sub-layers. Finkel et
al.?3 develop biomedical NER system based on MEM model, which makes full use of local and syntactic features within texts,
and external resources such as Web and gazetteers. Qu et al.2% annotate electronic medical records, and implement NER systems
on the records with the combination of MEM, SVM and CRF. These feature-engineered supervised methods demonstrate good
performance in the data sets with enough training data. However, these supervised methods depend heavily on the manually
annotated training data and manually designed feature engineering, which are huge burdens to prepare them and limit their
performance on real-world data sets>>29,

Neural network methods. With the development of deep learning , a variety of neural networks are proposed for NER
task, which avoid the requirement for most feature engineering in the supervised methods". Collobert et al.*! propose the first
single convolutional neural network architecture for NER task with manually defined orthographic features, which is trained
jointly on multiple tasks with weight-sharing mutlitask learning. Gridach et al.1® put forward a neural network that benefits word-
level and character-level representations, with a combination of bidirectional LSTM and CRF models. Habibi et al.'” present a
generic NER method based on deep learning and statistical word embedding with LSTM and CRF models, which outperforms
the existing entity-specific NER system by a large margin. As neural network methods do not require the manually pre-defined

27128129,

features and annotated training data, they are popular in the research community%. However, most existing NER models usually
rely on a shallow text representation with one-layer neural encoding, which fail to capture enough deep features and encode the
clinical text efficiently. This limits their performance improvement.

3 | OUR PROPOSED STACKED NEURAL NETWORK

3.1 | Framework of the proposed model

In NER task, we denote the input character sequence as X = {x, x,, ..., x,,}, the labeled tag sequence as Y = {y, y5,...,y,}.
Given an input sequence X, the goal of NER system is to predict the right tag sequence Y. The framework of our proposed
model is shown in Fig[I] This framework can be divided into three modules: input (top), encoder (middle) and output (bottom)
modules. The input module is responsible to convert to input characters into their embeddings. The encoder module consists of
the stacked neural network, which includes two sub-layers, i.e., bidirectional LSTM and GRU, which captures the deep features
and encodes the input sequence. The output module predicts the tag for each input character.

3.2 | Input Module

In this module, the characters in input sequence X = {x,, x,, ..., X, } are inputted with one-hot representations by look-up layer,
which are further converted into embedding representation. All embedding vectors consist of a matrix, which is transferred to
the next module, i.e., encoder module. In order to avoid the errors induced by Chinese word segmentation, we choose to use
character embedding instead of word embedding, which is trained by Skipgram®?.

3.3 | Encoder Module

In this module, we encode the input character sequence with the stacked neural network, which includes bidirectional LSTM
and GRU layers. Both LSTM and GRU are able to learn local and long-term dependencies among the sequence. We firstly
handle the character embeddings with LSTM layer, where various features are captured from the character sequence. Next, the
encoded features are further handled by GRU layer. Finally, the local and long-term dependencies learned by GRU are viewed
as the final representation of the input sequence.
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FIGURE 1 Structure of stacked neural network for Chinese named entity recognition

3.3.1 | LSTM

The bidirectional LSTM layer automatically extracts features of the input sequence. The character matrix representation from
look-up layer is 1nputted into forward LSTM and backward LSTM as shown in Fig[I] Then, each hldden state in hidden sequence

of the forward LSTM (hl, hz, s ,,) is concatenated with that of the backward LSTM (hl, h2, ) as described in Equ.(1
A complete sequence of hidden states is obtained as (A, h,, ..., h,) € R™™.

h, = [/T,E] € R™m 1)
3.3.2 | GRU

Although bidirectional LSTM is able to capture the sequence features, it only encodes the input sequence one time with one-
layer neural encoding, which is hard to capture enough deep features for the following output module. GRU is similar with
LSTM and performs better in solving gradient dispersion. As the complementation of LSTM, we stack bidirectional GRU over
LSTM. This layer takes the output of the previous LSTM as the input of GRU, each hidden state in hidden sequence of the
forward GRU (E, E, e ﬁ,;) is concatenated with that of the backward GRU (E, E, s TT,,), as described in Equ.. After
the encoding by stacked neural network model, the hidden state sequence (H,, H,, ..., H,) € R™" generated by bidirectional
GRU is returned as the final representation of the input sequence, which is transferred to the output module.

H, = [ﬁ,’ ‘17,] € R™" @)

3.4 | Output Module

This module consists of two sub-layers, i.e. linear layer and CRF layer. The former converts the dimension of representation
embeddings generated by encoder module. The latter is responsible to output the predicted tag sequence.

In this module, we firstly handle the final representation generated by encoder module with a linear layer, which is able to
convert the dimensions of the representation from R"™" to R"™, where k is the number of candidate tags. As shown in Fig
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the hidden state sequence (H,, H,, ..., H,) € R"™" is converted to the hidden state sequence (P, P,, ..., P,) € R™k_Then, we
utilize a CRF layer to predict the most possible tag sequence. The parameter of the CRF layer is a matrix, denoted as A, where
A;; represents the transfer score from the i-th tag to the j-th tag. If there is a candidate tag sequence Y = {y;, y,, ..., y,} for the
input character sequence X, then the score of Y can be estimated with Equ.(3).

n+1

score(X,Y) = z; P, + z:; Ay,—l.VI @

According to Equ.(3), the score of the whole tag sequence is equal to the sum of the scores of each position. The score of each
position is obtained by two parts, one part is determined by the P, obtained by GRU passing through a linear layer, and the other
part is determined by the transfer matrix A of CRF. Softmax can obtain the normalized probability, as in Equ.(@). The model is
trained by maximizing the logarithmic likelihood function, as in Equ.(®). Finally, the model utilizes the dynamic programming
Viterbi algorithm to find the optimal path, and get the final tag sequence, as in Equ.(6).

exp(score(X,Y))

PO = >y exp(score(X,Y")) @
logP(YX | X) = score(X, Y¥) — log(z exp(score(X,Y"))) (®)]
Y* = arg max score(X,Y") (6)

Y/

4 | EXPERIMENTS

4.1 | Data Sets

Three real-world data sets for clinical NER task are used to verify the performance of our proposed stacked neural network
model. Our source code and data are publicly available on Githulﬂ As the scarcity of Chinese clinical NER data, the three data
sets are valuable, which are as follows:

o CCKS-2017. China conference on knowledge graph and semantic computing (CCKS) is organized by the technical
committee on language and knowledge computing of the Chinese information processing society of China. CCKS-2017
provides 600 electronic clinical record texts, which requires to recognize the named entities including anatomical parts,
independent symptoms, description of symptoms, surgery and drugs. The data set is annotated by YiDuYun (Beijing)
technology co., LTD.

e CCKS-2018. In 2018, CCKS provided another data set for the evaluation task, which also included 600 annotated
electronic clinical record texts in the same format as the previous year.

e Hospital-BJ. We collect a data set from Internet and find out an annotated data set from a hospital in Beijing, which
contains 1,200 clinical record texts. It covers all entities in the former CCKS data sets.

4.2 | Labeling rules

Two kinds of labeling rules are applied in our following experiments, i.e., IOB? and IBOES respectively. For IOB rule, B means
the beginning of an entity, / means the inside of an entity, O means the outside of any entity. IBOES is a more complex and
complete annotation rule derived from IOB method. Besides the existing three labels in IOB rule, £ means the end of an entity
and S means an entity with only single character. Two examples for IOB and IBOES rules are shown in Table. [I]

4.3 | Evaluation Metrics

In our experiments, following the previous work=#%>, the common precision, recall and F;-score are utilized to evaluate the
performance. Precision is the percentage of the number of correctly recognized entities versus the number of all recognized

Thttps://github.com/ruoyuu/Stacked-Neural-Network-ZRY
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TABLE 1 Labeling rules examples.

E ||| & oL | AN aE |, | B | # | C =

10B B-B | B-1| B-I | S-B | S-I (0] O|O|BB| BI|O o B-B o o

IBOES BB |BI|BE|SB|SE|O|]O)|O|BB|BE|O O|BS|O|O
Entity type body symptom body body

entities, which is marked as P. Recall is the percentage of the number of correctly recognized entities versus the number of all
entities in the data set, which is marked as R. F,-score is derived from precision and recall. The three evaluation metrics are

defined in Equ.(7)-(©).

TP

P=———
TP+ FP
R= TP
TP+ FN
F, — score = 2PR
P+ R

@)

®)

()]

In the above equations, according to the consistency between the true tags and predicted ones, T P refers to the number of true
positive instances, F P refers to the number of false positive instances and F N refers to the number of false negative instances.

4.4 | Comparison Methods

Baselines To test the performance of our model, our proposed stacked neural network is compared with six common state-of-
the-art NER models. All the baselines are implemented with Keras in Python. As the baselines only contain a part of components

of our proposed stacked neural network, they also could be viewed as the simplified variations of our method.

e CRFY: This method is the most traditional model for named entity recognition, where CRF directly predicts the tag

sequence.

o LSTM-CRF!1¢; This method combines LSTM and CRF together, where LSTM extracts features followed by a CRF layer
to predict the tags.

o GRU-CREF: This method replaces the LSTM component in LSTM-CRF model with GRU.

e BiLSTM-CRF=%: This method is similar with LSTM-CRF. The difference lies that this method considers both forward

and backward LSTMs, instead of only one direction in LSTM-CRF model.

e BiGRU-CRF"7: This method replaces the BILSTM component in BiLSTM-CRF model with BiGRU.

e CNN-BiLSTM-CRF=8: This method enhances the model of BILSTM-CRF with CNN component, where the output of

CNN is taken as the input of BiLSTM, followed by CRF to ensure the legitimacy of the predicted tags.

4.5 | Experimental parameters

In the experiments, we use pre-trained embeddings to convert the characters in clinical medical text to vector representations,
whose dimension is 30 The batch size was set to 128. Both the dimensions of the BiLSTM and BiGRU are 128. We apply
dropout strategy to each layer in our approach to mitigate overfitting. The dropout rate is set to 0.5. RMSprop is selected as the
optimization algorithm for training.

*https://github.com/livhuanyong/ChineseEmbedding/blob/master/model/token_vec_300.bin
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4.6 | Experimental Results and Analysis

We adopt six state-of-the-art NER methods as the baselines to compare with our proposed stacked neural network. All baselines
and our proposed method are evaluated on the three data sets with two labeling rules respectively. The detailed experimental
results are shown in Table2}4] It is obvious that our proposed model showns a significant superiority over the baselines on all
data sets under both of IOB and IBOES labeling rules, which demonstrates the powerful ability of the proposed stacked neural
network model.

TABLE 2 Experimental results on CCKS-2017.

Labeling rules 10B IBOES
Precision | Recall | F,-score | Precision | Recall | F,-score

CRF 91.05 84.26 87.52 90.01 84.67 87.26
LSTM-CRF 95.00 89.33 92.08 91.15 87.89 89.49
GRU-CRF 94.88 90.04 92.40 91.80 87.09 89.38
BiLSTM-CRF 96.45 93.50 94.95 93.66 88.20 90.85
BiGRU-CRF 96.78 92.18 94.42 93.50 88.16 90.75
CNN-BiLSTM-CRF 97.83 94.29 96.03 93.80 88.04 90.83
Our model 98.03 94.38 96.17 93.78 88.40 91.01

TABLE 3 Experimental results on CCKS-2018.

Labeling rules 10B IBOES
Precision | Recall | F,-score | Precision | Recall | F,-score

CRF 95.88 92.27 94.04 93.77 92.34 93.08
LSTM-CRF 98.13 97.04 97.58 97.00 97.51 97.25
GRU-CRF 98.23 97.01 97.62 97.21 96.90 97.05
BiLSTM-CRF 98.54 98.01 98.27 98.31 98.01 98.16
BiGRU-CRF 98.38 97.88 98.13 98.30 97.71 98.00
CNN-BiLSTM-CRF 98.57 97.97 98.27 98.35 98.15 98.25
Our model 98.58 98.11 98.34 98.49 98.13 98.31

TABLE 4 Experimental results on Hospital-BJ.

Labeling rules 10B IBOES
Precision | Recall | F-score | Precision | Recall | F,-score

CRF 89.86 87.06 88.44 85.41 82.97 84.17
LSTM-CRF 90.99 89.35 90.16 89.21 87.01 88.10
GRU-CRF 90.93 88.90 89.90 88.95 87.19 88.06
BiLSTM-CRF 92.64 91.29 91.96 90.48 89.75 90.11
BiGRU-CRF 92.86 90.58 91.71 92.22 89.55 90.87
CNN-BiLSTM-CRF 91.55 91.49 91.52 91.99 89.07 90.51
Our model 93.28 91.55 92.41 92.37 90.07 91.21
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FIGURE 4 F,-score comparison on Hospital-BJ

In order to further analysis the experimental results, considering the importance of F,-score, we compare the baselines on
F,-score measure, as shown in Fig.2-4|§_1 According to the figures and Table@-@ we have several observations.

First, the methods based on neural networks, i.e., LSTM and GRU related methods, outperform traditional feature-engineered
method, i.e., CRF. Among all neural networks, LSTM-CRF and GRU-CREF are the weakest under different labeling rules. LSTM-
CRF demonstrates 4.56%, 3.54%, 1.72% F,-score improvement under IOB rule and 2.23%, 4.17%, 3.93% improvement under
IBOES rule over CRF on each data set respectively. GRU-CRF demonstrates 4.88%, 3.58%, 1.46% F,-score improvement under
IOB rule and 2.12%, 3.97%, 3.89% improvement under IBOES rule over CRF on each data set respectively. The reasons for the
gap between neural network based method and feature-engineered method may be as follows. The traditional feature-engineered
method depends on the manually designed features. It is very difficult to find enough effective features, which heavily affects the
performance. However, neural network based methods can automatically capture more deep and sophisticated features contained
in the input sequence, which gives the natural advantages for neural works to surpass feature-engineered method. The powerful
feature representation ability of neural network is beneficial for the prediction of named entities.

Second, the methods with more neural layers always demonstrate a better performance than those with less neural layer.
Among the compared neural methods, CNN-BiLSTM-CRF and our method are equipped with two BiLSTM and BiGRU layers,
BiLSTM-CRF and BiGRU-CRF have one bi-directional recurrent neural layer, LSTM-CRF and GRU-CRF only have one uni-
directional recurrent neural layer. As shown in Fig.2-4, the performance of CNN-BiLSTM-CRF and our method are the best,
BiLSTM-CRF and BiGRU-CREF are the suboptimal, LSTM-CRF and GRU-CREF are the worst. It is obvious that the performance

§ As the performance of CRF is significantly worse than the other methods, the figures do not show it again.
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of different models is consistent with their structural complexity. This is because that more neural layers and more complex
structure mean the more powerful representation ability to capture and learn the features hid in the input sentences, which can
provide more abstract high-level clues to label the right tags for each character. We also notice that CNN-BiLSTM-CRF is
slightly worse than BiLSTM-CRF or BiGRU-CRF on the Hospital-BJ data set. However, it still outperforms them on the other
two data sets. Its overall performance is better.

Third, our proposed model shows a superiority over BILSTM-CRF and BiGRU-CRF. Our model stacks BiLSTM and BiGRU
layers together to encode the input sentence, which is followed by CRF to assure the reasonableness of the labeled tag sequences.
BiLSTM-CREF is a simplified variants of our model by removing the BiGRU layer from encoder module. And, BiIGRU-CRF is a
simplified variants of our model without BiLSTM layer. According to Table 2}4] compared with BILSTM-CRF and BIGRU-CRF
on CCKS-2017 data set, our model improves F,-score by 1.22% and 1.75% under IOB labeling rule and 0.16% and 0.26% under
IBOES labeling rule. Compared with them on CCKS-2018 data set, our model improves F,-score by 0.07% and 0.21% under
IOB labeling rule and 0.15% and 0.31% under IBOES labeling rule. Compared with them on Hospital-BJ data set, our model
improves F,-score by 0.45% and 0.7% under IOB labeling rule and 1.1% and 0.34% under IBOES labeling rule. It is obvious that
the simplified BILSTM-CRF and BiGRU-CREF are beated heavily by our model. This also demonstrates that to stack BILSTM
and BiGRU together is crucial in our model. Either BILSTM or BIGRU layer is removed from our model, which will leads to a
huge performance hurt. The reason for the superiority of our model may be that the feature capture and representation ability of
our model with stacked layers is more powerful than that of the models with single layer, i.e. BILSTM-CRF and BiGRU-CRF.

Fourth, for all methods, the performances on IOB rule are better than those on IBOES rule. For example, our model with IOB
rule demonstrates 5.16%, 0.03%, 1.20% F,-score improvement over that with IBOES rule on each data set respectively. This is
because that IBOES enlarges the annotated tags, i.e, the end of an entity and the entity with only single character, which means
more difficult to recognize and label the entities.

Last, our proposed stacked neural network model can consistently outperform all compared baselines. For IOB labeling rule,
compared to CRF, LSTM-CRF, GRU-CRF, BiLSTM-CRF, BiGRU-CRF, CNN-BiLSTM-CRF, our model improves F,-score
by 8.65%, 4.09%, 3.77%, 1.22%, 1.75%, 0.14% in CCKS-2017 data set; by 4.3%, 0.76%, 0.72%, 0.07%, 0.21%, 0.07% in CCKS-
2018 data set; by 3.97%, 2.25%, 2.51%, 0.45%, 0.7% , 0.89% in Hospital-BJ data set. For IBOES labeling rule, compared
to CRF, LSTM-CRF, GRU-CREF, BiLSTM-CRF, BiGRU-CRF, CNN-BiLSTM-CREF, our model improves F,-score by 3.75%,
1.52%,1.63%, 0.16%, 0.26%, 0.18% in CCKS-2017 data set; by 5.23%, 1.06%, 1.26%, 0.15%, 0.31%, 0.06% in CCKS-2018 data
set; by 7.04%, 3.11%, 3.15%, 1.1%, 0.34%, 0.7% in Hospital-BJ data set. Compared with the feature-engineered CRF method,
our method combines LSTM and GRU together, which can capture long-distance dependency features. This shows that the
information of orders and long-distance dependencies are more valuable for the right prediction in NER task. Compared with
the other neural methods, our method stacks two bidirectional LSTM and GRU layers to encode the input text twice, which can
capture more sophisticated features and is beneficial to outperform the existing methods.

4.7 | Parameter Analysis

4.7.1 | Comparison with the Different Optimizer

TABLE 5 F,-score performance with different optimizer.

Optimizer Adam | Adamax | Adadelta | Adagrad | Nadam | RMSprop | SGD
CCKS-2017/98 96.13 95.81 96.07 96.00 96.10 96.17 80.69

CCKS-20177BCES | 91.01 90.80 90.88 90.85 90.85 91.01 80.44
CCKS-2018798 98.15 97.87 97.88 97.99 98.00 98.34 82.33
CCKS-20187BOES | 98,17 98.02 97.78 98.09 98.14 98.31 82.59
Hospital-BJ/08 92.56 92.18 92.33 92.38 92.41 92.41 81.01

Hospital-BJ/BOES | 91.33 91.30 91.28 91.29 91.34 91.21 80.06

In the section, we conduct several experiments to explore the effectiveness of different optimizers. The detailed experimental
results on F,-score measure are shown in Table[5] For each data set, we underline the results of the best-performing optimizer.
According to Table[5] Adam and RMSprop are better than the others, SGD is the worst on all data sets. Though Adam achieves
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a slight improvement over RMSprop on Hospital-BJ data set, RMSprop beats Adam on all the other data sets. Though Adam is
an updated version of RMSprop, RMSprop is more suitable and stable for our model on NER task.

4.7.2 | Comparison with Different LSTM and GRU Dimensions

In this section, we explore the influence of LSTM and GRU dimensions on the performance of our model on CCKS-2018 data
set. To validated the effectiveness of dimensions, we set the different dimensions, i.e, 32, 64, 128 and 256, for LSTM and GRU
separately to compare their F;-score performance under IOB rule, which are shown in Fig.5.

As shown in Fig.5, the performance grows with the increasement of dimension. When the dimension is 32, the performance
is worst. With the dimension increasement from 32 to 128, the performance is improved significantly and become stable.
Though the performance is best when the dimension is 256, there is only a very slight improvement than 128. Considering the
computational cost and complexity, we set the dimension as 128 in our model.

98.4
........
98.3 o / X TS it
98.2
98.1
e ST e LSTM (32)
% R LSTM(64)
—— LSTM(128)
e — & — LSTM(256)
97.8

GRU(B2)  GRU(64)  GRU(128)  GRU(256)

FIGURE 5 F,-score of different LSTM and GRU parameter

S | CONCLUSION

In this paper, we introduce a Chinese clinical named entity recognition based on stacked neural network model, which performs
well on the three real-world data sets. Our model consists of three parts, i.e., input, encoder and output modules. The input
module is responsible to convert input characters into their embeddings with the help of a look-up layer. The encoder module
consists of the stacked neural network layer, which contains two bidirectional LSTM and GRU sub-layers to encode the clinical
text twice. The output module includes a linear layer and CRF layer, which predicts the tag for each input character according
to the encoding of stacked neural network layer. Extensive experimental results show that our method significantly outperforms
six state-of-the-art NER methods, which demonstrate the superiority of our proposed method. For future work, we plan to
investigate how to integrate more neural components into the proposed model and how to apply it on more similar tasks. We
will also further study how to enrich more effective features to the model so as to achieve more higher performance.
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