
Received: Added at production Revised: Added at production Accepted: Added at production
DOI: 10.1002/CPE.5789

RESEARCHARTICLE

Parallel Performance ofMolecular Dynamics Trajectory
Analysis
Mahzad Khoshlessan1 | Ioannis Paraskevakos2 | Geoffrey C. Fox3 | Shantenu Jha2 | Oliver
Beckstein*1,4

1Department of Physics, Arizona State
University, Tempe, AZ 85281, USA
2Department of Electrical & Computer
Engineering, Rutgers University, Piscataway,
NJ 08854, USA
3Digital Science Center, Indiana University,
Bloomington, IN 47405, USA
4Center for Biological Physics, Arizona State
University, Tempe, AZ 85281, USA
Correspondence
*Oliver Beckstein, Department of Physics,
Arizona State University, Tempe, AZ 85281,
USA. Email: oliver.beckstein@asu.edu

Summary
The performance of biomolecular molecular dynamics simulations has steadily increased on
modern high performance computing resources but acceleration of the analysis of the output tra-
jectories has lagged behind so that analyzing simulations is becoming a bottleneck. To close this
gap, we studied the performance of parallel trajectory analysis withMPI and the PythonMDAnal-
ysis library on three different XSEDE supercomputerswhere trajectorieswere read from a Lustre
parallel file system. Strong scaling performance was impeded by stragglers, MPI processes that
were slower than the typical process. Stragglers were less prevalent for compute-bound work-
loads, thus pointing to file reading as a bottleneck for scaling. However, a more complicated
picture emerged in which both the computation and the data ingestion exhibited close to ideal
strong scaling behavior whereas stragglers were primarily caused by either large MPI communi-
cation costs or long times to open the single shared trajectory file. We improved overall strong
scaling performance by either subfiling (splitting the trajectory into separate files) orMPI-IOwith
Parallel HDF5 trajectory files. The parallel HDF5 approach resulted in near ideal strong scaling on
up to 384 cores (16 nodes), thus reducing trajectory analysis times by two orders of magnitude
compared to the serial approach.
KEYWORDS:
Python, MPI, HPC,MDAnalysis, MPI I/O, HDF5, Straggler, Molecular Dynamics, Big Data, Trajec-
tory Analysis

1 INTRODUCTION
Molecular dynamics (MD) simulations are a powerful method to generate new insights into the function of biomolecules 1–5. These simulations pro-
duce trajectories—time series of atomic coordinates—that now routinely include millions of time steps and can measure Terabytes in size. These
trajectories need to be analyzed using statistical mechanics approaches 6,7 but because of the increasing size of the data, trajectory analysis is
becoming a bottleneck in typical biomolecular simulation scientific workflows 8. Many data analysis tools and libraries have been developed to
extract the desired information from the output trajectories fromMD simulations 9–22 but few can efficiently usemodern High Performance Com-
puting (HPC) resources to accelerate the analysis stage.MDtrajectory analysis primarily requires reading of data from thefile system; theprocessed
output data are typically negligible in size compared to the input data and thereforewe exclusively investigate the reading aspects of trajectory I/O
(i.e., the “I”). We focus on theMDAnalysis package 17,18, which is an open-source object-oriented Python library for structural and temporal analysis
of MD simulation trajectories and individual protein structures. AlthoughMDAnalysis accelerates selected algorithms with OpenMP, it is not clear
how to best use it for scaling up analysis on multi-node supercomputers. Here we discuss the challenges and lessons-learned for making parallel
analysis on HPC resources feasible withMDAnalysis, which should also be broadly applicable to other general purpose trajectory analysis libraries.

ar
X

iv
:1

90
7.

00
09

7v
4

 [
cs

.D
C

]
 2

7
M

ar
 2

02
0

2 KHOSHLESSAN ET AL

Previously, we had used a parallel split-apply-combine approach 23 to study the performance of the commonly performed “RMSDfitting” analysis
problem 24–26, which calculates the minimal root mean squared distance (RMSD) of the positions of a subset of atoms to a reference conformation
under optimization of rigid body translations and rotations 7,27,28. We had investigated two parallel implementations, one using Dask 29 and one
using themessage passing interface (MPI) withmpi4py 30,31. For bothDask andMPI, we had previously only been able to obtain good strong scaling
performance within a single node. Beyond a single node performance had dropped due to straggler tasks, a subset of tasks that had performed
abnormally slower than the typical task execution times; the total execution time had becomedominated by stragglers and overall performance had
decreased. Stragglers are awell-known challenge to improving performance onHPC resources 32 but there has been little discussion of their impact
in the biomolecular simulation community.
In the present study, we analyzed the MPI case in more detail to better understand the origin of stragglers with the goal to find parallelization

approaches to speed up parallel post-processing of MD trajectories in the MDAnalysis library. We especially wanted to make efficient use of the
resources provided by current supercomputers such asmultiple nodes with hundreds of CPU cores and a Lustre parallel file system.
As in our previous study 24 we selected the commonly used RMSD algorithm implemented inMDAnalysis as a typical use case.We employed the

single programmultiple data (SPMD) paradigm to parallelize this algorithm on three different HPC resources (XSEDE’s SDSC Comet, LSU SuperMic,
and PSC Bridges 33). With SPMD, each process executes essentially the same operations on different parts of the data. The three clusters differed
in their architecture but all used Lustre as their parallel file system.We used Python (https://www.python.org/), a machine-independent, byte-code
interpreted, object-oriented programming language, which is well-established in the biomolecular simulation community with good support for
parallel programming for HPC 30,34. We found that communication and reading I/Owere the twomain scalability bottlenecks, with some indication
that read I/O might have been interfering with the communications. Stragglers and therefore poor scaling were a consequence of inefficient use
of the parallel Lustre file system. We therefore focused on two different approaches to better leverage Lustre and mitigate I/O bottlenecks: MPI
parallel I/O (MPI-IO) with the HDF5 file format and subfiling (trajectory file splitting). MPI-IO eliminated stragglers and improved the performance
with near ideal scaling, S(N) = N, i.e., the speed-up S scaled linearly with the numberN of CPU cores while exhibiting a slope of one.
The paper is organized as follows: We first review stragglers and existing approaches to parallelizing MD trajectory analysis in section 2. We

describe the software packages and algorithms in section 3 and the benchmarking environment in section 4. Section 5 explains how we measured
performance. The main results are presented in section 6, with section 7 demonstrating reproducibility on different supercomputers. We provide
general guidelines and lessons-learned in section 8 and finish with conclusions in section 9.

2 BACKGROUNDANDRELATEDWORK
In our previouswork, we found that straightforward implementation of simple parallelizationwith a split-apply-combine algorithm in Python failed
to scale beyond a single compute node 24 because a few tasks (MPI-ranks orDask 29 processes) tookmuch longer than the typical task and so limited
the overall performance. However, the cause for these straggler tasks remained obscure. Here, we studied the straggler problem in the context of an
MPI-parallelized trajectory analysis algorithm in Python and investigated solutions to overcome it. We briefly review stragglers in section 2.1 and
summarize existing approaches to parallel trajectory analysis in section 2.2.

2.1 Stragglers
Stragglers or outliers were traditionally considered in the context of MapReduce jobs that consist of multiple tasks that all have to finish for the
job to succeed: A straggler was a task that took an “unusually long time to complete” 35 and therefore substantially impeded job completion. In
general, any component of a parallel workflow whose runtime exceeds a typical run time (for example, 1.5 times the median runtime) can be con-
sidered a straggler 36. Stragglers are a challenge for improving performance on HPC resources 32; they are a known problem in frameworks such as
MapReduce 35,36, Spark 37–40, Hadoop 35, cloud data centers 32,41, and have a high impact on performance and energy consumption of big data sys-
tems 42. Both internal and external factors are known to contribute to stragglers. Internal factors include heterogeneous capacity of worker nodes
and resource competition due to other tasks running on the same worker node. External factors include resource competition due to co-hosted
applications, input data skew, remote input or output source being too slow, faulty hardware 35,43, and nodemis-configuration 35. Competition over
scarce resources 36, in particular the network bandwidth,was found to lead to stragglers inwriting on Lustre file systems 44. Garbage collection 37,38,
Java virtual machine (JVM) positioning to cores 37, delays introducedwhile the tasks move from the scheduler to execution 39, disk I/O during shuf-
fling, Java’s just-in-time compilation 38, output skew 38, high CPU utilization, disk utilization, unhandled I/O access requests, and network package
loss 32 were also among other external factors that might introduce stragglers. A wide variety of approaches have been investigated for detect-
ing and mitigating stragglers, including tuning resource allocation and parallelism such as breaking the workload into many small tasks that are
dynamically scheduled at runtime 45, slowNode-Threshold 35, speculative execution 35 and cause/resource-aware taskmanagement 36, sampling or

https://www.python.org/

KHOSHLESSAN ET AL 3

data distribution estimation techniques, SkewTune to avoid data imbalance 46, dynamicwork rebalancing 41, blocked time analysis 47, and intelligent
scheduling 48.
In the present study, we analyzedMD trajectories in parallel with MPI and Python and observed large variations in the completion time of indi-

vidualMPI ranks. These variations bore some similarity to the straggler tasks observed inMapReduce frameworks sowe approached analyzing and
eliminating them in a similar fashion by systematically looking at different components of the problem, including read I/O from the shared Lustre
file system and MPI communication. Even though we specifically worked in with the MDAnalysis package, all these principles and techniques are
potentially applicable toMPI-parallelized data analysis in other Python-based libraries.

2.2 Other Packages with Parallel Analysis Capabilities
Different approaches to parallelizing the analysis ofMDtrajectories havebeenproposed.HiMach 14 introduces scalable andflexible parallel Python
framework to deal withmassiveMD trajectories, by combining and extendingGoogle’sMapReduce and theVMDanalysis tool 11. HiMach’s runtime
is responsible for parallelizing and distributingMap and Reduce classes to assigned cores. HiMach uses parallel I/O for file access during map tasks
and MPI_Allgather in the reduction process. HiMach, however, does not discuss parallel analysis of analysis types that cannot be implemented via
MapReduce. Furthermore, HiMach is not available under an open source license, whichmakes it difficult to integrate community contributions and
add new state-of-the-art methods.
Wu et. al. 49 present a scalable parallel framework for distributed-memory MD simulation data analysis. This work consists of an interface that

allows a user to write analysis programs sequentially, and themachinery that ensures these programs execute in parallel automatically. Paralleliza-
tion is performed over domains in the simulation system via domain decomposition and the introduction of ghost atoms to include appropriate
nearest neighbor interactions. The HDF5 file format is used for parallel reading and writing. This work focuses on applications in the materials
science and does not consider parallelization over trajectory blocks.
Zazen 50 is a novel task-assignment protocol to overcome the I/O bottleneck formany I/O bound tasks. This protocol caches a copy of simulation

output files on the local disks of the computenodesof a cluster, anduses co-locateddata accesswith computation. Zazen is implemented in aparallel
disk cache system and avoids the overhead associated with querying metadata servers by reading data in parallel from local disks. This approach
has also been used to improve the performance of HiMach 14. It, however, advocates a specific architecture where a parallel supercomputer, which
runs the simulations, immediately pushes the trajectory data to a local analysis cluster where trajectory fragments are cached on node-local disks.
In the absence of such a specificworkflow, onewould need to stage the trajectory across nodes, and the time for data distribution is likely to reduce
any gains from the parallel analysis.
VMD 11,51 provides molecular visualization and analysis tool through algorithmic and memory efficiency improvements, vectorization of key

CPU algorithms, GPU analysis and visualization algorithms, and good parallel I/O performance on supercomputers. It is one of the most advanced
programs for the visualization and analysis of MD simulations. It is, however, a large monolithic program, that is primarily driven through its built-
in Tcl interface (or less frequently, through its Python interface) and thus is less well suited as a library that allows the rapid development of new
algorithms or integration into workflows.
CPPTRAJ 19 offers multiple levels of parallelization (MPI and OpenMP) in a monolithic C++ implementation. It can process single, multiple, and

ensembles of trajectories in parallel without changes to input scripts 52. A Python API exists in the form of the pytraj package (https://github.com/
Amber-MD/pytraj), which has its own implementation of parallelization based on Python’s multiprocessing orMPI (viampi4py 30,31).
pyPcazip 53 is a suite of software tools written in Python for compression and analysis ofMD simulation data, in particular ensembles of trajecto-

ries. pyPcazip isMPI parallelized and is specific to PCA-based investigations ofMD trajectories and supports awide variety of trajectory file formats
(based on the capabilities of the underlying MDTraj package 20). pyPcazip can take one or many input MD trajectory files and convert them into a
highly compressed, HDF5-based pcz formatwith insignificant loss of information. However, the package does not support general purpose analysis.
In situ analysis is an approach to execute analysis simultaneously with the running MD simulation so that I/O bottlenecks are mitigated 54,55.

Malakar et al. 54 studied the scalability challenges of time and space shared modes of analyzing large-scale MD simulations through a topology-
aware mapping for simulation and analysis using the LAMMPS code. Similarly, Taufer and colleagues 55 presented their own framework for in situ
analysis, which is based on fast on-the-fly calculation of metadata that characterizes protein substructures via maximum eigenvalues of distance
matrices. These metadata are used to index trajectory frames and enable targeted analysis of trajectory subsets. Both studies provide important
ideas and approaches towardsmoving towards online-analysis in conjunction with a running simulation but are limited in generality.
All of the above frameworks provide tools for parallel analysis of MD trajectories. Although straggler tasks are a common challenge arising in

parallel analysis and arewell-known in the data analysis community (see Section 2.1), there is, to our knowledge, little discussion about this problem
in thebiomolecular simulation community.Our ownexperiencewith aMapReduce approach inMDAnalysis 24,26 suggested that stragglersmight be a
somewhat under-appreciated problem. Therefore, in the present work wewanted to better understand requirements for efficient parallel analysis
ofMD trajectories inMDAnalysis, but to also providemore general guidance that could benefit developments in other libraries.

https://github.com/Amber-MD/pytraj
https://github.com/Amber-MD/pytraj

4 KHOSHLESSAN ET AL

3 ALGORITHMSAND SOFTWARE PACKAGES
For our investigation of parallel trajectory analysiswe focus onusingMPI as the standard approach to parallelization inHPC.Weemploy thePython
language, which is widely used in the scientific community because it facilitates rapid development of small scripts and code prototypes as well as
development of large applications and highly portable and reusablemodules and libraries.We use theMDAnalysis library to calculate a “RMSD time
series” (explained in section 3.1) as a representative use case. Further details on the software packages are provided in sections 3.2–3.3.

3.1 RMSDCalculationwithMDAnalysis
Simulationdata exist in trajectories in the formof time series of atompositions and sometimes velocities. Trajectories come in a plethora of different
and idiosyncratic file formats. MDAnalysis 17,18 is a widely used open source library to analyze trajectory files with an object oriented interface.
The library is written in Python, with time critical code in C/C++/Cython.MDAnalysis supports most file formats of simulation packages including
CHARMM 56, Gromacs 57, Amber 58, and NAMD 59 and the Protein Data Bank 60 format. At its core, it reads trajectory data in different formats and
makes them available through a uniformAPI; specifically, coordinates are represented as standard NumPy arrays 61.

Universe
(Open_trajectory)

read frame
 (I/O)

compute

end
block?

close traj.
 (Ending_loop)

yes

no

MPI _Gather
 (Communication)

topening_trajectory

tI/O

tcomp

tend_loop

tcomm

re
ad

 I/
O

ne
tw

or
k

tra
ffi

c
Lu

st
re

pr
oc

es
s

ne
tw

or
k

tra
ffi

c

(a) (b)

FIGURE 1 Flow chart of the MPI-parallelized RMSD algorithm, Algorithm 1. (a) Each MPI process performs the same steps but reads trajectory
frames from different blocks of the trajectory. The color scheme and labels in italics correspond to the colors and labels for measured timing quan-
tities in the following graphs (e.g., Figs. 2c and 2d). The names of the corresponding timing quantities from Table 3 are listed next to each step. (b)
Steps that access the shared Lustre file system with read I/O are included in the black bars; steps that communicate via the shared InfiniBand net-
work are included in the gray “network traffic” bars. The Lustre file system is accessed through the network and hence all I/O steps also use the
network (gray “Lustre network traffic” bars). Processes only communicate over the network (gray “process network traffic” bar) when results are
communicated back to process rank 0 in the Communication step.

As a test case that is representative of a common task in the analysis of biomolecular simulation trajectories we calculated the time series of the
minimal structural root mean square distance (RMSD) after rigid body superposition 7,28. The RMSD is used to show the rigidity of protein domains
andmore generally characterizes structural changes. It is calculated as a function of time t as

RMSD(t) = min
R,t

√√√√ 1

N

N∑
i=1

[
(R · xi(t) + t)− xrefi

]2 (1)

wherexi(t) is the position of atom i at time t,xrefi is its position in a reference structure and the distance between these two is minimized by finding
theoptimum3×3 rotationmatrixR and translation vector t. Theoptimumrigid body superpositionwas calculatedwith theQCPROTalgorithm 27,62

(implemented in Cython and available through the MDAnalysis.analysis.rmsmodule 18).
The RMSD trajectory analysis was parallelizedwith a simple split-apply-combine approach 23 as outlined in the flow chart in Figure 1, with further

details available in Algorithm 1. EachMPI process loads the coreMDAnalysis data structure (called the Universe), which includes loading a shared
“topology” file with the simulation system information and opening the shared trajectory file. Each process operates on a different block of frames

KHOSHLESSAN ET AL 5
(split) and iterates through themby reading the coordinates of a single frame intomemory andperforming theRMSDcomputationwith them (apply).
Once all frames in the block are processed, the trajectory file is closed and results are communicated toMPI rank 0 using MPI_Gather() (combine).
The RMSD was determined for a subset of protein atoms, the N = 146 Cα atoms in the so-called “core” domain of our test system, the protein

adenylate kinase 63 (see section 4.3 for further details). The time complexity for the RMSD Algorithm 1 is O(T × N2) where T is the number of
frames in the trajectory andN the number of particles included in the RMSD calculation 27.

Algorithm 1MPI-parallel Multi-frame RMSDAlgorithm
Input: size: total number of framesref: mobile group in the initial framewhich will be considered as referencestart & stop: starting and stopping frame indextopology & trajectory: files to read the data structure fromOutput: calculated RMSD arrays

1: function BLOCK_RMSD(topology, trajectory, ref , index, start, stop)
2: u←Universe(topology, trajectory) . u holds all the information of the system
3: g← u.atoms[index] . select AtomGroup g
4: for all iframe in u.trajectory[start : stop] do . iterate through frames, enumerated by iframe
5: results[iframe]← RMSD(g, ref) . Eq. 1
6: end for
7: return results
8: end function
9:
10: MPI Init
11: rank← rank_ID
12: index← indices of themobile AtomGroup
13: xref0← reference AtomGroup position
14: out← BLOCK_RMSD(topology, trajectory, xref0, index, start, stop)
15:
16: GATHER(out,RMSD_data, rank_ID = 0)
17: MPI Finalize

3.2 MPI for Python (mpi4py)
MPI for Python (mpi4py) is a Pythonwrapper for theMessage Passing Interface (MPI) standard and allows any Python program to employmultiple
processors 30,31. Performance degradation due to usingmpi4py is not prohibitive 30,31 and the overhead is far smaller than the overhead associated
with the use of interpreted versus compiled languages 34. Overheads in mpi4py are small compared to C code if efficient raw memory buffers are
used for communication 30, as used in the present study.

3.3 MPI and Parallel HDF5
HDF5 is a structured self-describing hierarchical data formatwhich is a commonmechanism for storing large quantities of numerical data in Python
(http://www.hdfgroup.org/HDF5, 64). Parallel HDF5 (PHDF5) typically sits on top of aMPI-IO layer (parallel I/OwithMPI) and can useMPI-IO opti-
mizations. In PHDF5, all file access is coordinated by the MPI library; otherwise, multiple processes would compete over accessing the same file
on disk. MPI-based applications launch multiple parallel instances of the Python interpreter that communicate with each other via theMPI library.
Implementation is straightforward as long as the user supplies a MPI communicator and takes into account some constraints required for data
consistency 64.HDF5 itself handles nearly all thedetails involvedwith coordinatingfile accesswhen the sharedfile is opened through thempiodriver.
MPI has two flavors of operation: collective (all processes have to participate in the same order) and independent (processes can perform the

operation in any order or not at all) 64. With PHDF5, modifications to file metadata must be performed collectively and although all processes per-
form the same task, they do not need to be synchronized 64. Other tasks and any type of data operations can be performed independently by
processes. In the present study, we use independent operations.
MDAnalysis does not currently have a reader for HDF5 files or HDF5-based trajectories. In order to get a sense of the performance that is

possible with a HDF5 trajectory we replaced the MDAnalysis trajectory reading in Algorithm 1 with directly accessing a HDF5 Dataset in a HDF5
file that was opened with the mpio parallel driver, as shown in Algorithm 2. The HDF5 file was generated from the original XTC trajectory file as
described in Section 4.3.

http://www.hdfgroup.org/HDF5

6 KHOSHLESSAN ET AL

Algorithm 2MPI-parallel Multi-frame RMSDAlgorithmwith HDF5 files.
Input: size: total number of framesref: mobile group in the initial framewhich will be considered as referencestart & stop: starting and stopping frame indexdataset: HDF5Dataset of the coordinates in the trajectoryOutput: calculated RMSD arrays

1: function block_rmsd(dataset, ref , start, stop)
2: for start ≤ iframe < stop do
3: results[iframe]← RMSD(dataset[iframe], ref) . Eq. 1
4: end for
5: return results
6: end function
7:
8: MPI Init
9: rank← rank_ID
10: xref0← reference atom group position
11: f ← openHDF5 file for parallel MPI-IO reading . usempio driver
12: dataset← get dataset ’pos’ from f
13: out← BLOCK_RMSD(dataset, xref0, start, stop)
14:
15: GATHER(out,RMSD_data, rank_ID = 0)
16: MPI Finalize

4 BENCHMARK ENVIRONMENT
Our benchmark environment consisted of three different XSEDE 33 HPC resources (described in section 4.1), the software stack used (section 4.2),
which had to be compiled for each resource, and the common test data set (section 4.3).

4.1 HPCResources
The computational experiments were executed on standard compute nodes of three XSEDE 33 supercomputers, SDSC Comet, PSC Bridges, and LSU
SuperMIC (Table 1). SDSC Comet is a 2 PFlop/s cluster with 2,020 compute nodes in total. It is optimized for running a large number of medium-size
calculations (up to 1,024 cores) to support the most prevalent type of calculation on XSEDE resources. PSC Bridges is a 1.35 PFlop/s cluster with
different types of computational nodes, including 16 GPU nodes, 8 large memory and 2 extreme memory nodes, and 752 regular nodes. It was
designed to flexibly support both traditional (medium scale calculations) and non-traditional (data analytics) HPC uses. LSU SuperMIC offers 360
standard compute nodes with a peak performance of 557 TFlop/s. The parallel file system on all three machines is Lustre (http://lustre.org/) and is
shared between the nodes of each cluster.

TABLE 1 Configuration of the HPC resources that were benchmarked. Only a subset of the total available nodes were used. IB: InfiniBand; OPA:
Omni-Path Architecture.

Name Nodes Number
of Nodes CPUs RAM Network Topology Scheduler and

ResourceManager
parallel

file system

SDSC Comet Compute 6400 2 Intel Xeon (E5-2680v3)
12 cores/CPU, 2.5 GHz 128GBDDR4DRAM 56Gbps IB SLURM Lustre

PSC Bridges RSM 752 2 Intel Haswell (E5-2695 v3)
14 cores/CPU, 2.3 GHz 128GB, DDR4-2133MHz 12.37 GbpsOPA SLURM Lustre

LSU SuperMIC Standard 360 2 Intel Ivy Bridge (E5-2680)
10 cores/CPU, 2.8 GHz 64GB, DDR3-1866MHz 56Gbps IB PBS Lustre

4.2 Software
Table 2 lists the tools and libraries that were required for our computational experiments. Many domain specific packages are not available in
the standard software installation on supercomputers. We therefore had to compile them, which in some cases required substantial effort due to

http://lustre.org/

KHOSHLESSAN ET AL 7
non-standard building and installation procedures or lack of good documentation. Because this is a common problem that hinders reproducibility
we provide detailed version information, notes on the installation process, as well as comments on the ease of installation and the quality of the
documentation in Table 2. For the MPI implementation we used Open MPI release 1.10.7 (https://www.open-mpi.org/) consistently everywhere.
We used the h5py package forHDF5, which enables parallel HDF5 fromPython because its dependencies, theHDF5 library itself andmpi4py, were
both built against OpenMPI.We used Python 2.7 because it providedmaximum compatibility between packages at the time when the project was
started. In principle the complete Python-dependent software stack could also be set upwith Python 3.5 or higher, which is recommended because
Python2 reachedendof life in January2020.Detailed instructions to create the computing environments togetherwith thebenchmarking code can
be found in the GitHub repository as described in Section 5.3. Carefully setting up the same software stack on the three different supercomputers
allowed us to clearly demonstrate the reproducibility of our results and showed that our findings were not dependent onmachine specifics.

TABLE 2 Detailed comparison on the dependencies and installation of different software packages used in the present study. Software was built
from source or obtained via a package manager and installed on the multi-user HPC systems in Table 1. Evaluation of ease of installation and doc-
umentation uses a subjective scale with “++” (excellent), “+” (good), “0” (average), and “−” (difficult/lacking) and reflects the experience of a typical
domain scientist at the graduate/post-graduate level in a discipline such as computational biophysics or chemistry.

Package Version Description Ease of Installation Documentation Installation Dependencies

GCC 4.9.4 GNUCompiler Collection 0 ++

via configuration
files, environment
or command line options,
minimal configuration
is required

–

OpenMPI 1.10.7 MPI Implementation 0 ++

via configuration
files, environment
or command line options,
minimal configuration
is required

–

Python 2.7.13 Python language + ++ Conda Installation –

mpi4py 3.0.0 MPI for Python + ++ Conda Installation

Python 2.7 or above,
MPI 1.x/2.x/3.x
implementation like
OpenMPI
built with shared/dynamic
libraries, Cython

PHDF5 1.10.1 Parallel HDF5 − ++

via configuration files,
environment
or command line options,
several optional configuration
settings available

MPI 1.x/2.x/3.x
implementation like
OpenMPI
GNU,MPIF90,
MPICC,MPICXX

h5py 2.7.1 Pythonic wrapper around the HDF5 + ++ Conda Installation Python 2.7, or above,
PHDF5, Cython

MDAnalysis 0.17.0 Python library to analyze
trajectories fromMD simulations + ++ Conda Installation Python≥2.7, Cython,

GNU, Numpy

4.3 Data Set
The test system contained the protein adenylate kinase with 214 amino acid residues and 3341 atoms in total 63 and the topology information
(atoms types and bonds) was stored in a file in CHARMM PSF 56 format. The test trajectory was created by concatenating 600 copies of a MD
trajectory with 4,187 time frames 65 (saved every 240 ps for a total simulated time of 1.004 µs) in CHARMM DCD 56 format and converting to
Gromacs 57 XTC format trajectory, as described for the “600x” trajectory in Khoshlessan et al. 24 . The trajectory had a file size of about 30 GB and
contained 2,512,200 frames (corresponding to 602.4 µs simulated time). The file size was relatively small because water molecules that were also

https://www.open-mpi.org/

8 KHOSHLESSAN ET AL

part of the originalMD simulationswere stripped to reduce the original file size by a factor of about 10; such preprocessing is a common approach if
one is only interested in the protein behavior. Thus, the trajectory represents a small tomedium system size in the number of atoms and coordinates
that have to be loaded into memory for each time frame. The XTC format is a format with lossy compression 66,67, which also contributed to the
compact file size. XTC trades lower I/O demands for higher CPU demands during decompression and therefore performed well in our previous
study 24. In order to assess the performance of reading from an HDF5 file in parallel (see Section 3.3) we generated a trajectory-like HDF5 file
with the data required to perform the RMSD calculation. This HDF5 file was created from the XTC file by sub-selecting the atoms for which the
RMSD was calculated as detailed in Section 3.1; a Python script to perform the trajectory conversion can be found in the GitHub repository (see
Section 5.3). The coordinates were stored as a two-dimensional T × 3N array where the first dimension contained T = 2, 512, 200 frames and
the second dimension the 3N = 438 Cartesian coordinates. Although 2,512,200 frames represents a long simulation for current standards, such
trajectories will become increasingly common due to the use of special hardware 68,69 and GPU-acceleration 57,70,71.

5 METHODS
In the following we define the quantities and approach used for our performance measurements, with a full summary of all definitions in Table 3.
We evaluated MPI performance of the parallel RMSD time series algorithm 1 and its variation (algorithm 2) by timing the total time to solution as
well as the execution time for different parts of the code for individualMPI ranks with the help of the Python time.time() function.

TABLE 3 Summary ofmeasured timing quantities. Timings are collected for the specified line numbers in the code, labeled as tLn where Ln refers to
the line number in the corresponding algorithm (columnsAlgorithm1 and 2), or are calculated in the sameway for both algorithms from the specific
quantities. Variables in the top part of the table refer to measurements of an individual MPI rank. Variables in the bottom part are aggregates such
as averages over all ranks or the total time to solution.

Quantity Definition Description
Algorithm 1 Algorithm 2

topening_trajectory tL2 + tL3 —a file opening and data structure initialization
tframeI/O tL4 tL2 data reading per frame
tframecomp tL5 tL3 compute per frame
tall_frame tL4 + tL5 + tL6 tL2 + tL3 + tL4 time to analyze one frame
tRMSD tL1 + ...+ tL8 tL1 + ...+ tL6 time toexecute thebodyof theblock_rmsd() func-

tion
tend_loop tL6 tL4 closing of the trajectory at the end of the loop
tcomm tL16 tL15 data communication with MPI_Gather()
Ntotalframes total number of trajectory frames

N total number of MPI ranks (processes), equals the
number of trajectory blocks

Nb Ntotalframes/N number of frames per block
tcomp

∑Nbframe=1 t
framecomp total compute time for a rank (process)

tI/O
∑Nbframe=1 t

frameI/O total read I/O time for a rank (process)
tOverhead1 tall_frame − tI/O − tcomp − tend_loop time inside block_rmsd() that was not measured

explicitly
tOverhead2 tRMSD − tall_frame − topening_trajectory overhead for the block_rmsd() function call

tN tRMSD + tcomm total time to completion for a rank (process)
tcomp 1

N

∑Nrank=1 tcomp average compute time over all ranks
tI/O 1

N

∑Nrank=1 tI/O average read I/O time over all ranks
tcomm 1

N

∑Nrank=1 tcomm average communication time over all ranks
ttotal max tN total time to solution

a Algorithm 2 does not need to open a trajectory inside the block_rmsd() function and hence topening_trajectory
only measures time to allocate empty arrays, which is not explicitly shown in Algorithm 2.

KHOSHLESSAN ET AL 9

5.1 TimingObservables
We abbreviate the timings in the following as variables tLn where Ln refers to the line number in algorithm 1 (or algorithm 2, see Table 3). In the
function block_rmsd(), wemeasured the read I/O time for ingesting the data of one trajectory frame from the file system intomemory, tframeI/O = tL4,
and the compute time per trajectory frame to perform the computation, tframecomp = tL5. The total read I/O time for a MPI rank, tI/O =

∑Nbframe=1 t
frameI/O , is

the sum over all I/O times for all the Nframes frames assigned to the rank; similarly, the total compute time for a MPI rank is tcomp =
∑Nbframe=1 t

framecomp .
The time delay between the end of the last iteration and exiting the for loop is tend_loop = tL6. The time topening_trajectory = tL2 + tL3 measures the
problem setup, which includes data structure initialization and opening of topology and trajectory files. The communication time, tcomm = tL16, is
the time to gather all data from all processor ranks to rank zero. The total time (for all frames) spent in block_rmsd() is tRMSD =

∑8
i=1 tLi. There

are parts of the code in block_rmsd() that are not covered by the detailed timing information of tcomp and tI/O. Unaccounted time is considered as
overhead. We define tOverhead1 and tOverhead2 as the overheads of the calculations (see Table 3 for the definitions); both are expected to be negligible,
which was the case in all our measurements. Finally, the total time to completion of a single MPI rank, when utilizing N cores for the execution of the
overall experiment, is tN, and as a result tRMSD + tcomm ≡ tN.

5.2 Performance Parameters
We measured the total time to solution ttotal(N) with N MPI processes on N cores, which is effectively ttotal(N) ≈ max(tN). Strong scaling was
quantified by the speed-up

S(N) =
ttotal(1)
ttotal(N)

, (2)
relative to performance on a single core (ttotal(1)), and the efficiency

E(N) =
S(N)

N
. (3)

Averages over ranks were calculated as
tcomp =

1

N

N∑
rank=1

tcomp =
1

N

N∑
rank=1

Nb∑
frame=1

tframecomp , (4)

tI/O =
1

N

N∑
rank=1

tI/O =
1

N

N∑
rank=1

Nb∑
frame=1

tframeI/O , (5)
and

tcomm =
1

N

N∑
rank=1

tcomm. (6)
Additionally, we introduced two performance parameters that we found to be indicative of the occurrence of stragglers.We defined the ratio of

compute time to read I/O time for the serial code as
Rcomp/IO =

tcomp
tI/O

=
tcomp/N totalframes
tI/O/N totalframes

=
tframecomp
tframeI/O

(7)

where the last equality shows that the ratio can also be computed from the average times per frame, tframecomp and tframeI/O . Rcomp/IO was calculated with
the serial versions of our algorithms (on a single CPU core) in order to characterize the computational problem in the absence of parallelization. The
ratio of compute to communication timewas defined by the ratio of average total compute time to the average total communication time

Rcomp/comm =
tcomp
tcomm

. (8)
Because tcomm cannot bemeasured for a serial code, we estimatedRcomp/comm from the rank-averages (Eqs. 4 and 6) for a given number ofMPI ranks.

5.3 Data sharing
Documentation and benchmark/trajectory conversion scripts are made available in the repository https://github.com/hpcanalytics/
supplement-hpc-py-parallel-mdanalysis under the GNU General Public License v3.0 (code) and the Creative Commons Attribution-ShareAlike
(documentation). All materials are archived under DOI 10.5281/zenodo.3351616. These materials should enable users to recreate the computa-
tional environment on the tested XSEDE HPC resources (SDSC Comet, PSC Bridges, LSU SuperMIC), prepare data files, and run the computational
experiments.

https://github.com/hpcanalytics/supplement-hpc-py-parallel-mdanalysis
https://github.com/hpcanalytics/supplement-hpc-py-parallel-mdanalysis
https://doi.org/10.5281/zenodo.3351616

10 KHOSHLESSAN ET AL

6 COMPUTATIONAL EXPERIMENTS
We had previously measured the performance of theMPI-parallelized RMSD analysis task on two different HPC resources (SDSC Comet and TACC
Stampede) and had found that it only scaled well up to a single node due to high variance in the runtime of the MPI ranks, similar to the straggler
phenomenonobserved inbig-data analytics 24. However, theultimate cause for this high variance couldnotbeascertained.We thereforeperformed
moremeasurementswithmore detailed timing information (see section 5) on SDSCComet (described in this section) and twoother supercomputers
(summarized in section 7) in order to better understand the origin of the stragglers and find solutions to overcome them.

6.1 RMSDBenchmark
Wemeasured strong scaling for the RMSD analysis task (Algorithm 1) with the 2,512,200 frame test trajectory (section 4.3) on 1 to 72 cores (one
to three nodes) of SDSC Comet (Figures 2a and 2b). We observed poor strong scaling performance beyond a single node (24 cores), comparable to
our previous results 24. A more detailed analysis showed that the RMSD computation, and to a lesser degree the read I/O, considered on their own,
scaledwell beyond50 cores (yellowandblue lines in Figure 2c). But communication (sending results back toMPI rank 0with MPI_Gather(); red line
in Figure 2c) and the initial file opening (loading the system information into the MDAnalysis.Universe data structure from a shared topology file
and opening the shared trajectory file; gray line in Figure 2c) started to dominate beyond 50 cores. Communication cost and initial time for opening
the trajectory were distributed unevenly across MPI ranks, as shown in Figure 2d. The ranks that took much longer to complete than the typical
execution time of the other ranks were the stragglers that hurt performance.
We qualitatively denoted by straggler any MPI rank that took at least about twice as long as the group of ranks that finished fastest, roughly

following the original description of a straggler as a task that took an “unusually long time to complete” 35. The fast-finishing ranks were generally
clearly distinguishable in the per-rank timings such as in Figures 2d andA1d. Such aqualitative definition of stragglerswas sufficient for our purpose
of identifying scalability bottlenecks, as shown in the following discussion.

Identification of Scalability Bottlenecks
In the example shown in Figure 2d, 62 ranks out of 72 took about 60 s (the stragglers) whereas the remaining ranks only took about 20 s. In other
instances, far fewer rankswere stragglers, as shown, for example, in Figure A1d. The detailed breakdown of the time spent on each rank (Figure 2d)
showed that the computation, tcomp, was relatively constant across ranks. The time spent on reading data from the shared trajectory file on the
Lustre file system intomemory, tI/O, showed variability across different ranks. The stragglers, however, appeared to be definedbyoccasionallymuch
larger communication times, tcomm (line 16 in Algorithm 1), which were on the order of 30 s, and by larger times to initially open the trajectory (line
2 in Algorithm 1). tcomm varied across different ranks and was barely measurable for a few of them. Although the data in Figure 2d represented one
run and in other instances different number of ranks were stragglers, the averages over all ranks in five independent repeats (Figure 2c) showed
that increased tcomm were generally the reason for large variations in the run time for each rank. This initial analysis indicated that communication
was a major issue that prevented good scaling beyond a single node but the problems related to file I/O also played an important role in limiting
scaling performance.

Influence of Hardware
We ran the same benchmarks on multiple HPC systems that were equipped with a Lustre parallel file system [XSEDE’s PSC Bridges (Figure A1) and
LSU SuperMIC (Figure A2)], and observed the occurrence of stragglers, in a manner very similar to the results described for SDSC Comet. There was
no clear pattern in which certainMPI ranks would always be a straggler, and neither could we trace stragglers to specific cores or nodes. Therefore,
the phenomenon of stragglers in the RMSD case was reproducible on different clusters and thus appeared to be independent from the underlying
hardware.

6.2 Effect of Compute to I/O Ratio on Performance
The results in section 6.1 indicated that opening the trajectory, communication, and read I/O were important factors that appeared to correlate
with stragglers. In order to better characterize the RMSD task, we computed the ratio between the time to complete the computation and the time
spent on I/Oper frame,Rcomp/IO (Eq. 7). The average valueswere tframecomp = 0.09ms, tframeIO = 0.3ms, resulting in a compute-to-I/O ratioRcomp/IO ≈ 0.3.
WithRcomp/IO � 1, the RMSD analysis task was characterized as I/O bound.

KHOSHLESSAN ET AL 11

10
0

10
1

NProcesses

10
2

10
3

To
ta

l t
im

e
t to

ta
l(s

)

(a) Scaling total (five repeats)

20 40 60
NProcesses

10

20

30

40

50

60

70

Sp
ee

d
U

p
(S

=
t 1 t N

)

(b) Speed-up (five repeats)

10
0

10
1

10
2

NProcesses

10
0

10
1

10
2

10
3

10
4

Ti
m

e
(s

)

IO
Compute

Opening Trajectory
Communication

(c) Scaling for different components (five repeats)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Processor Ranks

0

10

20

30

40

50

To
ta

l T
im

e
(s

)

Compute
IO
Communication

Overhead2
Overhead1

Opening_trajectory
Ending_loop

(d) Time comparison on different parts of the calculations perMPI rank (example)

FIGURE 2 Performance of the RMSD task parallelized with MPI on SDSC Comet. Results were communicated back to rank 0. Five independent
repeats were performed to collect statistics. (a-c) The error bars show standard deviation with respect to the mean. In serial, there is no commu-
nication and no data points are shown forN = 1 in (c). (d) Compute tcomp, read I/O tI/O, communication tcomm, ending the for loop tend_loop, opening
the trajectory topening_trajectory, and overheads toverhead1, toverhead2 per MPI rank; see Table 3 for definitions. These are data from one run of the five
repeats. MPI ranks 0, 12–27 and 29–72 are stragglers.

In other studies, better scaling was observed for analysis tasks that were more compute-intensive than the RMSD calculation, such as a radial
distribution function calculation 26,52, i.e., analysis tasks that could be characterized as compute-bound. Such behavior is expected, as the contribu-
tion from the parallel part of the program that requires neither I/O nor communication is increased. From a practical point of view, it is of interest
to understand the size of the effect of increasing the computational load on strong scaling, and in our case, we were interested in seeing if changes
in the compute part (namely the RMSD calculation on coordinates held inmemory) would have an effect on the execution time of other parts of the
program. In Appendix B we set out to analyze compute bound tasks, i.e. ones withRcomp/IO � 1. To assess the effect of theRcomp/IO ratio on perfor-
mancewhile leaving other parameters the same, we artificially increased the computational load by repeating the RMSD calculation andmeasured

12 KHOSHLESSAN ET AL

strong scaling (Figure B4). With increasing Rcomp/IO, the impact of stragglers appeared to lessen (although they did not disappear) and scaling per-
formance improved, as expected (seeAppendix B.1). Better scaling alsowent togetherwith a higher ratio of compute to communication (Rcomp/comm,
Eq. 8) as shown in Appendix B.2 but ultimately I/O seemed to be the key determinant for performance.

20 40 60
NProcesses

0

10

20

30

40

50

60

70

S
pe

ed
 U

p

with I/O without I/O

(a) Speed up comparison

10
0

10
1

10
2

NProcesses

10
0

10
1

10
2

10
3

10
4

Ti
m

e
(s

)

Compute Communication

(b) Scaling for different components

0 20 40 60
Processor Ranks

0

1

2

3

4

To
ta

l T
im

e
(s

)

Compute
IO
Communication

Overhead2
Overhead1

Opening_trajectory
Ending_loop

(c) Time comparison on different parts of the calculations perMPI rank when I/O is removed

FIGURE 3 Comparison of the performance of the RMSD task with I/O (Rcomp/IO ≈ 0.3) and without I/O (Rcomp/IO = +∞) on SDSC Comet. Five
repeats were performed to collect statistics. (a-b) The error bars show standard deviation with respect to the mean. (b) Only compute tcomp and
communication tcomm are included; there are no timings related to I/O (tI/O, topening_trajectory) as in Figure 2c. (c) Compute tcomp, read I/O tI/O = 0,
communication tcomm, ending the for loop tend_loop = 0, opening the trajectory topening_trajectory = 0, and overheads toverhead1, toverhead2 per MPI rank.
(See Table 3 for definitions.)

In order to study an extreme case of a compute-bound task that would demonstrate the effect of “ideal” read I/O, we eliminated all I/O from the
RMSD task by randomly generating artificial trajectory data inmemory; the data had the same size as if they had been obtained from the trajectory
file. The time for the data generation was excluded and no file access was necessary. Without any I/O, performance improved markedly (Figure 3),
with reasonable scaling up to 72 cores (3 nodes). No stragglerswere observed because overall communication time decreased dramatically bymore
than a factor of ten and showed less variability (Figure 3b) compared to the same runs with I/O (Figure 2c), even though exactly the same amount
of data were communicated. The scaling performance suffered somewhat for more than 40 processes only because the cost of communication
tcomm became comparable to the compute time tcomp and would not decrease further. Although in practice I/O cannot be avoided, this experiment
demonstrated that the way how the trajectory file was accessed on the Lustre file systemwas at least one cause for the observed stragglers. It also
showed that the communication cost for the same amount of data transfer could be dramatically higher in the presence of I/O than in its absence.

6.3 Reducing I/O Cost
In order to improve performancewe needed to employ strategies to avoid the competition over file access across different ranks when theRcomp/IO
ratio was small. One obvious approach when using the Lustre parallel file system is to increase the number of stripes, i.e., the number of copies of a
file that are stored on different object storage targets (OSTs). But because in our previous work we did not see scaling performance improvement
with varying the stripe count 24 we decided to just use the system default, i.e., one stripe per file. Instead we experimented with two different
ways for reducing the I/O cost: 1) splitting the trajectory file into as many segments as the number of processes (subfiling), thus using file-per-
process access, and 2) using the HDF5 file format together with MPI-IO parallel reads instead of the XTC trajectory format. We discuss these two
approaches and their performance improvements in detail in the following sections.

6.3.1 Splitting the Trajectories (subfiling)
Subfiling is a mechanism previously used for splitting a large multi-dimensional global array to a number of smaller subarrays in which each smaller
array is saved in a separate file. Subfiling reduces the file system control overhead by decreasing the number of processes concurrently accessing
a shared file 72,73. Because subfiling is known to improve performance of parallel shared-file I/O, we investigated splitting our trajectory file into as
many trajectory segments as the number of processes. The trajectory filewas split intoN segments, one for each process, with each segment having
Nb frames. This way, each process would access its own trajectory segment file without competing for file accesses.

KHOSHLESSAN ET AL 13
We ran a benchmark up to 8 nodes (192 cores) and observed rather better scaling behavior with efficiencies above 0.6 (Figure 4a and 4b) with

the delay time for stragglers reduced from 65 s to about 10 s for 72 processes. However, scaling was still far from ideal due to the MPI communi-
cation costs. Although the delay due to communicationwasmuch smaller than compared to parallel RMSDwith shared-file I/O [compare Figure 4d
(tStragglercomm � tcomp + tI/O) to Figure 2d (tStragglercomm ≈ tcomp + tI/O)], it was still delaying several processes and resulted in longer job completion times
(Figure 4d). These delayed tasks impacted performance so that speed-up remained far from ideal (Figure 4b).

10
0

10
1

10
2

NProcesses

10
1

10
2

10
3

To
ta

l t
im

e
t to

ta
l(s

)

(a) Scaling total

50 100 150 200
NProcesses

0

25

50

75

100

125

150

175

200

S
pe

ed
 U

p
(b) Speed-up

10
0

10
1

10
2

NProcesses

10
2

10
1

10
0

10
1

10
2

10
3

Ti
m

e
(s

)

IO
Compute
Opening Trajectory

Ending_loop
Communication

(c) Scaling for different components

0 20 40 60 80 100 120 140 160 180
Processor Ranks

0

2

4

6

8

10

12

To
ta

l T
im

e
(s

)

Compute
IO
Communication

Overhead2
Overhead1

Opening_trajectory
Ending_loop

(d) Time comparison on different parts of the calculations perMPI rank.

FIGURE 4 Performance of the RMSD task on SDSC Comet when the trajectories are split into one trajectory segment per process (subfiling). Five
repeats were performed to collect statistics. In serial, there is no communication and no data points are shown forN = 1 in (c). (a-c) The error bars
show standard deviation with respect to the mean. (d) Compute tcomp, read I/O tI/O, communication tcomm, opening the trajectory topening_trajectory,
ending the for loop tend_loop (includes closing the trajectory), and overheads toverhead1, toverhead2 perMPI rank; see Table 3 for the definitions.

The subfiling approach appeared promising but it required preprocessing of trajectory files and additional storage space for the segments. We
benchmarked the necessary time for splitting the trajectory in parallel using different number of MPI processes (Table 4); in general the operation

14 KHOSHLESSAN ET AL

scaled well, with efficiencies > 0.8 although performance fluctuated, as seen for the case on six nodes where the efficiency dropped to 0.34 for
the run. These preprocessing times were not included in the estimates because we focused on better understanding the principal causes of strag-
glers and we wanted to make the results directly comparable to the results of the previous sections. Nevertheless, from an end user perspective,
preprocessing of trajectories can be integrated in workflows (especially as the data in Table 4 indicated good scaling) and the preprocessing time
can be quickly amortized if the trajectories are analyzed repeatedly. However, the requirement of needing as many segments as processes makes
the approach somewhat inflexible as a new set of trajectory segments must be produced when a different level of parallelization is needed. Finally,
the performance of parallel file systems generally suffers when too many files are processed and so there exists a limit as to how far the subfiling
approach can be pushed.

TABLE 4 The wall-clock time spent for writing
Nseg trajectory segmentsusingNp processesusing
MPI on SDSC Comet. One set of runs was per-
formed for the timings. Scaling S and efficiency E
are relative to the1node case (24MPI processes).

Nseg Np nodes time (s) S E

24 24 1 89.9 1.0 1.0
48 48 2 46.8 1.9 0.96
72 72 3 33.7 2.7 0.89
96 96 4 25.1 3.6 0.89
144 144 6 43.7 2.1 0.34
192 192 8 13.5 6.7 0.83

Often trajectories fromMD simulations onHPCmachines are produced and kept in smaller files or segments that can be concatenated to form a
full continuous trajectory file. These trajectory segments could be used for the subfiling approach. However, it might not be feasible to have exactly
one segment perMPI rank, with all segments of equal size, which constitutes the ideal case for subfiling. MDAnalysis can create virtual trajectories
from separate trajectory segment files that appear to the user as a single trajectory. In Appendix C we investigated if this so-called ChainReader
functionality could benefit from the subfiling approach. We found some improvements in performance but discovered limitations in the design of
the ChainReader (namely that all segment files are initially opened) that will have to be addressed before equivalent performance can be reached.

6.3.2 MPI-based Parallel HDF5
In the HPC community, parallel I/O with MPI-IO is widely used in order to address I/O limitations. We investigated MPI-based Parallel HDF5 to
improve I/O scaling. We converted our XTC trajectory file into a simple custom HDF5 format so that we could test the performance of parallel I/O
with theHDF5file format. The time it took to convert ourXTCfilewith2, 512, 200 frames intoHDF5 formatwas about5,400 sona localworkstation
with network file system (NFS).
We ran our benchmark on up to 16 nodes (384 cores) on SDSC Comet and we observed near ideal scaling behavior (Figures 5a and 5b) with

parallel efficiencies above 0.8 on up to 8 nodes (Figure A3a) with no straggler tasks (Figure 5d). The trajectory reading I/O (tI/O) was the dominant
contribution, followed by compute (tcomp), but because both contributions scaled well, overall scaling performance remained good, even for 384
cores. Amongst the five repeats for 12 nodes (288 cores) we observed one run with much slower I/O than typical (Figure 5c) but we did not further
investigate this spurious case and classified it as an outlier that was excluded from the statistics. Importantly, the trajectory opening cost remained
negligible (in the millisecond range) and the cost forMPI communication also remained small (below 0.1 s, even for 16 nodes). Overall, parallel MPI
with HDF5 appeared to be a robust approach to obtain good scaling, even for I/O-bound tasks.

6.4 Potential Causes of Stragglers
The data indicated that an increase in the duration of bothMPI communication and trajectory file access lead to large variability in the run time of
individual MPI processes and ultimately poor scaling performance beyond a single node. A discussion of likely causes for stragglers begins with the
observation that opening and reading a single trajectory file frommultipleMPI processes appeared to be at the center of the problem.
In MDAnalysis, individual trajectory frames are loaded into memory, which ensures that even systems with tens of millions of atoms can be

efficiently analyzed on resources with moderate RAM sizes. The test trajectory (file size 30 GB) had 2, 512, 200 frames in total so each frame was
about 0.011MB in size.With tI/O ≈ 0.3ms per frame, the data were ingested at a rate of about 40MB/s for a single process. For 24MPI ranks (one
SDSC Comet node), the aggregated reading rate would have been about 1 GB/s, well within the available bandwidth of 56 Gb/s of the InfiniBand
network interface that served the Lustre file system, but nevertheless sufficient to produce substantial constant network traffic.

KHOSHLESSAN ET AL 15

10
0

10
1

10
2

NProcesses

10
1

10
2

To
ta

l t
im

e
t to

ta
l(s

)

(a) Scaling total

100 200 300 400
NProcesses

50

100

150

200

250

300

350

S
pe

ed
 U

p
(S

=
t 1 t N

)

(b) Speed-up

10
0

10
1

10
2

NProcesses

10
4

10
3

10
2

10
1

10
0

10
1

10
2

10
3

Ti
m

e
(s

)

IO
Compute

Opening Trajectory
Communication

(c) Scaling for different components

0 20 40 60 80 100 120 140 160 180
Processor Ranks

0

1

2

3

To
ta

l T
im

e
(s

)

Compute
IO
Communication

Overhead2
Overhead1

Opening_trajectory
Ending_loop

(d) Time comparison on different parts of the calculations perMPI rank

FIGURE 5Performance of the RMSD taskwithMPI-based parallel HDF5 (MPI-IO) on SDSC Comet. Data are read from the file system from a shared
HDF5 file format instead of XTC format (independent I/O) and results are communicated back to rank 0. Five repeats were performed to collect
statistics; one repeat for 288 processes had abnormally high tI/O and was treated as an outlier and excluded from the averages but is shown as “x”
in the graphs. (a-c) The error bars show standard deviation with respect to the mean. In serial, there is no communication and no data points are
shown forN = 1 in (c). (d) Compute tcomp, read I/O tI/O, communication tcomm, ending the for loop tend_loop, opening the trajectory topening_trajectory, and
overheads toverhead1, toverhead2 perMPI rank; see Table 3 for definitions. These are typical data from one run of the five repeats.

Furthermore, in our study the default Lustre stripe size value was 1MB, i.e., the amount of contiguous data stored on a single Lustre OST. Each
I/O request read a single Lustre stripe but because the I/O size (0.011MB) was smaller than the stripe size, many of these I/O requests were likely
just accessing the same stripe on the same OST but nevertheless had to acquire a new reading lock for each request. The reason for this behavior
is related to ensuring POSIX consistency that relates to POSIX I/O API and POSIX I/O semantics, which can have adverse effects on scalability and
performance. Parallel file systems like Lustre implement sophisticated distributed locking mechanisms to ensure consistency. For example, locking
mechanisms ensures that a node can not read from a file or part of a file while it might be beingmodified by another node.When the application I/O
is not designed in a way to avoid scenarios where multiple nodes are fighting over locks for overlapping extents, Lustre can suffer from scalability

16 KHOSHLESSAN ET AL

limitations 74. Continuously keeping metadata updated in order to have fully consistent reads and writes (POSIX metadata management), requires
writing a new value for the file’s last-accessed time (POSIX atime) every time a file is read, imposing a significant burden on parallel file system 75.
Mache et al. observed that contention for the interconnect between OSTs and compute nodes due to MPI communication may lead to variable
performance in I/O measurements 76. Conversely, our data suggest that single-shared-file I/O on Lustre can negatively affect MPI communication
aswell, even atmoderate numbers (tens to hundreds) of concurrent requests, similar to the results from recent network simulations that predicted
interference between MPI and I/O traffic 77. Brown et al.’s work 77 indicated that MPI traffic (inter-process communication) could be affected by
increasing I/O. In particular, a few MPI processes were always delayed by one to two orders of magnitude more than the median time, which we
would classify as stragglers. In summary, our observations, seen in the context of the work by Brown et al. 77 , suggest that our observed stragglers
with large variance in the communication step could be due to interference of MPI communications with the I/O requests on the same network.
Further detailed work will be needed to test this hypothesis.
Our results clearly showed that reading a single shared file is an inefficientway to use the Lustre parallel file system; instead, parallel I/O viaMPI-

IO and HDF5 emerged as the most promising approach to avoid stragglers and obtain good strong scaling behavior on hundreds of cores, even for
I/O bound analysis tasks.

7 REPRODUCIBILITY ANDPERFORMANCECOMPARISONONDIFFERENTCLUSTERS
In this section we compare the performance of the RMSD task on different HPC resources (Table 1) to examine the robustness of the methods we
used for our performance study and to ensure that the results are general and independent from the specific HPC system. Scripts and instructions
to set up the computational environments and reproduce our computational experiments are provided in a git repository as described in section 5.
In Appendix A we demonstrated that stragglers occured on PSC Bridges (Figure A1) and LSU SuperMIC (Figure A2) in a manner similar to the

one observed on SDSC Comet (section 6.1). We performed additional comparisons for several cases discussed previously, namely (1) splitting the
trajectories with blocking collective communications inMPI and (2)MPI-based parallel HDF5.

7.1 Splitting the Trajectories
Figure 6 shows the strong scaling of the RMSD task on LSU SuperMIC and SDSC Cometwith subfiling. The results were comparable between the two
clusters, with scaling far from ideal due to the communication cost (see section 6.3.1 and Figure 6c). On SuperMIC, scaling was excellent on up to
two nodes (40 cores) but beyond two nodes the communication cost increased markedly for unknown reasons and thus leading to reduced scaling
behavior. Overall, the scaling of the RMSD task was slighly better on LSU SuperMIC than on SDSC Comet but qualitatively similar.

7.2 MPI-based Parallel HDF5
Figure 7 shows the scaling on SDSC Comet, LSU SuperMIC, and PSC Bridges using MPI-based parallel HDF5. Performance on SDSC Comet and LSU
SuperMICwas very goodwith near ideal linear strong scaling. The performance on PSC Bridgeswas sensitive to howmany cores per nodewere used.
Using all 28 cores in a node resulted in poor performance but decreasing the number of cores per node and equally distributing processes over
nodes improved the scaling (Figure 7), mainly by reducing variation in the I/O times.
Themain difference between the runs on PSC Bridges and SDSC Comet/LSU SuperMIC appeared to be the variance in tI/O (Figure 7c). The I/O time

distributionwas fairly small and uniformacross all ranks on SDSCComet and LSU SuperMIC (Figures 8b and5d). However, onPSCBridges the I/O time
was on average about two and a half times larger and the I/O time distribution was alsomore variable across different ranks (Figure 8a).

7.3 Comparison of Compute and I/O Scaling Across Different Clusters
A full comparison of compute and I/O scaling across different clusters for different test cases and algorithms is shown in Table 5. For MPI-based
parallelHDF5, both the compute and I/O timeonBridgeswere consistently larger than their corresponding values on SDSCComet and LSU SuperMIC.
For example, with one core the corresponding compute and I/O timewere tcomp = 387 s, tI/O = 1318 s versus 225 s, 423 s on SDSC Comet and 273 s,
503 s on LSU SuperMIC. This performance difference became larger with increasing core number.
Overall, the results from SDSC Comet and LSU SuperMIC were consistent with each other. Performance on PSC Bridges seemed sensitive to the

exact allocation of cores on each node but nevertheless the approaches that decreased the occurrence of stragglers on SDSC Comet and LSU Super-
MIC also improved performance onPSCBridges. Thus, the findings described in the previous sectionswere valid for a range of differentHPCclusters
with Lustre file systems.

KHOSHLESSAN ET AL 17

TA
BL
E5
Co
mp
ari
son

of
sel
ect
ed
com

pu
te
and

I/O
tim
ing
sfo
rd
iffe
ren
tcl
ust
ers
,te
stc
ase
s,a
nd
nu
mb
er
of
pro
ces
ses
.Fi
ve
rep
eat
sw
ere

per
for
me
dt
oc
olle
cts
tat
isti
cs.
Th
em
ean

val
ue
and

the
sta
nd
ard

dev
iat
ion
wit
hr
esp
ect
to
me
an
are
rep
ort
ed
for
eac
hc
ase
.

N
P
ro
ce
ss
es

Clu
ste
r

Ga
the
r

File
Ac
ces
s

Tim
e

Ser
ial

Co
me
t:
24

Bri
dge
s:
24

Sup
erM

IC:
20

Co
me
t:
48

Bri
dge
s:
48

Sup
erM

IC:
40

Co
me
t:
72

Bri
dge
s:
60

Sup
erM

IC:
80

Co
me
t:9
6

Bri
dge
s:7
8

Co
me
t:
14
4

Bri
dge
s:

84
Sup

erM
IC:
16
0

Co
me
t:1
92

Co
me
t:
38
4

Sup
erM

IC:
32
0

Co
me
t

MP
I

Sin
gle

t I/
O

t co
mp

7
9
1
±

5
.2
2

2
2
5
±

5
.4

4
9
±

3
.4
5

1
1
±

0
.7
5

2
9
±

1
.3

6
±

0
.3
5

2
6
±

9
.1
9

4
±

0
.4
8

–
–

–
–

Bri
dge
s

MP
I

Sin
gle

t I/
O

t co
mp

7
7
0
±

1
0
.8

2
2
1
±

3
.9

3
8
±

0
.8
4

1
1
±

0
.4
3

3
3
±

1
9
.4

6
±

0
.3
2

1
5
±

1
.6

4
±

0
.1
8

–
–

–
–

Sup
erM

IC
MP
I

Sin
gle

t I/
O

t co
mp

1
0
1
4
.5
1
±

2
.9
4

3
0
3
.8
5
±

2
.3

4
8
.0
8
±

0
.3
5

1
4
.5
6
±

0
.1
4

2
4
.5
±

0
.7
9

7
.4
±

0
.2
5

1
2
±

0
.3
1

3
.7
±

0
.1
2

–
6
.2
4
±

0
.3
8

1
.8
±

0
.0
4

–
–

Co
me
t

MP
I

Spl
itti
ng

t I/
O

t co
mp

7
9
9
±

5
.2
2

2
2
5
±

5
.4

3
7
±

1
.2
2

1
1
±

0
.3
1

1
8
±

0
.1
8

5
±

0
.0
7

1
2
±

0
.1
4

3
±

0
.0
4

9
±

0
.3

3
±

0
.1
1

6
±

0
.6
6

2
±

0
.2
3

4
±

0
.2
3

1
±

0
.0
7

–

Sup
erM

IC
MP
I

Spl
itti
ng

t I/
O

t co
mp

1
0
1
3
.7
5
±

2
.8

3
0
4
.2
6
±

2
.5
5

3
9
.9
9
±

0
.3
6

1
2
.4
1
±

0
.2
2

1
9
.1
8
±

0
.2
5

5
.9
9
±

0
.0
9

9
.6
1
±

0
.2
8

3
.0
8
±

0
.1
3

–
4
.8
3
±

0
.0
6

1
.5
±

0
.0
1

–
–

Co
me
t

MP
I

PH
DF
5

t I/
O

t co
mp

4
2
3
±

5
.8
8

2
2
5
±

6
.5
5

1
9
±

0
.3

1
0
±

0
.1
2

9
±

0
.1
3

5
±

0
.1

6
±

0
.0
6

3
±

0
.0
4

5
±

0
.1
2

2
±

0
.0
5

3
±

0
.2

1
±

0
.0
4

3
±

0
.2
5

1
±

0
.0
3

1
.5
7
±

0
.2
9

0
.7
6
±

0
.0
9

Bri
dge
s

MP
I

PH
DF
5

t I/
O

t co
mp

1
3
1
8
.8
7
±

1
0
.4
2

3
8
7
.8
±

5
.5
1

6
7
.9
3
±

0
.5
2

2
1
.9
7
±

0
.3
8

3
7
.3
7
±

0
.2

1
2
.1
2
±

0
.3
4

3
0
.3
5
±

0
.1
5

9
.7
9
±

0
.2
4

2
4
.1
6
±

0
.8
9

7
.7
2
±

0
.0
3

2
2
.5
±

0
.1
7

7
.1
8
±

0
.0
8

–
–

Sup
erM

IC
MP
I

PH
DF
5

t I/
O

t co
mp

5
0
3
.6
9
±

2
.5
7

2
7
3
.5
4
±

4
.7

1
2
.9
6
±

0
.0
6

2
3
.4
4
±

0
.2
9

6
.4
6
±

0
.0
2

1
2
.2
2
±

0
.4
3

3
.2
±

0
.0
1

7
.3
±

0
.8
5

–
1
.6
4
±

0
.0
1

4
.5
9
±

0
.9
6

–
0
.8
2
±

0
.0
0
4

1
.5
5
±

0
.0
0
9

18 KHOSHLESSAN ET AL

10
0

10
1

10
2

NProcesses

10
1

10
2

10
3

To
ta

l t
im

e
t to

ta
l(s

)

Comet (24 cores per node) SuperMIC (20 cores per node)

(a) Scaling total

25 50 75 100 125 150 175 200
NProcesses

0

25

50

75

100

125

150

175

200

S
pe

ed
 U

p

Comet (24 cores per node) SuperMIC (20 cores per node)

(b) Speed-up

10
0

10
1

10
2

NProcesses

10
1

10
2

10
3

Ti
m

e
(s

)

tIO Comet
tcomp Comet

tcomm Comet
tIO SuperMIC
tcomp SuperMIC

tcomm SuperMIC

(c) Scaling of tcomp and tI/O.

FIGURE 6Comparison of the performance of the RMSD task across different clusters [SDSC Comet (24 cores per node), LSU SuperMIC (20 cores per
node)] when the trajectories are split (subfiling). Five repeats were performed to collect statistics. The error bars show the standard deviation with
respect to themean.

8 GUIDELINES FOR IMPROVINGPARALLEL TRAJECTORYANALYSIS PERFORMANCE
Although the performance measurements were performed withMDAnalysis and therefore capture some details of this library such as the specific
timings for file reading, we believe that the broad picture is fairly general and applies to any Python-based approach that usesMPI for parallelizing
trajectory accesswith a split-apply-combine approach. Based on the lessons thatwe learned, we suggest the following guidelines to improve strong
scaling performance:
Calculate the compute to I/O ratio (Rcomp/IO, Eq. 7). As discussed in Section 6.2, for I/O bound problems the performance of the task will be

affected by stragglers that delay job completion time.

KHOSHLESSAN ET AL 19

10
0

10
1

10
2

NProcesses

10
1

10
2

10
3

To
ta

l t
im

e
t to

ta
l(s

)

Bridges (14 cores per node)
Bridges (8 cores per node)
Bridges (28 cores per node)

Bridges (Np/Nnodes cores per node)

Comet (24 cores per node)
SuperMIC (20 cores per node)

(a) Scaling total

20 40 60 80 100
NProcesses

0

20

40

60

80

100

S
pe

ed
 U

p

Bridges (14 cores per node)
Bridges (8 cores per node)
Bridges (28 cores per node)

Bridges (Np/Nnodes cores per node)

Comet (24 cores per node)
SuperMIC (20 cores per node)

(b) Speed-up

10
0

10
1

10
2

NProcesses

10
0

10
1

10
2

10
3

Ti
m

e
(s

)

tIO Bridges (14 cores per node)
tcomp Bridges (14 cores per node)

tIO Bridges (8 cores per node)
tcomp Bridges (8 cores per node)

tIO Bridges (28 cores per node)
tcomp Bridges (28 cores per node)

tIO Bridges (Np/Nnodes cores per node)

tcomp Bridges (Np/Nnodes cores per node)

tIO Comet (24 cores per node)
tcomp Comet (24 cores per node)

tIO SuperMIC (20 cores per node)
tcomp SuperMIC (20 cores per node)

(c) Scaling of tcomp and tI/O

FIGURE 7 Comparison of the performance of the RMSD task across different clusters (SDSC Comet, PSC Bridges, LSU SuperMIC) with MPI-IO. Data
were read from a shared HDF5 file instead of an XTC file, using MPI independent I/O in the PHDF5 library. NP/Nnodes indicates that number of
processes used for the task were equally distributed over all compute nodes. Five repeats were performed to collect statistics (except for SDSC
Comet at 288 cores, where only four repeats were included, as described in Figure 5). The error bars show standard deviationwith respect tomean.
In (b) only results up to 100 cores are shown to simplify the comparison; see Figure 5b for SDSC Comet and Figure A3c for LSU SuperMic all data.

Heuristic 1 ForRcomp/IO � 1, single-shared-file I/O can be used and one can expect reasonable scaling up to about 50 cores; for better scaling, one
of the strategies under Heuristic 2 needs to be employed.

Heuristic 2 ForRcomp/IO ≤ 1 the task is I/O bound and single-shared-file I/O should be avoided. Onemight want to consider the following steps:

20 KHOSHLESSAN ET AL

0 20 40 60
Processor Ranks

0

5

10

15

20

25

30

To
ta

l T
im

e
(s

)

Compute
IO
Communication

Overhead2
Overhead1

Opening_trajectory
Ending_loop

(a) PSC Bridges

0 20 40 60
Processor Ranks

0

2

4

6

8

10

To
ta

l T
im

e
(s

)

Compute
IO
Communication

Overhead2
Overhead1

Opening_trajectory
Ending_loop

(b) LSU SuperMIC

FIGURE 8 Examples of timing perMPI rank for the RMSD task withMPI-based parallel HDF5 on (a) PSC Bridges and (b) LSU SuperMIC. Five repeats
were performed to collect statistics and thesewere typical data fromone run of the five repeats. Compute tcomp, read I/O tI/O, communication tcomm,
ending the for loop tend_loop, opening the trajectory topening_trajectory, and overheads toverhead1, toverhead2 perMPI rank; see Table 3 for definitions.

Heuristic 2.1 If there is access to theHDF5 format, useMPI-based Parallel HDF5 (Section 6.3.2). This approachmay scalewell to hundreds
of cores.

Heuristic 2.2 If the trajectory file is not in HDF5 format then one can consider subfiling and split the single trajectory file into as many
trajectory segments as the number of processes. This approachmay scale reasonably well to less than 200 cores.

The better solution is the use of parallel I/O (Heuristic 2.1) as it makes best use of the parallel file system and scales well to hundreds of cores,
regardless of Rcomp/IO. Splitting the trajectories will not scale as well as parallel I/O but it can be easily performed in parallel and trajectory con-
version may be integrated into the beginning of standard workflows for MD simulations. Alternatively, trajectories may already be kept in smaller
chunks if they are already produced in batches; for instance, when running simulationswithGromacs 57, the gmx mdrun -noappend option produces
individual trajectory segments instead of extending an existing trajectory file.

9 CONCLUSIONS
We analyzed the strong scaling performance of a typical task when analyzing MD trajectories, the calculation of the time series of the RMSD
of a protein, with the widely used Python-based MDAnalysis library. All benchmarks were performed in five replicates on three different XSEDE
supercomputers to demonstrate that our results were independent from the specifics of the hardware and local environment.
The RMSD task was parallelized withMPI following the split-apply-combine approach by having eachMPI process analyze a contiguous segment

of the trajectory. This approach did not scale beyond a single node because straggler MPI processes exhibited large upward variations in runtime.
Stragglers were primarily caused by either increasedMPI communication costs or increased time to open the single shared trajectory file whereas
both the computation and the ingestion of data exhibited close to ideal strong scaling behavior. Stragglers were less prevalent for compute-bound
workloads (i.e., Rcomp/IO � 1), suggesting that file read I/O was responsible for poor MPI communication. In particular, artificially removing all I/O
substantially improved performance of the communication step and thus brought overall performance close to ideal (i.e., linear increase in speed-
upwith processor countwith slope one), despite the fact that the amount of data to be communicated did not depend on I/O. Our results suggested
that stragglers might be due to the competition between MPI messages and the Lustre file system on the shared InfiniBand interconnect, which
would be consistent with other similar observations 51 and theoretical predictions by Brown et al. 77 , but further work would be needed to validate
this specific hypothesis. One possible interpretation of our resultswas that for a sufficiently large per-frame computeworkload, read I/O interfered
much less with communication than for an I/O bound task that almost continuously accesses the file system. This interpretation suggested that the
poor scaling performance was the result of inefficient use of the Lustre file system and that we needed to improve read I/O to reduce interference.
We investigated subfiling (splitting of the trajectories into separate files, one for eachMPI rank) andMPI-based parallel I/O. Subfiling improved

scaling up to about 150 cores. However, subfiling, at least in the form described here, is not an ideal solution because creating and accessing many

KHOSHLESSAN ET AL 21
small files on a parallel file system such as Lustre can negatively impact the overall performance of the file system. Furthermore, managing a large
number of files can become cumbersome and inflexible, given that the number of files determines the number of processes. When we used MPI-
based parallel I/O through HDF5 together withMPI for communications we achieved nearly ideal performance up to 384 cores (16 nodes on SDSC
Comet) and speed-ups of two orders of magnitude compared to the serial execution. The latter approach appears to be a promising way forward as
it directly builds on very widely used technology (MPI-IO and HDF5) and echoes the experience of the wider HPC community that parallel file I/O
is necessary for efficient data handling.
The biomolecular simulation community suffers from a large number of trajectory file formats with very few being based on HDF5, with the

exception of the H5MD format 78 and the MDTraj HDF5 format 20. Our work suggests that HDF5-based formats should be seriously considered
for MD simulations if users want to make efficient use of their HPC systems for analysis. Alternatively, enabling MPI-IO for trajectory readers in
libraries such asMDAnalysismight also provide a path forward to better read performance.
We summarized our findings in a number of guidelines for improving the scaling of parallel analysis of MD trajectory data. We showed that it

is feasible to run an I/O bound analysis task on HPC resources with a Lustre parallel file system and achieve good scaling behavior up to 384 CPU
cores with an almost 300-fold speed-up compared to serial execution.

Future Directions
Future work might look into testing different MPI implementations, especially in combination with parallel HDF5. Choosing the best performing
MPI implementation for a specific system and optimizing the parallel file systemparametersmight also lead to further improvements. Although our
results showedqualitatively similar behavior on threedifferentHPCresources, unexplaineddifferences in performances remained.Deeper insights
into the system-level network traffic and parallel file system access would be necessary to approach performance tuning for different HPC systems
in a rational manner.
OurHDF5 results are encouraging but lack a convenient andwidely available implementation. Therefore, aHDF5-based trajectory reader needs

to be implemented in MDAnalysis for an existing HDF5 trajectory format. The algorithm for the analysis task could be optimized by reducing file
access to the shared system topology file (and any other data common to all ranks, such as the reference coordinates in the RMSDanalysis) by using
MPI_Scatter and MPI_Gather to efficiently communicate the static data. In this case, only rank 0 would read these data from the file system and
then scatter them to all other ranks. Each rank would then build their ownMDAnalysis Universe from those data (either by gathering a serialized
Universedata structure or byusingPythonStringIO to read the scattered text buffer containing the topologyfile) and their ownparallel file access
to an HDF5 trajectory (with the Universe.load_new()method to attach a trajectory).
In summary, the encouraging finding of this work is that by using parallel file reading (here tested with HDF5), the simple split-apply-combine

single trajectory parallelization approach canwork on current HPC systems up to a few hundred cores, even for I/O-bound tasks. Themajor advan-
tage of the approach is its simplicity as users can directly use their serial code and apply it to blocks of a trajectory, without having to rewrite their
algorithms or having to consider hybrid parallelization schemes. Although we focused on theMDAnalysis library, similar strategies are likely to be
more generally applicable and useful to the wider biomolecular simulation community.

ACKNOWLEDGEMENTS
We are grateful to SarpOral for insightful comments on this manuscript. This work was supported by the National Science Foundation under grant
numbers ACI-1443054 and ACI-1440677. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is sup-
portedbyNational ScienceFoundation grant numberACI-1548562. SDSCComet at the SanDiegoSupercomputerCenter, LSUSuperMic at Louisiana
State University, and PSC Bridges at the Pittsburgh Supercomputing Center were used under allocations TG-MCB090174 and TG-MCB130177.

References
1. Borhani DW, Shaw DE. The future of molecular dynamics simulations in drug discovery. J Comput Aided Mol Des 2012; 26(1): 15–26. doi:
10.1007/s10822-011-9517-y.

2. Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE. Biomolecular simulation: a computational microscope for molecular biology. Annu Rev
Biophys 2012; 41: 429–52. doi: 10.1146/annurev-biophys-042910-155245.

3. OrozcoM. A theoretical view of protein dynamics. Chem Soc Rev 2014; 43: 5051–5066. doi: 10.1039/C3CS60474H.

https://doi.org/10.1007/s10822-011-9517-y
https://doi.org/10.1146/annurev-biophys-042910-155245
https://doi.org/10.1039/C3CS60474H

22 KHOSHLESSAN ET AL

4. Perilla JR,GohBC,CassidyCK, et al. Molecular dynamics simulations of largemacromolecular complexes. CurrentOpinion in Structural Biology
2015; 31: 64 – 74. doi: 10.1016/j.sbi.2015.03.007.

5. Bottaro S, Lindorff-Larsen K. Biophysical experiments and biomolecular simulations: A perfect match? Science 2018; 361(6400): 355–360.
doi: 10.1126/science.aat4010.

6. TuckermanME. Statistical Mechanics: Theory andMolecular Simulation. Oxford, UK: Oxford University Press, 2010.
7. Mura C, McAnany CE. An introduction to biomolecular simulations and docking. Molecular Simulation 2014; 40(10-11): 732–764. doi:
10.1080/08927022.2014.935372.

8. Cheatham T, Roe D. The impact of heterogeneous computing on workflows for biomolecular simulation and analysis. Computing in Science
Engineering 2015; 17(2): 30–39. doi: 10.1109/MCSE.2015.7.

9. Kneller GR, Keiner V, Kneller M, Schiller M. nmoldyn: A program package for a neutron scattering oriented analysis of molecular dynamics
simulations. Computer Physics Communications 1995; 91(1): 191 – 214. doi: 10.1016/0010-4655(95)00048-K.

10. Hinsen K, Pellegrini E, Stachura S, Kneller GR. nmoldyn 3: Using task farming for a parallel spectroscopy-oriented analysis of molecular
dynamics simulations. Journal of Computational Chemistry 2012; 33(25): 2043–2048. doi: 10.1002/jcc.23035.

11. HumphreyW, Dalke A, Schulten K. VMD–VisualMolecular Dynamics. J Mol Graph 1996; 14: 33–38.
12. Hinsen K. Themolecular modeling toolkit: a new approach tomolecular simulations. Journal of Computational Chemistry 2000; 21(2): 79–85.
13. Grant BJ, Rodrigues APC, ElSawy KM, McCammon JA, Caves LSD. Bio3d: an R package for the comparative analysis of protein structures.

Bioinformatics 2006; 22(21): 2695–6. doi: 10.1093/bioinformatics/btl461.
14. Tu T, RendlemanCA, Borhani DW, et al. A scalable parallel framework for analyzing terascalemolecular dynamics simulation trajectories. In:

2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis. Austin, TX, USA: IEEE, 2008; 1–12. doi:
10.1109/SC.2008.5214715.

15. RomoTD,Grossfield A. LOOS: An extensible platform for the structural analysis of simulations. In: 31st Annual International Conference of the
IEEE EMBS. Minneapolis, Minnesota, USA: IEEE, 2009; 2332–2335.

16. Romo TD, Leioatts N, Grossfield A. Lightweight object oriented structure analysis: Tools for building tools to analyze molecular dynamics
simulations. Journal of Computational Chemistry 2014; 35(32): 2305–2318. doi: 10.1002/jcc.23753.

17. Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J Comp
Chem 2011; 32: 2319–2327. doi: 10.1002/jcc.21787.

18. Gowers RJ, LinkeM, Barnoud J, et al. MDAnalysis: A Python package for the rapid analysis ofmolecular dynamics simulations. In: Benthall S,
RostrupS, eds.,Proceedings of the15thPython in ScienceConference. Austin, TX: SciPy, 2016; 102–109. doi: 10.25080/Majora-629e541a-00e.

19. RoeDR, Thomas ECheatham I. PTRAJ andCPPTRAJ: Software for processing and analysis ofmolecular dynamics trajectory data. Journal of
Chemical Theory and Computation 2013; 9(7): 3084–3095. doi: 10.1021/ct400341p. PMID: 26583988.

20. McGibbon RT, Beauchamp KA, Harrigan MP, et al. MDTraj: A modern open library for the analysis of molecular dynamics trajectories.
Biophysical Journal 2015; 109(8): 1528 – 1532. doi: 10.1016/j.bpj.2015.08.015.

21. Yesylevskyy SO. Pteros 2.0: Evolution of the fast parallel molecular analysis library for C++ and python. Journal of Computational Chemistry
2015; 36(19): 1480–1488. doi: 10.1002/jcc.23943.

22. Doerr S, HarveyMJ, Noé F, De Fabritiis G. HTMD: High-throughput molecular dynamics for molecular discovery. Journal of Chemical Theory
and Computation 2016; 12(4): 1845–1852. doi: 10.1021/acs.jctc.6b00049.

23. WickhamH. The split-apply-combine strategy for data analysis. Journal of Statistical Software 2011; 40(1).
24. Khoshlessan M, Paraskevakos I, Jha S, Beckstein O. Parallel analysis in MDAnalysis using the Dask parallel computing library. In: Katy

Huff, David Lippa, Dillon Niederhut, Pacer M, eds., Proceedings of the 16th Python in Science Conference. Austin, TX: SciPy, 2017; 64–72. doi:
10.25080/shinma-7f4c6e7-00a.

https://doi.org/10.1016/j.sbi.2015.03.007
https://doi.org/10.1126/science.aat4010
https://doi.org/10.1080/08927022.2014.935372
https://doi.org/10.1109/MCSE.2015.7
https://doi.org/10.1016/0010-4655(95)00048-K
https://doi.org/10.1002/jcc.23035
https://doi.org/10.1093/bioinformatics/btl461
https://doi.org/10.1109/SC.2008.5214715
https://doi.org/10.1002/jcc.23753
https://doi.org/10.1002/jcc.21787
https://doi.org/10.25080/Majora-629e541a-00e
https://doi.org/10.1021/ct400341p
https://doi.org/10.1016/j.bpj.2015.08.015
https://doi.org/10.1002/jcc.23943
https://doi.org/10.1021/acs.jctc.6b00049
https://doi.org/10.25080/shinma-7f4c6e7-00a

KHOSHLESSAN ET AL 23
25. Paraskevakos I, Luckow A, Khoshlessan M, et al. Task-parallel analysis of molecular dynamics trajectories. In: ICPP 2018: 47th International

Conference on Parallel Processing, August 13–16, 2018, Eugene, OR, USA. Association for Computing Machinery, New York, NY, USA: ACM,
2018; Article No. 49.

26. Shujie Fan, Max Linke, Ioannis Paraskevakos, Richard J Gowers, Michael Gecht, Oliver Beckstein. PMDA - Parallel Molecular Dynamics
Analysis. In: Chris Calloway, David Lippa, DillonNiederhut, David Shupe, eds., Proceedings of the 18th Python in Science Conference. Austin, TX:
SciPy, 2019; 134 – 142. doi: 10.25080/Majora-7ddc1dd1-013.

27. Liu P, Agrafiotis DK, Theobald DL. Fast determination of the optimal rotational matrix for macromolecular superpositions. J Comput Chem
2010; 31(7): 1561–3. doi: 10.1002/jcc.21439.

28. Leach AR. Molecular Modelling. Principles and Applications. Longman, 1996.
29. RocklinM. Dask: Parallel computationwith blocked algorithms and task scheduling. In: Huff K, Bergstra J, eds., Proceedings of the 14th Python

in Science Conference (SciPy 2015). Austin, TX: SciPy, 2015; 130–136. doi: 10.25080/Majora-7b98e3ed-013.
30. Dalcín LD, Paz RR, Kler PA, Cosimo A. Parallel distributed computing using python. Advances in Water Resources 2011; 34(9): 1124 – 1139.

doi: 10.1016/j.advwatres.2011.04.013.
31. Dalcín LD, Paz R, Storti M. MPI for python. Journal of Parallel and Distributed Computing 2005; 65(9): 1108 – 1115. doi:

10.1016/j.jpdc.2005.03.010.
32. Garraghan P, Ouyang X, Yang R, McKee D, Xu J. Straggler root-cause and impact analysis for massive-scale virtualized cloud datacenters.

IEEE Transactions on Services Computing 2016; 12: 91–104. doi: 10.1109/TSC.2016.2611578.
33. Towns J, Cockerill T, Dahan M, et al. XSEDE: Accelerating scientific discovery. Computing in Science & Engineering 2014; 16(5): 62–74. doi:

10.1109/MCSE.2014.80.
34. Daily JA. GAiN: Distributed Array Computation with Python. Master’s thesis, School of Electrical Engineering and Computer Science,

Washington State University, Pullman,WA, 2009.
35. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Communications of the ACM 2008; 51(1): 107–113. doi:

10.1145/1327452.1327492.
36. Ananthanarayanan G, Kandula S, Greenberg A, et al. Reining in the outliers in map-reduce clusters using Mantri. In: Proceedings of the 9th

USENIX Conference on Operating Systems Design and Implementation, OSDI’10. Berkeley, CA, USA: USENIX Association, 2010; 265–278.
37. Kyong J, Jeon J, Lim SS. Improving scalability of apache spark-based scale-up server through docker container-based partitioning. In: Pro-

ceedings of the 6th International Conference on Software and Computer Applications - ICSCA ’17. New York, USA: ACM Press, 2017; 176–180.
doi: 10.1145/3056662.3056686.

38. Ousterhout K. Architecting for Performance Clarity in Data Analytics Frameworks. Ph.D. thesis, EECS Department, University of California,
Berkeley, Berkeley, CA, 2017. URL https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-158.html.

39. Gittens A, Devarakonda A, Racah E, et al. Matrix factorizations at scale: A comparison of scientific data analytics in spark and C+MPI using
three case studies. In: IEEE International Conference on Big Data (Big Data). 2016; 204–213. doi: 10.1109/BigData.2016.7840606.

40. Yang H, Liu X, Chen S, Lei Z, Du H, Zhu C. Improving Spark performance with MPTE in heterogeneous environments. In: 2016 International
Conference on Audio, Language and Image Processing (ICALIP). IEEE, 2016; 28–33. doi: 10.1109/ICALIP.2016.7846627.

41. Kirpichov E, DenielouM. No shard left behind: dynamic work rebalancing in Google CloudDataflow. Google Cloud Blog, 2016. URL https://
cloud.google.com/blog/products/gcp/no-shard-left-behind-dynamic-work-rebalancing-in-google-cloud-dataflow. AccessedAug24, 2019.

42. Phan TD. Energy-efficient Straggler Mitigation for Big Data Applications on the Clouds. Ph.D. thesis, École normale supérieure de Renne, 2017.
43. Chen Q, Liu C, Xiao Z. Improving mapreduce performance using smart speculative execution strategy. IEEE Transactions on Computers 2014;

63(4): 954–967. doi: 10.1109/TC.2013.15.
44. Xie B, Chase J, Dillow D, et al. Characterizing output bottlenecks in a supercomputer. In: Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, SC ’12. Los Alamitos, CA, USA: IEEE Computer Society Press, 2012; 8:1–8:11.

https://doi.org/10.25080/Majora-7ddc1dd1-013
https://doi.org/10.1002/jcc.21439
https://doi.org/10.25080/Majora-7b98e3ed-013
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1016/j.jpdc.2005.03.010
https://doi.org/10.1109/TSC.2016.2611578
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/3056662.3056686
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-158.html
https://doi.org/10.1109/BigData.2016.7840606
https://doi.org/10.1109/ICALIP.2016.7846627
https://cloud.google.com/blog/products/gcp/no-shard-left-behind-dynamic-work-rebalancing-in-google-cloud-dataflow
https://cloud.google.com/blog/products/gcp/no-shard-left-behind-dynamic-work-rebalancing-in-google-cloud-dataflow
https://doi.org/10.1109/TC.2013.15

24 KHOSHLESSAN ET AL

45. Rosen J, Zhao B. Fine-grained micro-tasks for mapreduce skew-handling. Tech. rep., EECS, UC Berkeley, 2012. URL https://pdfs.
semanticscholar.org/3617/916adb83f33f8df7d0b3bfc23d0de80da9b7.pdf.

46. Kwon Y, Balazinska M, Howe B, Rolia J. Skewtune: Mitigating skew in mapreduce applications, pages 25-36. In: SIGMOD’12. SIG-
MOD ’12 Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, 2012; Pages 25–36. doi:
10.1145/2213836.2213840.

47. OusterhoutK, Rasti R, RatnasamyS, Shenker S, ChunBG. Making sense of performance in data analytics frameworks. In:NSDI’15Proceedings
of the 12th USENIX Conference on Networked Systems Design and Implementation, ISBN: 978-1-931971-218. 2015; Pages 293–307.

48. Abdul-Wahid B, Feng H, Rajan D, et al. Awe-wq, fast-forwarding molecular dynamics using the accelerated weighted ensemble. Journal of
Chemical Information andModeling 2014; 54: 3033–3043.

49. Wu G, Song H, Lin D. A scalable parallel framework for microstructure analysis of large-scale molecular dynamics simulations data.
Computational Materials Science 2018; 144: 322–330.

50. Tu T, Rendleman CA, Miller PJ, Sacerdoti F, Dror RO, Shaw DE. Accelerating parallel analysis of scientific simulation data via zazen. In: 8th
USENIX Conference on File and Storage Technologies, San Jose, CA, USA. 2010; 129–142. URL http://www.usenix.org/events/fast10/tech/full_
papers/tu.pdf.

51. Stone JE, Isralewitz B, Schulten K. Early experiences scaling vmdmolecular visualization and analysis jobs on blue waters. In: Proceedings of
the 2013 Extreme ScalingWorkshop (Xsw 2013). Washington, DC, USA: IEEE Computer Society, 2013; 43–50.

52. Roe DR, Cheatham III TE. Parallelization of CPPTRAJ enables large scale analysis of molecular dynamics trajectory data. Journal of
Computational Chemistry 2018; 39(25): 2110–2117.

53. Shkurtia A, Goni R, Andrio P, et al. pyPcazip: A PCA-based toolkit for compression and analysis ofmolecular simulation data. SoftwareX 2016;
5: 44–50.

54. Malakar P, Knight C,Munson T, Vishwanath V, PapkaME. Scalable in situ analysis of molecular dynamics simulations. In: ISAV’17 Proceedings
of the In Situ Infrastructures on Enabling Extreme-Scale Analysis and Visualization. 2017; 1–6.

55. Johnston T, Zhang B, Liwo A, Crivelli S, Taufer M. In situ data analytics and indexing of protein trajectories. J Comput Chem 2017; 38(16):
1419–1430. doi: 10.1002/jcc.24729.

56. Brooks BR, Brooks III CL, Mackerell ADJ, et al. CHARMM: the biomolecular simulation program. J Comp Chem 2009; 30(10): 1545–1614.
doi: 10.1002/jcc.21287.

57. AbrahamMJ,Murtola T, Schulz R, et al. GROMACS: High performancemolecular simulations throughmulti-level parallelism from laptops to
supercomputers. SoftwareX 2015; 1–2: 19 – 25. doi: 10.1016/j.softx.2015.06.001.

58. Case DA, Cheatham TE 3rd, Darden T, et al. The amber biomolecular simulation programs. J Comput Chem 2005; 26(16): 1668–1688. doi:
10.1002/jcc.20290.

59. Phillips J, Braun R,WangW, et al. Scalable molecular dynamics with NAMD. J Comput Chem 2005; 26: 1781–1802. doi: 10.1002/jcc.20289.
60. Burley SK, Berman HM, Bhikadiya C, et al. Protein Data Bank: the single global archive for 3Dmacromolecular structure data. Nucleic Acids

Research 2018; 47(D1): D520–D528. doi: 10.1093/nar/gky949.
61. Van Der Walt S, Colbert SC, Varoquaux G. The numpy array: a structure for efficient numerical computation. Computing in Science &

Engineering 2011; 13(2): 22–30. doi: 10.1109/MCSE.2011.37.
62. Theobald DL. Rapid calculation of RMSDs using a quaternion-based characteristic polynomial. Acta Crystallogr A 2005; 61(Pt 4): 478–80.

doi: 10.1107/S0108767305015266.
63. Seyler SL, Beckstein O. Sampling of large conformational transitions: Adenylate kinase as a testing ground. Molec Simul 2014; 40(10–11):

855–877. doi: 10.1080/08927022.2014.919497.
64. Collette A. Python and hdf5. In: BlanchetteM, Roumeliotis R, eds., Python and HDF5. O’ReillyMedia, Inc., 1005Gravenstein HighwayNorth,

Sebastopol, CA 95472., 2014; .

https://pdfs.semanticscholar.org/3617/916adb83f33f8df7d0b3bfc23d0de80da9b7.pdf
https://pdfs.semanticscholar.org/3617/916adb83f33f8df7d0b3bfc23d0de80da9b7.pdf
https://doi.org/10.1145/2213836.2213840
http://www.usenix.org/events/fast10/tech/full_papers/tu.pdf
http://www.usenix.org/events/fast10/tech/full_papers/tu.pdf
https://doi.org/10.1002/jcc.24729
https://doi.org/10.1002/jcc.21287
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1002/jcc.20290
https://doi.org/10.1002/jcc.20289
https://doi.org/10.1093/nar/gky949
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1107/S0108767305015266
https://doi.org/10.1080/08927022.2014.919497

KHOSHLESSAN ET AL 25
65. Seyler S, Beckstein O. Molecular dynamics trajectory for benchmarkingMDAnalysis. figshare, 2017. doi: 10.6084/m9.figshare.5108170.
66. Lindahl E, Hess B, van der Spoel D. Gromacs 3.0: A package formolecular simulation and trajectory analysis. JMolMod 2001; 7(8): 306–317.

doi: 10.1007/s008940100045.
67. Spångberg D, Larsson DSD, van der Spoel D. Trajectory NG: portable, compressed, general molecular dynamics trajectories. J Mol Model

2011; 17(10): 2669–85. doi: 10.1007/s00894-010-0948-5.
68. Shaw DE, Dror RO, Salmon JK, et al. Millisecond-scale molecular dynamics simulations on anton. In: SC ’09: Proceedings of the Conference on

High Performance Computing Networking, Storage and Analysis. New York, NY, USA: ACM, 2009; 1–11. doi: 10.1145/1654059.1654099.
69. ShawDE,GrossmanJP,Bank JA, et al. Anton2:Raising thebar forperformanceandprogrammability in a special-purposemolecular dynamics

supercomputer. In: SC ’14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2014;
41–53. doi: 10.1109/SC.2014.9.

70. Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC. Routine microsecond molecular dynamics simulations with amber on gpus. 2.
explicit solvent particle mesh ewald. Journal of Chemical Theory and Computation 2013; 9(9): 3878–3888. doi: 10.1021/ct400314y.

71. Glaser J, Nguyen TD, Anderson JA, et al. Strong scaling of general-purpose molecular dynamics simulations on gpus. Computer Physics
Communications 2015; 192: 97–107. doi: 10.1016/j.cpc.2015.02.028.

72. Choudhary A, LiaoWk, Gao K, et al. Scalable I/O and analytics. Journal of Physics: Conference Series 2009; 180(012048).
73. Son SW, Sehrish S, keng Liao W, Oldfield R, Choudhary A. Reducing I/O variability using dynamic I/O path characterization in petascale

storage systems. Journal of Supercomputing 2017; 73(5): pp 2069–2097.
74. Lin KW, Chou J, Byna S, Wu K. Optimizing fast query performance on Lustre file system. In: SSDBM Proceedings of the 25th International

Conference on Scientific and Statistical DatabaseManagement, Article No. 29. 2013; .
75. Lockwood G. What is so bad about POSIX I/O? The Next Platform, 2017. URL https://www.nextplatform.com/2017/09/11/

whats-bad-posix-io/. Accessed Aug 24, 2019.
76. Mache J, Lo V, Garg S. The impact of spatial layout of jobs on I/O hotspots in mesh networks. Journal of Parallel and Distributed Computing

2005; 65(10): 1190 – 1203. doi: 10.1016/j.jpdc.2005.04.020.
77. Brown KA, Jain N, Matsuoka S, Schulz M, Bhatele A. Interference between I/O and MPI traffic on fat-tree networks. In: Proceedings of the

47th International Conference on Parallel Processing, ICPP 2018. NewYork, NY, USA: ACM, 2018; 7:1–7:10. doi: 10.1145/3225058.3225144.
78. deBuyl P, ColbergPH,Höfling F. H5MD:A structured, efficient, andportable file format formolecular data. Computer Physics Communications

2014; 185(6): 1546 – 1553. doi: 10.1016/j.cpc.2014.01.018.

https://doi.org/10.6084/m9.figshare.5108170
https://doi.org/10.1007/s008940100045
https://doi.org/10.1007/s00894-010-0948-5
https://doi.org/10.1145/1654059.1654099
https://doi.org/10.1109/SC.2014.9
https://doi.org/10.1021/ct400314y
https://doi.org/10.1016/j.cpc.2015.02.028
https://www.nextplatform.com/2017/09/11/whats-bad-posix-io/
https://www.nextplatform.com/2017/09/11/whats-bad-posix-io/
https://doi.org/10.1016/j.jpdc.2005.04.020
https://doi.org/10.1145/3225058.3225144
https://doi.org/10.1016/j.cpc.2014.01.018

26 KHOSHLESSAN ET AL

APPENDIX
AADDITIONALDATA
Figure A1 shows performance of the RMSD task on PSC Bridges.

10
0

10
1

NProcesses

10
2

10
3

To
ta

l t
im

e
t to

ta
l(s

)

(a) Scaling total

20 40 60
NProcesses

10

20

30

40

50

60

70

Sp
ee

d
U

p
(S

=
t 1 t N

)

(b) Speed-up

10
0

10
1

10
2

NProcesses

10
0

10
1

10
2

10
3

10
4

Ti
m

e
(s

)

IO
Compute

Opening Trajectory
Communication

(c) Scaling for different components

0 20 40 60
Processor Ranks

0

10

20

30

To
ta

l T
im

e
(s

)

Compute
IO
Communication

Overhead2
Overhead1

Opening_trajectory
Ending_loop

(d) Time comparison on different parts of the calculations perMPI rank (example)

FIGURE A1 PSC Bridges: Performance of the RMSD task. Results are communicated back to rank 0. Five independent repeats were performed to
collect statistics. (a-c) The error bars showstandard deviationwith respect to themean. In serial, there is no communication andhence nodata point
is shown forN = 1 in (c). (d) Compute tcomp, read I/O tI/O, communication tcomm, ending the for loop tend_loop, opening the trajectory topening_trajectory,
and overheads toverhead1, toverhead2 perMPI rank; see Table 3 for definitions. These are data from one run of the five repeats. MPI ranks 0 and 70 are
stragglers.

KHOSHLESSAN ET AL 27
Figure A2 shows performance of the RMSD task on LSU SuperMIC.

10
0

10
1

10
2

NProcesses

10
1

10
2

10
3

To
ta

l t
im

e
t to

ta
l(s

)

(a) Scaling total

25 50 75 100 125 150
NProcesses

20

40

60

80

100

120

140

160

Sp
ee

d
U

p
(S

=
t 1 t N

)

(b) Speed-up

10
0

10
1

10
2

NProcesses

10
0

10
1

10
2

10
3

10
4

Ti
m

e
(s

)

IO
Compute

Opening Trajectory
Communication

(c) Scaling for different components

0 20 40 60
Processor Ranks

0

10

20

30

40

50

60

To
ta

l T
im

e
(s

)

Compute
IO
Communication

Overhead2
Overhead1

Opening_trajectory
Ending_loop

(d) Time comparison on different parts of the calculations perMPI rank (example)

FIGURE A2 LSU SuperMIC: Performance of the RMSD task with MPI. Results are communicated back to rank 0. Five independent repeats were
performed to collect statistics. (a-c) The error bars showstandarddeviationwith respect tomean. In serial, there is no communication andhence the
data points forN = 1 are not shown in (c). (d) Compute tcomp, read I/O tI/O, communication tcomm, ending the for loop tend_loop, opening the trajectory
topening_trajectory, and overheads toverhead1, toverhead2 perMPI rank; see Table 3 for definitions. These are data from one run of the five repeats.

Figure A3 shows comparison of the parallel efficiency of the RMSD task between different test cases on SDSC Comet, PSC Bridges, and LSU
SuperMICwhen reading from aHDF5 file.

28 KHOSHLESSAN ET AL

50 100 150 200
NProcesses

0.0

0.2

0.4

0.6

0.8

1.0

E
ffi

ci
en

cy
 (S N

)

Ideal
MPI
MPI Parallel IO

MPI Trajectory Splitting
MPI ChainReader

(a) SDSC Comet

20 40 60 80 100
NProcesses

0.0

0.2

0.4

0.6

0.8

1.0

E
ffi

ci
en

cy
 (S N

)

Ideal
MPI
MPI Parallel IO (8 cores/node)

MPI Parallel IO (14 cores/node)
MPI Parallel IO (28 cores/node)
MPI Parallel IO (Np/N(nodes))

(b) PSC Bridges

100 200 300
NProcesses

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
ffi

ci
en

cy
 (S N

)

Ideal
MPI

MPI Parallel IO
MPI Trajectory Splitting

(c) LSU SuperMIC

FIGURE A3 Comparison of the parallel efficiency between different test cases on (a) SDSC Comet (data for “MPI Parallel IO” are only shown up
to 192 cores for better comparison across different scenarios, see Fig. 5b for equivalent scaling data up to 384 cores), (b) PSC Bridges, and (c) LSU
SuperMIC. Five repeats were performed to collect statistics and error bars show standard deviation with respect tomean.

B EFFECTOF INCREASING THECOMPUTATIONAL LOADONSCALINGPERFORMANCE
We quantified the effect of increasing the computational load of the analysis task on scaling performance in order to obtain practical insights into
the question under which circumstances the simple single-trajectory split-apply-combine MPI-based parallelization approach might be feasible
without any other considerations such as optimization of the file read I/O. To this end, we quantified strong scaling performance as a function of the
compute-to-I/O ratioRcomp/IO (Eq. 7) and the compute-to-communication ratioRcomp/comm (Eq. 8).
To measure the effect of an increased compute load on performance while leaving other parameters the same, we artificially increased the

computational load by repeating the same RMSD calculation (line 5, algorithm 1) 40, 70 and 100 times in a loop, resulting in forty-fold (“40×”),
seventy-fold (“70×”), and one hundred-fold (“100×”) load increases.

B.1 Effect ofRcomp/IO on Scaling Performance
For an X-fold increase in workload, we expected the workload for the computation to scale with X as tcomp(X) = NtotalframesXtframecomp while the read I/O
workload tI/O(X) = NtotalframestframeI/O (number of frames times the average time to read a frame) should remain independent of X. Therefore, the ratio
for any X should be Rcomp/IO(X) = tcomp(X)/tI/O(X) = XRcomp/IO(X = 1), i.e., Rcomp/IO should just linearly scale with the workload factor X. The
measuredRcomp/IO ratios of 11, 19, 27 for the increased computational workloads agreedwith this theoretical analysis, as shown in Table B1.

TABLE B1 Change in Rcomp/IO ratio with change in the RMSD
workload X. The RMSD workload was artificially increased in
order to examine the effect of compute to I/O ratio on the per-
formance. The reported compute and I/O timeweremeasured
based on the serial version using one core. The theoretical
Rcomp/IO (see text) is provided for comparison.

WorkloadX tcomp (s) tI/O (s) Rcomp/IO
measured theoretical

1× 226 791 0.29
40× 8655 791 11 11
70× 15148 791 19 20

100× 21639 791 27 29

We performed the experiments with increased workload to measure the effect of the Rcomp/IO ratio (Eq. 7) on performance (Figure B4). The
strong scaling performance as measured by the speed-up S(N) improved with increasing Rcomp/IO ratio (Figure B4a). The calculations consistently
showed better scaling performance to larger numbers of cores for higher Rcomp/IO ratios, e.g., N = 56 cores for the 70× RMSD task. The speed-
up and efficiency approached their ideal value for each processor count with increasing Rcomp/IO ratio (Figures B4b and B4c). Even for moderately
compute-boundworkloads, such as the 40× and 70×RMSD tasks, increasing the computationalworkload over I/O reduced the impact of stragglers
even though they still contributed to large variations in timing across different ranks and thus irregular scaling.

KHOSHLESSAN ET AL 29

20 40 60
NProcesses

0

10

20

30

40

50

60

70

S
pe

ed
 U

p

RMSD1X
RMSD40X

RMSD70X
RMSD100X

(a) Speed-Up

0 5 10 15 20 25
tcompute/tIO

0

10

20

30

40

50

60

70

S
pe

ed
 U

p

1
8
16

24
32
40

48
56

64
72

(b) Speed-Up

0 5 10 15 20 25
tcompute/tIO

0.0

0.2

0.4

0.6

0.8

1.0

E
ffi

ci
en

cy
 (S N

)

1
8
16

24
32
40

48
56

64
72

(c) Efficiency

FIGURE B4 Effect of Rcomp/IO ratio on performance of the RMSD task on SDSC Comet. We tested performance for Rcomp/IO ratios of 0.3, 11, 19, 27,
which correspond to 1×RMSD, 40×RMSD, 70×RMSD, and 100×RMSD respectively. (a) Effect ofRcomp/IO on the speed-up. (b) Change in speed-up
with respect toRcomp/IO for different processor counts. (c) Change in the efficiency with respect toRcomp/IO for different processor counts.

B.2 Effect ofRcomp/comm on Scaling Performance
In Section 6.3, we improved scaling limitations due to read I/O by splitting the trajectory, but scaling remained far from ideal because of increased
communication costs. These results motivated an analysis in terms of the communication costs. In addition to the compute to I/O ratio Rcomp/IO
discussed in Section B.1 we defined another performance parameter called the compute to communication ratioRcomp/comm (Eq. 8).
We analyzed the data for variable workloads (see Section B.1) in terms of the Rcomp/comm ratio. The performance clearly depended on the

Rcomp/comm ratio (Figure B5). Performance improved with increasing Rcomp/comm ratios (Figures B5a and B4a) even if the communication time was
larger (Figure B5b). Although we still observed stragglers due to communication at larger Rcomp/comm ratios (70× RMSD and 100× RMSD), their
effect on performance remainedmodest because the overall performancewas dominated by the compute load. Evidently, as long as overall perfor-
mance is dominated by a component such as compute that scaleswell, then performance problemswith components such as communicationwill be
masked and overall acceptable performance can still be achieved (Figures B4a and B5a).
Communication was usually not problematic within one node because of the shared memory environment. For less than 24 processes, i.e., a

single compute node on SDSC Comet, the scaling was good and Rcomp/comm � 1 for all RMSD loads (Figures B4a and B5a). However, beyond a
single compute node (> 24 cores), scaling appeared to improve with increasing Rcomp/comm ratio while the communication overhead decreased in
importance (Figures B4a and B5a).

CPERFORMANCEOF THECHAINREADER FOR SPLIT TRAJECTORIES
In section 6.3.1 we showed how subfiling (splitting the trajectories) could help overcome I/O limitations and improve scaling. However, the number
of trajectories may not necessarily be equal to the number of processes. For example, trajectories from MD simulations on supercomputers are
often kept in small segments in individual files that need to be concatenated later to form a trajectory that can be analyzedwith common tools. Such
segments might be useful for subfiling but making sure that the number of processes is equal to the number of trajectory files will not always be
feasible.MDAnalysis can transparently representmultiple trajectories as one virtual trajectory using theChainReader. This feature is convenient for
serial analysis when trajectories are maintained as segments. In the current implementation of ChainReader, each process opens all the trajectory
segment files but I/Owill only happen from a specific block of the trajectory specific to that process only.
We wanted to test if the ChainReader would benefit from the gains measured for the subfiling approach. Specifically, we measured if the MPI-

parallelized RMSD task (with Np ranks) would benefit if the trajectory was split into Nseg = Np trajectory segments, corresponding to an ideal
scenario.
In order to perform our experiments we had to work around an issue with the XTC format reader in MDAnalysis that was related to the

XTC random-access functionality that the MDAnalysis.coordinates.XTC.XTCReader class provides: The Gromacs XTC format 66,67 is a lossy-
compression, XDR-based file format that was never designed for random access and the compressed format itself does not support fast random

30 KHOSHLESSAN ET AL

20 40 60
NProcesses

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

t c
om

pu
te

t c
om

m
un

ic
at

io
n

RMSD1X
RMSD40X

RMSD70X
RMSD100X

(a)Compute to communication ratioRcomp/comm

20 40 60
NProcesses

100

0

100

200

300

400

500

t C
om

m
un

ic
at

io
n(

s)

RMSD1X
RMSD40X

RMSD70X
RMSD100X

(b)Communication time tcomm

FIGURE B5 Effect of the ratio of compute to communication time Rcomp/comm on scaling performance on SDSC Comet. These are the same data as
shown in Figure B4a but analyzed with respect to the communication load. (a) Change in Rcomp/comm with the number of processes N for different
workloads. (b) Comparison of communication time for different RMSDworkloads. Five repeats were performed to collect statistics and error bars
show standard deviation with respect tomean.

seeking. The XTCReader stores persistent offsets for trajectory frames to disk 18 in order to enable efficient access to random frames. These offsets
will be generated automatically the first time a trajectory is opened and the offsets are stored in hidden *.xtc_offsets.npz files. The advantage of
these persistent offset files is that after opening the trajectory for the first time, opening the same file will be very fast, and random access is imme-
diately available. However, stored offsets can get out of sync with the trajectory they refer to. To prevent the use of stale offset data, trajectory
file data (number of atoms, size of the file and last modification time) are also stored for validation. If any of these parameters change the offsets
are recalculated. If the XTC changes but the offset file is not updated then the offset file can be detected as invalid. With ChainReader in parallel,
each process opens all the trajectories because each process builds its own MDAnalysis.Universe data structure. If an invalid offset file is detected
(perhaps because of wrong file modification timestamps across nodes), several processes might want to recalculate these parameters and rebuild
the offset file, which can lead to a race condition. In order to avoid the race condition, we removed this check fromMDAnalysis for the purpose of
the measurements presented here, but this comes at the price of not checking the validity of the offset files at all; future versions of MDAnalysis
may lift this limitation.We obtained the results for the ChainReader with this modified version ofMDAnalysis that eliminates the race condition by
assuming that XTC index files are always valid.
Figure C6 shows the results for performance of the ChainReader for the RMSD task. Strong scaling plateaued for more than 92 cores and per-

formance was worse than what was achieved when each MPI process was assigned its own trajectory segment as described in Section 6.3.1 and
shown for comparison as dotted lines in Figures C6a and C6b. The strong scaling performance did not suffer because of the computation and the
read I/O because both tcomp and tI/O showed excellent strong scaling up to 196 cores (Figure C6c). Instead the time for ending the for loop tend_loop,
which includes the time for closing the trajectory file, and opening the trajectory topening_trajectory appeared to be the scaling bottleneck. These results
differed from the subfiling results (section 6.3.1) where neither tend_loop nor topening_trajectory limited scaling (Figure 4d).
Althoughwedid not further investigate the deeper cause for the reduced scaling performance of theChainReader,we speculate that the primary

problem is related to each MPI rank having to open all trajectory files in their ChainReader instance even though they will only read from a small
subset. ForNp ranks andNseg file segments, in total,NpNseg file opening/closing operations have to be performed. Each server that is part of a Lustre
file system can only handle a limited number of I/O requests (read, write, stat, open, close, etc.) per second. A large number of such requests, from
one or more users and one or more jobs, can lead to contention for storage resources. ForNp = Nseg = 100, the Lustre file system has to perform
10,000 of these operations almost simultaneously, whichmight degrade performance.
These considerations indicate that the ChainReader in its current implementation limits scaling performance to less than 100 processes due to

the large number of file opening operations. For better performance, the ChainReader would need to be rewritten for MPI such that the layout of
the trajectory files is initially obtained by MPI rank 0 (which has to sequentially open all trajectory segments once) and then communicated to all
other ranks; each rank then only opens the trajectories it needs to access, thus reducing file access to aminimum.

KHOSHLESSAN ET AL 31

10
0

10
1

10
2

NProcesses

10
1

10
2

10
3

To
ta

l t
im

e
t to

ta
l(s

)

ChainReader
file-per-process

(a) Scaling total

50 100 150 200
NProcesses

0

25

50

75

100

125

150

175

200

S
pe

ed
 U

p

ChainReader
file-per-process

(b) Speed-up

10
0

10
1

10
2

NProcesses

10
2

10
1

10
0

10
1

10
2

10
3

Ti
m

e
(s

)

IO
Compute
Opening Trajectory

Ending_loop
Communication

(c) Scaling for different components

0 20 40 60 80 100 120 140 160 180
Processor Ranks

0

5

10

15

To
ta

l T
im

e
(s

)

Compute
IO
Communication

Overhead2
Overhead1

Opening_trajectory
Ending_loop

(d) Time comparison of different parts of the calculations perMPI rank

FIGURE C6 Subfiling with the MDAnalysis ChainReader for the RMSD task on SDSC Comet. Five repeats were performed to collect statistics. The
data for subfilingwith one file per process (fromFigure 4) are shown for comparison as dotted lines in (a) and (b). (a-c) The error bars show standard
deviationwith respect to themean. (d) Compute tcomp, read I/O tI/O, communication tcomm, opening the trajectory topening_trajectory, ending the for loop
tend_loop (includes closing the trajectory file), and overheads toverhead1, toverhead2 perMPI rank. (See Table 3 for the definitions.)

	Parallel Performance of Molecular Dynamics Trajectory Analysis
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Stragglers
	2.2 Other Packages with Parallel Analysis Capabilities

	3 Algorithms and Software Packages
	3.1 RMSD Calculation with MDAnalysis
	3.2 MPI for Python (mpi4py)
	3.3 MPI and Parallel HDF5

	4 Benchmark Environment
	4.1 HPC Resources
	4.2 Software
	4.3 Data Set

	5 Methods
	5.1 Timing Observables
	5.2 Performance Parameters
	5.3 Data sharing

	6 Computational Experiments
	6.1 RMSD Benchmark
	6.2 Effect of Compute to I/O Ratio on Performance
	6.3 Reducing I/O Cost
	6.3.1 Splitting the Trajectories (subfiling)
	6.3.2 MPI-based Parallel HDF5

	6.4 Potential Causes of Stragglers

	7 Reproducibility and Performance Comparison on Different Clusters
	7.1 Splitting the Trajectories
	7.2 MPI-based Parallel HDF5
	7.3 Comparison of Compute and I/O Scaling Across Different Clusters

	8 Guidelines for Improving Parallel Trajectory Analysis Performance
	9 Conclusions
	Acknowledgements
	References
	Appendix
	A Additional Data
	B Effect of Increasing the Computational Load on Scaling Performance
	B.1 Effect of Rcomp/IO on Scaling Performance
	B.2 Effect of Rcomp/comm on Scaling Performance

	C Performance of the ChainReader for Split Trajectories

