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Abstract—Workload prediction has been widely researched in 

the literature. However, existing techniques are per-job based and 
useful for service-like tasks whose workloads exhibit seasonality 
and trend. But cloud jobs have many different workload patterns 
and some do not exhibit recurring workload patterns. We 
consider job-pool based workload estimation, which analyses the 
characteristics of existing tasks’ workloads to estimate the 
currently running tasks’ workload. First cluster existing tasks 
based on their workloads. For a new task , collect the initial 𝑱
workload of  and determine which cluster  may belong to, then 𝑱 𝑱
use the cluster’s characteristics to estimate 's workload. Based on 𝑱
the Google dataset, the algorithm is experimentally evaluated and 
its effectiveness is confirmed. However, the workload patterns of 
some tasks do have seasonality and trend, and conventional 
per-job based regression methods may yield better workload 
prediction results. Also, in some cases, some new tasks may not 
follow the workload patterns of existing tasks in the pool. Thus, 
develop an integrated scheme which combines clustering and 
regression and utilize the best of them for workload prediction. 
Experimental study show that the combined approach can further 
improve the accuracy of workload prediction.

Index Terms—Workload estimation, workload clustering, 
dynamic time warp distance, cloud computing.

I. INTRODUCTION

loud computing is very popular covering e-commerce, 
education, government and other fields. Studies have 
shown significant benefits offered by IaaS cloud, including 

providing a greener computing environment. Many systems are 
developed to take advantage of the cloud, including big data 
analytics, offloading from mobile devices [2] and cloud storage 
systems [3,4,5]. However, without efficient resource 
management by the IaaS provider, the potential value of cloud 
computing cannot be fully realized. One of the important tasks 
in an IaaS cloud provider is to schedule resource precisely to 
minimize the cost of the deployment and operation of the cloud 
platform while fully guarantee the SLA (Service Level 
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Agreement) for each customer. For example, reduction of 
operating servers by migrating tasks can save power and 
provide greener computation. 

In order to manage cloud resources effectively, the future 
workloads in the cloud should be well predicted.

Many workload prediction algorithms are researched in the 
literature [7], [8], [9]. But they use per-job based methods 
(which predict a single job’s future workload only based on its 
historical workload) and consider service-like workloads. 
Generally, services are accessed by users and they run 
year-round to process user requests. The workload 
characteristics of  a certain systems depend heavily on its user 
access patterns, and mostly present periodicity and trend. 
Prediction can be done for these workloads using well 
established statistical techniques, such as autocorrelation and 
regression. 

However, many one-time tasks in the cloud, such as 
animation rendering, may run for one or several days and their 
workloads do not have seasonality or predictable trends, such 
as the workload given in Fig. 1. As can be seen from Fig. 1, the 
irregular spikes that occur after time index 100 are difficult to 
model and predict using existing per-job based approaches 
(also validated by our experimental results). For these jobs, 
cloud customers are asked to set the resources requirement 
parameter, then the requested amount of resources are allocated 
for their tasks by cloud providers. Experienced cloud customers 
may be able to set the exact resource demands. But a lot of 
customers may not have sufficient experiences so that they 
request much more resources than what are needed. Some 
researches show that many customers purchase 10 times the 
resources than what is actually needed, and leading to low 
utilization of resource. In [6], the server utilization rate of real 
cloud computing servers were ranging from 28% to 55%, 
which means allocated resources were under-used. Thus, it is 
worthwhile to improve workload estimation methods for cloud 
tasks.

Cloud providers generally save job execution profiles for 
years. It may be assumed that the profiles of the job pool are 
representative. All tasks’ workload pattern can be analyzed 
from the profiles, and can be used to match the potentially tasks 
submitted in the future. Based on this assumption, it is possible 
to calculate the workloads’ pattern of “job-pool” and build the 
workloads model, then estimate the workload patterns of 
running or future tasks based on the model. 

In this paper, we develop a scheme to realize the job-pool 
based idea discussed above work to provide better estimation of 
workloads that do not have service-like patterns (like Fig. 1). 
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Fig.1. Sample workloads extracted from Google tracelog.

The Google dataset released in 2011 were used to explore 
our approach, including 12,000 servers profiles during 30 days 
[10]. We first cluster existing tasks and learn the statistical 
properties of workloads in each cluster. When a new task is 
submitted, we first determine its cluster based on its initial 
workload. Then, we use the features learned from the cluster to 
estimate the new job’s workload. We also combine the 
cluster-based and regression-based workload estimation 
approaches to further improve the workload prediction 
accuracy. The major contributions of our work are as follows:
1. Per-job based workload estimation cannot work well for 

busty workloads with unexpected spikes and dips. Instead, 
we develop the job-pool based workload estimation 
algorithm, which uses the characteristic of the workload of 
the task pool to improve prediction of the workloads. We 
cluster historical workloads and use the cluster data to help 
estimate workloads of new tasks categorized into the same 
cluster. 

2. Several cluster-based workload estimation algorithms are 
developed, using the statistical properties of the cluster and 
explored the effectiveness of these algorithms.

3. For some clusters, the job-pool based workload estimation 
approach may not be as effective as per-job based approach, 
especially for jobs with very low and constant (fluctuating 
around a constant) usage patterns. Also, some individual 
tasks do not follow the workload patterns of existing tasks in 
the pool, i.e., they are poorly clustered. Thus, we combine 
our approach with ARIMA(Autoregressive Integrated 
Moving Average)  to improve the estimation accuracy. The 
combined approach works very well for almost all tasks. 
With our integrated approach, cloud providers can achieve 
accurate workload estimation even with a short initial 
workload information. 

4. Experiments are made to calculated the effectiveness of our 
approach, then compare it with the requested workload as 
well as conventional per-job based workload estimation 
approaches. The results show that the job-pool based 
approach can improve workload prediction accuracy 
significantly, especially for workloads with unexpected 
bursts, like the one shown in Fig. 1. The combined approach 
makes further improvement in prediction accuracy from the 
cluster-based approach. 

The remaining paper is organized as follows. Section 2 
presents related works in the prediction and clustering of 
workload. Section 3 discusses our clustering approach and 
the details of our workload estimation algorithm. Section 4 
presents the results of cluster prediction and workload 
estimation. Section 5 discusses how to integrate ARIMA 
with our approach. Section 6 make a summary of the paper 
and discusses the future direction.

II. RELATED WORK

A. Workload Predictions
In the literature, many workload prediction methods have 

been researched. Many workload prediction works consider 
web services systems which interacts with users, their 
workloads present seasonality or predictable trends. In [7], the 
auto-correlation function is used to get the periodic workload 
patterns, and the aggregate difference between each occurrence 
of the pattern with the actual workload is calculated, then the 
trending synthetic workload is generated, finally the workload 
placement recommendations are given accordingly. In [8], a 
second order ARIMA Model is used to predict the single job’s 
future workload, then a look-ahead resource allocation 
algorithm is proposed based on the prediction. In [9], the Grey 
Forecasting Model is used, as the model can predict workload 
based on short historical workload and evaluate workload 
tendency efficiently. But this model has its own limitation. 
First, the prediction is coarse grained because the workloads are 
grouped into only four levels. Then, the prediction is based on 
seasonal workload so that only the same season tasks can be 
predicted well. In [11], a hybrid method is proposed, which 
combines autoregression and confidence interval estimations 
for long term workload predictions in grid computing 
environments. To eliminate the effect from noisy data, two 
types of filters are used before making predictions, including 
the Kalman filter for minimizing measurement errors and the 
Savitzky-Golay filter for smoothing the data. A different 
technique for resource demand prediction has been proposed in 
[12]. It first identifies historical workload patterns. Then it 
matches current workload patterns with these historical patterns 
based on the initial time series and uses the matching patterns 
for workload prediction. A weighted interpolation is applied to 
the patterns for better prediction results. 

All the workload prediction approaches above are based on 
per-job. They need a significant amount of historical workload 
data, and only can predict the future workload of tasks which 
have same predictable trend of historical data. The string 
matching based method in [12] can be more sensitive to 
historical patterns that have few or even a single occurrence, 
but may be less sensitive to the frequency and timing of 
repetitive patterns. However, none of them is capable of 
predicting sudden bursts in the workload that have not appeared 
in historical workloads. More specifically, they are not able to 
predict the irregular changes shown in Fig. 1.

Some literatures predict the workload and resource 
management of virtual machines [13,14]. In [13], the algorithm 
calculates how much a given virtual machine can gain from 
dynamic management, and the auto regressive process 
forecasts the probability distribution, then the management 
algorithm allocates virtual machine dynamically to reduce the 
amount of physical capacity. In [14], the load balancer predicts 
the future load of servers, and migrates virtual instances to the 
server with the lowest load to achieve workload balancing. 
These works use basic workload prediction methods based on 
the VMs’ (Virtual Machine) workload patterns with seasonality 
or trend, so their approaches have the same problems as 
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discussed above.
Another direction of prediction methods makes use of the 

knowledge of the applications to facilitate application-specific 
workload prediction. In [15], applications are first instrumented 
to extract the execution features and then these features are 
correlated with the workload patterns of the application. In 
[16], application-specific features, such as the type of the 
application, and the number of objects in a rendering 
application, etc., are used to predict the future workload. In 
[17], the support vector machine is used to predict resource 
demands in Software as a Service (SaaS) applications. This 
paper proposes to use SVM to correlate the internal features of 
the application to the workload patterns. The methods 
discussed above may be able to predict workloads effectively 
(including workloads presented in Fig. 1). However, they are 
not feasible methods for cloud environments since cloud 
providers will not have access to application-specific 
knowledge of client applications.

B. Workload Clustering
A large database of execution profiles is saved by cloud 

provide. It may be assumed that the profiles of the job pool are 
representative and tasks’ workload pattern can be analyzed 
from the profiles, then can be used to match the potentially 
tasks submitted in the future. Some literatures cluster workload 
and analyze each cluster’s characteristics [18, 19], but they do 
not use the information to improve workload prediction. In 
[20], we cluster the workload and calculate each cluster’s 
average workload, then use the information to predict the 
workload of the new tasks belonging to the cluster. In [21, 22], 
we cluster the workload and build each cluster’s neural network 
model, then use the model to predict the workload of the new 
tasks belonging to the cluster. In [23], the authors firstly make 
the clustering, then calculate the product of each cluster’s 
submission rate and average workload, finally predict the 
servers’ workloads. But the server information is not enough 
for making accurate decisions of resource management. 

Fig. 2. Overview of the job-pool approach for workload estimation.

III.JOB-POOL BASED WORKLOAD ESTIMATION
In Fig. 2, the flowchart of job-pool based workload 

estimation approach is shown. The solid lines represent the 
execution flows, and the dash ones show the data flows. From 
the execution information of submitted tasks in the cloud 
environment (such as Google trace data), a large set of 
historical workload patterns is prepared.

First, the workload patterns of tasks in the dataset are 
clustered and labeled. After the clustering,  workload clusters 𝑁
are obtained denoted by  . Then compute each {𝐶1,𝐶2,…,𝐶𝑁}
cluster’s average workload, the medoid of cluster  is denoted 𝐶𝑖
by .𝑐𝑖

When a new task  is submitted to the host, the resources 𝐽
requested by the cloud customer is fully allocated for  because 𝐽
no workload information is collected. During the execution of 
the task, the monitoring subsystem collect its initial workload. 

For each cluster , the distance between its medoid  and the 𝐶𝑖 𝑐𝑖

initial workload of  is computed, then which cluster(s) ’s 𝐽 𝐽
workload pattern belongs to is determined.

Based on the workload patterns in the cluster(s) which  𝐽
belongs to, the future workload of  is estimated and sent to the 𝐽
VM placement subsystem. All tasks’ workloads are checked 
periodically by the placement decision algorithm to decide how 
to adjust resource allocations for task .𝐽

The workload of  is continuously collected, and the new 𝐽
estimated workload is sent to the VM placement subsystem. 
The estimation process of  keeps working until  terminates. 𝐽 𝐽
Then the whole workload pattern of  is integrated into the 𝐽
dataset of job-pool. And ’s full workload will be clustered, and 𝐽
the characteristics of the ’s cluster will be updated. When 𝐽
many tasks’ full workloads are integrated into the dataset, the 
precision of the clustering may decrease, then a re-clustering 
will be executed to solve problem [3]. The details of each step 
in our scheme are explained as follows.

A. Notation
First, notations used in the workload estimation scheme are 

listed [22]. 
: The length of tasks which are used to clustering.𝑇
: The initial length of task.𝐼𝑇

Data obtained from the clustering algorithm:
 : The set of  workload clusters.𝐶 = {𝐶1,𝐶2,…,𝐶𝐾} 𝐾

 : The medoid of .𝑐𝑖,1 ≤ 𝑖 ≤ 𝐾 𝐶𝑖

 : The number of tasks in .𝑚𝑖,1 ≤ 𝑖 ≤ 𝐾 𝐶𝑖

 : The set of tasks in .𝐶𝑖 = {𝐽𝑖𝑗│1 ≤ 𝑗 ≤ 𝑚𝑖} 𝐶𝑖

 : The workload of task .  𝐿𝑖𝑗(𝑡),1 ≤ 𝑖 ≤ 𝐾,1 ≤ 𝑗 ≤ 𝑚𝑖 𝐽𝑖𝑗

 : Average of  for all tasks in , where 𝐶𝐿𝑖(𝑡),1 ≤ 𝑖 ≤ 𝐾 𝐿𝑖𝑗(𝑡) 𝐶𝑖

𝐶𝐿𝑖(𝑡) =
∑

𝐽𝑖𝑗 𝑖𝑛 𝐶𝑖 
𝐿𝑖𝑗(𝑡)

𝑚𝑖
, 1 ≤ 𝑡 ≤ 𝑇

 : Standard deviation of  for all tasks 𝐶𝐿𝑖(𝑡),1 ≤ 𝑖 ≤ 𝐾 𝐿𝑖𝑗(𝑡)
in , where𝐶𝑖

𝐶𝐿𝑖(𝑡) =
∑

𝐽𝑖𝑗 𝑖𝑛 𝐶𝑖 
(𝐿𝑖𝑗(𝑡) ― 𝐶𝐿𝑖(𝑡))2

𝑚𝑖
, 1 ≤ 𝑡 ≤ 𝑇

 : The stability of each 𝑆𝑇𝑖𝑗(𝑡),1 ≤ 𝑖 ≤ 𝐾,1 ≤ 𝑗 ≤ 𝑚𝑖

workload relative to the cluster average (i.e., ) as 𝐿𝑖𝑗(𝑡) ― 𝐶𝐿𝑖(𝑡)
a ratio to the standard deviation of the workloads in the cluster 

. It indicates how much fluctuation the job has relative 𝐶𝐿𝑖(𝑡)
to the average workload pattern. Formally we have

𝑆𝑇𝑖𝑗(𝑡) =
|𝐿𝑖𝑗(𝑡) ― 𝐶𝐿𝑖(𝑡)|

𝐶𝐿𝑖(𝑡)
, 1 ≤ 𝑡 ≤ 𝑇

 : For each task, we compute its 𝑆𝑇𝑖𝑗[𝑃],1 ≤ 𝑖 ≤ 𝐾,1 ≤ 𝑗 ≤ 𝑚𝑖

average stability over a time period .  could be  or  or any 𝑃 𝑃 𝐼𝑇 𝑇
other period. 

𝑆𝑇𝑖𝑗[𝑃] =
∑𝑃

𝑡 = 1𝑆𝑇𝑖𝑗(𝑡)

𝑃
: The standard deviation of 𝑆𝑇𝑖𝑗[𝑃],1 ≤ 𝑖 ≤ 𝐾,1 ≤ 𝑗 ≤ 𝑚𝑖

 over a time period . 𝑆𝑇𝑖𝑗(𝑡) 𝑃
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𝑆𝑇𝑖𝑗[𝑃] =
∑𝑃

𝑡 = 1(𝑆𝑇𝑖𝑗(𝑡) ― 𝑆𝑇𝑖𝑗[𝑃])2

𝑃
 : The average distance between medoid  and 𝐶𝐷𝑖,1 ≤ 𝑖 ≤ 𝐾 𝑐𝑖

tasks in (Note that  is the function of measuring 𝐶𝑖 𝑑𝑖𝑠𝑡(𝐿𝑖𝑗 ,𝐿𝑐𝑖)
distance between the workload of task  and medoid , and is 𝐽𝑖𝑗 𝑐𝑖
defined in section 3.2). 

𝐶𝐷𝑖 =
∑

𝐽𝑖𝑗 𝑖𝑛 𝐶𝑖 
𝑑𝑖𝑠𝑡(𝐿𝑖𝑗 ,𝐿𝑐𝑖) 

𝑚𝑖 ∗ 𝑇
 : The standard deviation of distances 𝐶𝐷𝑖,1 ≤ 𝑖 ≤ 𝐾

between the medoid  and tasks in .𝑐𝑖 𝐶𝑖

𝐶𝐷𝑖 =
∑

𝐽𝑖𝑗 𝑖𝑛 𝐶𝑖
(
𝑑𝑖𝑠𝑡(𝐿𝑖𝑗 ,𝐿𝑐𝑖

)
𝑇 ― 𝐶𝐷𝑖)

2

𝑚𝑖

Note that , , ,  are functions over 𝐿𝑖𝑗(𝑡) 𝐶𝐿𝑖(𝑡) 𝐶𝐿𝑖(𝑡) 𝑆𝑇𝑖𝑗(𝑡)
time . Depending on where they are used, we may have 𝑡

 or . 1 ≤ 𝑡 ≤ 𝑇 1 ≤ 𝑡 ≤ 𝐼𝑇
When considering the new task , the notations related to a 𝐽

single task can be applied to . For example,  denotes the 𝐽 𝐿𝐽

workload of . We use  to denote the cluster(s) 𝐽 𝐶𝐽 = {𝐶𝐽1,𝐶𝐽2,…}
a new task  may belong to (predicted). According to the 𝐽
notations given above, index  is used to index the  clusters. 𝑖 𝐾
For example,  is the average workload of cluster  and 𝐶𝐿𝑖(𝑡) 𝐶𝑖
its complete form is . When these notations are applied to 𝐶𝐿𝐶𝑖

the clusters for the new task , we need to use the full cluster 𝐽
notation for indexing, e.g., , , , etc. When 𝐶𝐿𝐶𝐽1 𝐶𝐿𝐶𝐽2 𝐶𝐷𝐶𝐽𝑖

performing workload estimation for the new task , we use 𝐽 𝑃𝐿𝐽

 to denote the estimated workload for  to differentiate it (𝑡) 𝐽
with the actual workload  of . Also, we use  to denote 𝐿𝐽(𝑡) 𝐽 𝑅𝐿𝐽
the workload given by the user when submitting a task (Note 
that  is a constant, not a function of ).𝑅𝐿𝐽 𝑡

B. Clustering the Pool of Workloads
The workload of each task is considered as a time series and 

the K-medoids algorithm [24,25] is applied to cluster historical 
tasks’ workloads. The distance measurement impacts clustering 
significantly. For two tasks  and , the distance between them 𝐽𝑖 𝐽𝑗
is the distance between workloads  and , where  and  can 𝐿𝑖 𝐿𝑗 𝐿𝑖 𝐿𝑗
be viewed as two time series. The distance between two time 
series can be measured in different ways, such as Euclidean 
distance, Manhattan distance. But as these metrics align 
different time series and compare the pairs of points rigidly, the 
distances cannot be calculated precisely when there are minor 
pattern shifts.

For accurate calculation of the distance between two time 
series, DTW (Dynamic Time Warp) distance [27,28,29] is used 
to measure. DTW on time series is like Levenshtein distance on 
string sequences. It allows deletion and insertion of data points 
during comparison adding penalty value to the distance. A data 
point of one time series is compared to the corresponding data 
points as well as the neighboring data points (in the worst case, 
all data points) in another time series, then take the minimal 

distance into account. The definition of DTW distance is given 
in the following.

Let  denote the dynamic time warp distance 𝑑𝑡𝑤(𝑋,𝑌)
between time series  with length n and time 𝑋 = (𝑥1, 𝑥2...., 𝑥𝑛)
series  with length m. 𝑌 = (𝑦1, 𝑦2...., 𝑦𝑚)

𝑑𝑡𝑤((𝑥1, 𝑥2…., 𝑥𝑛),(𝑦1, 𝑦2…., 𝑦𝑚))
= |𝑥𝑛 ― 𝑦𝑚|

+𝑚𝑖𝑛{ 𝑑𝑡𝑤((𝑥1, 𝑥2…., 𝑥𝑛 ― 1),(𝑦1, 𝑦2…., 𝑦𝑚)),
𝑑𝑡𝑤((𝑥1, 𝑥2…., 𝑥𝑛),(𝑦1, 𝑦2…., 𝑦𝑚 ― 1)),

𝑑𝑡𝑤((𝑥1, 𝑥2...., 𝑥𝑛 ― 1),(𝑦1, 𝑦2...., 𝑦𝑚 ― 1))}
Based on the DTW distance definition, we have: 

𝑑𝑖𝑠𝑡(𝐿𝑖,𝐿𝑗) =  
𝑑𝑡𝑤(𝐿𝑖,𝐿𝑗)

𝑚𝑎𝑥 (‖𝐿𝑖‖,‖𝐿𝑗‖)
.

C. Decide the Cluster of a New Job
For a new task , we determine the cluster it belongs to. The 𝐽

detailed steps for determining  are given as follows:𝐶𝐽
1. Compute , the DTW distance between  and , 𝐽𝐷𝑖 𝐿𝑐𝑖(𝑡) 𝐿𝐽(𝑡)

only considering the time period , i,e., 𝐼𝑇 𝐽𝐷𝑖 = 𝑑𝑖𝑠𝑡(𝐿𝐽(𝑡),
.𝐿𝑐𝑖(𝑡)), 1 ≤ 𝑡 ≤ 𝐼𝑇

2. Compute the fuzzy membership value , which 𝐽𝑀𝑖
indicates how likely  is in cluster , where 𝐽 𝐶𝑖

𝐽𝑀𝑖 =
𝐶𝐷𝑖 + 𝑟 ∗ 𝐶𝐷𝑖

𝐽𝐷𝑖

where  is a predetermined constant and it is set to 3 in this 𝑟
paper (based on the common  rule).3

3. Select  clusters  such that ℎ 𝐶𝑖1,…,𝐶𝑖ℎ

𝑚𝑖𝑛 ― 𝑆
1 ≤ 𝑖𝑗 ≤ 𝐾

 (𝐺,𝐽𝐷𝑖𝑗
)

Assume that  is ordered by their  values, i.e.,  {𝐶𝑖1,…,𝐶𝑖ℎ
} 𝐽𝐷 𝐶𝑖1

has the minimal DTW distance from .𝐿𝐽

4. Put  into .𝐶𝑖1 𝐶𝐽
5. If , then put  into  if . 𝐽𝑀𝑖1 < 𝑡ℎ1 𝐶𝑖𝑗 𝐶𝐽 𝐽𝑀𝑖𝑗 ≥ 𝑡ℎ2

The function  used in Step 3 is an extended 𝑚𝑖𝑛 ― 𝑆
𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 𝑖

(𝑥,𝑦𝑖)

function of “min”. It selects  items with the minimal  values 𝑥 𝑦
from the given range of  (when , min-S = min). In the 𝑖 𝑥 = 1
above algorithm, we consider two thresholds to determine how 
many clusters the new job  should belong to,  and . 𝐽 𝑡ℎ1 𝑡ℎ2

Maximally,  clusters may be considered for . So in Step 3, ℎ 𝐶𝐽
we select  clusters, , among all  clusters, with the 𝐺 {𝐶𝑖2,…,𝐶𝑖ℎ

} 𝐾
minimal  values. Since  has the minimal DTW distance 𝐽𝐷 𝐶𝑖1

from , it has to be the choice of ’s cluster (Step 4). But if 𝐿𝐽 𝐽 𝐽𝑀𝑖1

, then we believe that the likelihood of job  belonging to < 𝑡ℎ1 𝐽
 is not sufficiently high, so we consider additional clusters 𝐶𝑖1

from  as ’s clusters. The threshold  is used for {𝐶𝑖2,…,𝐶𝑖ℎ
} 𝐽 𝑡ℎ2

this selection. We consider that  may also belong to  if 𝐽 𝐶𝑖𝑗 𝐽𝑀𝑖𝑗

, for all , . Step 5 performs this selection. ≥ 𝑡ℎ2 𝑗 2 ≤ 𝑗 ≤ ℎ
Assume that  is ordered by the  value, i.e., 𝐶𝐽 = {𝐶𝐽1,𝐶𝐽2,…} 𝐽𝐷

.𝐽𝐷𝐶𝐽1 ≤ 𝐽𝐷𝐶𝐽2 ≤ …
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D. Workload Estimation
We estimate the workload of a new task  based on the 𝐽

statistical properties of its cluster  obtained in Section 3.3. 𝐶𝐽
We consider several workload estimation algorithms using 
different statistical properties of a partial set of or all of the 
tasks in . 𝐶𝐽

CAE Algorithm (Cluster Average based Estimation) uses 
clusters’ average workload for estimation.

KNNE Algorithm (K-Nearest Neighbor based Estimation) 
selects K nearest tasks in the cluster(s) based on DTW distance 
to , then use their average workload for estimation.𝐽

The KNST Algorithm (K-Nearest Stability Neighbor 
Estimation) select K nearest tasks based on the stability and 
distance, then use their average workload for estimation.

The OKNST Algorithm (Overestimation on K-Nearest 
Stability Neighbor) select K nearest tasks based on the stability 
and distance, then overestimate the workload based on the 
fluctuation of these tasks. OKNST is to give a better SLA 
assurance at the cost of potentially wasted resources.

For comparison with conventional algorithm, we choose 
ARIMA to represent the conventional per-job based workload 
prediction algorithms.

All algorithms are discussed in the following subsections.

1) CAE Algorithm
A simple way to estimate the workload for a new task  is to 𝐽

use the cluster average workload. 
When , then the cluster average workload is used to ‖𝐶𝐽‖ = 1

be the estimated workload of . 𝐽
𝑃𝐿𝐽(𝑡) = 𝐶𝐿𝐶𝐽1(𝑡), 𝐼𝑇 < 𝑡 ≤ 𝑇

When  includes more than one cluster, a weighted sum 𝐶𝐽
based on  is used, where𝐽𝑀𝑖

𝑃𝐿𝐽(𝑡) =
∑‖𝐶𝐽‖

𝑖 = 1𝐽𝑀𝐶𝐽𝑖 ∗ 𝐶𝐿𝐶𝐽𝑖(𝑡)

∑‖𝐶𝐽‖
𝑖 = 1𝐽𝑀𝐶𝐽𝑖

, 𝐼𝑇 < 𝑡 ≤ 𝑇.

2) KNNE Algorithm
The workloads of a task in a large cluster could vary quite 

significantly. Instead of using the average workload of the 
entire cluster(s), we can select some tasks in the cluster(s) that 
are most similar to  and use their workloads to estimate ’s 𝐽 𝐽
workload. Here, we consider selecting  (  nearest neighbors, 𝑀 𝑀
though the name is KNNE) tasks whose workloads are closest 
to . Let  denote the  tasks from all 𝐿𝐽 𝐾𝑁 = {𝑘𝑛1,…,𝑘𝑛𝑀} 𝑀
clusters in  that are most similar to  in their DTW distances. 𝐶𝐽 𝐽
Specifically,  satisfies 𝑘𝑛𝑖

𝑚𝑖𝑛 ― 𝑆
𝑖,𝑗, 𝐶𝑖𝐶𝐽

(𝑀,𝑑𝑖𝑠𝑡(𝐿𝐽(𝑡),𝐿𝐶𝑖,𝑗(𝑡))), 1 ≤ 𝑡 ≤ 𝐼𝑇.

Then, KNNE calculates the average workload of the tasks in 
 as the estimated workload of .𝐾𝑁 𝐽

𝑃𝐿𝐽(𝑡) =
∑𝑀

𝑖 = 1𝐿𝑘𝑛𝑖(𝑡)

𝑀 , 𝐼𝑇 < 𝑡 ≤ 𝑇

3) KNST Algorithm
In KNNE algorithm, the  nearest neighbours are selected 𝑀

solely based on the DTW distance. Here we also take the 

stability (degree of fluctuation relative to cluster average) of the 
tasks into account when considering the  nearest neighbors.𝑀
1. Compute the stability of the new task  relative to each of the 𝐽

clusters in , i.e., . Then, compute the 𝐶𝐽 𝑆𝑇𝐶𝐽𝑖,𝐽(𝑡),1 ≤ 𝑖 ≤ ℎ
average and standard deviation of  over time period 𝑆𝑇𝐶𝐽𝑖,𝐽(𝑡),

, i.e., , .𝐼𝑇 𝑆𝑇𝐶𝐽𝑖,𝐽[𝐼𝑇] 𝑆𝑇𝐶𝐽𝑖,𝐽[𝐼𝑇]
2. The KNST algorithm selects  closest tasks based on the 𝑀

dissimilarity metric  defined on three attributes, the 𝑑𝑖𝑠𝑠𝑖𝑚
DTW distance, the average stability over , and the 𝐼𝑇
standard deviation of stability over . Formally, 𝐼𝑇

𝑑𝑖𝑠𝑠𝑖𝑚(𝐿𝐽(𝑡),𝐿𝐶𝐽𝑖,𝑗(𝑡)) =
𝑑𝑖𝑠𝑡(𝐿𝐽(𝑡),𝐿𝐶𝐽𝑖,𝑗(𝑡))

∗ |𝑆𝑇𝐶𝐽𝑖,𝐽[𝐼𝑇] ― 𝑆𝑇𝐶𝐽𝑖,𝑗[𝐼𝑇]|
∗ |𝑆𝑇𝐶𝐽𝑖,𝐽[𝐼𝑇] ― 𝑆𝑇𝐶𝐽𝑖,𝑗[𝐼𝑇]|.

3. Select the set of  tasks that are most similar to  based on 𝑀 𝐽
the  metric, and let  denote the set. 𝑑𝑖𝑠𝑠𝑖𝑚 𝐾𝑁 = {𝑘𝑛1,…,𝑘𝑛𝑀}
Specifically  satisfies𝑘𝑛𝑖

𝑚𝑖𝑛 ― 𝑆
𝑖,𝑗, 𝐶𝑖𝐶𝐽

(𝑀,𝑑𝑖𝑠𝑠𝑖𝑚(𝐿𝐽(𝑡),𝐿𝐶𝑖,𝑗(𝑡))), 1 ≤ 𝑡 ≤ 𝐼𝑇.

4. The estimated workload of  is𝐽

𝑃𝐿𝐽(𝑡) =
∑𝑀

𝑖 = 1𝐿𝑘𝑛𝑖(𝑡)

𝑀 , 𝐼𝑇 < 𝑡 ≤ 𝑇.

4) OKNST Algorithm
The first three steps of OKNST are the same as those of 

KNST. But the notation used in Step 3 needs to be revised to 
make the rest of the computation clear. Here, we give the 
details of Steps 3 onwards of OKNST.
3. Let  denote the set of tasks selected 𝐾𝑁𝐶𝐽𝑖 = {𝐿𝐶𝐽𝑖,𝑗1,𝐿𝐶𝐽𝑖,𝑗2,…}

by KNST (  is a subset of the  tasks most similar to ) 𝐾𝑁𝐶𝐽𝑖 𝑀 𝐽
and belongs to cluster . Specifically,  satisfies 𝐶𝐽𝑖 𝐿𝐶𝐽𝑖,𝑗𝑙

𝑚𝑖𝑛 ― 𝑆
𝑖,𝑗,𝐶𝐽𝑖 ∈ 𝐶𝐽

(𝑀,𝑑𝑖𝑠𝑠𝑖𝑚(𝐿𝐽(𝑡),𝐿𝐶𝐽𝑖,𝑗(𝑡)))

and . 𝑀 = ∑
𝑖‖𝐾𝑁𝐶𝐽𝑖

‖
4. For each job in , compute its over estimated stability 𝐾𝑁𝐶𝐽𝑖

value, denoted as , where𝑜𝑒𝑆𝑇𝐶𝐽𝑖,𝑗𝑙

𝑜𝑒𝑆𝑇𝐶𝐽𝑖,𝑗𝑙 = 𝑆𝑇𝐶𝐽𝑖,𝑗𝑙[𝑇] + 𝑟𝑝 ∗ 𝑆𝑇𝐶𝐽𝑖,𝑗𝑙[𝑇].
Here  is the constant controlling the degree of 𝑟𝑝
over-estimation.

5. Compute the estimated workload of  in cluster , denoted 𝐽 𝐶𝐽𝑖

as , where𝑃𝐿𝐶𝐽𝑖,𝐽(𝑡)
𝑃𝐿𝐶𝐽𝑖,𝐽(𝑡) =

𝐶𝐿𝐶𝐽𝑖(𝑡) + 𝑚𝑎𝑥
1 ≤ 𝑗 ≤ ‖𝐾𝑁𝐶𝐽𝑖

‖ 
𝑜𝑒𝑆𝑇𝐶𝐽𝑖,𝑗 ∗ 𝐶𝐿𝐶𝐽𝑖(𝑡) ,

𝐼𝑇 < 𝑡 ≤ 𝑇.
Essentially, the maximal fluctuation ( ) among all of 𝑜𝑒𝑆𝑇𝐶𝐽𝑖,𝑗
the jobs in  is used as the coefficient to overestimate 𝐾𝑁𝐶𝐽𝑖

the workload.
6. Finally, the maximal value of  is used for , 𝑃𝐿𝐶𝐽𝑖,𝐽(𝑡) 𝑃𝐿𝐽(𝑡)

for each time instance , i.e.,𝑡
𝑃𝐿𝐽(𝑡) = 𝑚𝑎𝑥

𝐶𝑖𝐶𝐽
(𝑃𝐿𝐶𝐽𝑖,𝐽(𝑡)), 𝐼𝑇 < 𝑡 ≤ 𝑇.

5) ARIMA
To allow thorough evaluation of the job-pool based 

workload estimation approach, we also compare the algorithms 
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introduced above with conventional per-job based workload 
prediction algorithms. We choose to use ARIMA to represent 
the conventional per-job based workload prediction algorithms. 

The ARIMA model consists of three components, 
autoregression, integration and moving average. Each 
component has an associated parameter to be determined from 
the historical data. The mathematical formulation of the  

  model using lag polynomials is:𝐴𝑅𝐼𝑀𝐴 (𝑝,𝑑,𝑞)
𝑌𝑡 = (1 ― 𝐿)𝑑𝑡

for non-stationary time series and

(1 ―
𝑝

∑
𝑖 = 1

∅𝑖𝐿𝑖)𝑌𝑡 = (1 +
𝑞

∑
𝑖 = 1

𝜃𝑖𝐿𝑖)𝜀𝑡

for stationary time series, where ,  and  are natural 𝑝 𝑑 𝑞
numbers. Specifically,  is the number of autoregressive terms, 𝑝

 is the number of non-seasonal differences needed for 𝑑
stationarity, and  is the number of lagged forecast errors in the 𝑞
estimation.  

We use the auto.arima function in forecast R package for per 
job workload estimation. The ARIMA function uses a variation 
of the Hyndman and Khandakar [30] approach. In this 
approach, unit root tests, minimization of the Akaike 
Information Criterion (AIC) and Maximum Likelihood 
Estimation (MLE) are used to obtain the three parameters, 𝑝,𝑑,𝑞
, in the ARIMA model. 

IV.EXPERIMENTAL RESULTS
We use the Google trace log, consisting of workload data 

from a real cloud environment during 29 days, to evaluate our 
workload estimation approaches. In Google data, each task is 
uniquely labeled by its Job Id and Task Index. Information of  
each task includes CPU, memory, and disk usages, etc. From 
our preliminary analysis of the trace log data, memory and disk 
workloads are relatively stable and easy to predict, while CPU 
usage patterns of many tasks are highly dynamic and the 
prediction can be challenging. Thus, the prediction of tasks’ 
CPU usage of the tasks is considered. In the Google dataset, the 
CPU usage is recorded in every 5 minutes. Each usage data 
point is the average value of usages during a recording period, 
and has been normalized into the range of [0, 1.0] [10].

According to the others literatures, the data of day 18 is 
representative of the all trace log[31], therefore tasks from day 
18 with 238 to 288 (24 hours) data points are selected. For the 
tasks with less than 288 data points, we pad them with 0s. We 
consider tasks with long execution time because workload 
estimation is most meaningful for these tasks. Among all the 
tasks satisfying the criteria above, we randomly choose 8639 
tasks as the basis for clustering and use  to denote this dataset. 𝐺0
We then randomly select 2197 tasks from  and mark this 𝐺0
subset as . Also we select another 2141 tasks and the dataset 𝐺1
is marked as .  and  are disjoint. We use  to test the 𝐺2 𝐺0 𝐺2 𝐺1
accuracy of cluster prediction. Then we perform workload 
estimation for tasks in  and  and determine the accuracy of 𝐺1 𝐺2
our workload estimation approaches by comparing the 
estimated workload with the actual workload.

For each new task , we measure the accuracy of its workload 𝐽

estimation by metrics defined in the following [22]. 
 : The cluster estimation accuracy. For a task , if the 𝑇𝐶𝑃 𝐽

cluster to which  belongs is in , then we set , 𝐽 𝐶𝐽 𝐶𝑃𝐽 = 1
otherwise . Note that this test is only applied to tasks in 𝐶𝑃𝐽 = 0

 (no data to determine to which cluster a task in  should 𝐺1 𝐺2

belong). The cluster estimation accuracy  is the average of 𝑇𝐶𝑃
 for all .𝐶𝑃𝐽 𝐽 ∈ 𝐺1

 : The workload estimation accuracy, A is one of the 𝐷𝑃𝐽(𝐴)
workload estimation algorithms or the workload requested by 
the customer ( ).  is the workload estimated for time . 𝑅𝐿 𝑃𝐿𝐽(𝑡) 𝑡

 is the whole length of the workload time series, and  288 𝑇 𝑇 =
time indices (24 hours).

𝐷𝑃𝐽(𝐴) =
∑𝑇

𝑡 = 𝐼𝑇 + 1|𝐿𝐽(𝑡) ― 𝑃𝐿𝐽(𝑡)| 

∑𝑇
𝑡 = 𝐼𝑇 + 1𝐿𝐽(𝑡) 

 : The average accuracy of all tasks in the dataset 𝑇𝐷𝑃(𝐴,𝐺) 𝐺
(  or ), A is one of the workload estimation algorithms. 𝐺1 𝐺2

There are some tasks with strict performance requirements 
which needs sufficient resources to run smoothly. Therefore, 
we define under estimation statistics.

 : is the set of time indices 𝑈𝑇𝐽(𝐴) = {𝑡𝑖│ 𝑃𝐿𝐽(𝑡𝑖) < 𝐿𝐽(𝑡𝑖)}
when the estimated workload by algorithm  is lower than the 𝐴
actual workload.

𝑈𝑃𝐽(𝐴) =
∑

𝑡𝑖 𝑖𝑛 𝑈𝑇𝐽 
(𝐿𝐽(𝑡𝑖) ― 𝑃𝐿𝐽(𝑡𝑖))

∑𝑇
𝑡 = 𝐼𝑇 + 1𝐿𝐽(𝑡) 

 can be considered as the measure of how much the 𝑈𝑃𝐽(𝐴)
workload is under estimated by algorithm  for a task . For the 𝐴 𝐽
test dataset, we compute , which is the average 𝑇𝑈𝑃𝐽(𝐴,𝐺) 𝑈𝑃𝐽

 over all tasks in the dataset . Note that  can only be a (𝐴) 𝐺 𝑈𝑃𝐽
reference metric because over estimation can yield low , but 𝑈𝑃𝐽
it does not imply the accuracy of the estimation. Thus, we also 
consider , which is the average of  estimated by 𝐴𝑣𝑔𝐽(𝐴) 𝑃𝐿𝐽(𝑡)

algorithm , i.e., , and , 𝐴 𝐴𝑣𝑔𝐽(𝐴) =
∑𝑇

𝑡 = 𝐼𝑇 + 1𝑃𝐿𝐽(𝑡)

𝑇 ― 𝐼𝑇 𝑇𝐴𝑣𝑔(𝐴,𝐺)
which is the average  over all tasks in the dataset . If 𝐴𝑣𝑔𝐽(𝐴) 𝐺
two algorithms have similar , then  data can serve as 𝑇𝐴𝑣𝑔 𝑇𝑈𝑃
an indicator about how well the algorithms can avoid under 
estimation.

A. Cluster the Pool of Tasks
We use K-medoids algorithm to cluster the 8639 tasks in  𝐺0

into 40 clusters (different  values have been explored and 𝐾
 is chosen based on silhouette value [26, 32]). We select 𝐾 = 40

three sample clusters and show them in Fig. 3, where one 
cluster is shown in one diagram. Each line in each diagram 
represents one time series. Time index is given on the x-axis 
and each time index unit represents 300 seconds. The CPU 
usage for each task is plotted on the y-axis [21].

(a) Cluster4

(b) Cluster39

(c) Cluster18
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Fig. 3. Workload patterns from four clusters. Each cluster contains many tasks 
with similar workload patterns.

As can be seen, tasks in Cluster4 (Fig. 3a) have very low 
CPU usages and fluctuate at a high frequency between the 
range of [0.00, 0.09]. CPU usages of tasks in Cluster39 (Fig. 
3b) have an irregular fluctuation and the fluctuation frequency 
is lower than those in Cluster4. Although the CPU usages are 
mostly within [0.10, 0.25], there are low troughs at four time 
indices. The drops in workloads within the contiguous troughs 
do not show periodicity.

Compared to other clusters, Cluster18 (Fig. 3c) shows a 
distinct characteristic. The CPU usages of tasks in this cluster 
have a small fluctuation similar to other clusters in most of the 
time periods, but there are several very high bursts. The time 
indices of the bursts are quite uniform among tasks in this 
cluster, with one in the beginning of the execution and the 
others between time 125 and 200.

If a job is clustered into, for example, cluster18, based on its 
initial workload, and if the clustering is accurate, then the 
workloads of existing tasks in cluster18 can provide valuable 
information to help estimate the potential spikes of the current 
task. Each of the other clusters that are not discussed here has 
its own characteristics which can be helpful for predicting 
special workload patterns.

B. Cluster Prediction for New Tasks
We study the accuracy of cluster prediction for jobs in . 𝐺1

The configurable variables used in the cluster prediction 
algorithm are set as follows: The thresholds  and  are set 𝑡ℎ1 𝑡ℎ2
to be 1.3 and 1, respectively. Essentially, we consider a task 
definitely belongs to cluster  if its fuzzy membership value 𝐶1

, i.e., its DTW distance to ’s medoid is within 1.3 . 𝐽𝑀𝑖 ≤ 1.3 𝐶1 
Otherwise, threshold  determines additional clusters that the 𝑡ℎ2
new task may belong to if its DTW distance to the medoids of 
those clusters are within 3 . If a task is assigned to multiple 
clusters, the maximum number of clusters it can be assigned to 
is bounded by . We set  to 1, 2, and 3, to study its impact on ℎ ℎ
cluster prediction accuracy.

TABLE 1

Table 1 shows cluster prediction accuracy for different  𝐼𝑇
and  values. With the same ,  increases when  ℎ ℎ 𝑇𝐶𝑃 𝐼𝑇
increases. From  to , the improvement is 𝐼𝑇 = 6 𝐼𝑇 = 24
significant. The increase slows down after . When 𝐼𝑇 = 24

 there is a burst in . Then, from  to 𝐼𝑇 = 36 𝑇𝐶𝑃 𝐼𝑇 = 48
,  increases slowly, with a 5% improvement.  𝐼𝑇 = 144 𝑇𝐶𝑃 𝑇𝐶𝑃

also increases with increasing  value. This is because a task ℎ
may be clustered into  clusters and as long as one of the  ℎ ℎ
clusters matches, we consider it accurate. However, the impact 
of  is not very significant. ℎ

C. Parameter Tuning for Different Workload Estimation 
Algorithms

In this section, we tune the key parameters for each 

algorithm discussed in Section 3 to maximize their prediction 
accuracy. The impact of various parameters and our final 
parameter selections for each algorithm are discussed in each of 
the following subsections.

1) CAE Algorithm

Fig. 4.  of CAE algorithm 𝑇𝐷𝑃(𝐶𝐴𝐸,𝐺2)/𝑇𝐷𝑃(𝑅𝐿,𝐺2)%

We examine the accuracy of the CAE algorithm for 
workload estimation. Fig. 4 shows the relative error rates, 

, with different  settings. Note 𝑇𝐷𝑃(𝐶𝐴𝐸,𝐺2)/𝑇𝐷𝑃(𝑅𝐿,𝐺2) ℎ
that . Fig. 5 shows the under-estimation 𝑇𝐷𝑃(𝑅𝐿) = 6054.61%
rates for the CAE algorithm, . From Fig. 4, we 𝑇𝑈𝑃(𝐶𝐴𝐸, 𝐺2)
can see that the error rates  for  are slightly higher 𝑇𝐷𝑃 ℎ = 2, 3
than those for  but the difference is more significant when ℎ = 1

. This is expected because CAE does not differentiate the 𝐼𝑇 = 6
selected clusters (could be 1 to  clusters) when taking the ℎ
average workload as the predicted workloadxi. In Fig. 5, we can 
see that the under estimation rates  for  is much 𝑇𝑈𝑃 ℎ = 1
higher (roughly 20-35% higher) than those for . Note ℎ = 2, 3
that  for different  and  values are in a narrow range of 𝑇𝑎𝑣𝑔 ℎ 𝐼𝑇
[0.022, 0.025], indicating that the  comparison is 𝑇𝑈𝑃
illustrative. From the figures, we can see that CAE is not 
suitable for workload estimation when we do not have enough 
initial workload data. 

Fig. 5.   of CAE algorithm𝑇𝑈𝑃(𝐶𝐴𝐸,𝐺2)

Since  has similar  values as  for  , ℎ = 3 𝑇𝐷𝑃 ℎ = 1 𝐼𝑇 ≥ 12
but has much lower , we set   for CAE for subsequent 𝑇𝑈𝑃 ℎ = 3
experiments.

2) KNNE Algorithm
Now we study the impacts of the parameter settings for the 

KNNE algorithms. Fig. 6 shows the relative error rates, 
 with different  values (which 𝑇𝐷𝑃(𝐾𝑁𝑁𝐸,𝐺2)/𝑇𝐷𝑃(𝑅𝐿,𝐺2) 𝑀

controls how many nearest neighbors will be chosen). Fig. 7 
shows the corresponding under-estimation rates, 𝑇𝑈𝑃(𝐾𝑁𝑁𝐸, 

 for different  values. 𝐺2) 𝑀

Fig. 6.  of KNNE algorithm.𝑇𝐷𝑃(𝐾𝑁𝑁𝐸,𝐺2)/𝑇𝐷𝑃(𝑅𝐿,𝐺2)%

From Fig. 6, we can see that  drops with increasing  𝑇𝐷𝑃 𝐼𝑇
and from  to  there is the sharpest drop. One 𝐼𝑇 = 6 𝐼𝑇 = 12
exception is when  and , where  has the 𝑀 = 1 𝐼𝑇 = 24 𝑇𝐷𝑃
lowest value. From deep analysis, we found that there are 
several tasks with very high  values (> 10000 for 𝐷𝑃

), which significantly raises the overall error 𝐼𝑇 = 6, 12, 36, 48
rate . The high  values are due to the very low CPU 𝑇𝐷𝑃 𝐷𝑃
usage (less than 0.001).  When , only one task is chosen 𝑀 = 1
as the basis for workload estimation. Thus, the better choice 
made for  leads to a lower error rate than the other 𝐼𝑇 = 24
cases. In terms of ,  has the lowest  for almost all  𝑀 𝑀 = 20 𝑇𝐷𝑃
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 values. 𝐼𝑇

Fig. 7.   of KNNE algorithm.𝑇𝑈𝑃(𝐾𝑁𝑁𝐸,𝐺2)

Since  values for all  and  settings are similar and 𝑇𝐴𝑣𝑔 𝑀 𝐼𝑇
are in the range of [0.022, 0.025], we can compare under 
estimation rates directly. Fig. 7 shows  values under 𝑇𝑈𝑃
different  settings for the KNNE algorithm. Obviously =1 𝑀 𝑀
would not result in good estimation. But as  increases from 10 𝑀
to 40,  also increases.  𝑇𝑈𝑃

A low  value does not provide a sufficient basis for 𝑀
estimation and a high  value implies that the large sample 𝑀
space may turn out to contain outliers and impacts the 
estimation accuracy. Thus, we choose  for KNNE 𝑀 = 20
because it yields the best  and second lowest . 𝑇𝐷𝑃 𝑇𝑈𝑃

3) KNST Algorithm

Fig. 8.  of KNST algorithm.𝑇𝐷𝑃(𝐾𝑁𝑆𝑇,𝐺2)/𝑇𝐷𝑃(𝑅𝐿,𝐺2)%

Fig. 9.   of KNST algorithm.𝑇𝑈𝑃(𝐾𝑁𝑆𝑇,𝐺2)

 is also the key parameter in the KNST algorithm. Fig. 8 𝑀
and Fig. 9 show its relative error rate 𝑇𝐷𝑃(𝐾𝑁𝑆𝑇,𝐺2)/𝑇𝐷𝑃(𝑅𝐿

 and , respectively, for different . ,𝐺2) 𝑇𝑈𝑃 𝑀
Comparing Fig. 8 and Fig. 9 with Fig. 6 and Fig. 7, we can 

see that KNST has a similar trend as KNNE. For example, 
when , it has the lowest  value. But when , 𝑀 = 20 𝑇𝐷𝑃 𝑀 = 40
it has the lowest  value.  of KNST also has a narrow 𝑇𝑈𝑃 𝑇𝐴𝑣𝑔
range of [0.023, 0.025], indicating the validity of the  𝑇𝑈𝑃
based comparisons. A different observation in KNST is that 

 values do not change much from  to . 𝑇𝑈𝑃 𝐼𝑇 = 12 𝐼𝑇 = 48
Based on the exploration, we also choose  for the KNST 𝑀 = 20
algorithm.

4) OKNST Algorithm
OKNST algorithm targets to overestimate workloads and the 
 parameter controls the overestimation degree. The relative 𝑅𝑃

error rates  and the 𝑇𝐷𝑃(𝑂𝐾𝑁𝑆𝑇,𝐺2)/𝑇𝐷𝑃(𝑅𝐿,𝐺2)
underestimation rates  for the OKNST algorithm with 𝑇𝑈𝑃
different  values are shown in Fig. 10 and Fig. 11, 𝑅𝑃
respectively. Since  values for different settings vary 𝑇𝐴𝑣𝑔
relatively significantly, we also show them in Table 2.

Fig. 10.  of OKNST.𝑇𝐷𝑃(𝑂𝐾𝑁𝑆𝑇,𝐺2)/𝑇𝐷𝑃(𝑅𝐿,𝐺2)%

Fig. 11.   of OKNST.𝑇𝑈𝑃(𝑂𝐾𝑁𝑆𝑇,𝐺2)

From the figures, we can see that different  values yield 𝑅𝑃
quite different  and  values. As expected, higher  𝑇𝐷𝑃 𝑇𝑈𝑃 𝑅𝑃
leads to higher  but lower  values. The reason for 𝑇𝐷𝑃 𝑇𝑈𝑃

lower  can also be seen from  shown in Table 2. With 𝑇𝑈𝑃 𝑇𝐴𝑣𝑔
increasing ,  increases, which contributes to the 𝑅𝑃 𝑇𝐴𝑣𝑔
dropping of  values. We choose  for OKNST in the 𝑇𝑈𝑃 𝑅𝑃 = 2
subsequent experiments.

TABLE 2

5) ARIMA
We use a variation of the Hyndman and Khandakar [30] 

approach (in auto.arima of R) to obtain the three parameters of 
ARIMA, p, d and q. The steps for building the ARIMA model 
are summarized as follows:
1. The number of non-seasonal differences  is determined 𝑑

using repeated Kwiatkowski–Phillips–Schmidt–Shin 
(KPSS) tests.

2. The values of  and  are then chosen by minimizing the 𝑝 𝑞
Akaike information criterion (AIC) after applying  to the 𝑑
data (differencing the data  times). 𝑑

(a) The best model (with smallest AICs) is selected from 
the following four tests:  𝐴𝑅𝐼𝑀𝐴 (2,𝑑,2) 𝐴𝑅𝐼𝑀𝐴(0,𝑑,0)
, , . The four choices are  𝐴𝑅𝐼𝑀𝐴(1,𝑑,0) 𝐴𝑅𝐼𝑀𝐴(0,𝑑,1)
selected based on the recommendation discussed in 
[30].

(b) With the decision of , we further change  and/or  𝑑 𝑝 𝑞
from the current model by ±1 and select the better  and 𝑝

 values.𝑞
(c) Repeat Step 2 (b) until no lower AICs can be found.

For each time series, a different set of p, d and q settings are 
selected. For example,  is the optimum model 𝐴𝑅𝐼𝑀𝐴(1,1,0)
for 29.6% of the tasks and  is the optimum 𝐴𝑅𝐼𝑀𝐴(0,1,0)
model for 23.4% of tasks in our dataset.

D. Comparison of Workload Estimation Algorithms
In this section, we compare the effectiveness of different 

workload estimation algorithms, including CAE, KNNE, 
KNST, OKNST and ARIMA. The parameter settings for each 
algorithm have been discussed in Section 4.3. For ARIMA, we 
consider its prediction at different  values to see its prediction 𝐼𝑇
accuracy at early time. We also consider its continuous 
prediction (ARIMA-C), in which ARIMA estimates the 
workload of the next 12 time units at  = 6, 12, 24, 36, …, 276. 𝐼𝑇
We choose to predict for 12 time units ahead because it is a 
reasonable time period for taking resource reallocation actions.

Fig. 12.  of all algorithms. OKNST uses a TDP(A ,G2)/𝑇𝐷𝑃(RL ,G2)%

different scale from the other algorithms (its scale is marked by the 
right side vertical axis).

Fig. 13.   of all algorithms.TUP(A ,G2)

Fig. 12 and Fig. 13 compare the relative error rates, 𝑇𝐷𝑃(𝐴,
 and under estimation rates  of 𝐺2)/𝑇𝐷𝑃(𝑅𝐿,𝐺2)  𝑇𝑈𝑃(𝐴,𝐺2)

different algorithms with different  values. Table 3 shows the 𝐼𝑇
 value of these algorithms. 𝑇𝐴𝑣𝑔
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It is obvious that OKNST has the highest  values and 𝑇𝐷𝑃
lowest  values than other algorithms due to its intentional 𝑇𝑈𝑃
over-estimation. The over-estimation property in OKNST can 
also be observed from the higher . However, even with 𝑇𝐴𝑣𝑔
over-estimation, its  is still only 40% of the user given 𝑇𝐷𝑃
workload  and its  is less than 10% of . Thus, 𝑅𝐿 𝑇𝑈𝑃 𝑅𝐿
OKNST is a good solution if we want to have an improved 
resource utilization with a high SLA assurance. 

TABLE 3

Among other algorithms, CAE has a higher  than KNNE 𝑇𝐷𝑃
and KNST. This is because CAE simply averages the 
workloads of all the tasks in the clusters for workload 
estimation. Its  is the highest among all algorithms 𝑇𝑈𝑃
showing that such estimation is too rough. Comparing KNST 
and KNNE, KNNE has a lower  but a slightly higher  𝑇𝐷𝑃 𝑇𝑈𝑃
than KNST.  of ARIMA is lower than that of CAE but 𝑇𝐷𝑃
higher than those of KNNE and KNST. Also,  of ARIMA 𝑇𝐷𝑃
has a burst at . We found that this is because one task 𝐼𝑇 = 12
has a very low CPU usage (< 0.00005), and a relatively high 
estimation leads to an extremely high  (> 600000). 𝑇𝐷𝑃
ARIMA-C has a lower  than ARIMA, and it is slightly 𝑇𝐷𝑃
higher than KNST. But ARIMA and ARIMA-C both have 
lower  values than KNNE and KNST. This is because their 𝑇𝑈𝑃
workload estimates tend to be higher, as can be seen from Table 
3,  of ARIMA is even higher than OKNST and  of 𝑇𝐴𝑣𝑔 𝑇𝐴𝑣𝑔
ARIMA-C is approximately 1.5 times of  of KNNE and 𝑇𝐴𝑣𝑔
KNST.

Comparing with ,  of CAE, KNNE, KNST, and 𝑅𝐿 𝑇𝐷𝑃
ARIMA are less than 10% of . It means that 𝑇𝐷𝑃(𝑅𝐿,𝐺2)
instead of simply letting users estimate resource demands of 
their tasks, our algorithms can be used for workload estimation 
to achieve much better resource utilization.

From earlier results, we can see that some algorithms may 
give a few estimations with very high  values. Thus, we 𝑇𝐷𝑃
construct the histograms to see the error rate distributions of the 
algorithms and the results are shown in Fig. 14 for . 𝐼𝑇 = 12, 48

From the two charts, we can see that from  the error 𝐼𝑇 = 12
rate distributions for all algorithms shift toward the low rate 
side. Error rates by OKNST have a relatively even distribution 
over all the ranges. CAE also has quite a high count in the high 

 ranges. KNNE and KNST have the highest counts in the 𝑇𝐷𝑃
lowest  range and has very low counts in the highest  𝑇𝐷𝑃 𝑇𝐷𝑃
ranges.  distributions of ARIMA and ARIMA-C are better 𝑇𝐷𝑃
than that of CAE but worse than those of KNNE and KNST. 

Now consider the scaled-up high error rate region (last two 
columns in the charts). ARIMA and ARIMA-C have higher 
counts in high error rate ranges compared to KNNE. In the 
1000-10000 range, ARIMA-C has higher counts than KNNE 
does in both charts. Both ARIMA-C and KNNE have 0 task in 
the >10000 range.

Taking all factors into account, KNNE is the best workload 
estimation algorithm among those considered in the 
experimental study. It has the lowest error rate and can estimate 
the work load accurately at an early stage of job execution, 

which can greatly benefit resource allocation planning and 
avoid unnecessary task migration. Also, as shown in the task 
count analysis, per-job based workload estimation has a higher 
potential of making bad estimations. Thus, we can confirm that 
clustering does help achieve better workload estimation.

(a) IT=12

(b) IT=48

Fig. 14. Task count in each  range.  𝑇𝐷𝑃

(1000-10000)*: Task Count is multiplied by 10.

 (>10000)*: Task Count is multiplied by 100.

E. Workload Estimation for Sample Tasks
We choose two tasks, one from Cluster 1 in which the tasks 

have steady fluctuations around a relatively constant workload, 
and the other from Cluster 28, in which each task has a sharp 
burst roughly between time indices 220 and 230. Fig. 15 shows 
the estimated workload for these two tasks by various 
algorithms. Besides ARIMA-C, which is a continuous 
estimation, all other algorithms (including ARIMA) consider 

. Note that  is the actual workload of the task as 𝐼𝑇 = 24 𝐿
defined in Section 3.1.

From Fig. 15a, we can see that the user gives a very high 
workload estimate ( ) which can result in resource 𝑅𝐿
underutilization. OKNST over-estimates the workload. It does 
not show under-estimation at any time, and its estimation is 
much lower than that of . The estimation by CAE is a much 𝑅𝐿
lower than OKNST, but higher than other algorithms. In Fig. 
15b, we scale up the estimates by other algorithms to better 
observe them. As can be seen from the figure, the actual 
workload fluctuates between [0.0028, 0.0042], which shows 
that Task1 steadily has a very low CPU usage. Estimation by 
KNST has more fluctuations than the actual workload. KNNE 
has the closest estimate for the workload. ARIMA cannot make 
long term predictions and, thus, it gives a steady estimation at 
around 0.0040 after time index 30. ARIMA-C tends to make 
predictions based on current trends and, hence, has significant 
deviations in the estimated workload. 

(a) Task1

(b) Task 1 (scaled up for KNNE, KNST, ARIMA)

(c) Task 2

Fig. 15. Request workload, actual workload and estimation workload 
on single task.

From Fig. 15c, we can see that the actual workload of Task 2 
(between time indices 150 and 288) fluctuates around 0.10 till 
the sudden burst to 0.40 at time index 225. The user estimated 
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workload  is 0.3125, which is higher than the actual 𝑅𝐿
workload during most of the time, but lower than the peak of 
the burst. This implies that  may cause resource waste most 𝑅𝐿
of the time but may fail to provide enough resources during the 
burst. OKNST is designed to over-estimate to assure the 
provision of sufficient resources. It has a relatively high 
overestimation, including the burst. It does not show 
under-estimation at any time. Also, OKNST gives much better 
workload estimation than . 𝑅𝐿

Since we have already observed workload estimations by 
various algorithms for steadily fluctuating patterns in Task 1, 
here we focus on the estimations for the spike in Task 2 by 
various methods (other than RL).  As expected, ARIMA is not 
able to make long term predictions, so it cannot anticipate any 
spikes or dips in the future. ARIMA-C catches up with the burst 
way after it happens and it delays the peak prediction till the 
actual peak workload period is almost over. This is expected 
because regression based prediction algorithms cannot 
anticipate unexpected changes. In contrast, CAE, KNNE, 
KNST and OKNST all can catch the burst on time, but they did 
not estimate the magnitude of the burst well. OKNST, as 
expected, over-estimates and CAE, KNNE, and KNST 
under-estimate the magnitude of the burst. Among them, KNST 
got the closest estimate and KNNE is almost the same as KNST, 
but CAE gives much lower estimate compared to the original 
workload.

V. COMBINING CLUSTERING AND REGRESSION FOR 
IMPROVED WORKLOAD ESTIMATION

From the comparison of workload estimation algorithms 
given in Section 4.4 and from the specific evaluation for the 
two sample tasks given in Section 4.5 we can see that the 
conventional per-job based prediction algorithm ARIMA 
works well for some types of tasks. From our deep analysis, 
when the workload of a task has steady fluctuations or steady 
trends, it can be estimated accurately by conventional per-job 
based algorithms (like ARMIA-C). On the other hand, 
clustering based estimation is suitable for workloads with 
non-smooth bursts which cannot be estimated by regression 
based solutions. Based on these observations, we consider a 
simple combination of our workload estimation approach with 
ARIMA-C to see whether the combined algorithm can achieve 
a better workload estimation. In Section 5.1, we introduce the 
combined algorithm. Section 5.2 analyzes the performance of 
KNNE and ARIMA-C for each cluster. In Section 5.3, the error 
rate for workload estimation by the combined workload 
estimation algorithm is evaluated and compared with its parent 
algorithms KNNE and ARIMA-C.

A. Combining ARIMA and Clustering
We design the combined algorithm “COMBINE” and 

consider the combination of KNNE and ARIMA at both the 
cluster level and the individual task level. 

At the cluster level, we select the best workload prediction 

algorithm for each cluster based on historical data. From the 
training set, we decide whether the workloads in a cluster can 
be estimated more accurately by ARIMA-C or by KNNE. 
Then, the more accurate approach is used as the workload 
estimation method for the cluster. The combined solution at the 
cluster level is given in the following.
1. After clustering, consider each cluster . For each workload 𝐶𝑖

 in , use various algorithms , for all  to estimate the 𝐿𝑖𝑗 𝐶𝑖 𝐴𝑙 𝑙
workload and the estimated workloads are denoted as 𝑃𝐿𝑖𝑗

, , respectively.(𝑡, 𝐴𝑙)  𝐼𝑇 < 𝑡 ≤ 𝑇
2. For each workload  and its estimations , 𝐿𝑖𝑗 𝑃𝐿𝑖𝑗(𝑡, 𝐴𝑙)

, compute the accuracy of the estimations. Let  𝐼𝑇 < 𝑡 ≤ 𝑇
 denote the accuracy of the estimated workload 𝐴𝑀(𝐿𝑖𝑗, 𝐴𝑙)

, , using algorithm  and accuracy 𝑃𝐿𝑖𝑗(𝑡, 𝐴𝑙) 𝐼𝑇 < 𝑡 ≤ 𝑇 𝐴𝑙
metric . 𝐴𝑀

3. For each cluster , compute the average accuracy ( ) of 𝐶𝑖 𝐴𝑀
all the workloads in the cluster for each , where: 𝐴𝑙

𝐴𝑀(𝐶𝑖, 𝐴𝑙) =
∑

𝑗𝐴𝑀(𝐿𝑖𝑗, 𝐴𝑙)

‖𝐶𝑖‖
.

4. Choose the workload estimation algorithm  for cluster 𝐴(𝐶𝑖)
, where 𝐶𝑖,1 ≤ 𝑖 ≤ 𝐾

𝐴(𝐶𝑖) = 𝑚𝑎𝑥
𝑙

𝐴𝑀(𝐶𝑖, 𝐴𝑙).

5. When a new task  arrives, decide the cluster(s) for  , 𝐽 𝐽
namely, . Note that  is the most likely cluster for . We 𝐶𝐽 𝐶𝐽1 𝐽
use  to estimate the workload of 𝐴(𝐶𝐽1) 𝐽.

Fig. 16. Flowchart of the COMBINE algorithm at the task level.

At the individual task level, we consider the case when the 
cluster of a task cannot be determined with a high level of 
confidence. We will be conservative in this case and simply use 
the conventional workload prediction method (here it is 
ARIMA). Thus, a part of the flowchart given in Fig. 2 is 
modified and the modification is shown in Fig. 16. If  𝐽𝑀𝑖1 <

, we use KNNE to predict ’s workload. Otherwise,  cannot 𝑡ℎ1 𝐽 𝐽
be well classified and ARIMA is used for its workload 
estimation.

B. Cluster Analysis
From the analysis given in Section 4.5, it can be seen that 

ARIMA-C (here, we only consider ARIMA-C) cannot predict 
well when the workload changes significantly and suddenly, 
but it performs better when the workload is stable throughout. 
Thus, we compare the performance of these two algorithms for 
individual clusters on dataset  to train the algorithm selection 𝐺1
in the combined algorithm. Here we only consider the  𝑇𝐷𝑃
error. Fig. 17 compares values of ARIMA-C and KNNE (𝑇𝐷𝑃 

.𝐼𝑇 = 24)

Fig. 17.  of KNNE and ARIMA-C for each clusters.𝑇𝐷𝑃

From the figure, we can see that ARIMA-C is better than 
KNNE in Clusters 13, 15, 38 and 39. But in other clusters, 
ARIMA has worse accuracy than KNNE does. In fact, in 
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Clusters 9, 11, 16 and 18, ARIMA-C has much higher  𝑇𝐷𝑃
values than KNNE does because those clusters have very bursty 
workload patterns. Thus, we choose ARMA-C for workload 
estimation for Clusters 13, 15, 38 and 39 and use KNNE for the 
other clusters.

C. Evaluation of the Combined Algorithm
Now we compare COMBINE with ARIMA-C and KNNE (

) for dataset . We compare the relative  errors of 𝐼𝑇 = 24 𝐺2 𝑇𝐷𝑃
the COMBINE algorithm to its parent algorithms.

𝑇𝐷𝑃(𝐶𝑂𝑀𝐵𝐼𝑁𝐸,𝐺2)
𝑇𝐷𝑃(𝐾𝑁𝑁𝐸,𝐺2) = 99.32% 

𝑇𝐷𝑃(𝐶𝑂𝑀𝐵𝐼𝑁𝐸,𝐺2)
𝑇𝐷𝑃(𝐴𝑅𝐼𝑀𝐴 ― 𝐶,𝐺2) = 63.42% 

The results show that COMBINE yields better workload 
estimation than both KNNE and ARIMA-C do. Though 
COMBINE does not improve significantly from KNNE, it does 
offer better prediction in a few clusters. Among all clusters, 
Clusters 13 and 15 get the best improvement and the 
improvements by COMBINE from KNNE in the two clusters 
are shown as follows.

𝑇𝐷𝑃(𝐶𝑂𝑀𝐵𝐼𝑁𝐸,𝐶13)
𝑇𝐷𝑃(𝐾𝑁𝑁𝐸,𝐶13) = 67.05% 

𝑇𝐷𝑃(𝐶𝑂𝑀𝐵𝐼𝑁𝐸,𝐶15)
𝑇𝐷𝑃(𝐾𝑁𝑁𝐸,𝐶15) = 77.35% 

COMBINE works better because it makes use of the 
advantages of different algorithms on different type of 
workload. For a new task which is predicted as the stable 
workload type, ARIMA-C is used to estimate. While the new 
task is predicted to the type may change suddenly, KNNE is 
adapted. Overall COMBINE can improve the accuracy of 
estimation. When more algorithms are put into the algorithm 
set of COMBINE, there is still improving space. 

VI.CONCLUSION

We have developed new workload prediction algorithms to 
estimate the potential resource demands of tasks. We propose 
the job-pool based prediction approach, which generalizes the 
historical workloads of tasks to predict the workloads of new 
tasks. To realize the approach, we first cluster the workloads of 
existing jobs. For a new job, we predict the cluster(s) to which it 
may belong based on its initial workload. Then, we use the 
statistical workload of the cluster(s) to help estimate the 
workload of the new job. Experimental results show that our 
model is capable of making good workload estimations at an 
early stage of job execution, especially for jobs that have 
sudden and significant workload changes. Based on our 
analysis of Google dataset, many tasks have unexpected spikes 
and dips in their workload patterns. Thus, the approach we have 
developed can be very useful, can greatly improve workload 
estimation accuracy and, hence, improve resource utilization 
and saving power in datacenters.
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TABLE 1
 ON DIFFERENT  AND  VALUES  𝑇𝐶𝑃 𝐼𝑇 ℎ

IT  ℎ = 1  ℎ = 2  ℎ = 3
6 67.87% 68.96% 70.10%
12 74.65% 77.97% 78.74%
24 79.06% 83.52% 84.16%
36 82.48% 85.03% 85.98%
48 81.02% 83.34% 83.25%
72 81.84% 84.30% 84.57%
96 82.66% 84.93% 85.30%
120 83.48% 85.57% 85.80%
144 86.44% 87.94% 88.21%
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TABLE 2
  OF OKNST ALGORITHM𝑇𝐴𝑣𝑔(𝑂𝐾𝑁𝑆𝑇,𝐺2)

IT RP = 0
RP = 0.5

 RP = 1 RP = 2 R 𝑃 = 3

6 0.03907 0.04389 0.04900 0.05925 0.06973
12 0.03650 0.04103 0.04582 0.05552 0.06549
24 0.03628 0.04079 0.04544 0.05493 0.06465
36 0.03616 0.04055 0.04506 0.05429 0.06373
48 0.03599 0.04000 0.04450 0.05326 0.06213
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TABLE 3
 ON DIFFERENT 𝑇𝐴𝑣𝑔(𝐴,𝐺2) 𝐼𝑇

IT 𝐶𝐴𝐸 𝐾𝑁𝑁𝐸 𝐾𝑁𝑆𝑇 𝑂𝐾𝑁𝑆𝑇 𝐴𝑅𝐼𝑀𝐴 -𝐴𝑅𝐼𝑀𝐴 𝐶

6 0.0293 0.0241 0.0245 0.0592 0.0603 0.0333
12 0.0241 0.0227 0.0235 0.0555 0.0641 0.0333
24 0.0240 0.0226 0.0235 0.0549 0.0494 0.0333
36 0.0239 0.0228 0.0235 0.0542 0.0564 0.0333
48 0.0242 0.0228 0.0234 0.0532 0.0522 0.0333
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Fig.1. Sample workloads extracted from Google tracelog. 
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Fig. 2. Overview of the job-pool approach for workload estimation. 

158x175mm (96 x 96 DPI) 

Page 17 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience



For Peer Review

 

(a) Cluster4
Fig. 3. Workload patterns from four clusters. Each cluster contains many tasks with similar workload 

patterns. 
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(b) Cluster39
Fig. 3. Workload patterns from four clusters. Each cluster contains many tasks with similar workload 

patterns. 
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(c) Cluster18
Fig. 3. Workload patterns from four clusters. Each cluster contains many tasks with similar workload 

patterns. 
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Fig. 4. TDP(CAE,G2)/TDP(RL,G2)% of CAE algorithm. 
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Fig. 5.  TUP(CAE,G2) of CAE algorithm. 
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Fig. 6. TDP(KNNE,G2)/TDP(RL,G2)% of KNNE algorithm. 
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Fig. 7.  TUP(KNNE,G2) of KNNE algorithm. 
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Fig. 8. TDP(KNST,G2)/TDP(RL,G2)% of KNST algorithm. 
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Fig. 9.  TUP(KNST,G2) of KNST algorithm. 
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Fig. 10. TDP(OKNST,G2)/TDP(RL,G2)% of OKNST. 
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Fig. 11.  TUP(OKNST,G2) of OKNST. 
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Fig. 12. TDP(A,G2)/TDP(RL,G2)% of all algorithms.
OKNST uses a different scale from the other algorithms (its scale is marked by the right side vertical axis). 
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Fig. 13.  TUP(A,G2) of all algorithms. 
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(a) IT=12
Fig. 14. Task count in each TDP range.

(1000-10000)*: Task Count is multiplied by 10.
(>10000)*: Task Count is multiplied by 100. 
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(b) IT=48
Fig. 14. Task count in each TDP range.

(1000-10000)*: Task Count is multiplied by 10.
(>10000)*: Task Count is multiplied by 100. 
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(a) Task1
Fig. 15. Request workload, actual workload and estimation workload on single task. 
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(b) Task 1 (scaled up for KNNE, KNST, ARIMA)
Fig. 15. Request workload, actual workload and estimation workload on single task. 
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(c) Task 2
Fig. 15. Request workload, actual workload and estimation workload on single task. 
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Fig. 16. Flowchart of the COMBINE algorithm at the task level. 
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Fig. 17. TDP of KNNE and ARIMA-C for each clusters. 
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