
For Peer Review

Integrating Clustering and Regression for Workload
Estimation in the Cloud

Journal: Concurrency and Computation: Practice and Experience

Manuscript ID CPE-20-0281.R1

Editor Selection: Special Issue Submission

Wiley - Manuscript type: Special Issue Paper

Date Submitted by the
Author: 04-May-2020

Complete List of Authors: Yu, Yongjia; Changzhou College of Information Technology
Jindal, vasu; University of Texas at Dallas Erik Jonsson School of
Engineering and Computer Science, School of Engineering and Computer
Science
Yen, I-Ling; University of Texas at Dallas Erik Jonsson School of
Engineering and Computer Science, School of Engineering and Computer
Science
Bastani, Farokh; University of Texas at Dallas Erik Jonsson School of
Engineering and Computer Science, School of Engineering and Computer
Science
Xu, Jie; University of Leeds, School of Computing
Garraghan, Peter; Lancaster University, School of Computing and
Communications

Keywords: Workload estimation, workload clustering, dynamic time warp distance,
cloud computing

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

1

Abstract—Workload prediction has been widely researched in

the literature. However, existing techniques are per-job based and
useful for service-like tasks whose workloads exhibit seasonality
and trend. But cloud jobs have many different workload patterns
and some do not exhibit recurring workload patterns. We
consider job-pool based workload estimation, which analyses the
characteristics of existing tasks’ workloads to estimate the
currently running tasks’ workload. First cluster existing tasks
based on their workloads. For a new task , collect the initial 𝑱
workload of and determine which cluster may belong to, then 𝑱 𝑱
use the cluster’s characteristics to estimate 's workload. Based on 𝑱
the Google dataset, the algorithm is experimentally evaluated and
its effectiveness is confirmed. However, the workload patterns of
some tasks do have seasonality and trend, and conventional
per-job based regression methods may yield better workload
prediction results. Also, in some cases, some new tasks may not
follow the workload patterns of existing tasks in the pool. Thus,
develop an integrated scheme which combines clustering and
regression and utilize the best of them for workload prediction.
Experimental study show that the combined approach can further
improve the accuracy of workload prediction.

Index Terms—Workload estimation, workload clustering,
dynamic time warp distance, cloud computing.

I. INTRODUCTION

loud computing is very popular covering e-commerce,
education, government and other fields. Studies have
shown significant benefits offered by IaaS cloud, including

providing a greener computing environment. Many systems are
developed to take advantage of the cloud, including big data
analytics, offloading from mobile devices [2] and cloud storage
systems [3,4,5]. However, without efficient resource
management by the IaaS provider, the potential value of cloud
computing cannot be fully realized. One of the important tasks
in an IaaS cloud provider is to schedule resource precisely to
minimize the cost of the deployment and operation of the cloud
platform while fully guarantee the SLA (Service Level

Yongjia Yu is with Changzhou College of Information Technology, China,
Changzhou 21300. E-mail: yuyongjia@czcit.edu.cn.

Vasu Jindal, I-Ling Yen, Farokh Bastani are with the Department of
Computer Science, University of Texas at Dallas, Richardson, TX 75080.
E-mail: {vasu.jindal, ilyen, Farokh.Bastani }@utdallas.edu

Jie Xu is with the School of Computing, University of Leeds, UK, Leeds,
LS2 9JT. E-mail: j.xu@leeds.ac.uk.

Peter Garraghan is with School of Computing and Communications,
Lancaster University, UK, Lancaster, LA1 4WA. E-mail:
p.garraghan@lancaster.ac.uk.

This work is supported by Research Project of Changzhou College of
Information Technology with Fund No. CXZK201704Z.

Agreement) for each customer. For example, reduction of
operating servers by migrating tasks can save power and
provide greener computation.

In order to manage cloud resources effectively, the future
workloads in the cloud should be well predicted.

Many workload prediction algorithms are researched in the
literature [7], [8], [9]. But they use per-job based methods
(which predict a single job’s future workload only based on its
historical workload) and consider service-like workloads.
Generally, services are accessed by users and they run
year-round to process user requests. The workload
characteristics of a certain systems depend heavily on its user
access patterns, and mostly present periodicity and trend.
Prediction can be done for these workloads using well
established statistical techniques, such as autocorrelation and
regression.

However, many one-time tasks in the cloud, such as
animation rendering, may run for one or several days and their
workloads do not have seasonality or predictable trends, such
as the workload given in Fig. 1. As can be seen from Fig. 1, the
irregular spikes that occur after time index 100 are difficult to
model and predict using existing per-job based approaches
(also validated by our experimental results). For these jobs,
cloud customers are asked to set the resources requirement
parameter, then the requested amount of resources are allocated
for their tasks by cloud providers. Experienced cloud customers
may be able to set the exact resource demands. But a lot of
customers may not have sufficient experiences so that they
request much more resources than what are needed. Some
researches show that many customers purchase 10 times the
resources than what is actually needed, and leading to low
utilization of resource. In [6], the server utilization rate of real
cloud computing servers were ranging from 28% to 55%,
which means allocated resources were under-used. Thus, it is
worthwhile to improve workload estimation methods for cloud
tasks.

Cloud providers generally save job execution profiles for
years. It may be assumed that the profiles of the job pool are
representative. All tasks’ workload pattern can be analyzed
from the profiles, and can be used to match the potentially tasks
submitted in the future. Based on this assumption, it is possible
to calculate the workloads’ pattern of “job-pool” and build the
workloads model, then estimate the workload patterns of
running or future tasks based on the model.

In this paper, we develop a scheme to realize the job-pool
based idea discussed above work to provide better estimation of
workloads that do not have service-like patterns (like Fig. 1).

Integrating Clustering and Regression for
Workload Estimation in the Cloud

Yongjia Yu, Vasu Jindal, I-Ling Yen, Farokh Bastani, Jie Xu, Peter Garraghan

C

Page 1 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

2

Fig.1. Sample workloads extracted from Google tracelog.

The Google dataset released in 2011 were used to explore
our approach, including 12,000 servers profiles during 30 days
[10]. We first cluster existing tasks and learn the statistical
properties of workloads in each cluster. When a new task is
submitted, we first determine its cluster based on its initial
workload. Then, we use the features learned from the cluster to
estimate the new job’s workload. We also combine the
cluster-based and regression-based workload estimation
approaches to further improve the workload prediction
accuracy. The major contributions of our work are as follows:
1. Per-job based workload estimation cannot work well for

busty workloads with unexpected spikes and dips. Instead,
we develop the job-pool based workload estimation
algorithm, which uses the characteristic of the workload of
the task pool to improve prediction of the workloads. We
cluster historical workloads and use the cluster data to help
estimate workloads of new tasks categorized into the same
cluster.

2. Several cluster-based workload estimation algorithms are
developed, using the statistical properties of the cluster and
explored the effectiveness of these algorithms.

3. For some clusters, the job-pool based workload estimation
approach may not be as effective as per-job based approach,
especially for jobs with very low and constant (fluctuating
around a constant) usage patterns. Also, some individual
tasks do not follow the workload patterns of existing tasks in
the pool, i.e., they are poorly clustered. Thus, we combine
our approach with ARIMA(Autoregressive Integrated
Moving Average) to improve the estimation accuracy. The
combined approach works very well for almost all tasks.
With our integrated approach, cloud providers can achieve
accurate workload estimation even with a short initial
workload information.

4. Experiments are made to calculated the effectiveness of our
approach, then compare it with the requested workload as
well as conventional per-job based workload estimation
approaches. The results show that the job-pool based
approach can improve workload prediction accuracy
significantly, especially for workloads with unexpected
bursts, like the one shown in Fig. 1. The combined approach
makes further improvement in prediction accuracy from the
cluster-based approach.

The remaining paper is organized as follows. Section 2
presents related works in the prediction and clustering of
workload. Section 3 discusses our clustering approach and
the details of our workload estimation algorithm. Section 4
presents the results of cluster prediction and workload
estimation. Section 5 discusses how to integrate ARIMA
with our approach. Section 6 make a summary of the paper
and discusses the future direction.

II. RELATED WORK

A. Workload Predictions
In the literature, many workload prediction methods have

been researched. Many workload prediction works consider
web services systems which interacts with users, their
workloads present seasonality or predictable trends. In [7], the
auto-correlation function is used to get the periodic workload
patterns, and the aggregate difference between each occurrence
of the pattern with the actual workload is calculated, then the
trending synthetic workload is generated, finally the workload
placement recommendations are given accordingly. In [8], a
second order ARIMA Model is used to predict the single job’s
future workload, then a look-ahead resource allocation
algorithm is proposed based on the prediction. In [9], the Grey
Forecasting Model is used, as the model can predict workload
based on short historical workload and evaluate workload
tendency efficiently. But this model has its own limitation.
First, the prediction is coarse grained because the workloads are
grouped into only four levels. Then, the prediction is based on
seasonal workload so that only the same season tasks can be
predicted well. In [11], a hybrid method is proposed, which
combines autoregression and confidence interval estimations
for long term workload predictions in grid computing
environments. To eliminate the effect from noisy data, two
types of filters are used before making predictions, including
the Kalman filter for minimizing measurement errors and the
Savitzky-Golay filter for smoothing the data. A different
technique for resource demand prediction has been proposed in
[12]. It first identifies historical workload patterns. Then it
matches current workload patterns with these historical patterns
based on the initial time series and uses the matching patterns
for workload prediction. A weighted interpolation is applied to
the patterns for better prediction results.

All the workload prediction approaches above are based on
per-job. They need a significant amount of historical workload
data, and only can predict the future workload of tasks which
have same predictable trend of historical data. The string
matching based method in [12] can be more sensitive to
historical patterns that have few or even a single occurrence,
but may be less sensitive to the frequency and timing of
repetitive patterns. However, none of them is capable of
predicting sudden bursts in the workload that have not appeared
in historical workloads. More specifically, they are not able to
predict the irregular changes shown in Fig. 1.

Some literatures predict the workload and resource
management of virtual machines [13,14]. In [13], the algorithm
calculates how much a given virtual machine can gain from
dynamic management, and the auto regressive process
forecasts the probability distribution, then the management
algorithm allocates virtual machine dynamically to reduce the
amount of physical capacity. In [14], the load balancer predicts
the future load of servers, and migrates virtual instances to the
server with the lowest load to achieve workload balancing.
These works use basic workload prediction methods based on
the VMs’ (Virtual Machine) workload patterns with seasonality
or trend, so their approaches have the same problems as

Page 2 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

3

discussed above.
Another direction of prediction methods makes use of the

knowledge of the applications to facilitate application-specific
workload prediction. In [15], applications are first instrumented
to extract the execution features and then these features are
correlated with the workload patterns of the application. In
[16], application-specific features, such as the type of the
application, and the number of objects in a rendering
application, etc., are used to predict the future workload. In
[17], the support vector machine is used to predict resource
demands in Software as a Service (SaaS) applications. This
paper proposes to use SVM to correlate the internal features of
the application to the workload patterns. The methods
discussed above may be able to predict workloads effectively
(including workloads presented in Fig. 1). However, they are
not feasible methods for cloud environments since cloud
providers will not have access to application-specific
knowledge of client applications.

B. Workload Clustering
A large database of execution profiles is saved by cloud

provide. It may be assumed that the profiles of the job pool are
representative and tasks’ workload pattern can be analyzed
from the profiles, then can be used to match the potentially
tasks submitted in the future. Some literatures cluster workload
and analyze each cluster’s characteristics [18, 19], but they do
not use the information to improve workload prediction. In
[20], we cluster the workload and calculate each cluster’s
average workload, then use the information to predict the
workload of the new tasks belonging to the cluster. In [21, 22],
we cluster the workload and build each cluster’s neural network
model, then use the model to predict the workload of the new
tasks belonging to the cluster. In [23], the authors firstly make
the clustering, then calculate the product of each cluster’s
submission rate and average workload, finally predict the
servers’ workloads. But the server information is not enough
for making accurate decisions of resource management.

Fig. 2. Overview of the job-pool approach for workload estimation.

III.JOB-POOL BASED WORKLOAD ESTIMATION
In Fig. 2, the flowchart of job-pool based workload

estimation approach is shown. The solid lines represent the
execution flows, and the dash ones show the data flows. From
the execution information of submitted tasks in the cloud
environment (such as Google trace data), a large set of
historical workload patterns is prepared.

First, the workload patterns of tasks in the dataset are
clustered and labeled. After the clustering, workload clusters 𝑁
are obtained denoted by . Then compute each {𝐶1,𝐶2,…,𝐶𝑁}
cluster’s average workload, the medoid of cluster is denoted 𝐶𝑖
by .𝑐𝑖

When a new task is submitted to the host, the resources 𝐽
requested by the cloud customer is fully allocated for because 𝐽
no workload information is collected. During the execution of
the task, the monitoring subsystem collect its initial workload.

For each cluster , the distance between its medoid and the 𝐶𝑖 𝑐𝑖

initial workload of is computed, then which cluster(s) ’s 𝐽 𝐽
workload pattern belongs to is determined.

Based on the workload patterns in the cluster(s) which 𝐽
belongs to, the future workload of is estimated and sent to the 𝐽
VM placement subsystem. All tasks’ workloads are checked
periodically by the placement decision algorithm to decide how
to adjust resource allocations for task .𝐽

The workload of is continuously collected, and the new 𝐽
estimated workload is sent to the VM placement subsystem.
The estimation process of keeps working until terminates. 𝐽 𝐽
Then the whole workload pattern of is integrated into the 𝐽
dataset of job-pool. And ’s full workload will be clustered, and 𝐽
the characteristics of the ’s cluster will be updated. When 𝐽
many tasks’ full workloads are integrated into the dataset, the
precision of the clustering may decrease, then a re-clustering
will be executed to solve problem [3]. The details of each step
in our scheme are explained as follows.

A. Notation
First, notations used in the workload estimation scheme are

listed [22].
: The length of tasks which are used to clustering.𝑇
: The initial length of task.𝐼𝑇

Data obtained from the clustering algorithm:
 : The set of workload clusters.𝐶 = {𝐶1,𝐶2,…,𝐶𝐾} 𝐾

 : The medoid of .𝑐𝑖,1 ≤ 𝑖 ≤ 𝐾 𝐶𝑖

 : The number of tasks in .𝑚𝑖,1 ≤ 𝑖 ≤ 𝐾 𝐶𝑖

 : The set of tasks in .𝐶𝑖 = {𝐽𝑖𝑗│1 ≤ 𝑗 ≤ 𝑚𝑖} 𝐶𝑖

 : The workload of task . 𝐿𝑖𝑗(𝑡),1 ≤ 𝑖 ≤ 𝐾,1 ≤ 𝑗 ≤ 𝑚𝑖 𝐽𝑖𝑗

 : Average of for all tasks in , where 𝐶𝐿𝑖(𝑡),1 ≤ 𝑖 ≤ 𝐾 𝐿𝑖𝑗(𝑡) 𝐶𝑖

𝐶𝐿𝑖(𝑡) =
∑

𝐽𝑖𝑗 𝑖𝑛 𝐶𝑖
𝐿𝑖𝑗(𝑡)

𝑚𝑖
, 1 ≤ 𝑡 ≤ 𝑇

 : Standard deviation of for all tasks 𝐶𝐿𝑖(𝑡),1 ≤ 𝑖 ≤ 𝐾 𝐿𝑖𝑗(𝑡)
in , where𝐶𝑖

𝐶𝐿𝑖(𝑡) =
∑

𝐽𝑖𝑗 𝑖𝑛 𝐶𝑖
(𝐿𝑖𝑗(𝑡) ― 𝐶𝐿𝑖(𝑡))2

𝑚𝑖
, 1 ≤ 𝑡 ≤ 𝑇

 : The stability of each 𝑆𝑇𝑖𝑗(𝑡),1 ≤ 𝑖 ≤ 𝐾,1 ≤ 𝑗 ≤ 𝑚𝑖

workload relative to the cluster average (i.e.,) as 𝐿𝑖𝑗(𝑡) ― 𝐶𝐿𝑖(𝑡)
a ratio to the standard deviation of the workloads in the cluster

. It indicates how much fluctuation the job has relative 𝐶𝐿𝑖(𝑡)
to the average workload pattern. Formally we have

𝑆𝑇𝑖𝑗(𝑡) =
|𝐿𝑖𝑗(𝑡) ― 𝐶𝐿𝑖(𝑡)|

𝐶𝐿𝑖(𝑡)
, 1 ≤ 𝑡 ≤ 𝑇

 : For each task, we compute its 𝑆𝑇𝑖𝑗[𝑃],1 ≤ 𝑖 ≤ 𝐾,1 ≤ 𝑗 ≤ 𝑚𝑖

average stability over a time period . could be or or any 𝑃 𝑃 𝐼𝑇 𝑇
other period.

𝑆𝑇𝑖𝑗[𝑃] =
∑𝑃

𝑡 = 1𝑆𝑇𝑖𝑗(𝑡)

𝑃
: The standard deviation of 𝑆𝑇𝑖𝑗[𝑃],1 ≤ 𝑖 ≤ 𝐾,1 ≤ 𝑗 ≤ 𝑚𝑖

 over a time period . 𝑆𝑇𝑖𝑗(𝑡) 𝑃

Page 3 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

4

𝑆𝑇𝑖𝑗[𝑃] =
∑𝑃

𝑡 = 1(𝑆𝑇𝑖𝑗(𝑡) ― 𝑆𝑇𝑖𝑗[𝑃])2

𝑃
 : The average distance between medoid and 𝐶𝐷𝑖,1 ≤ 𝑖 ≤ 𝐾 𝑐𝑖

tasks in (Note that is the function of measuring 𝐶𝑖 𝑑𝑖𝑠𝑡(𝐿𝑖𝑗 ,𝐿𝑐𝑖)
distance between the workload of task and medoid , and is 𝐽𝑖𝑗 𝑐𝑖
defined in section 3.2).

𝐶𝐷𝑖 =
∑

𝐽𝑖𝑗 𝑖𝑛 𝐶𝑖
𝑑𝑖𝑠𝑡(𝐿𝑖𝑗 ,𝐿𝑐𝑖)

𝑚𝑖 ∗ 𝑇
 : The standard deviation of distances 𝐶𝐷𝑖,1 ≤ 𝑖 ≤ 𝐾

between the medoid and tasks in .𝑐𝑖 𝐶𝑖

𝐶𝐷𝑖 =
∑

𝐽𝑖𝑗 𝑖𝑛 𝐶𝑖
(
𝑑𝑖𝑠𝑡(𝐿𝑖𝑗 ,𝐿𝑐𝑖

)
𝑇 ― 𝐶𝐷𝑖)

2

𝑚𝑖

Note that , , , are functions over 𝐿𝑖𝑗(𝑡) 𝐶𝐿𝑖(𝑡) 𝐶𝐿𝑖(𝑡) 𝑆𝑇𝑖𝑗(𝑡)
time . Depending on where they are used, we may have 𝑡

 or . 1 ≤ 𝑡 ≤ 𝑇 1 ≤ 𝑡 ≤ 𝐼𝑇
When considering the new task , the notations related to a 𝐽

single task can be applied to . For example, denotes the 𝐽 𝐿𝐽

workload of . We use to denote the cluster(s) 𝐽 𝐶𝐽 = {𝐶𝐽1,𝐶𝐽2,…}
a new task may belong to (predicted). According to the 𝐽
notations given above, index is used to index the clusters. 𝑖 𝐾
For example, is the average workload of cluster and 𝐶𝐿𝑖(𝑡) 𝐶𝑖
its complete form is . When these notations are applied to 𝐶𝐿𝐶𝑖

the clusters for the new task , we need to use the full cluster 𝐽
notation for indexing, e.g., , , , etc. When 𝐶𝐿𝐶𝐽1 𝐶𝐿𝐶𝐽2 𝐶𝐷𝐶𝐽𝑖

performing workload estimation for the new task , we use 𝐽 𝑃𝐿𝐽

 to denote the estimated workload for to differentiate it (𝑡) 𝐽
with the actual workload of . Also, we use to denote 𝐿𝐽(𝑡) 𝐽 𝑅𝐿𝐽
the workload given by the user when submitting a task (Note
that is a constant, not a function of).𝑅𝐿𝐽 𝑡

B. Clustering the Pool of Workloads
The workload of each task is considered as a time series and

the K-medoids algorithm [24,25] is applied to cluster historical
tasks’ workloads. The distance measurement impacts clustering
significantly. For two tasks and , the distance between them 𝐽𝑖 𝐽𝑗
is the distance between workloads and , where and can 𝐿𝑖 𝐿𝑗 𝐿𝑖 𝐿𝑗
be viewed as two time series. The distance between two time
series can be measured in different ways, such as Euclidean
distance, Manhattan distance. But as these metrics align
different time series and compare the pairs of points rigidly, the
distances cannot be calculated precisely when there are minor
pattern shifts.

For accurate calculation of the distance between two time
series, DTW (Dynamic Time Warp) distance [27,28,29] is used
to measure. DTW on time series is like Levenshtein distance on
string sequences. It allows deletion and insertion of data points
during comparison adding penalty value to the distance. A data
point of one time series is compared to the corresponding data
points as well as the neighboring data points (in the worst case,
all data points) in another time series, then take the minimal

distance into account. The definition of DTW distance is given
in the following.

Let denote the dynamic time warp distance 𝑑𝑡𝑤(𝑋,𝑌)
between time series with length n and time 𝑋 = (𝑥1, 𝑥2...., 𝑥𝑛)
series with length m. 𝑌 = (𝑦1, 𝑦2...., 𝑦𝑚)

𝑑𝑡𝑤((𝑥1, 𝑥2…., 𝑥𝑛),(𝑦1, 𝑦2…., 𝑦𝑚))
= |𝑥𝑛 ― 𝑦𝑚|

+𝑚𝑖𝑛{ 𝑑𝑡𝑤((𝑥1, 𝑥2…., 𝑥𝑛 ― 1),(𝑦1, 𝑦2…., 𝑦𝑚)),
𝑑𝑡𝑤((𝑥1, 𝑥2…., 𝑥𝑛),(𝑦1, 𝑦2…., 𝑦𝑚 ― 1)),

𝑑𝑡𝑤((𝑥1, 𝑥2...., 𝑥𝑛 ― 1),(𝑦1, 𝑦2...., 𝑦𝑚 ― 1))}
Based on the DTW distance definition, we have:

𝑑𝑖𝑠𝑡(𝐿𝑖,𝐿𝑗) =
𝑑𝑡𝑤(𝐿𝑖,𝐿𝑗)

𝑚𝑎𝑥 (‖𝐿𝑖‖,‖𝐿𝑗‖)
.

C. Decide the Cluster of a New Job
For a new task , we determine the cluster it belongs to. The 𝐽

detailed steps for determining are given as follows:𝐶𝐽
1. Compute , the DTW distance between and , 𝐽𝐷𝑖 𝐿𝑐𝑖(𝑡) 𝐿𝐽(𝑡)

only considering the time period , i,e., 𝐼𝑇 𝐽𝐷𝑖 = 𝑑𝑖𝑠𝑡(𝐿𝐽(𝑡),
.𝐿𝑐𝑖(𝑡)), 1 ≤ 𝑡 ≤ 𝐼𝑇

2. Compute the fuzzy membership value , which 𝐽𝑀𝑖
indicates how likely is in cluster , where 𝐽 𝐶𝑖

𝐽𝑀𝑖 =
𝐶𝐷𝑖 + 𝑟 ∗ 𝐶𝐷𝑖

𝐽𝐷𝑖

where is a predetermined constant and it is set to 3 in this 𝑟
paper (based on the common rule).3

3. Select clusters such that ℎ 𝐶𝑖1,…,𝐶𝑖ℎ

𝑚𝑖𝑛 ― 𝑆
1 ≤ 𝑖𝑗 ≤ 𝐾

 (𝐺,𝐽𝐷𝑖𝑗
)

Assume that is ordered by their values, i.e., {𝐶𝑖1,…,𝐶𝑖ℎ
} 𝐽𝐷 𝐶𝑖1

has the minimal DTW distance from .𝐿𝐽

4. Put into .𝐶𝑖1 𝐶𝐽
5. If , then put into if . 𝐽𝑀𝑖1 < 𝑡ℎ1 𝐶𝑖𝑗 𝐶𝐽 𝐽𝑀𝑖𝑗 ≥ 𝑡ℎ2

The function used in Step 3 is an extended 𝑚𝑖𝑛 ― 𝑆
𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 𝑖

(𝑥,𝑦𝑖)

function of “min”. It selects items with the minimal values 𝑥 𝑦
from the given range of (when , min-S = min). In the 𝑖 𝑥 = 1
above algorithm, we consider two thresholds to determine how
many clusters the new job should belong to, and . 𝐽 𝑡ℎ1 𝑡ℎ2

Maximally, clusters may be considered for . So in Step 3, ℎ 𝐶𝐽
we select clusters, , among all clusters, with the 𝐺 {𝐶𝑖2,…,𝐶𝑖ℎ

} 𝐾
minimal values. Since has the minimal DTW distance 𝐽𝐷 𝐶𝑖1

from , it has to be the choice of ’s cluster (Step 4). But if 𝐿𝐽 𝐽 𝐽𝑀𝑖1

, then we believe that the likelihood of job belonging to < 𝑡ℎ1 𝐽
 is not sufficiently high, so we consider additional clusters 𝐶𝑖1

from as ’s clusters. The threshold is used for {𝐶𝑖2,…,𝐶𝑖ℎ
} 𝐽 𝑡ℎ2

this selection. We consider that may also belong to if 𝐽 𝐶𝑖𝑗 𝐽𝑀𝑖𝑗

, for all , . Step 5 performs this selection. ≥ 𝑡ℎ2 𝑗 2 ≤ 𝑗 ≤ ℎ
Assume that is ordered by the value, i.e., 𝐶𝐽 = {𝐶𝐽1,𝐶𝐽2,…} 𝐽𝐷

.𝐽𝐷𝐶𝐽1 ≤ 𝐽𝐷𝐶𝐽2 ≤ …

Page 4 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

5

D. Workload Estimation
We estimate the workload of a new task based on the 𝐽

statistical properties of its cluster obtained in Section 3.3. 𝐶𝐽
We consider several workload estimation algorithms using
different statistical properties of a partial set of or all of the
tasks in . 𝐶𝐽

CAE Algorithm (Cluster Average based Estimation) uses
clusters’ average workload for estimation.

KNNE Algorithm (K-Nearest Neighbor based Estimation)
selects K nearest tasks in the cluster(s) based on DTW distance
to , then use their average workload for estimation.𝐽

The KNST Algorithm (K-Nearest Stability Neighbor
Estimation) select K nearest tasks based on the stability and
distance, then use their average workload for estimation.

The OKNST Algorithm (Overestimation on K-Nearest
Stability Neighbor) select K nearest tasks based on the stability
and distance, then overestimate the workload based on the
fluctuation of these tasks. OKNST is to give a better SLA
assurance at the cost of potentially wasted resources.

For comparison with conventional algorithm, we choose
ARIMA to represent the conventional per-job based workload
prediction algorithms.

All algorithms are discussed in the following subsections.

1) CAE Algorithm
A simple way to estimate the workload for a new task is to 𝐽

use the cluster average workload.
When , then the cluster average workload is used to ‖𝐶𝐽‖ = 1

be the estimated workload of . 𝐽
𝑃𝐿𝐽(𝑡) = 𝐶𝐿𝐶𝐽1(𝑡), 𝐼𝑇 < 𝑡 ≤ 𝑇

When includes more than one cluster, a weighted sum 𝐶𝐽
based on is used, where𝐽𝑀𝑖

𝑃𝐿𝐽(𝑡) =
∑‖𝐶𝐽‖

𝑖 = 1𝐽𝑀𝐶𝐽𝑖 ∗ 𝐶𝐿𝐶𝐽𝑖(𝑡)

∑‖𝐶𝐽‖
𝑖 = 1𝐽𝑀𝐶𝐽𝑖

, 𝐼𝑇 < 𝑡 ≤ 𝑇.

2) KNNE Algorithm
The workloads of a task in a large cluster could vary quite

significantly. Instead of using the average workload of the
entire cluster(s), we can select some tasks in the cluster(s) that
are most similar to and use their workloads to estimate ’s 𝐽 𝐽
workload. Here, we consider selecting (nearest neighbors, 𝑀 𝑀
though the name is KNNE) tasks whose workloads are closest
to . Let denote the tasks from all 𝐿𝐽 𝐾𝑁 = {𝑘𝑛1,…,𝑘𝑛𝑀} 𝑀
clusters in that are most similar to in their DTW distances. 𝐶𝐽 𝐽
Specifically, satisfies 𝑘𝑛𝑖

𝑚𝑖𝑛 ― 𝑆
𝑖,𝑗, 𝐶𝑖𝐶𝐽

(𝑀,𝑑𝑖𝑠𝑡(𝐿𝐽(𝑡),𝐿𝐶𝑖,𝑗(𝑡))), 1 ≤ 𝑡 ≤ 𝐼𝑇.

Then, KNNE calculates the average workload of the tasks in
 as the estimated workload of .𝐾𝑁 𝐽

𝑃𝐿𝐽(𝑡) =
∑𝑀

𝑖 = 1𝐿𝑘𝑛𝑖(𝑡)

𝑀 , 𝐼𝑇 < 𝑡 ≤ 𝑇

3) KNST Algorithm
In KNNE algorithm, the nearest neighbours are selected 𝑀

solely based on the DTW distance. Here we also take the

stability (degree of fluctuation relative to cluster average) of the
tasks into account when considering the nearest neighbors.𝑀
1. Compute the stability of the new task relative to each of the 𝐽

clusters in , i.e., . Then, compute the 𝐶𝐽 𝑆𝑇𝐶𝐽𝑖,𝐽(𝑡),1 ≤ 𝑖 ≤ ℎ
average and standard deviation of over time period 𝑆𝑇𝐶𝐽𝑖,𝐽(𝑡),

, i.e., , .𝐼𝑇 𝑆𝑇𝐶𝐽𝑖,𝐽[𝐼𝑇] 𝑆𝑇𝐶𝐽𝑖,𝐽[𝐼𝑇]
2. The KNST algorithm selects closest tasks based on the 𝑀

dissimilarity metric defined on three attributes, the 𝑑𝑖𝑠𝑠𝑖𝑚
DTW distance, the average stability over , and the 𝐼𝑇
standard deviation of stability over . Formally, 𝐼𝑇

𝑑𝑖𝑠𝑠𝑖𝑚(𝐿𝐽(𝑡),𝐿𝐶𝐽𝑖,𝑗(𝑡)) =
𝑑𝑖𝑠𝑡(𝐿𝐽(𝑡),𝐿𝐶𝐽𝑖,𝑗(𝑡))

∗ |𝑆𝑇𝐶𝐽𝑖,𝐽[𝐼𝑇] ― 𝑆𝑇𝐶𝐽𝑖,𝑗[𝐼𝑇]|
∗ |𝑆𝑇𝐶𝐽𝑖,𝐽[𝐼𝑇] ― 𝑆𝑇𝐶𝐽𝑖,𝑗[𝐼𝑇]|.

3. Select the set of tasks that are most similar to based on 𝑀 𝐽
the metric, and let denote the set. 𝑑𝑖𝑠𝑠𝑖𝑚 𝐾𝑁 = {𝑘𝑛1,…,𝑘𝑛𝑀}
Specifically satisfies𝑘𝑛𝑖

𝑚𝑖𝑛 ― 𝑆
𝑖,𝑗, 𝐶𝑖𝐶𝐽

(𝑀,𝑑𝑖𝑠𝑠𝑖𝑚(𝐿𝐽(𝑡),𝐿𝐶𝑖,𝑗(𝑡))), 1 ≤ 𝑡 ≤ 𝐼𝑇.

4. The estimated workload of is𝐽

𝑃𝐿𝐽(𝑡) =
∑𝑀

𝑖 = 1𝐿𝑘𝑛𝑖(𝑡)

𝑀 , 𝐼𝑇 < 𝑡 ≤ 𝑇.

4) OKNST Algorithm
The first three steps of OKNST are the same as those of

KNST. But the notation used in Step 3 needs to be revised to
make the rest of the computation clear. Here, we give the
details of Steps 3 onwards of OKNST.
3. Let denote the set of tasks selected 𝐾𝑁𝐶𝐽𝑖 = {𝐿𝐶𝐽𝑖,𝑗1,𝐿𝐶𝐽𝑖,𝑗2,…}

by KNST (is a subset of the tasks most similar to) 𝐾𝑁𝐶𝐽𝑖 𝑀 𝐽
and belongs to cluster . Specifically, satisfies 𝐶𝐽𝑖 𝐿𝐶𝐽𝑖,𝑗𝑙

𝑚𝑖𝑛 ― 𝑆
𝑖,𝑗,𝐶𝐽𝑖 ∈ 𝐶𝐽

(𝑀,𝑑𝑖𝑠𝑠𝑖𝑚(𝐿𝐽(𝑡),𝐿𝐶𝐽𝑖,𝑗(𝑡)))

and . 𝑀 = ∑
𝑖‖𝐾𝑁𝐶𝐽𝑖

‖
4. For each job in , compute its over estimated stability 𝐾𝑁𝐶𝐽𝑖

value, denoted as , where𝑜𝑒𝑆𝑇𝐶𝐽𝑖,𝑗𝑙

𝑜𝑒𝑆𝑇𝐶𝐽𝑖,𝑗𝑙 = 𝑆𝑇𝐶𝐽𝑖,𝑗𝑙[𝑇] + 𝑟𝑝 ∗ 𝑆𝑇𝐶𝐽𝑖,𝑗𝑙[𝑇].
Here is the constant controlling the degree of 𝑟𝑝
over-estimation.

5. Compute the estimated workload of in cluster , denoted 𝐽 𝐶𝐽𝑖

as , where𝑃𝐿𝐶𝐽𝑖,𝐽(𝑡)
𝑃𝐿𝐶𝐽𝑖,𝐽(𝑡) =

𝐶𝐿𝐶𝐽𝑖(𝑡) + 𝑚𝑎𝑥
1 ≤ 𝑗 ≤ ‖𝐾𝑁𝐶𝐽𝑖

‖
𝑜𝑒𝑆𝑇𝐶𝐽𝑖,𝑗 ∗ 𝐶𝐿𝐶𝐽𝑖(𝑡) ,

𝐼𝑇 < 𝑡 ≤ 𝑇.
Essentially, the maximal fluctuation () among all of 𝑜𝑒𝑆𝑇𝐶𝐽𝑖,𝑗
the jobs in is used as the coefficient to overestimate 𝐾𝑁𝐶𝐽𝑖

the workload.
6. Finally, the maximal value of is used for , 𝑃𝐿𝐶𝐽𝑖,𝐽(𝑡) 𝑃𝐿𝐽(𝑡)

for each time instance , i.e.,𝑡
𝑃𝐿𝐽(𝑡) = 𝑚𝑎𝑥

𝐶𝑖𝐶𝐽
(𝑃𝐿𝐶𝐽𝑖,𝐽(𝑡)), 𝐼𝑇 < 𝑡 ≤ 𝑇.

5) ARIMA
To allow thorough evaluation of the job-pool based

workload estimation approach, we also compare the algorithms

Page 5 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

6

introduced above with conventional per-job based workload
prediction algorithms. We choose to use ARIMA to represent
the conventional per-job based workload prediction algorithms.

The ARIMA model consists of three components,
autoregression, integration and moving average. Each
component has an associated parameter to be determined from
the historical data. The mathematical formulation of the

 model using lag polynomials is:𝐴𝑅𝐼𝑀𝐴 (𝑝,𝑑,𝑞)
𝑌𝑡 = (1 ― 𝐿)𝑑𝑡

for non-stationary time series and

(1 ―
𝑝

∑
𝑖 = 1

∅𝑖𝐿𝑖)𝑌𝑡 = (1 +
𝑞

∑
𝑖 = 1

𝜃𝑖𝐿𝑖)𝜀𝑡

for stationary time series, where , and are natural 𝑝 𝑑 𝑞
numbers. Specifically, is the number of autoregressive terms, 𝑝

 is the number of non-seasonal differences needed for 𝑑
stationarity, and is the number of lagged forecast errors in the 𝑞
estimation.

We use the auto.arima function in forecast R package for per
job workload estimation. The ARIMA function uses a variation
of the Hyndman and Khandakar [30] approach. In this
approach, unit root tests, minimization of the Akaike
Information Criterion (AIC) and Maximum Likelihood
Estimation (MLE) are used to obtain the three parameters, 𝑝,𝑑,𝑞
, in the ARIMA model.

IV.EXPERIMENTAL RESULTS
We use the Google trace log, consisting of workload data

from a real cloud environment during 29 days, to evaluate our
workload estimation approaches. In Google data, each task is
uniquely labeled by its Job Id and Task Index. Information of
each task includes CPU, memory, and disk usages, etc. From
our preliminary analysis of the trace log data, memory and disk
workloads are relatively stable and easy to predict, while CPU
usage patterns of many tasks are highly dynamic and the
prediction can be challenging. Thus, the prediction of tasks’
CPU usage of the tasks is considered. In the Google dataset, the
CPU usage is recorded in every 5 minutes. Each usage data
point is the average value of usages during a recording period,
and has been normalized into the range of [0, 1.0] [10].

According to the others literatures, the data of day 18 is
representative of the all trace log[31], therefore tasks from day
18 with 238 to 288 (24 hours) data points are selected. For the
tasks with less than 288 data points, we pad them with 0s. We
consider tasks with long execution time because workload
estimation is most meaningful for these tasks. Among all the
tasks satisfying the criteria above, we randomly choose 8639
tasks as the basis for clustering and use to denote this dataset. 𝐺0
We then randomly select 2197 tasks from and mark this 𝐺0
subset as . Also we select another 2141 tasks and the dataset 𝐺1
is marked as . and are disjoint. We use to test the 𝐺2 𝐺0 𝐺2 𝐺1
accuracy of cluster prediction. Then we perform workload
estimation for tasks in and and determine the accuracy of 𝐺1 𝐺2
our workload estimation approaches by comparing the
estimated workload with the actual workload.

For each new task , we measure the accuracy of its workload 𝐽

estimation by metrics defined in the following [22].
 : The cluster estimation accuracy. For a task , if the 𝑇𝐶𝑃 𝐽

cluster to which belongs is in , then we set , 𝐽 𝐶𝐽 𝐶𝑃𝐽 = 1
otherwise . Note that this test is only applied to tasks in 𝐶𝑃𝐽 = 0

 (no data to determine to which cluster a task in should 𝐺1 𝐺2

belong). The cluster estimation accuracy is the average of 𝑇𝐶𝑃
 for all .𝐶𝑃𝐽 𝐽 ∈ 𝐺1

 : The workload estimation accuracy, A is one of the 𝐷𝑃𝐽(𝐴)
workload estimation algorithms or the workload requested by
the customer (). is the workload estimated for time . 𝑅𝐿 𝑃𝐿𝐽(𝑡) 𝑡

 is the whole length of the workload time series, and 288 𝑇 𝑇 =
time indices (24 hours).

𝐷𝑃𝐽(𝐴) =
∑𝑇

𝑡 = 𝐼𝑇 + 1|𝐿𝐽(𝑡) ― 𝑃𝐿𝐽(𝑡)|

∑𝑇
𝑡 = 𝐼𝑇 + 1𝐿𝐽(𝑡)

 : The average accuracy of all tasks in the dataset 𝑇𝐷𝑃(𝐴,𝐺) 𝐺
(or), A is one of the workload estimation algorithms. 𝐺1 𝐺2

There are some tasks with strict performance requirements
which needs sufficient resources to run smoothly. Therefore,
we define under estimation statistics.

 : is the set of time indices 𝑈𝑇𝐽(𝐴) = {𝑡𝑖│ 𝑃𝐿𝐽(𝑡𝑖) < 𝐿𝐽(𝑡𝑖)}
when the estimated workload by algorithm is lower than the 𝐴
actual workload.

𝑈𝑃𝐽(𝐴) =
∑

𝑡𝑖 𝑖𝑛 𝑈𝑇𝐽
(𝐿𝐽(𝑡𝑖) ― 𝑃𝐿𝐽(𝑡𝑖))

∑𝑇
𝑡 = 𝐼𝑇 + 1𝐿𝐽(𝑡)

 can be considered as the measure of how much the 𝑈𝑃𝐽(𝐴)
workload is under estimated by algorithm for a task . For the 𝐴 𝐽
test dataset, we compute , which is the average 𝑇𝑈𝑃𝐽(𝐴,𝐺) 𝑈𝑃𝐽

 over all tasks in the dataset . Note that can only be a (𝐴) 𝐺 𝑈𝑃𝐽
reference metric because over estimation can yield low , but 𝑈𝑃𝐽
it does not imply the accuracy of the estimation. Thus, we also
consider , which is the average of estimated by 𝐴𝑣𝑔𝐽(𝐴) 𝑃𝐿𝐽(𝑡)

algorithm , i.e., , and , 𝐴 𝐴𝑣𝑔𝐽(𝐴) =
∑𝑇

𝑡 = 𝐼𝑇 + 1𝑃𝐿𝐽(𝑡)

𝑇 ― 𝐼𝑇 𝑇𝐴𝑣𝑔(𝐴,𝐺)
which is the average over all tasks in the dataset . If 𝐴𝑣𝑔𝐽(𝐴) 𝐺
two algorithms have similar , then data can serve as 𝑇𝐴𝑣𝑔 𝑇𝑈𝑃
an indicator about how well the algorithms can avoid under
estimation.

A. Cluster the Pool of Tasks
We use K-medoids algorithm to cluster the 8639 tasks in 𝐺0

into 40 clusters (different values have been explored and 𝐾
 is chosen based on silhouette value [26, 32]). We select 𝐾 = 40

three sample clusters and show them in Fig. 3, where one
cluster is shown in one diagram. Each line in each diagram
represents one time series. Time index is given on the x-axis
and each time index unit represents 300 seconds. The CPU
usage for each task is plotted on the y-axis [21].

(a) Cluster4

(b) Cluster39

(c) Cluster18

Page 6 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

7

Fig. 3. Workload patterns from four clusters. Each cluster contains many tasks
with similar workload patterns.

As can be seen, tasks in Cluster4 (Fig. 3a) have very low
CPU usages and fluctuate at a high frequency between the
range of [0.00, 0.09]. CPU usages of tasks in Cluster39 (Fig.
3b) have an irregular fluctuation and the fluctuation frequency
is lower than those in Cluster4. Although the CPU usages are
mostly within [0.10, 0.25], there are low troughs at four time
indices. The drops in workloads within the contiguous troughs
do not show periodicity.

Compared to other clusters, Cluster18 (Fig. 3c) shows a
distinct characteristic. The CPU usages of tasks in this cluster
have a small fluctuation similar to other clusters in most of the
time periods, but there are several very high bursts. The time
indices of the bursts are quite uniform among tasks in this
cluster, with one in the beginning of the execution and the
others between time 125 and 200.

If a job is clustered into, for example, cluster18, based on its
initial workload, and if the clustering is accurate, then the
workloads of existing tasks in cluster18 can provide valuable
information to help estimate the potential spikes of the current
task. Each of the other clusters that are not discussed here has
its own characteristics which can be helpful for predicting
special workload patterns.

B. Cluster Prediction for New Tasks
We study the accuracy of cluster prediction for jobs in . 𝐺1

The configurable variables used in the cluster prediction
algorithm are set as follows: The thresholds and are set 𝑡ℎ1 𝑡ℎ2
to be 1.3 and 1, respectively. Essentially, we consider a task
definitely belongs to cluster if its fuzzy membership value 𝐶1

, i.e., its DTW distance to ’s medoid is within 1.3 . 𝐽𝑀𝑖 ≤ 1.3 𝐶1 
Otherwise, threshold determines additional clusters that the 𝑡ℎ2
new task may belong to if its DTW distance to the medoids of
those clusters are within 3 . If a task is assigned to multiple 
clusters, the maximum number of clusters it can be assigned to
is bounded by . We set to 1, 2, and 3, to study its impact on ℎ ℎ
cluster prediction accuracy.

TABLE 1

Table 1 shows cluster prediction accuracy for different 𝐼𝑇
and values. With the same , increases when ℎ ℎ 𝑇𝐶𝑃 𝐼𝑇
increases. From to , the improvement is 𝐼𝑇 = 6 𝐼𝑇 = 24
significant. The increase slows down after . When 𝐼𝑇 = 24

 there is a burst in . Then, from to 𝐼𝑇 = 36 𝑇𝐶𝑃 𝐼𝑇 = 48
, increases slowly, with a 5% improvement. 𝐼𝑇 = 144 𝑇𝐶𝑃 𝑇𝐶𝑃

also increases with increasing value. This is because a task ℎ
may be clustered into clusters and as long as one of the ℎ ℎ
clusters matches, we consider it accurate. However, the impact
of is not very significant. ℎ

C. Parameter Tuning for Different Workload Estimation
Algorithms

In this section, we tune the key parameters for each

algorithm discussed in Section 3 to maximize their prediction
accuracy. The impact of various parameters and our final
parameter selections for each algorithm are discussed in each of
the following subsections.

1) CAE Algorithm

Fig. 4. of CAE algorithm 𝑇𝐷𝑃(𝐶𝐴𝐸,𝐺2)/𝑇𝐷𝑃(𝑅𝐿,𝐺2)%

We examine the accuracy of the CAE algorithm for
workload estimation. Fig. 4 shows the relative error rates,

, with different settings. Note 𝑇𝐷𝑃(𝐶𝐴𝐸,𝐺2)/𝑇𝐷𝑃(𝑅𝐿,𝐺2) ℎ
that . Fig. 5 shows the under-estimation 𝑇𝐷𝑃(𝑅𝐿) = 6054.61%
rates for the CAE algorithm, . From Fig. 4, we 𝑇𝑈𝑃(𝐶𝐴𝐸, 𝐺2)
can see that the error rates for are slightly higher 𝑇𝐷𝑃 ℎ = 2, 3
than those for but the difference is more significant when ℎ = 1

. This is expected because CAE does not differentiate the 𝐼𝑇 = 6
selected clusters (could be 1 to clusters) when taking the ℎ
average workload as the predicted workloadxi. In Fig. 5, we can
see that the under estimation rates for is much 𝑇𝑈𝑃 ℎ = 1
higher (roughly 20-35% higher) than those for . Note ℎ = 2, 3
that for different and values are in a narrow range of 𝑇𝑎𝑣𝑔 ℎ 𝐼𝑇
[0.022, 0.025], indicating that the comparison is 𝑇𝑈𝑃
illustrative. From the figures, we can see that CAE is not
suitable for workload estimation when we do not have enough
initial workload data.

Fig. 5. of CAE algorithm𝑇𝑈𝑃(𝐶𝐴𝐸,𝐺2)

Since has similar values as for , ℎ = 3 𝑇𝐷𝑃 ℎ = 1 𝐼𝑇 ≥ 12
but has much lower , we set for CAE for subsequent 𝑇𝑈𝑃 ℎ = 3
experiments.

2) KNNE Algorithm
Now we study the impacts of the parameter settings for the

KNNE algorithms. Fig. 6 shows the relative error rates,
 with different values (which 𝑇𝐷𝑃(𝐾𝑁𝑁𝐸,𝐺2)/𝑇𝐷𝑃(𝑅𝐿,𝐺2) 𝑀

controls how many nearest neighbors will be chosen). Fig. 7
shows the corresponding under-estimation rates, 𝑇𝑈𝑃(𝐾𝑁𝑁𝐸,

 for different values. 𝐺2) 𝑀

Fig. 6. of KNNE algorithm.𝑇𝐷𝑃(𝐾𝑁𝑁𝐸,𝐺2)/𝑇𝐷𝑃(𝑅𝐿,𝐺2)%

From Fig. 6, we can see that drops with increasing 𝑇𝐷𝑃 𝐼𝑇
and from to there is the sharpest drop. One 𝐼𝑇 = 6 𝐼𝑇 = 12
exception is when and , where has the 𝑀 = 1 𝐼𝑇 = 24 𝑇𝐷𝑃
lowest value. From deep analysis, we found that there are
several tasks with very high values (> 10000 for 𝐷𝑃

), which significantly raises the overall error 𝐼𝑇 = 6, 12, 36, 48
rate . The high values are due to the very low CPU 𝑇𝐷𝑃 𝐷𝑃
usage (less than 0.001). When , only one task is chosen 𝑀 = 1
as the basis for workload estimation. Thus, the better choice
made for leads to a lower error rate than the other 𝐼𝑇 = 24
cases. In terms of , has the lowest for almost all 𝑀 𝑀 = 20 𝑇𝐷𝑃

Page 7 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

8

 values. 𝐼𝑇

Fig. 7. of KNNE algorithm.𝑇𝑈𝑃(𝐾𝑁𝑁𝐸,𝐺2)

Since values for all and settings are similar and 𝑇𝐴𝑣𝑔 𝑀 𝐼𝑇
are in the range of [0.022, 0.025], we can compare under
estimation rates directly. Fig. 7 shows values under 𝑇𝑈𝑃
different settings for the KNNE algorithm. Obviously =1 𝑀 𝑀
would not result in good estimation. But as increases from 10 𝑀
to 40, also increases. 𝑇𝑈𝑃

A low value does not provide a sufficient basis for 𝑀
estimation and a high value implies that the large sample 𝑀
space may turn out to contain outliers and impacts the
estimation accuracy. Thus, we choose for KNNE 𝑀 = 20
because it yields the best and second lowest . 𝑇𝐷𝑃 𝑇𝑈𝑃

3) KNST Algorithm

Fig. 8. of KNST algorithm.𝑇𝐷𝑃(𝐾𝑁𝑆𝑇,𝐺2)/𝑇𝐷𝑃(𝑅𝐿,𝐺2)%

Fig. 9. of KNST algorithm.𝑇𝑈𝑃(𝐾𝑁𝑆𝑇,𝐺2)

 is also the key parameter in the KNST algorithm. Fig. 8 𝑀
and Fig. 9 show its relative error rate 𝑇𝐷𝑃(𝐾𝑁𝑆𝑇,𝐺2)/𝑇𝐷𝑃(𝑅𝐿

 and , respectively, for different . ,𝐺2) 𝑇𝑈𝑃 𝑀
Comparing Fig. 8 and Fig. 9 with Fig. 6 and Fig. 7, we can

see that KNST has a similar trend as KNNE. For example,
when , it has the lowest value. But when , 𝑀 = 20 𝑇𝐷𝑃 𝑀 = 40
it has the lowest value. of KNST also has a narrow 𝑇𝑈𝑃 𝑇𝐴𝑣𝑔
range of [0.023, 0.025], indicating the validity of the 𝑇𝑈𝑃
based comparisons. A different observation in KNST is that

 values do not change much from to . 𝑇𝑈𝑃 𝐼𝑇 = 12 𝐼𝑇 = 48
Based on the exploration, we also choose for the KNST 𝑀 = 20
algorithm.

4) OKNST Algorithm
OKNST algorithm targets to overestimate workloads and the
 parameter controls the overestimation degree. The relative 𝑅𝑃

error rates and the 𝑇𝐷𝑃(𝑂𝐾𝑁𝑆𝑇,𝐺2)/𝑇𝐷𝑃(𝑅𝐿,𝐺2)
underestimation rates for the OKNST algorithm with 𝑇𝑈𝑃
different values are shown in Fig. 10 and Fig. 11, 𝑅𝑃
respectively. Since values for different settings vary 𝑇𝐴𝑣𝑔
relatively significantly, we also show them in Table 2.

Fig. 10. of OKNST.𝑇𝐷𝑃(𝑂𝐾𝑁𝑆𝑇,𝐺2)/𝑇𝐷𝑃(𝑅𝐿,𝐺2)%

Fig. 11. of OKNST.𝑇𝑈𝑃(𝑂𝐾𝑁𝑆𝑇,𝐺2)

From the figures, we can see that different values yield 𝑅𝑃
quite different and values. As expected, higher 𝑇𝐷𝑃 𝑇𝑈𝑃 𝑅𝑃
leads to higher but lower values. The reason for 𝑇𝐷𝑃 𝑇𝑈𝑃

lower can also be seen from shown in Table 2. With 𝑇𝑈𝑃 𝑇𝐴𝑣𝑔
increasing , increases, which contributes to the 𝑅𝑃 𝑇𝐴𝑣𝑔
dropping of values. We choose for OKNST in the 𝑇𝑈𝑃 𝑅𝑃 = 2
subsequent experiments.

TABLE 2

5) ARIMA
We use a variation of the Hyndman and Khandakar [30]

approach (in auto.arima of R) to obtain the three parameters of
ARIMA, p, d and q. The steps for building the ARIMA model
are summarized as follows:
1. The number of non-seasonal differences is determined 𝑑

using repeated Kwiatkowski–Phillips–Schmidt–Shin
(KPSS) tests.

2. The values of and are then chosen by minimizing the 𝑝 𝑞
Akaike information criterion (AIC) after applying to the 𝑑
data (differencing the data times). 𝑑

(a) The best model (with smallest AICs) is selected from
the following four tests: 𝐴𝑅𝐼𝑀𝐴 (2,𝑑,2) 𝐴𝑅𝐼𝑀𝐴(0,𝑑,0)
, , . The four choices are 𝐴𝑅𝐼𝑀𝐴(1,𝑑,0) 𝐴𝑅𝐼𝑀𝐴(0,𝑑,1)
selected based on the recommendation discussed in
[30].

(b) With the decision of , we further change and/or 𝑑 𝑝 𝑞
from the current model by ±1 and select the better and 𝑝

 values.𝑞
(c) Repeat Step 2 (b) until no lower AICs can be found.

For each time series, a different set of p, d and q settings are
selected. For example, is the optimum model 𝐴𝑅𝐼𝑀𝐴(1,1,0)
for 29.6% of the tasks and is the optimum 𝐴𝑅𝐼𝑀𝐴(0,1,0)
model for 23.4% of tasks in our dataset.

D. Comparison of Workload Estimation Algorithms
In this section, we compare the effectiveness of different

workload estimation algorithms, including CAE, KNNE,
KNST, OKNST and ARIMA. The parameter settings for each
algorithm have been discussed in Section 4.3. For ARIMA, we
consider its prediction at different values to see its prediction 𝐼𝑇
accuracy at early time. We also consider its continuous
prediction (ARIMA-C), in which ARIMA estimates the
workload of the next 12 time units at = 6, 12, 24, 36, …, 276. 𝐼𝑇
We choose to predict for 12 time units ahead because it is a
reasonable time period for taking resource reallocation actions.

Fig. 12. of all algorithms. OKNST uses a TDP(A ,G2)/𝑇𝐷𝑃(RL ,G2)%

different scale from the other algorithms (its scale is marked by the
right side vertical axis).

Fig. 13. of all algorithms.TUP(A ,G2)

Fig. 12 and Fig. 13 compare the relative error rates, 𝑇𝐷𝑃(𝐴,
 and under estimation rates of 𝐺2)/𝑇𝐷𝑃(𝑅𝐿,𝐺2) 𝑇𝑈𝑃(𝐴,𝐺2)

different algorithms with different values. Table 3 shows the 𝐼𝑇
 value of these algorithms. 𝑇𝐴𝑣𝑔

Page 8 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

9

It is obvious that OKNST has the highest values and 𝑇𝐷𝑃
lowest values than other algorithms due to its intentional 𝑇𝑈𝑃
over-estimation. The over-estimation property in OKNST can
also be observed from the higher . However, even with 𝑇𝐴𝑣𝑔
over-estimation, its is still only 40% of the user given 𝑇𝐷𝑃
workload and its is less than 10% of . Thus, 𝑅𝐿 𝑇𝑈𝑃 𝑅𝐿
OKNST is a good solution if we want to have an improved
resource utilization with a high SLA assurance.

TABLE 3

Among other algorithms, CAE has a higher than KNNE 𝑇𝐷𝑃
and KNST. This is because CAE simply averages the
workloads of all the tasks in the clusters for workload
estimation. Its is the highest among all algorithms 𝑇𝑈𝑃
showing that such estimation is too rough. Comparing KNST
and KNNE, KNNE has a lower but a slightly higher 𝑇𝐷𝑃 𝑇𝑈𝑃
than KNST. of ARIMA is lower than that of CAE but 𝑇𝐷𝑃
higher than those of KNNE and KNST. Also, of ARIMA 𝑇𝐷𝑃
has a burst at . We found that this is because one task 𝐼𝑇 = 12
has a very low CPU usage (< 0.00005), and a relatively high
estimation leads to an extremely high (> 600000). 𝑇𝐷𝑃
ARIMA-C has a lower than ARIMA, and it is slightly 𝑇𝐷𝑃
higher than KNST. But ARIMA and ARIMA-C both have
lower values than KNNE and KNST. This is because their 𝑇𝑈𝑃
workload estimates tend to be higher, as can be seen from Table
3, of ARIMA is even higher than OKNST and of 𝑇𝐴𝑣𝑔 𝑇𝐴𝑣𝑔
ARIMA-C is approximately 1.5 times of of KNNE and 𝑇𝐴𝑣𝑔
KNST.

Comparing with , of CAE, KNNE, KNST, and 𝑅𝐿 𝑇𝐷𝑃
ARIMA are less than 10% of . It means that 𝑇𝐷𝑃(𝑅𝐿,𝐺2)
instead of simply letting users estimate resource demands of
their tasks, our algorithms can be used for workload estimation
to achieve much better resource utilization.

From earlier results, we can see that some algorithms may
give a few estimations with very high values. Thus, we 𝑇𝐷𝑃
construct the histograms to see the error rate distributions of the
algorithms and the results are shown in Fig. 14 for . 𝐼𝑇 = 12, 48

From the two charts, we can see that from the error 𝐼𝑇 = 12
rate distributions for all algorithms shift toward the low rate
side. Error rates by OKNST have a relatively even distribution
over all the ranges. CAE also has quite a high count in the high

 ranges. KNNE and KNST have the highest counts in the 𝑇𝐷𝑃
lowest range and has very low counts in the highest 𝑇𝐷𝑃 𝑇𝐷𝑃
ranges. distributions of ARIMA and ARIMA-C are better 𝑇𝐷𝑃
than that of CAE but worse than those of KNNE and KNST.

Now consider the scaled-up high error rate region (last two
columns in the charts). ARIMA and ARIMA-C have higher
counts in high error rate ranges compared to KNNE. In the
1000-10000 range, ARIMA-C has higher counts than KNNE
does in both charts. Both ARIMA-C and KNNE have 0 task in
the >10000 range.

Taking all factors into account, KNNE is the best workload
estimation algorithm among those considered in the
experimental study. It has the lowest error rate and can estimate
the work load accurately at an early stage of job execution,

which can greatly benefit resource allocation planning and
avoid unnecessary task migration. Also, as shown in the task
count analysis, per-job based workload estimation has a higher
potential of making bad estimations. Thus, we can confirm that
clustering does help achieve better workload estimation.

(a) IT=12

(b) IT=48

Fig. 14. Task count in each range. 𝑇𝐷𝑃

(1000-10000)*: Task Count is multiplied by 10.

 (>10000)*: Task Count is multiplied by 100.

E. Workload Estimation for Sample Tasks
We choose two tasks, one from Cluster 1 in which the tasks

have steady fluctuations around a relatively constant workload,
and the other from Cluster 28, in which each task has a sharp
burst roughly between time indices 220 and 230. Fig. 15 shows
the estimated workload for these two tasks by various
algorithms. Besides ARIMA-C, which is a continuous
estimation, all other algorithms (including ARIMA) consider

. Note that is the actual workload of the task as 𝐼𝑇 = 24 𝐿
defined in Section 3.1.

From Fig. 15a, we can see that the user gives a very high
workload estimate () which can result in resource 𝑅𝐿
underutilization. OKNST over-estimates the workload. It does
not show under-estimation at any time, and its estimation is
much lower than that of . The estimation by CAE is a much 𝑅𝐿
lower than OKNST, but higher than other algorithms. In Fig.
15b, we scale up the estimates by other algorithms to better
observe them. As can be seen from the figure, the actual
workload fluctuates between [0.0028, 0.0042], which shows
that Task1 steadily has a very low CPU usage. Estimation by
KNST has more fluctuations than the actual workload. KNNE
has the closest estimate for the workload. ARIMA cannot make
long term predictions and, thus, it gives a steady estimation at
around 0.0040 after time index 30. ARIMA-C tends to make
predictions based on current trends and, hence, has significant
deviations in the estimated workload.

(a) Task1

(b) Task 1 (scaled up for KNNE, KNST, ARIMA)

(c) Task 2

Fig. 15. Request workload, actual workload and estimation workload
on single task.

From Fig. 15c, we can see that the actual workload of Task 2
(between time indices 150 and 288) fluctuates around 0.10 till
the sudden burst to 0.40 at time index 225. The user estimated

Page 9 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

10

workload is 0.3125, which is higher than the actual 𝑅𝐿
workload during most of the time, but lower than the peak of
the burst. This implies that may cause resource waste most 𝑅𝐿
of the time but may fail to provide enough resources during the
burst. OKNST is designed to over-estimate to assure the
provision of sufficient resources. It has a relatively high
overestimation, including the burst. It does not show
under-estimation at any time. Also, OKNST gives much better
workload estimation than . 𝑅𝐿

Since we have already observed workload estimations by
various algorithms for steadily fluctuating patterns in Task 1,
here we focus on the estimations for the spike in Task 2 by
various methods (other than RL). As expected, ARIMA is not
able to make long term predictions, so it cannot anticipate any
spikes or dips in the future. ARIMA-C catches up with the burst
way after it happens and it delays the peak prediction till the
actual peak workload period is almost over. This is expected
because regression based prediction algorithms cannot
anticipate unexpected changes. In contrast, CAE, KNNE,
KNST and OKNST all can catch the burst on time, but they did
not estimate the magnitude of the burst well. OKNST, as
expected, over-estimates and CAE, KNNE, and KNST
under-estimate the magnitude of the burst. Among them, KNST
got the closest estimate and KNNE is almost the same as KNST,
but CAE gives much lower estimate compared to the original
workload.

V. COMBINING CLUSTERING AND REGRESSION FOR
IMPROVED WORKLOAD ESTIMATION

From the comparison of workload estimation algorithms
given in Section 4.4 and from the specific evaluation for the
two sample tasks given in Section 4.5 we can see that the
conventional per-job based prediction algorithm ARIMA
works well for some types of tasks. From our deep analysis,
when the workload of a task has steady fluctuations or steady
trends, it can be estimated accurately by conventional per-job
based algorithms (like ARMIA-C). On the other hand,
clustering based estimation is suitable for workloads with
non-smooth bursts which cannot be estimated by regression
based solutions. Based on these observations, we consider a
simple combination of our workload estimation approach with
ARIMA-C to see whether the combined algorithm can achieve
a better workload estimation. In Section 5.1, we introduce the
combined algorithm. Section 5.2 analyzes the performance of
KNNE and ARIMA-C for each cluster. In Section 5.3, the error
rate for workload estimation by the combined workload
estimation algorithm is evaluated and compared with its parent
algorithms KNNE and ARIMA-C.

A. Combining ARIMA and Clustering
We design the combined algorithm “COMBINE” and

consider the combination of KNNE and ARIMA at both the
cluster level and the individual task level.

At the cluster level, we select the best workload prediction

algorithm for each cluster based on historical data. From the
training set, we decide whether the workloads in a cluster can
be estimated more accurately by ARIMA-C or by KNNE.
Then, the more accurate approach is used as the workload
estimation method for the cluster. The combined solution at the
cluster level is given in the following.
1. After clustering, consider each cluster . For each workload 𝐶𝑖

 in , use various algorithms , for all to estimate the 𝐿𝑖𝑗 𝐶𝑖 𝐴𝑙 𝑙
workload and the estimated workloads are denoted as 𝑃𝐿𝑖𝑗

, , respectively.(𝑡, 𝐴𝑙) 𝐼𝑇 < 𝑡 ≤ 𝑇
2. For each workload and its estimations , 𝐿𝑖𝑗 𝑃𝐿𝑖𝑗(𝑡, 𝐴𝑙)

, compute the accuracy of the estimations. Let 𝐼𝑇 < 𝑡 ≤ 𝑇
 denote the accuracy of the estimated workload 𝐴𝑀(𝐿𝑖𝑗, 𝐴𝑙)

, , using algorithm and accuracy 𝑃𝐿𝑖𝑗(𝑡, 𝐴𝑙) 𝐼𝑇 < 𝑡 ≤ 𝑇 𝐴𝑙
metric . 𝐴𝑀

3. For each cluster , compute the average accuracy () of 𝐶𝑖 𝐴𝑀
all the workloads in the cluster for each , where: 𝐴𝑙

𝐴𝑀(𝐶𝑖, 𝐴𝑙) =
∑

𝑗𝐴𝑀(𝐿𝑖𝑗, 𝐴𝑙)

‖𝐶𝑖‖
.

4. Choose the workload estimation algorithm for cluster 𝐴(𝐶𝑖)
, where 𝐶𝑖,1 ≤ 𝑖 ≤ 𝐾

𝐴(𝐶𝑖) = 𝑚𝑎𝑥
𝑙

𝐴𝑀(𝐶𝑖, 𝐴𝑙).

5. When a new task arrives, decide the cluster(s) for , 𝐽 𝐽
namely, . Note that is the most likely cluster for . We 𝐶𝐽 𝐶𝐽1 𝐽
use to estimate the workload of 𝐴(𝐶𝐽1) 𝐽.

Fig. 16. Flowchart of the COMBINE algorithm at the task level.

At the individual task level, we consider the case when the
cluster of a task cannot be determined with a high level of
confidence. We will be conservative in this case and simply use
the conventional workload prediction method (here it is
ARIMA). Thus, a part of the flowchart given in Fig. 2 is
modified and the modification is shown in Fig. 16. If 𝐽𝑀𝑖1 <

, we use KNNE to predict ’s workload. Otherwise, cannot 𝑡ℎ1 𝐽 𝐽
be well classified and ARIMA is used for its workload
estimation.

B. Cluster Analysis
From the analysis given in Section 4.5, it can be seen that

ARIMA-C (here, we only consider ARIMA-C) cannot predict
well when the workload changes significantly and suddenly,
but it performs better when the workload is stable throughout.
Thus, we compare the performance of these two algorithms for
individual clusters on dataset to train the algorithm selection 𝐺1
in the combined algorithm. Here we only consider the 𝑇𝐷𝑃
error. Fig. 17 compares values of ARIMA-C and KNNE (𝑇𝐷𝑃

.𝐼𝑇 = 24)

Fig. 17. of KNNE and ARIMA-C for each clusters.𝑇𝐷𝑃

From the figure, we can see that ARIMA-C is better than
KNNE in Clusters 13, 15, 38 and 39. But in other clusters,
ARIMA has worse accuracy than KNNE does. In fact, in

Page 10 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

11

Clusters 9, 11, 16 and 18, ARIMA-C has much higher 𝑇𝐷𝑃
values than KNNE does because those clusters have very bursty
workload patterns. Thus, we choose ARMA-C for workload
estimation for Clusters 13, 15, 38 and 39 and use KNNE for the
other clusters.

C. Evaluation of the Combined Algorithm
Now we compare COMBINE with ARIMA-C and KNNE (

) for dataset . We compare the relative errors of 𝐼𝑇 = 24 𝐺2 𝑇𝐷𝑃
the COMBINE algorithm to its parent algorithms.

𝑇𝐷𝑃(𝐶𝑂𝑀𝐵𝐼𝑁𝐸,𝐺2)
𝑇𝐷𝑃(𝐾𝑁𝑁𝐸,𝐺2) = 99.32%

𝑇𝐷𝑃(𝐶𝑂𝑀𝐵𝐼𝑁𝐸,𝐺2)
𝑇𝐷𝑃(𝐴𝑅𝐼𝑀𝐴 ― 𝐶,𝐺2) = 63.42%

The results show that COMBINE yields better workload
estimation than both KNNE and ARIMA-C do. Though
COMBINE does not improve significantly from KNNE, it does
offer better prediction in a few clusters. Among all clusters,
Clusters 13 and 15 get the best improvement and the
improvements by COMBINE from KNNE in the two clusters
are shown as follows.

𝑇𝐷𝑃(𝐶𝑂𝑀𝐵𝐼𝑁𝐸,𝐶13)
𝑇𝐷𝑃(𝐾𝑁𝑁𝐸,𝐶13) = 67.05%

𝑇𝐷𝑃(𝐶𝑂𝑀𝐵𝐼𝑁𝐸,𝐶15)
𝑇𝐷𝑃(𝐾𝑁𝑁𝐸,𝐶15) = 77.35%

COMBINE works better because it makes use of the
advantages of different algorithms on different type of
workload. For a new task which is predicted as the stable
workload type, ARIMA-C is used to estimate. While the new
task is predicted to the type may change suddenly, KNNE is
adapted. Overall COMBINE can improve the accuracy of
estimation. When more algorithms are put into the algorithm
set of COMBINE, there is still improving space.

VI.CONCLUSION

We have developed new workload prediction algorithms to
estimate the potential resource demands of tasks. We propose
the job-pool based prediction approach, which generalizes the
historical workloads of tasks to predict the workloads of new
tasks. To realize the approach, we first cluster the workloads of
existing jobs. For a new job, we predict the cluster(s) to which it
may belong based on its initial workload. Then, we use the
statistical workload of the cluster(s) to help estimate the
workload of the new job. Experimental results show that our
model is capable of making good workload estimations at an
early stage of job execution, especially for jobs that have
sudden and significant workload changes. Based on our
analysis of Google dataset, many tasks have unexpected spikes
and dips in their workload patterns. Thus, the approach we have
developed can be very useful, can greatly improve workload
estimation accuracy and, hence, improve resource utilization
and saving power in datacenters.

REFERENCES

[1] Future J. Hamilton. “Internet scale service efficiency.” Large-Scale
Distributed Systems and Middleware Workshop, 2008

[2] Y. Ye, L. Xiao, I-L. Yen, F.B. Bastani. “Leveraging service clouds for
power and QoS management for mobile devices.” IEEE CLOUD,
Washington DC, July 2011, pp. 235-242.

[3] K. Shvachko, Hairong Kuang, S. Radia, R. Chansler, “The Hadoop
distributed file system.” ACM Symposium on Mass Storage Systems and
Technologies, May 2010, pp. 1-10.

[4] A. Lakshman, P. Malik. “Cassandra: A decentralized structured storage
system.” ACM SIGOPS Operating Systems Review, vol. 44, No. 2, 2010,
pp. 35-40.

[5] Y. Ye, L. Xiao, I-L. Yen, F.B. Bastani. “Secure, dependable, and high
performance cloud storage”, SRDS, 2010, pp. 194-203.

[6] P. Garraghan, P. Townend, J. Xu. “An analysis of the server
characteristics and resource utilization in Google Cloud.” IEEE Intl.
Conference on Cloud Engineering, 2013, pp. 124-131.

[7] D. Gmach, J. Rolia, L. Cherkasova, A. Kemper. “Workload analysis and
demand prediction of enterprise data center applications.” IEEE
International Symposium on Workload Characterization, 2007, pp.
171-180.

[8] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud
using predictive models for workload forecasting.” CLOUD 2011, pp.
500–507.

[9] J. Jheng, F. Tseng, H. Chao, Li-Der Chou. ”A novel VM workload
prediction using grey forecasting model in cloud data center“. Intl.
Conference on Information Networking, 2014, pp. 40-45.

[10] C. Reiss, J. Wilkes. “Google cluster-usage traces: format + schema.”
Version 2013.05.06, Google Inc.

[11] Y. Wu, Y. Yuan, G. Yang, and W. Zheng, “Load prediction using hybrid
model for computational grid.” GRID 2007, pp. 235–242.

[12] E. Caron, F. Desprez, and A. Muresan, “Forecasting on grid and cloud
computing on-demand resources based on pattern matching.” CloudCom
2010, pp. 456-463.

[13] N. Bobroff, A. Kochut, and K. Beaty. “Dynamic placement of virtual
machines for managing SLA violations.” IFIP/IEEE Integrated Network
Management, 2007.

[14] S. Daniel, M. Kwon. “Prediction-based virtual instance migration for
balanced workload in the cloud datacenters.” RIT 2011.

[15] N. Doulamis, A. Doulamis, A. Litke, A. Panagakis, T. Varvarigou, E.
Varvarigos. “Adjusted fair scheduling and non-linear workload
prediction for QoS guarantees in grid computing.” Computer
Communications, Feb. 2007, pp. 499-515.

[16] K. Dolkas, D. Kyriazis, A. Menychtas, T. Varvarigou. “e-Business
applications on the Grid: A toolkit for centralized workload prediction
and access.” Concurrency and Computation: Practice and Experience,
April 2007, pp. 867-883.

[17] O. Niehorster, A. Krieger, J. Simon, and A. Brinkmann, “Autonomic
resource management with support vector machines.” GRID 2011, pp.
157-164.

[18] Y. Chen, A. S. Ganapathi, R. Griffith, and R. H. Katz, “Analysis and
lessons from a publicly available Google cluster trace.” Tech. Rep.
UCB/EECS-2010-95, 2010.

[19] S. Di, D. Kondo, and F. Cappello, “Characterizing and modeling cloud
applications/jobs on a Google data center.” The Journal of
Supercomputing, April 2014, Vol. 96, No. 1, pp. 139– 160.

[20] J. Patel, V. Jindal, I. L. Yen, F. Bastani, J. Xu, P. Garraghan. “Workload
estimation for improving resource management decisions in the cloud.”
ISADS 2015, pp. 25-32.

[21] Y. Yu, V. Jindal, I-L. Yen, F.B. Bastani. “ Integrating Clustering and
Learning for Improved Workload Prediction in the Cloud. ” , IEEE
CLOUD, San Francisco, July 2016, pp. 876-879.

[22] Y. Yu, V. Jindal, F.B. Bastani, F. Li, I-L. Yen. “Improving the Smartness
of Cloud Management via Machine Learning Based Workload
Prediction", IEEE COMPSAC, Tokyo, July 2018, pp. 38-44.

[23] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Energy-efficient
resource allocation and provisioning framework for cloud data centers,”
IEEE TNSM, Vol. 12, No. 3, Sept 2015, pp. 377–391.

[24] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman,
A.Y. Wu. (2002). “An efficient k-means clustering algorithm: Analysis
and implementation.” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 24, No. 7, pp. 881-892.

Page 11 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

12

[25] L. Kaufman and P.J Rousseeuw. “Clustering by means of Medoids.
Statistical Data Analysis Based on the L_1–Norm and Related Methods”,
edited by Y. Dodge, 1987, North-Holland, pp. 405–416.

[26] Z. Fang and X. Lei. Prediction of miRNA-circRNA Associations Based
on k-NN Multi-Label with Random Walk Restart on a Heterogeneous
Network. BIG DATA MINING AND ANALYTICS. Vol. 2, No. 4, Dec
2019, pp. 261–272.

[27] S. Salvador and P. Chan. “FastDTW: Toward accurate dynamic time
warping in linear time and space. KDD Workshop on Mining Temporal
and Sequential Data, 2004, pp. 70-80.

[28] H. Zhu, Z. Gu, H. Zhao, K. Chen, C. Li, L. He. “Developing a Pattern
Discovery Method in Time Series Data and Its GPU Acceleration”. BIG
DATA MINING AND ANALYTICS. Vol. 1, No. 4, Dec 2018, pp. 266–
283.

[29] Y. Chen, Y. Zhang, J. Hu. “Multi-Dimensional traffic flow time series
analysis with self-organizing maps”. Tsinghua Science and Technology.
2008, Vol. 13, No.2, pp. 220-228.

[30] J. Hyndman, Y. Khandakar. "Automatic Time Series Forecasting: The
forecast Package for R". Journal of Statistical Software, 2008.

[31] I.S. Moreno, P. Garraghan, P. Townend, and J. Xu. “An approach for
characterizing workloads in Google Cloud to derive realistic resource
utilization models.” SOSE. 2013, pp. 49-60.

[32] R.C. de Amorim, C. Hennig. “Recovering the number of clusters in data
sets with noise features using feature rescaling factors ” . Information
Sciences. 2015, pp. 126-145.

Page 12 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

13

TABLE 1
 ON DIFFERENT AND VALUES 𝑇𝐶𝑃 𝐼𝑇 ℎ

IT ℎ = 1 ℎ = 2 ℎ = 3
6 67.87% 68.96% 70.10%
12 74.65% 77.97% 78.74%
24 79.06% 83.52% 84.16%
36 82.48% 85.03% 85.98%
48 81.02% 83.34% 83.25%
72 81.84% 84.30% 84.57%
96 82.66% 84.93% 85.30%
120 83.48% 85.57% 85.80%
144 86.44% 87.94% 88.21%

Page 13 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

14

TABLE 2
 OF OKNST ALGORITHM𝑇𝐴𝑣𝑔(𝑂𝐾𝑁𝑆𝑇,𝐺2)

IT RP = 0
RP = 0.5

 RP = 1 RP = 2 R 𝑃 = 3

6 0.03907 0.04389 0.04900 0.05925 0.06973
12 0.03650 0.04103 0.04582 0.05552 0.06549
24 0.03628 0.04079 0.04544 0.05493 0.06465
36 0.03616 0.04055 0.04506 0.05429 0.06373
48 0.03599 0.04000 0.04450 0.05326 0.06213

Page 14 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

15

TABLE 3
 ON DIFFERENT 𝑇𝐴𝑣𝑔(𝐴,𝐺2) 𝐼𝑇

IT 𝐶𝐴𝐸 𝐾𝑁𝑁𝐸 𝐾𝑁𝑆𝑇 𝑂𝐾𝑁𝑆𝑇 𝐴𝑅𝐼𝑀𝐴 -𝐴𝑅𝐼𝑀𝐴 𝐶

6 0.0293 0.0241 0.0245 0.0592 0.0603 0.0333
12 0.0241 0.0227 0.0235 0.0555 0.0641 0.0333
24 0.0240 0.0226 0.0235 0.0549 0.0494 0.0333
36 0.0239 0.0228 0.0235 0.0542 0.0564 0.0333
48 0.0242 0.0228 0.0234 0.0532 0.0522 0.0333

Page 15 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Fig.1. Sample workloads extracted from Google tracelog.

85x37mm (220 x 220 DPI)

Page 16 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Fig. 2. Overview of the job-pool approach for workload estimation.

158x175mm (96 x 96 DPI)

Page 17 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

(a) Cluster4
Fig. 3. Workload patterns from four clusters. Each cluster contains many tasks with similar workload

patterns.

86x37mm (220 x 220 DPI)

Page 18 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

(b) Cluster39
Fig. 3. Workload patterns from four clusters. Each cluster contains many tasks with similar workload

patterns.

86x37mm (220 x 220 DPI)

Page 19 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

(c) Cluster18
Fig. 3. Workload patterns from four clusters. Each cluster contains many tasks with similar workload

patterns.

86x37mm (220 x 220 DPI)

Page 20 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Fig. 4. TDP(CAE,G2)/TDP(RL,G2)% of CAE algorithm.

82x43mm (220 x 220 DPI)

Page 21 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Fig. 5. TUP(CAE,G2) of CAE algorithm.

81x42mm (220 x 220 DPI)

Page 22 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Fig. 6. TDP(KNNE,G2)/TDP(RL,G2)% of KNNE algorithm.

77x40mm (220 x 220 DPI)

Page 23 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Fig. 7. TUP(KNNE,G2) of KNNE algorithm.

79x41mm (220 x 220 DPI)

Page 24 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Fig. 8. TDP(KNST,G2)/TDP(RL,G2)% of KNST algorithm.

77x40mm (220 x 220 DPI)

Page 25 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Fig. 9. TUP(KNST,G2) of KNST algorithm.

80x41mm (220 x 220 DPI)

Page 26 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Fig. 10. TDP(OKNST,G2)/TDP(RL,G2)% of OKNST.

78x40mm (220 x 220 DPI)

Page 27 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Fig. 11. TUP(OKNST,G2) of OKNST.

274x142mm (96 x 96 DPI)

Page 28 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Fig. 12. TDP(A,G2)/TDP(RL,G2)% of all algorithms.
OKNST uses a different scale from the other algorithms (its scale is marked by the right side vertical axis).

85x55mm (220 x 220 DPI)

Page 29 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Fig. 13. TUP(A,G2) of all algorithms.

85x58mm (220 x 220 DPI)

Page 30 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

(a) IT=12
Fig. 14. Task count in each TDP range.

(1000-10000)*: Task Count is multiplied by 10.
(>10000)*: Task Count is multiplied by 100.

85x58mm (220 x 220 DPI)

Page 31 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

(b) IT=48
Fig. 14. Task count in each TDP range.

(1000-10000)*: Task Count is multiplied by 10.
(>10000)*: Task Count is multiplied by 100.

188x125mm (144 x 144 DPI)

Page 32 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

(a) Task1
Fig. 15. Request workload, actual workload and estimation workload on single task.

86x43mm (220 x 220 DPI)

Page 33 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

(b) Task 1 (scaled up for KNNE, KNST, ARIMA)
Fig. 15. Request workload, actual workload and estimation workload on single task.

86x45mm (220 x 220 DPI)

Page 34 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

(c) Task 2
Fig. 15. Request workload, actual workload and estimation workload on single task.

85x61mm (220 x 220 DPI)

Page 35 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Fig. 16. Flowchart of the COMBINE algorithm at the task level.

165x118mm (96 x 96 DPI)

Page 36 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

For Peer Review

Fig. 17. TDP of KNNE and ARIMA-C for each clusters.

237x138mm (144 x 144 DPI)

Page 37 of 37

http://mc.manuscriptcentral.com/cpe

Concurrency and Computation: Practice and Experience

