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Summary

Autotuning, the practice of automatic tuning of applications to provide performance
portability, has received increased attention in the research community, especially in
high performance computing. Ensuring high performance on a variety of hardware
usually means modifications to the code, often via different values of a selected set
of parameters, such as tiling size, loop unrolling factor or data layout. However, the
search space of all possible combinations of these parameters can be large, which can
result in cases where the benefits of autotuning are outweighed by its cost, especially
with dynamic tuning. Therefore, estimating the tuning time in advance or shortening
the tuning time is very important in dynamic tuning applications.
We have found that certain properties of tuning spaces do not vary much when hard-
ware is changed. In this paper, we demonstrate that it is possible to use historical
data to reliably predict the number of tuning steps that is necessary to find a well-
performing configuration, and to reduce the size of the tuning space. We evaluate our
hypotheses on a number of HPC benchmarks written in CUDA and OpenCL, using
several different generations of GPUs and CPUs.
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1 INTRODUCTION

With ever-changing hardware architectures, it is difficult and costly to keep applications performing well on a wide range of
hardware – in order to retain high performance, the implementation needs to bemodified to adapt to a new execution environment.
In well-written code, it is often sufficient to change the values of a few pre-selected parameters, such as block size or loop

unrolling factor. Since the manual search for the right combination of parameter values can be tedious and error-prone, an
automatic method, called autotuning, has been developed to search the space of possible implementations and find the best one
(a comprehensive survey of autotuning has been compiled by Balaprakash et al.1). This search can be performed before the
application is launched (offline tuning), or at runtime, switching implementations on-the-fly whenever a faster configuration is
found (dynamic tuning)1 – the latter approach being particularly useful, for instance, in cases where changing the characteristics
of the input affects optimization choices.
However, the tuning spaces of many problems are difficult to navigate2,3,4 – discrete values of parameters influence each other

in a non-linear way, and the tuning spaces have low locality (two similar configurations can perform very differently). As a result,
finding a well-performing configuration of tuning parameters is a challenging task even with sophisticated search methods.
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To improve this process, we propose guiding the search using information obtained from previous tuning of the same com-
putational problem on different hardware. We analyze the spaces of tuning parameters and search for properties which do not
change significantly across different hardware devices, with the intent of using them to make tuning predictions or modifications.
We show two different (but not mutually exclusive) ways this information can be applied to improve autotuning.
Firstly, we can estimate how many tuning iterations are needed to achieve reasonable performance, which is essential in

order to make certain tuning decisions. When tuning time is limited, such as in the case of dynamic tuning, the question of tuning
amortization becomes important – in other words, whether the benefit of tuning outweighs its cost. Ignoring this aspect can
result in cases where even if an autotuner improves the performance of a program, the tuning process itself ends up consuming
more time and resources than was saved by the optimization. To prevent this, it is necessary to be able to estimate the number
of tuning steps that a given search method will need for optimization.
Given the nature of the tuning spaces we use for testing (see the Benchmarks section), we chose random search as our preferred

method of searching the tuning space – this search strategy also gives us the additional benefit of simplicity and predictability,
making it a good fit for our future work in scheduling (see Section 6 – Conclusion and FutureWork). In this paper, we demonstrate
that the portion of tuning space composed of well-performing configurations remains similar for a given problem across different
hardware for a majority of cases, which means that the number of tuning steps for random search will also be similar.
Secondly, we can prune the tuning space, helping an autotuner find a well-performing implementation more quickly. We

propose that certain tuning parameters are more significant than others when it comes to performance, depending on the appli-
cation, and their significance is portable across hardware. As a result, we are able to remove insignificant parameters and thus
reduce the dimensionality of the tuning space without losing well-performing configurations. Unlike the method for predict-
ing tuning time, this pruning approach is not bound to a specific search strategy. Although we demonstrate that we are able to
shrink tuning spaces using the methods presented in this paper, which improves the speed of exhaustive tuning, non-exhaustive
searchers do not seem to gain any significant performance benefit on the pruned tuning space.
Both of these approaches are model-free, using static historical data. While this type of work could benefit greatly from

dynamic profiling and performance modeling, this is outside of the scope of this paper – we plan to focus on using performance
models in the future (see Section 6 – Conclusion and Future Work).
In our current work, we focus on tuning spaces composed by expert programmers, which tend to be small (each tuning

parameter only has a few possible values) and discontinuous (e. g. blocking size values of 2, 4, 8, 16 and 32 instead of all natural
numbers between 1 and 32). These types of search spaces often pose a problem for traditional search methods relying in part
on local search (such as gradient descent, simulated annealing or various genetic algorithms), which often perform similarly
to simple random search5,6,3. Moreover, random search provides several advantages compared to more sophisticated search
methods – not only is it easier to predict its performance based solely on the shape of the tuning space, it has also been shown to
be very robust – whereas many search methods’ performance is highly dependent on the tuned kernel or starting configuration
(performing very well in some situations while failing in others), random search tends to maintain predictably good performance
regardless of these factors7. Additionally, when it is impractical to use exhaustive search of the tuning space as a basis for
historic information, random search is easy to apply on a smaller sample of the tuning space without significant deterioration in
performance.
For all of these reasons, we apply our proposed improvements primarily using random search. Nevertheless, they are applicable

to other search methods as well, as we discuss later in the paper.
To evaluate our methods, we use a comprehensive set of ten autotuned benchmarks8, executed on five generations of GPU

accelerators and four generations of CPUs.
We use the following terminology in the paper. A tuning parameter is a variable which affects the code in a user-defined way

(e. g. determines loop unroll factor). The tuning space is a search space composed of all the possible values of all tuning param-
eters – each parameter has a set of possible values, and the tuning space is the Cartesian product of these sets. A configuration
is a single point in the tuning space, which fully determines one possible implementation of the tuned code.
The rest of the paper is organized as follows. The overview of the benchmark set and the used hardware is given in Section 2.

Our methods are described and evaluated in Section 3 (prediction of the portion of tuning space which needs to be searched)
and Section 4 (pruning the tuning space). A comparison with related work is given in Section 5. We conclude and outline future
research in Section 6.
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2 BENCHMARK SET

To show that our proposed hypotheses are not problem- or application-specific, we have used a rather wide set of benchmark
problems implemented in a way that enables autotuning8. In this section, we briefly introduce the benchmarks and hardware
that we have used for evaluation.

2.1 Benchmarks

TABLE 1A list of the benchmarks, including the size and dimensionality of their tuning spaces (i.e. howmany tuning parameters
they have).

Benchmark name Configurations Dimensions
BiCG 5 122 11
2D Convolution 3 928 10
3D Coulomb Sum 1 260 8
GEMM 241 600 14
GEMM Batched 424 8
Hotspot 480 6
Matrix Transpose 5 916 10
N-body 9 408 8
Reduction 175 5
3D Fourier Reconstruction† 430 8

Table 1 shows a basic overview of the benchmarks, including the size and dimensionality of their tuning spaces. A more
detailed description of these benchmarks, including their implementation, tuning parameters and performance characteristics,
can be found in Petrovič et al.8. Note that our tuning spaces are relatively small – however, this does not limit the code’s ability
to reach near-optimal performance – in Petrovič et al.8, it is shown that the benchmarks are capable of reaching near-theoretical
performance peaks on a variety of different GPU hardware.
The benchmarks are composed of important computational kernels spanning across multiple application domains: 3D Fourier

reconstruction9 and 2D convolution (adopted from CLTune3) are image processing kernels, BiCG, GEMM (adopted from
CLTune3), GEMM batched, Matrix transpose and Reduction10 are linear algebra kernels, Direct Coulomb summation10 is a
computational chemistry kernel, N-body (autotuned version of NVIDIA CUDA SDK sample) and Hotspot (based on implemen-
tation from Rodinia benchmark11) are differential equation solvers. These benchmarks autotune a variety of tuning parameters,
changing implementation properties such as work-group size, cache blocking, thread coarsening, explicit caching in local mem-
ory, loop unrolling, explicit vectorization or data layout optimization (i. e. array of structures vs. structure of arrays). These tuning
parameters were determined by expert programmers during development – we did not add or remove any tuning parameters
afterwards, e. g. after the analysis of parameters’ importance.
We believe that this type of benchmark design simulates the use-case that would benefit most from our approach – a program-

mer who is aware of the critical optimizations in their code, and can determine the sensible values for the given optimization
(e.g. a blocking factor of 32, 64 or 128 rather than every natural number between 1 and 1024), but requires more dynamic
performance portability between different hardware setups.
As a result of the parameters being designed by expert programmers, most of these search spaces are relatively small compared

to some other autotuning works12,13 – the number of tuning parameters is not needlessly excessive, and most parameters only
have a few rationally-selected values to choose from. While such spaces are hard to search using methods that partially rely on
local search (such as simulated annealing), because most of their dimensions are very small and discontinuous, they also contain
a higher proportion of relatively fast configurations, which makes random search a viable strategy.

†The 3D Fourier Reconstruction benchmark only has a CUDA implementation, and is therefore only evaluated on GPU; all the other benchmarks are implemented in
OpenCL and work on both CPU and GPU.
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All the benchmarks have been evaluated on sufficiently large inputs, so that the available parallelism (especially on GPU) was
utilized. The 3D Fourier benchmark processes a large number of small images and its performance is highly sensitive to the size
of the images. Therefore, we have autotuned 3D Fourier Reconstruction for multiple image sizes: 32×32, 64×64 and 128×128,
referred to as Fourier (32), Fourier (64) and Fourier (128) in the following text. The GEMM Batched benchmark performs
batched matrix multiplication of small matrices – we have measured the performance on 16 × 16 matrices. All benchmarks use
single-precision arithmetic.
The code-path of the kernels used in this work is not dependent on the content of input data (it only depends on the volume

of input data). Therefore, the benchmarks’ performance is dependent only on data size (the size of matrices in GEMM Batch,
or the size of images in 3D Fourier Reconstruction).
Additionally, all of the benchmarks have been designed to run on a single node, not a cluster – in this work and others, we

focus on node-level acceleration (even for a single laptop), rather than performance within a large networked environment.
The 3D Fourier reconstruction9 is available in Xmipp software‡, while the rest of the benchmarks are available in Kernel

Tuning Toolkit as examples installed with the tuner§. The Kernel Tuning Toolkit8 has been used to obtain the results for this
paper.

2.2 Hardware
We have evaluated all of the benchmarks on five GPUs of different architectures and performance, see Table 2.

TABLE 2 A list of the GPUs used in our tests.

GPU Architecture SP Performance Bandwidth Released Drivers
AMD Radeon RX Vega 56 GCN 5 8,286GFlops 410GB/s 2017 2833.0
NVIDIA Tesla K20 Kepler 3,524GFlops 208GB/s 2012 418.40
NVIDIA GeForce GTX 750 Maxwell 1,044GFlops 80GB/s 2014 410.48
NVIDIA GeForce GTX 1070 Pascal 5,783GFlops 256GB/s 2016 418.67
NVIDIA GeForce RTX 2080Ti Turing 11,750GFlops 616GB/s 2018 418.39

All but one of the benchmarks (see above) have also been evaluated on four different CPUs.

TABLE 3 A list of the CPUs used in our tests.

GPU Architecture SP Performance Bandwidth Released Drivers
[Dual] Intel Xeon E5-2650 Sandy Bridge EP 512GFlops 102GB/s 2012 1.2.0.8
Intel Core i7-3820 Sandy Bridge E 230GFlops 51.2GB/s 2012 1.2.0.37
Intel Core i7-4790 Haswell 461GFlops 25.6GB/s 2014 18.1.0.0920
Intel Core i7-8700 Coffee Lake 307GFlops 41.6GB/s 2017 18.1.0.0920

In our choice of hardware, we were not only limited by the availability of certain kinds of processors, but also by their OpenCL
support. This is consistent with the intended applicability of our methods in real circumstances – if a processing unit doesn’t
support OpenCL, it would require a separate kernel implementation with somewhat different tuning parameters, defeating the
purpose of correlating tuning spaces.
Additionally, we do not use data from GPU to make assumptions about CPU, and vice versa. Even though OpenCL allows

kernels to run on both types of processing units, the behavior and performance characteristics are too different, and reconciling
these differences is outside of the scope of this paper – the same would apply for any other types of accelerators (TPU, Xeon
Phi, ...).

‡https://github.com/I2PC/xmipp
§https://github.com/Fillo7/KTT/tree/master/examples

https://github.com/I2PC/xmipp
https://github.com/Fillo7/KTT/tree/master/examples
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3 ESTIMATING THE NUMBER OF TUNING STEPS

In theory, autotuning can help maintain a program’s performance on new hardware or with changed input characteristics. How-
ever, to achieve that, the performance improvement (compared to the non-tuned version) must outweigh the tuning time – the
tuning process needs to be amortized.
Whereas in some scenarios the tuning time is amortized in almost any case (e. g. long execution on supercomputers), in other

scenarios the tuning time matters (e. g. if an application is not supposed to use many CPU hours, if it migrates to different models
of computing devices, or if tuning decisions are sensitive to input data which are changing at runtime). Therefore, knowing
how long it will take to find a well-performing configuration is vital in order to decide if autotuning is worthwhile. We define a
well-performing configuration as a tuning configuration producing an implementation of sufficient performance – in this paper,
we will consider "sufficient performance" to be 90% of the performance of the fastest implementation available within tuning
space, but performance requirements are completely use case dependent and this number can be redefined by the user.
To predict tuning time, we need to know the number of tuning steps required to find a well-performing configuration, and the

average time of a tuning step. Additionally, the amortization of tuning time is determined by how many times we plan to execute
the tuned kernel and how much speedup is achieved by tuning. In this paper, we target the first question: predicting the number
of steps required to search a tuning space.
We can do this by analyzing the tuning space on certain hardware, inferring the number of tuning steps needed to find a

well-performing configuration, and using this data to predict the number of tuning steps on different hardware.
In this regard, random search provides a great advantage – we can calculate the probability of finding a configuration with a

certain performance within a given number of tuning steps, without having to run the searcher. For example, if we know that
5 % of our search space contains configurations that perform above 90 % of the optimum, we can directly calculate how many
tuning steps we need in order to get a 95 % chance of finding such a configuration (see Formula 2). All we need to do this is a
performance histogram of configurations in the search space.

3.1 Prediction method
Application parameter autotuning allows tuning parameters to be translated into virtually any property of the source code, from
changing loop unrolling factors to selecting an entirely different algorithm. Therefore, tuning spaces can vary in their size and
also in the effect of each tuning parameter. Whereas some tuning spaces may contain a high number of configurations with
near-optimal performance5, other tuning spaces may contain only a few well-performing configurations3,4.
The performance distribution among all the various configurations in our benchmark set is shown in Figure 1. Here, the

benchmarks’ tuning spaces are shown using violin plots – histograms of computation times are plotted on the y-axis (the wider
the graph, the more configurations fall within the given performance range), with the best-performing configurations at the
bottom. The histograms vary significantly for different computational problems – for example, many implementations of the
Batched GEMM benchmark have very good performance, whereas the Hotspot benchmark only has a few fast implementations.
Therefore, estimating the number of tuning steps required to reach sufficient performance is not straightforward.
We hypothesize that the number of well-performing configurations remains similar for a computation problem across different

hardware devices. The intuition behind this hypothesis is as follows. For a given processor, autotuning needs to balance many
tuning variables. Some of them are very critical and must be set to an optimal value, while others may have a wider interval
of well-performing values. When we change the processor, the optimal values may be shifted (e. g. by adding more cache,
the optimal cache blocking factor may change), but the required precision of selection will be similar. Of course, hardware
development may change the number of well-performing values – for example, addingmore registers to the processor may lead to
a wider range of efficient loop unrolling factors. However, those changes are not expected to be drastic, as hardware development
is limited by the manufacturing process. In contrast, changes of tuning parameters may have a much higher impact on the shape
of the tuning space and hence the relative amount of well-performing configurations. Therefore, the amount of well-performing
configurations should be more stable with respect to the changing hardware than to the changing computational problems.
If the portion of well-performing configurations remains stable across different hardware – and therefore it can be predicted

using historical data – we can use this to estimate the number of configurations we need to evaluate in order to find a good one.
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BiCG Convolution 3D Coulomb Sum Fourier (32)

Fourier (64) Fourier (128) GEMM GEMM Batched

Hotspot Matrix Transpose N-body Reduction

FIGURE 1 Violin plots of computation times for various benchmarks, measured on GeForce GTX 1070. The X-axis shows the
amount of configurations, the Y-axis shows computation time (in ms).

When random search is used, we can easily infer Formula 1 – let pb be the portion of the tuning space that is well-performing,
and ps be the desired probability of finding a well-performing configuration. Then the relationship between them is defined as

(1 − ps) = (1 − pb)nconf (1)
where nconf is the number of random attempts needed to reach a certain probability of finding a good-enough configuration.

Therefore, to determine the number of attempts (i. e. the number of autotuning steps) required, we only need to calculate the
corresponding logarithm using Formula 2:

nconf = log(1−pb)(1 − ps) (2)
For example, if historical data show us that well-performing configurations comprise 1% of the tuning space, then in order

to have a 90% chance of reaching a good solution, we need to explore log(1−0.01)(1 − 0.9) ≈ 230 configurations.

3.2 Evaluation
To support our hypothesis, we have prepared the following experiment. We consider a configuration well-performing if it
achieves at least 90% of the performance of the best configuration. We have executed an exhaustive search on all available com-
binations of benchmarks and hardware (all GPUs as well as all CPUs). The results are shown in Table 4 and Table 5. For each
combination of hardware and benchmark, the table shows the portion of the tuning space comprised of well-performing config-
urations (e. g. 0.05 means that 5% of all configurations are well-performing)¶. Naturally, if the search spaces were too large for
exhaustive search, we could perform the same process with random sampling, which would give us approximate results – note,
however, that this assumes we are using random search. More sophisticated search methods could be significantly handicapped
on a randomly sampled search space.
It can be seen in the tables that the variation of well-performing configurations is much smaller across hardware architectures

than across different benchmarks. The differences across one family of hardware (e. g. GPUs) are not in orders of magnitude,

¶Note that some numbers are missing in the tables: the 3D Fourier Reconstruction is implemented in CUDA and is therefore not measured on Radeon Vega56 and all
CPUs. It is also not measured on Nvidia Tesla K20, because we were unable to install Xmipp on the system. Some benchmarks have been executed with a smaller tuning
space on Radeon Vega56, because AMD ROCm driver (OpenCL driver version 2833.0) crashed with some tuning configurations (mainly using vectors of size 16 and
higher loop unrolling factors). Therefore, we have omitted those benchmarks as their tuning spaces differ significantly. On CPU i7-8700, the value of GEMM is missing,
because the benchmark always caused a reboot on this particular hardware (with OpenCL driver version 18.1.0.0920), likely due to a driver bug
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TABLE 4 The portion of each tuning space consisting of well-performing configurations (i. e. reaching 90% of the best
performance) on GPU. The average portion with standard deviation for each problem is shown in the last column.

Vega56 K20 750 1070 2080Ti avg ± stddev
BiCG 0.00459 0.00527 0.00332 0.0168 0.0181 0.00962 ± 0.0072
Convolution 0.00280 0.00321 0.00117 0.00204 0.00175 0.00274 ± 0.00082
3D Coulomb Sum N/A 0.0603 0.0405 0.0389 0.0476 0.0468 ± 0.0098
Fourier (32) N/A N/A 0.0190 0.0286 0.0357 0.0278 ± 0.0084
Fourier (64) N/A N/A 0.0595 0.119 0.0357 0.0714 ± 0.043
Fourier (128) N/A N/A 0.0167 0.0571 0.0119 0.0286 ± 0.025
GEMM N/A 0.000791 0.00107 0.00231 0.00793 0.00302 ± 0.0033
GEMM Batched 0.120 0.0943 0.151 0.818 0.642 0.365 ± 0.34
Hotspot 0.0169 0.00743 0.00495 0.00495 0.0149 0.00983 ± 0.0057
Matrix Transpose 0.0210 0.0461 0.0413 0.150 0.0101 0.0492 ± 0.052
N-body N/A 0.0207 0.0576 0.0277 0.0492 0.0388 ± 0.017
Reduction 0.0775 0.327 0.463 0.715 0.368 0.390 ± 0.23

TABLE 5 The portion of each tuning space consisting of well-performing configurations (i. e. reaching 90% of the best
performance) on CPU. The average portion with standard deviation for each problem is shown in the last column.

dual-E5-2650 i7-3820 i7-4790 i7-8700 avg ± stddev
BiCG 0.00203 0.00968 0.00156 0.00234 0.00391 ± 0.00387
Convolution 0.0145 0.00672 0.00152 0.00305 0.00644 ± 0.00577
3D Coulomb Sum 0.163 0.405 0.187 0.198 0.238 ± 0.112
GEMM 0.000765 0.000885 0.000331 N/A 0.000660 ± 0.000291
GEMM Batched 0.0125 0.0125 0.403 0.480 0.227 ± 0.250
Hotspot 0.0112 0.0179 0.0112 0.0156 0.0140 ± 0.00335
Matrix Transpose 0.0152 0.0319 0.0235 0.0128 0.0209 ± 0.00868
N-body 0.0231 0.111 0.0359 0.0119 0.0455 ± 0.0448
Reduction 0.0314 0.0307 0.145 0.130 0.0843 ± 0.0618

excepting some outliers (GEMM on 2080Ti, Matrix transpose on 1070 and Reduction on Vega56). Therefore, when the portion
of the tuning space containing well-performing implementations is known for at least one hardware device, we can use it to
predict the number of tuning steps on other devices. Surprisingly, the results are less consistent on CPU, where in most cases
the standard deviation is nearly as high as the average value.
Note, however, that the approach is still valid even in cases of several-fold misprediction, because the scale of the error is much

lower than if we made random assumptions, or if we made the predictions based on historical data from different benchmarks.
For example, if we tried to guess the number of well-performing configurations on a GPU using data from different benchmarks
on the same architecture (i. e. using the columns of the table rather than the rows), the difference in the portion of the tuning
space containing well-performing configurations could reach two orders of magnitude or more.

3.3 Using more sophisticated search methods
A similar approach could also be applied to more complex search strategies, but with a crucial variation – rather than using the
shape of the tuning space (i. e. the number of well-performing configurations) from one hardware to make predictions about
tuning on different hardware, we can instead use the number of tuning steps. In this scenario, we could launch a searcher
100 times, and observe how many times the searcher reached a certain performance in N tuning steps. This number would be
equivalent to the probability of finding a configuration of certain performance in N tuning steps.
However, this requires an extra step – whereas with random search, knowing the shape of the search space translates directly

into the probability of finding a good configuration in a given number of tuning steps (Formula 1), with a more sophisticated
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search strategy the relationship is typically much more complicated. In such a case, instead of simply storing a histogram
of the search space, we would need to store the searcher results for every possible combination of performance requirement,
probability and number of steps, because we couldn’t calculate its expected performance directly. Since our end-goal is dynamic
optimization of tuning time vs. performance improvement, this would be a very impractical obstacle in realtime applications.
For this reason, we only use the results of random search for evaluation in this section.

4 TUNING SPACE PRUNING

Autotuning of a computational kernel can take a long time if the tuning space is large and full of low-performing configurations.
Pruning of the tuning space can accelerate the search. In previous research, authors proposed a method based on the assumption
that biasing search towards configurations which perform well on one processor can speed up the search on another processor14.
The method works well if the relative performance of the tuned codes correlates across different hardware (at least for the
well-performing configurations). Often, this seems to be the correct assumption. However, we have found cases where the
correlation is not good – this is demonstrated in Figure 2, where well-performing configurations have high correlation for Matrix
transposition, but low correlation for the Fourier (128) benchmark.

FIGURE 2 The correlation between kernel runtime on GeForce GTX 750 and GeForce RTX 2080Ti for theMatrix transposition
benchmark (left) and the Fourier (128) benchmark (right) in milliseconds. Each dot represents a configuration.

4.1 Proposed pruning method
Here, we propose an alternative method of tuning space pruning, which is based on the importance of tuning parameters. Even
though the optimal values for parameters change from hardware to hardware, we hypothesize that the significance of parameters
(how much they influence the resulting performance) remains more stable. For example, if a problem is cache-sensitive on one
GPU, it will probably remain cache-sensitive on any other GPU, even though the exact value of optimal cache blocking size will
change.
Note that even though our benchmarks’ tuning parameters have been chosen by expert programmers (see the Benchmarks

section), with emphasis on avoiding dummy parameters that have little impact on performance, this is not at odds with the
idea of pruning unimportant parameters. One of the reasons for this is that different hardware architectures will differ in which
parameters are important, which means, for instance, that a parameter that seems insignificant on a GPU will often prove to
be important on CPU and vice versa. If we want to avoid maintaining a separate implementation of the kernel for each type of
hardware, this allows us to have a single implementation with all the tuning parameters, which are then only pruned in the context
of the given hardware set. Another reason for the presence of low-impact parameters is that even for an expert programmer, it is
often impossible to know which parameters will have the highest impact, until the code can be tested on a multitude of hardware
setups.
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When the tuning space is evaluated for a hardware device, we can compute mutual information# between tuning variables and
runtime.
Figure 3 shows the distributions of these mutual information values across all GPUs from our test set, and Figure 4 does the

same for all tested CPUs. Since it would be impractical (and uninformative) to list the name of each parameter, we divided them
into 10 categories, and the figures (in combination with Table 6) show which category the given parameter falls into‖. For more
information, please refer to Petrovič et al.8, where detailed descriptions of the benchmarks, including their tuning parameters,
can be found.
Both boxplot figures seem to confirm our initial assumption that the mutual information (and therefore the significance of a

given parameter for overall runtime) tends to remain stable regardless of the particular processor.

BiCG Convolution 3D Coulomb Sum Fourier (32)

Fourier (64) Fourier (128) GEMM GEMM Batched

Hotspot Matrix Transpose N-body Reduction

FIGURE 3 Boxplot distributions of the mutual information values of each parameter in each benchmark across different GPUs.
Each box represents one parameter of the given benchmark – the X-axis shows the type of the given parameter (see Table 6 for
a list of parameter types), while the Y-axis shows the relative mutual information between the tuning parameter and runtime. In
most cases, the distributions are quite narrow, suggesting that the significance of a given parameter for overall performance is
similar across different hardware.

Our proposal is to prune the less significant parameters from the tuning space by fixing their values on a median and not
changing them during the search. Since every parameter represents one dimension of the search space, removing the insignificant
parameters will reduce the number of dimensions that need to be searched, while keeping the well-performing configurations.
It should be noted that our pruning approach is not designed as a brand new search method – rather, it can be used to improve
the performance of already existing search algorithms.

#a sensitivity analysis metric which measures the dependency between variables – higher values mean higher dependency 15

‖A parameter may simultaneously fall into two categories, e. g. by controlling both thread blocking and cache blocking. It is also common for multiple parameters
within a benchmark to belong to the same type (e. g. two parameters determining two different dimensions of thread blocking).
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BiCG Convolution 3D Coulomb Sum

GEMM GEMM Batched Hotspot

Matrix Transpose N-body Reduction

FIGURE 4 Boxplot distributions of the mutual information values of each parameter in each benchmark across different CPUs.
Each box represents one parameter of the given benchmark – the X-axis shows the type of the given parameter (see Table 6 for
a list of parameter types), while the Y-axis shows the relative mutual information between the tuning parameter and runtime. In
most cases, the distributions are quite narrow, suggesting that the significance of a given parameter for overall performance is
similar across different hardware.

TABLE 6 A list of parameter types within the tuning benchmarks, relating to Figures 3 and 4.

1 Workgroup size 6 Unrolling
2 Coarsening 7 Local memory padding
3 Local memory caching 8 Vectorization
4 Private memory caching 9 Atomics
5 Tile size O Other

We have devised two ways of choosing which parameters to prune based on their mutual information with runtime. Remember
that in both cases, we are basing the selection of parameters on data that we already have from tuning the given problem on one
hardware, and we plan to use the pruned space to autotune the same problem on different hardware. Although we have used
exhaustive search to decide which parameters should be pruned, in cases where searching the entire tuning space is unfeasible
(due to its size or the time it takes to test each configuration), random sampling can be used.
The first approach is simply to choose a cutoff point based on the parameter with the highest mutual information (MImax) – all

the parameters whose mutual information value is lower than a certain percentage of MImax (in our case 20%) are pruned. For
the purposes of this paper, we will call this the naive pruning method. We have already evaluated this approach in our previous
work16, and while it worked very well for most problems, there was a case where too many parameters were pruned and the
well-performing configurations were lost. This was, however, not caused by poor correlation in parameter significance between
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different hardware generations – even on the hardware that was used to select the parameters, the space was overly pruned. We
argued that this could be fixed by a slightly more sophisticated approach to parameter selection.
The second approach is to sort the parameters based on their mutual information with runtime, and iteratively prune them one

by one, starting with the least-influential one. After each parameter is removed, we compare the best configuration in the pruned
search space with the best configuration in the original search space. We repeat this process as long as the best performance in
the pruned space stays within a certain performance threshold (90% of the original optimum, in our case). This method solves
the problem encountered with the previous approach, but in some cases it can create new problems by overpruning different
spaces for different reasons. This will be explored further in the following section, where we will refer to this approach as the
aggressive pruning method.
As a result of both approaches having a tendency to overly prune the search spaces in a few special cases, we have also tested a

conservative combination of these two approaches – a parameter is pruned only if it meets both criteria: its mutual information is
sufficiently low (relative to the highest mutual information in the benchmark), and pruning it will not degrade the best available
performance beyond a certain threshold (relative to the best performance in the non-pruned space). In the following section, this
combined approach will be referred to as the conservative pruning method.
Regardless of the pruning method, the resulting search space will not be more dense or more sparse than the original one,

since we are pruning entire dimensions of the search space, rather than individual low-performing configurations. Additionally,
there should not be a significant change in the proportion of fast and slow configurations, since we are mostly trying to reduce
the number of configurations with similar performance. Referring back to the violin plots from Figure 1, the pruned tuning
spaces would merely be "narrower", with a similar distribution of well-performing and poorly-performing configurations, but
with a lower overall number of configurations.

4.2 Evaluation of pruning space methods
To evaluate the proposed pruning methods, we first computed mutual information for data measured on GPU-1070 and CPU-
i7-4790∗∗. Then, we pruned the tuning spaces using the aggressive and the conservative pruning methods, resulting in four sets
of results in Tables 7, 8, 9 and 10.
The tables show state space reduction (SSR)††, the number of pruned parameters, and performance retention (PR) in all the

benchmarks after the less significant parameters have been pruned (e. g. SSR of 16 means that the state space has been reduced
16-fold, and PR of 0.92 means that the best configuration in the pruned tuning space performs at 92% of the best performance
reachable from the original tuning space).

TABLE 7 State space reduction (SSR), the number of pruned/all parameters (PP) and performance retention for all tested
hardware/benchmark combinations, after aggressive pruning of parameters with low mutual information on GPU.

SSR PP K20 Vega56 1070 750 2080Ti
BiCG 511.7 9/11 0.93 0.86 0.99 0.96 0.95
Convolution 2.75 1/10 0.99 1.0 1.0 1.0 0.85
3D Coulomb Sum 12.0 5/8 0.97 1.0 0.96 0.97 0.94
Fourier (32) 4.0 6/9 N/A N/A 0.98 1.0 0.99
Fourier (64) 420.0 8/9 N/A N/A 0.94 0.37 0.82
Fourier (128) 12.0 5/9 N/A N/A 1.0 0.73 1.0
GEMM 12 080.0 12/15 0.56 0.91 0.96 0.79 0.91
GEMM Batched 141.33 10/11 0.91 0.76 1.0 0.98 0.99
Hotspot 6.97 2/6 0.98 0.83 1.0 1.0 1.0
Matrix Transpose 189.21 8/10 0.88 0.8 1.0 0.93 0.91
N-body 137.61 5/8 0.88 1.0 0.93 1.0 0.72
Reduction 27.5 3/5 0.98 0.96 0.99 1.0 0.99

∗∗This mimics the situation when the developer has knowledge of a tuning space on that GPU/CPU only.
††State space reduction can simply be calculated as the total number of configurations in the original search space divided by the number of configurations in the

pruned search space.
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TABLE 8 State space reduction (SSR), the number of pruned/all parameters (PP) and performance retention for all tested
hardware/benchmark combinations, after conservative pruning of parameters with low mutual information on GPU.

SSR PP Vega56 K20 750 1070 2080Ti
BiCG 16.34 5/11 0.92 0.99 0.97 0.99 1.0
Convolution 2.75 1/10 1.0 0.99 1.0 1.0 0.85
3D Coulomb Sum 10.0 4/8 0.99 1.0 0.97 0.97 0.97
Fourier (32) 4.0 3/7 N/A N/A 1.0 0.98 0.99
Fourier (64) 4.0 3/7 N/A N/A 1.0 0.98 1.0
Fourier (128) 4.0 3/7 N/A N/A 1.0 0.99 0.99
GEMM 47.19 6/15 0.97 0.92 0.90 1.0 0.97
GEMM Batched 22.32 8/11 0.96 0.92 0.99 1.0 0.99
Hotspot 6.97 2/6 0.83 0.98 1.0 1.0 0.99
Matrix Transpose 6.0 3/10 1.0 1.0 1.0 1.0 1.0
N-body 2.22 2/8 1.0 1.0 1.0 0.98 1.0
Reduction 1.0 0/5 1.0 1.0 1.0 1.0 1.0

TABLE 9 State space reduction (SSR), the number of pruned/all parameters (PP) and performance retention for all tested
hardware/benchmark combinations, after aggressive pruning of parameters with low mutual information on CPU.

SSR PP dual-E5-2650 i7-3820 i7-4790 i7-8700
BiCG 2.0 2/11 1.0 1.0 1.0 1.0
Convolution 4.55 1/10 0.97 0.97 0.93 0.9
3D Coulomb Sum 252.0 7/8 0.91 1.0 0.93 0.97
GEMM 94.38 7/15 0.92 0.94 0.95 N/A
GEMM Batched 133.33 10/11 0.81 0.81 0.94 0.96
Hotspot 2.11 1/6 0.9 0.97 0.96 0.95
Matrix Transpose 35.21 6/10 0.91 0.96 1.0 0.9
N-body 37.15 4/8 0.89 1.0 1.0 0.92
Reduction 5.89 2/5 0.75 1.0 1.0 1.0

As we can see in the tables, both methods are able to significantly reduce the size of the state space, while sacrificing only a
few percent of performance in most cases.
On GPU, the two pruning strategies usually result in very different search spaces – in fact, the results of the conservative

pruning strategy are very similar to the results of the naive pruning method from our previous work16, since in most cases, the
parameters were pruned based on low mutual information rather than performance degradation.
The aggressive pruning method results in severely reduced search spaces in the majority of cases (most notably in the GEMM

benchmark), but it seems to be more sensitive to weak correlation between parameter significance – on benchmarks such as
Fourier (64), where the distribution of mutual information values across different hardware is wide (see Figure 3), the space can
be overly pruned.
Note the Reduction benchmark, which was not pruned at all by the conservative pruning method, but the aggressive method

pruned it by a significant factor while barely decreasing the best performance. This suggests that the mutual information values
of all parameters are too similar for any one of them to be pruned, even though they all have a low impact on the overall runtime.
In the case of CPUs, the difference between aggressive and conservative pruning approaches is much less significant, and the

performance degradation caused by the aggressive pruning method is usually very low compared to the conservative approach.
The pruned space can be used in two scenarios. Firstly, we can execute exhaustive search on it, reducing the number of tuning

iterations by a factor of SSR (see Tables 7, 8, 9 and 10), reaching good performance with a lower number of tuning iterations.
Compared to a non-exhaustive search on an unpruned space, this provides the benefit of stable and repeatable results (i. e. it will
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TABLE 10 State space reduction (SSR), the number of pruned/all parameters (PP) and performance retention for all tested
hardware/benchmark combinations, after conservative pruning of parameters with low mutual information on CPU.

SSR PP dual-E5-2650 i7-3820 i7-4790 i7-8700
BiCG 2.0 2/11 1.0 1.0 1.0 1.0
Convolution 4.55 1/10 0.97 0.97 0.93 0.9
3D Coulomb Sum 70.0 5/8 0.99 1.0 1.0 1.0
GEMM 94.38 7/15 0.92 0.94 0.95 N/A
GEMM Batched 66.67 9/11 0.81 0.81 0.94 0.96
Hotspot 2.11 1/6 0.9 0.97 0.96 0.95
Matrix Transpose 3.48 3/10 0.99 1.0 1.0 1.0
N-body 14.0 2/8 1.0 1.0 1.0 0.98
Reduction 4.97 1/5 0.77 1.0 1.0 1.0

never get "unlucky" runs where it would miss all the good configurations or get stuck in a local optimum). Secondly, we can
search iteratively within the pruned space. We elaborate on the second use case in the following section.

4.3 Convergence in pruned spaces
Naturally, an iterative approach will inevitably reach better performance on the full space once the majority of configurations
have been searched, because it may contain optimal configurations which cannot be reached in the pruned space. However, we
also wish to study whether the search will converge faster to a well-performing configuration (for instance, 90 % of the optimum)
on the pruned space with fewer dimensions.
We expect the speed of convergence to be highly dependent on the chosen search method – in principle, any search algorithm

can be run on the pruned space, but the benefits of this pruning approach may vary significantly depending on the search strategy
used.
As part of our experiment, we have executed autotuning with random search as well as simulated annealing‡‡ on both the full

and the pruned space 1000× to get statistically significant results for each benchmark§§ – all the results (i. e. the best performance
found after N tuning steps for each of the 1000 tuning runs) were then averaged for each kernel using simple arithmetic mean.
We observe different rates of convergence towards good solutions between the full and the pruned spaces – see Figure 5 for

examples (both from random search). While in the Matrix Transpose benchmark, the convergence is faster in the pruned space,
in case of the Hotspot problem, the search converges faster in the full space of configurations.
To get results on the complete problem set, we have measured how quickly the tuning process converges to 90% of the

best performance for all combinations of search methods, processing units and problems. We have decided to only use the
conservatively-pruned search spaces, since the aggressively-pruned spaces are intentionally pruned to only have a few best-
performing values near 90% of the optimum, and would therefore converge very slowly towards this target.
A brief summary of our results is shown in Table 11, which shows that even though pruning improves the convergence towards

a good solution in a slight majority of the cases, the results are far from decisive.
When using random search on GPU, the pruning tends to improve the speed of convergence towards good performance, but

it does not work universally. The fact that the pruning method has different impact on various searchers is apparent – in the case
of simulated annealing, the pruning is detrimental to the speed of convergence for a majority of benchmarks.
On CPU, it is also evident that this approach does not provide the desired improvement in convergence speed – pruning

decreases the convergence rate in almost half of the cases.

‡‡All the parameters of simulated annealing, such as the initial temperature and the cooling schedule, were adopted from the default CLTune implementation 3, with the
computation time of kernels serving as the objective function for optimization. No additional constraints were added, except for the ones posed implicitly by the availability
of configurations in the given search space. For both the simulated annealing and random search simulations, the pseudo-random numbers were generated by the C++
Standard Library’s random function with uniform distribution of values.

§§We have used the rapid testing of the search method implemented in Kernel Tuning Toolkit – first, all of the configurations are executed and their performance data
are gathered, then during searcher testing the autotuner reads measured times instead of performing empirical tuning. This allows for performing many experiments in
reasonable time.
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Matrix Transpose Hotspot

FIGURE 5 Random search convergence on full and pruned tuning spaces. The X-axis shows the number of tuning steps, the
Y-axis shows the computation time of the fastest solution found so far. Both examples are the results of tuning on CPU-4790.

TABLE 11 The portion of benchmarks where conservative parameter pruning improves convergence (i. e. fewer tuning steps
are required to reach 90% of the best performance in the pruned space compared to the full space).

Random Search Simulated Annealing
GPU 71 % 38 %
CPU 55 % 57 %

5 RELATED WORK

Numerous autotuning frameworks allow for the tuning of implementation parameters for heterogeneous computing2,3,10,17,4. All
of these tuners are able to autotune OpenCL or CUDA code by altering their implementations, but the papers evaluate tuning
spaces on rather limited benchmark sets. In this paper, we have used more comprehensive benchmarks8.
To the best of our knowledge, there is no previous work attempting to predict the number of tuning search steps. Therefore,

we limit the comparison of our work to methods improving tuning space search.
The question of parameter tuning is not exclusive to the field of kernel/hardware optimization – various heuristic algorithms

are similarly controlled by sets of parameters which impact the algorithms’ ability to find a good solution quickly. The resulting
search spaces can be very large, and the stochastic nature of these heuristic algorithms often makes it difficult to compare various
parameter configurations, requiring the use of sophisticated meta-heuristic approaches such as CRS-Tuning18 or F-Race19.
Search methods in the field of kernel autotuning can be model-based or model-free. Considering model-free methods, most

autotuning papers show that random search performs similarly to more sophisticated search methods, such as simulated anneal-
ing or particle swarm optimization5,6,3. A promising improvement of model-free search has been introduced recently by van
Werkhoven4, outperforming other local and global search methods in most cases. Tuning space pruning introduced in this paper
can be combined with any model-free search method.
Model-based methods attempt to take advantage of existing knowledge of the tuned system to predict the performance of a

given implementation. Analytical solutions, which construct a mathematical model of performance, are specialized to a particu-
lar problem domain. A more scalable approach is to leverage empirical data, either from previous tuning runs or from concurrent
profiling, to guide the tuning process.
Methods based on machine learning use historical data to build a performance model. Price and McIntosh-Smith built

regression trees from an already explored part of the tuning space to steer a search method towards exploring more promising
configurations20. However, no historical data from previous tuning runs on different hardware has been used. Data from previ-
ous runs are used for learning by Muralidharan et al.21 and Cummins et al.22 Those papers focus on dynamic selection from a
very limited number of code variants21, or optimization of a single tuning parameter at compilation time22. We are focusing on
the usage of historical data in more complex tuning spaces.
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Several works in the field of compiler autotuning have successfully tackled both the problem of optimization prediction23

and the problem of pruning tuning spaces13. However, these compiler-oriented works focus on an entirely different aspect of
performance optimization than our code-level autotuning framework, and use different methods, such as optimization clustering,
to reduce their search spaces – it is therefore impossible to compare the results of these works with our own results.
Probably the closest method to our work uses historical data to prune tuning space or bias search towards a configuration

which performs better on another hardware device14. The method is based on the assumption that configurations which perform
well on one device also perform well on another (see Section 4 for a deeper discussion). In contrast, our method assumes that
tuning space dimensions which have a low impact on performance on one device will also have a low impact on another.

6 CONCLUSION AND FUTURE WORK

In this paper, we have introduced methods using historical data gained from previous tuning of the same problem on different
hardware, allowing us to predict the number of search steps necessary for tuning and prune the tuning space.
In both of these use-cases, we assume relatively small, rationally-designed search spaces, which we search ahead of time to

discover the amount of well-performing configurations and infer the importance of various tuning parameters.
As we discuss in the paper, for the first part of our work – prediction of the number of tuning steps – we chose to only predict

the number of tuning steps required for random search. Although a modification could be made that would allow for predicting
the number of tuning steps for other search methods, these are less suitable for our future work, wherein we intend to use the
prediction method for dynamic scheduling of tuning in a runtime system. In other words, we intend to use the predictions to
make decisions about whether the performance improvement achieved by autotuning a problem will outweigh the tuning cost –
for this purpose, the robustness and predictability of random search is ideal (while still providing good performance).
Our results confirm our initial hypothesis that there is considerable correlation between tuning spaces on different hardware,

which allows us to use static historical data to make tuning decisions on new hardware when using random search to find well-
performing configurations. Although in this paper, we rely on knowing good configurations ahead of time (through exhaustive
search or sampling), this could be improved by using profiling and performance modeling, which would not only allow us to
make more accurate predictions with less preliminary data, but also to react dynamically to changing workload and other factors.
We also proposed several ways to prune search spaces using historical data from previous runs on different hardware, and we

showed that in most cases, these can considerably reduce the dimensionality of the tuning space without losing well-performing
configurations. This means that an exhaustive search of the tuning space would be much faster, while producing a solution which
loses little to no performance compared to the best solution in the full tuning space.
We also hypothesized that search within the pruned spaces might converge more quickly towards relatively fast solutions,

compared to the original, unpruned space. However, after testing this hypothesis using two different search strategies – ran-
dom search and simulated annealing – the benefit of pruning to convergence proved negligible (and in many cases, actively
counterproductive), so the main strength of this pruning approach remains in the exhaustive search of the pruned space.
We have used a set of ten benchmarks to test the usability of the proposed methods – the wide variety of tuning parameters

within all of these benchmarks serve to demonstrate that the results are not restricted to a certain type of tuning parameters or
to a narrow set of kernels with specific performance characteristics. The benchmark set is available to the community together
with the Kernel Tuning Toolkit.
Aside from the future work outlined above, we also plan to further analyze the tuning spaces. We plan to categorize tuning

parameters and study their importance for particular types of hardware, as well as their interactions. We also plan to test more
search methods and more advanced pruning (e. g. using profiling counters) in order to speed up the tuning process.
Another possible research direction would be to use the historical data from benchmarks to build a machine learning model

whichmight actually predict the correct optimizations for a new set of hardware, or at least to guide the search of the configuration
space instead of using random search.
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