
Multi-GPU Performance Optimization of a CFD Code
using OpenACC on Different Platforms

Weicheng Xue1,∗, Christoper J. Roy2

Virginia Tech Kevin T. Crofton Department of Aerospace and Ocean Engineering,
215 Randolph Hall, Blacksburg, VA 24061, US

Abstract

This paper investigates the multi-GPU performance of a 3D buoyancy driven

cavity solver using MPI and OpenACC directives on different platforms. The

paper shows that decomposing the total problem in different dimensions affects

the strong scaling performance significantly for the GPU. Without proper per-

formance optimizations, it is shown that 1D domain decomposition scales poorly

on multiple GPUs due to the noncontiguous memory access. The performance

using whatever decompositions can be benefited from a series of performance

optimizations in the paper. Since the buoyancy driven cavity code is latency-

bounded on the clusters examined, a series of optimizations both agnostic and

tailored to the platforms are designed to reduce the latency cost and improve

memory throughput between hosts and devices efficiently. First, the parallel

message packing/unpacking strategy developed for noncontiguous data move-

ment between hosts and devices improves the overall performance by about a

factor of 2. Second, transferring different data based on the stencil sizes for

different variables further reduces the communication overhead. These two op-

timizations are general enough to be beneficial to stencil computations having

ghost changes on all of the clusters tested. Third, GPUDirect is used to im-

prove the communication on clusters which have the hardware and software

∗Corresponding author
Email addresses: weich97@vt.edu (Weicheng Xue), cjroy@vt.edu (Christoper J.

Roy)
1Graduate Assistant, AIAA Student Member
2AIAA Associate Fellow

Submitted preprint

ar
X

iv
:2

00
6.

02
60

2v
1

 [
cs

.D
C

]
 4

 J
un

 2
02

0

support for direct communication between GPUs without staging CPU’s mem-

ory. Finally, overlapping the communication and computations is shown to be

not efficient on multi-GPUs if only using MPI or MPI+OpenACC. Although

we believe our implementation has revealed enough overlap, the actual running

does not utilize the overlap well due to a lack of asynchronous progression.

Keywords: Multi-GPU, OpenACC, MPI, Domain Decomposition,

Performance Optimization, GPUDirect

2

1. Introduction

Computational Fluid Dynamics (CFD) is a method which can be used to

solve physical problems in the field of fluids, usually requiring a lot of compu-

tation. In order to obtain more accurate numerical solutions for challenging

problems, researchers are using very fine meshes or high-order schemes which

require much better resources such as a larger memory and faster processor.

However, generally the memory cannot be infinitely large and a processor can-

not hold an infinite number of transistors. These limitations may require codes

to be written in a data parallel way, i.e., decomposing a big problem into small

pieces and distributing these small problems to multi/many-cores or even ac-

celerators such as GPUs. Applying high performance computing (HPC) in the

CFD [1] area is necessary and has aroused CFD researchers’ interest.

On multicore/manycore CPU systems or equivalent, there are three common

paradigms for HPC: OpenMP, MPI, and hybrid MPI+OpenMP. OpenMP [2]

is designed for shared memory systems so that data can be shared among all

threads but this comes with the risk of race conditions to exist if multiple threads

are modifying the same data. Also, scaling performance across multiple nodes

or sockets may be poor on distributed memory systems (more usually used than

shared memory systems). MPI [3] is a message passing standard designed for

various platforms including shared and distributed memory architectures. Data

is moved between processors through sending and receiving messages. How-

ever, programming with MPI is more complicated than with OpenMP as it

requires extra care to decompose the problem well and implement efficient com-

munications. Usually, communication may be a significant bottleneck when the

codes is scaled up to a lot of processors. Hybrid MPI+OpenMP methods [4]

are therefore proposed to combine the advantages of MPI and OpenMP. The

hybrid model is a good match with modern multicore/manycore architectures,

so it can be programmed efficiently using two levels of parallelism: MPI for

the inter-node/socket communication and OpenMP for the intra-node/socket

computation and communication. However, hybrid MPI+OpenMP cannot be

3

easily used on GPUs directly due to a lack of full support of OpenMP 4.0 (or

later) from the compiler development.

In addition to the CPU computing, GPU computing have been gaining a

lot of interests [5]. This attention is because of the GPU’s high compute ca-

pability and memory bandwidth as well as their low power consumption. A

single GPU have thousands of threads, therefore numerous threads can execute

a same instruction simultaneously on multiple data points, known as single in-

struction multiple threads (SIMT). When executing a program on the GPU, the

highly compute-expensive portion of a program is offloaded to the GPU. Then

numerous threads on the GPU execute the code simultaneously to achieve a

high speedup. File I/O, branch controls, printout, etc. remain on the CPU

since the CPU has the flexibility to perform these tasks while GPUs are not

as efficient for these complex tasks (if they are even possible). One important

thing to mention here is that although GPUs provides higher memory band-

width than CPUs, different memory access patterns may significantly affect the

actual memory throughput [6], which should be considered carefully.

Three language extensions/libraries are widely applied to port codes to

GPUs [7]. They are OpenCL, CUDA and OpenACC. OpenCL and CUDA

are C/C++ with some extensions while OpenACC is a compiler directive-based

interface, similar to OpenMP. OpenCL and CUDA are low level programming

models so that they require users to have some background in computer archi-

tecture systems. Also, programming with OpenCL or CUDA is difficult, as users

need to rewrite and tune their codes on various GPUs every time. CUDA gets

a strong support from NVIDIA but it cannot be compatible well with other

GPUs such as AMD. OpenCL is open source and we found that it has not

been commonly used in real world GPU-accelerated CFD codes, possibly due

to the high complexity of programming and a lack of good ecosystem support.

Different from OpenCL and CUDA, OpenACC is a high level programming

model that enables users to accelerate their CFD codes more readily on vari-

ous GPUs without intruding their legacy codes completely. Programmers using

OpenACC [8] can be somewhat agnostic about the GPU architecture compared

4

to using OpenCL and CUDA because compilers such as those developed by PGI

(acquired by NVIDIA) can hide a lot of details and decide how to optimize the

code (although it may not be optimal). Also, because of its directive-based fea-

ture and good support for portability, OpenACC can be much easier to use on

various platforms compared to CUDA. We will also show this benefit because

there is little code modification across platforms. However, to gain good per-

formance across different platforms, the features of the architecture and some

low level optimizations should be taken into account. Apart from the options

mentioned, OpenMP can be a potential viable choice for the GPU once the de-

velopment of compilers catch up in the future. Because OpenACC provides an

easy way of programming [9], a good feature for portability across platforms [10]

and good parallel performance if optimized enough [11], OpenACC was applied

to port our CFD code to the GPU.

OpenACC has already been used for various GPU-accelerated CFD codes

or related applications. Gong et al. [12] presented an optimized OpenACC ver-

sion for NekBone, which is a core kernel of the incompressible Navier-Stokes

solver Nek500, based on their group’s prior work. They ported the optimized

code to multiple GPU systems and obtained a parallel efficiency of 79.9% on

1024 GPUs. However, the code they worked on is just a kernel, not a complete

CFD code. Hoshino et al. [11] found that although OpenACC is 50% slower

than CUDA for a naive implementation, the gap can be decreased to only 2%

after careful manual optimizations. They also pointed out that there are some

intrinsic deficiencies of OpenACC, such as a lack of interface for shared mem-

ory and inter-thread communication. Searles et al. [13] studied a wavefront

based mini-application for a production code for nuclear reactor modeling. It

is interesting and rare to see in their work that the OpenACC implementation

is even slightly faster than CUDA. Their work mainly focused on exploring

complex parallel patterns in their code and exploring the scalability using MPI

across different platforms. In summary, OpenACC is easy to use and also good

for portability across different platforms, however to obtain good performance,

careful pertinent optimizations for an application may need to be designed.

5

To assess the performance of a code accelerated by the CPU or GPU, weak

scaling and strong scaling performance are often measured. The major difference

between the two scalings is whether one keeps the total problem size fixed (strong

scaling) or the problem size per processor fixed (weak scaling), while adding

more processors. Obviously maintaining strong scaling is more challenging.

Commonly both scalings are investigated to satisfy different situations such as

solving a fixed problem as fast as possible (strong scaling) or solving as big of a

problem as possible (weak scaling). In both situations we want to max out all

compute nodes or resources to gain the maximum speedup. In the CFD area,

we are more interested in the weak scaling performance as we hope to solve

a larger and complex problem faster, if more compute resources are available.

However, there are also a lot of occasions in which small problems need to be

solved if the requirement for numerical accuracy is not high. Therefore, both

the weak scaling and strong scaling performance are measured in this paper.

Prior to the work presented in this paper, Pickering et al. [14] examined the

process of applying OpenACC to a 2D CFD code using both single precision

and double precision. They also applied OpenMP’s fork/join execution model

to scale the performance up to 4 NVIDIA C2070 GPUs with a strong scaling

efficiency of 95%. Instead of using the OpenMP+OpenACC model, Baghapour

et al. [15] switched to the MPI+OpenACC model and scaled a 3D CFD code

well up to both 32 CPUs and 32 GPUs on a distributed cluster. In their work,

they used 1D domain decomposition to distribute the load to different proces-

sors and increased the grid size in only one dimension for their weak scaling

performance. Xue et al. [16] compared multi-CPU/GPU performance using

3D, 2D and 1D decompositions and gave a primitive analysis of their differ-

ences. Also, two performance optimizations including an pack/unpack method

for data exchange between hosts and devices was designed, and this pack/un-

pack method was proved to improve the performance using 3D decomposition

greatly on a platform using old GPUs (NVIDIA C2070). In the current paper,

the effects of multiple factors such as the platform architecture, decomposition

methods, pack/unpack, strong v.s. weak scaling and GPUDirect will be inves-

6

tigated. Also, the limitations of overlapping communication and computation

if applying MPI or MPI+OpenACC are presented.

2. CFD Code: Buoyancy Driven Cavity Solver

The 3D Buoyancy Driven Cavity (BDC) problem has a cubic domain, a ver-

tical wall and its opposing wall have different temperatures, and the horizontal

walls are adiabatic. A gravitational force is added to the air in the square cavity.

Heat flux caused by the temperature difference leads small density changes in

the fluid (Boussinesq approximation), and the buoyancy effect (density change)

causes the fluid to convect in the cavity.

The CFD code written with Fortran 2003/2008 in the paper solves the classic

3D BDC problem [15], which is a system of 3D incompressible Navier-Stokes

equations. An artificial compressibility method developed by Chorin [17] is used.

The artificial viscosity term makes the system of equations to be hyperbolic so

that steady state solution can be obtained through time marching. The CFD

code use a first order Euler explicit scheme for temporal discretization, and

a second-order central-difference scheme with an artificial dissipation term for

spatial discretization. The artificial dissipation term is applied to the continuity

equation to alleviate odd-even decoupling. The numerical damping term is

based on the fourth-derivative of pressure and is discretized using a second-

order central finite difference scheme. The discretized form of the system of the

governing equations can be written as,

1

β2

∂p

∂t
+ ρ

∂Vi
∂xi

= εi
∂4p

∂x4i
(1)

∂Vj
∂t

+ Vi
∂Vj
∂xi

= −1

ρ

∂p

∂xj
+ ν

∂2Vj
∂x2i

+ σ(T − T∞)gj (2)

∂T

∂t
+ Vi

∂Tj
∂xi

= α
∂2Tj
∂x2i

(3)

where β is an artificial compressibility parameter calculated using the local

velocity magnitude along with a reference velocity defined by the user, ε are nu-

7

merical dissipation coefficients controlling stability, ν is the kinematic viscosity

of the fluid, and α is the thermal dissipation rate.

In this paper, the size of the cavity is 0.05 m in all three dimensions. Pressure

is extrapolated to the ghost cells at adiabatic walls using a one-sided second

order scheme. Temperature is similarly extrapolated to the horizontal wall

ghost cells using a second order scheme. Pressure is rescaled at the center point

of the cavity in every iteration. The meshes used for the BDC code are uniform

and their size range from 323 to 10243. The Rayleigh number is set to be 100,000

for the convection problem. Most of the constant settings affecting the flow do

not affect the parallel performance.

3. Implementation

3.1. Stencil Computation

In the BDC code studied here, since we use the fourth-derivative pressure

dissipation term and a second-order central-difference scheme for all spatial

derivatives, the numerical stencil size for the pressure is 5 and for other prim-

itive variables is 3. This can be utilized to design an optimization to reduce

the data exchange across processors (Optimized V2, will be introduced later).

Fig. 1 shows the stencils for a node in the computational domain. The iterative

residual calculation in the explicit CFD code is intrinsically one kind of stencil

computation. For each node, it needs the data in its two stencils to compute and

fill in the residual array, which is later used to update the primitive variables.

There should be a nested loop over all nodes in the spatial domain, and a time

step loop containing all stencil computations to iterate in pseudo time domain.

When programming, data locality should be considered to use cache more effi-

ciently. For a 3D array A(i, j, k) in Fortran, i is set to be incremented fastest

(the innermost loop) and k the slowest (the outermost loop). This layout is also

good for the GPU, as the GPU prefers the coalesced memory access pattern in

which contiguous threads in a thread block operate on the consecutive memory

locations. It should be noted here that the index directions (i, j and k) are

8

aligned with the spatial directions (x, y and z) in this problem. Therefore, the

use of (i, j, k) are mixed with the use of (x, y, z) in the paper.

Figure 1: Stencil (black+red: velocity and temperature stencil, blue+black+red: pressure

stencil)

3.2. Domain Decomposition

Many methods can be used to decompose a computational domain such

as structured partitioning [18] and graph partitioning [19]. For a CFD prob-

lem with single-block structured grid such as a BDC problem running on pure

CPUs or pure GPUs, there are three structured ways: 1D decomposition, 2D

decomposition and 3D decomposition. Which way of decomposing the domain

performs the best greatly depends on the application and computer architec-

ture. On one hand, the surface-area/volume ratio determines the total size of

data transferred between processors and the total size of ghost cells, and 3D de-

composition has the lowest area/volume ratio (least ghost cells). On the other

hand, the frequency of data transfers between processors can greatly affect the

performance, especially when the memory bandwidth or latency issue becomes

important, and 1D decomposition has the least times of data transfers. Besides,

for stencil computations like ours, 1D or even 2D decomposition may generate

too thin slices that invalidates the spatial discretization scheme if scaling up to

9

a large number of processors (strong scaling). Thus, it is worthwhile to inves-

tigate the effect of various domain decompositions on different platforms. Xue

et al. [16] showed that 2D decomposition scales better up to 32 CPUs com-

pared to 1D and 3D decomposition on a platform, and 3D decomposition can

outperform 1D decomposition if applying optimizations. However, they did not

show the comparison between 3D decomposition and 2D decomposition. Also,

they only tested the code on a single platform having old GPUs. An example

3D decomposition adopted in this paper is shown in Fig. 2. Each processor is

given a decomposed block, with each cutting face contacting a neighbour block.

Ghost nodes are used to store decomposed boundary information transferred

from neighbours. 1D and 2D decompositions are similar as 3D decomposition

but have fewer decomposed directions and fewer decomposed boundaries.

Figure 2: 3D domain decomposition

For a given number of processors, there may be many combinations for either

1D, 2D or 3D decomposition. For general situations, we try to decompose the

domain evenly in all the available dimensions but decompose more in the slowest

stride index direction, to preserve more contiguous data after decomposition.

This method is designed to 1) divide the domain in the available dimensions as

evenly as possible, 2) utilize enough processors, 3) decompose with a priority

along the k dimension first, then j, and finally i, as Fortran is a column-majored

language.

10

3.3. Hardware Configuration

HokieSpeed. Although now decommissioned in June 2017, HokieSpeed [20] was

a cluster at Virginia Tech and was previously in the list of Green500. Hok-

ieSpeed [20] had 204 nodes using a quad data rate InfiniBand interconnect.

Each node was outfitted with 24GB memory, two six-core Xeon E5645 CPUs

and two NVIDIA M2015/C2050 GPUs. Every GPU had 14 multiprocessors

(MP) and 3GB memory. The peak bandwidth to the 3GB shared memory was

148.4GB/s. Every MP had 32 CUDA cores, 48KB shared memory and 16KB

L1 cache. All the access to the global memory went through the L2 cache of size

512KB. The peak double precision performance was 513 GFLOPS. The com-

pilers used on HokieSpeed were PGI 15.7 and Open MPI 1.10.0. A compiler

optimization of -O4 was used.

NewRiver. NewRiver [21] is a cluster at Virginia Tech (VT). It has 39 GPU

nodes shared by the whole VT community. On NewRiver [21], each of these

nodes is equipped with two Intel Xeon E5-2680v4 (Broadwell) 2.4GHz CPU

(28 cores/node in all), 512 GB memory, and two NVIDIA P100 GPUs. Each

NVIDIA P100 GPU is capable of up to a theoretical 4.7 TeraFLOPS of double-

precision performance. The NVIDIA P100 GPU offers much higher GFLOPS

and memory bandwidth compared with the NVIDIA C2050 GPU on Hok-

ieSpeed. The modules used on NewRiver are PGI 17.5, CUDA 8.0.61 and Open

MPI 2.0.0 or MVAPICH2-GDR 2.3b. It should be mentioned that MVAPICH2-

GDR 2.3b is a CUDA-aware MPI wrapper compiler which supports GPUDirect

(if this feature is turned on). An compiler optimization of -O4 is used. The

maximum number of nodes which can be used is 12, but only 8 is used in this

paper. Thus, the maximum number of GPUs used on the NewRiver cluster is 16

(when using both Open MPI 2.0.0 or MVAPICH2-GDR 2.3b). If not specified,

Open MPI 2.0.0 is used.

Cascades. Cascades [22] is another cluster at VT. It has 40 GPU nodes shared

by the whole VT community. On Cascades [22], each of these nodes is equipped

with two Intel Skylake Xeon Gold 3 Ghz CPUs (24 cores/node in all), 768 GB

11

memory, and two NVIDIA V100 GPUs. Each NVIDIA V100 GPU is capable

of up to 7.8 TeraFLOPS of double precision performance, which is 66% higher

than the P100 GPU on the NewRiver cluster. The NVIDIA V100 GPU offers

the highest GFLOPS and memory bandwidth among the GPUs we used. The

modules used on Cascades are PGI 18.1, CUDA 8.0.61 and Open MPI 3.0.0 or

MVAPICH2-GDR 2.3b. An compiler optimization of -O4 is used. Similarly, the

maximum number of GPUs used on the Cascades cluster is 16 when using Open

MPI 3.0.0. However, when switching to MVAPICH2-GDR 2.3b, since Cascades

uses ”srun” to run MPI programs instead of using ”mpirun rsh” (as Slurm is

used on the Cascades), the maximum number of GPUs which can be used is

only 8 (using more would cause the efficiency to drop to about 1%, which is

not reasonable and caused by some unknown issues related to Slurm). If not

specified, Open MPI 3.0.0 is used.

4. Results

4.1. BDC Solution

Before presenting any performance results, the first indispensable step for

any parallelization or optimization is to quantify the solution difference between

the serial solution and the parallel solution. An iteratively converged double

precision solution using 32 GPUs on HokieSpeed for a 2563 mesh is given in

Fig. 3. As can be seen, the solution is smooth everywhere and the relative

error compared to the serial solution is just O(10−8), also seen in Section V

of Ref [16]. The small difference is due to round-off error accumulations on

the GPUs. For all the optimizations presented in this paper, parallel solution

correctness is always guaranteed.

12

(a) 3D pressure contour (b) 2D temperature contour at y=0.025 m

Figure 3: 3D BDC solution

4.2. Scaling Performance Metrics

Two basic metrics used in this paper are parallel speedup and efficiency.

Speedup denotes how much faster the parallel version is compared to the serial

version of the code, while efficiency represents how efficiently the processors are

used. They are defined as follows,

speedup =
tserial
tparallel

(4)

efficiency =
speedup

np
(5)

where np is the number of processors (CPUs or GPUs).

In order for the performance of the code to be measured and compared well

on different platforms and for different problem sizes, the wall clock time per

iteration step is converted to a ssspnt (scaled size steps per np time) value which

is defined in Eq.6. This metric has some advantages. First, GFLOPS requires

knowing the number of operations while ssspnt does not require. In most codes,

it is usually difficult to know the number of operations. Second, efficiency com-

parison across different platforms is not intuitive as how fast the program runs

is still unknown, but ssspnt is clearer for knowing the absolute speed. Also,

the benefit applies to strong and weak scaling performance comparison if using

13

ssspnt. For example, a linear scaling problem has a constant ssspnt value but the

values can be different for the strong and weak scaling. Using ssspnt, different

problems, platforms, strong and weak scaling performance can be compared di-

rectly. In this paper, when gaining productive performance results, unnecessary

I/O (writing out solutions to files and writing residual norms to the screen)

are turned off, which is commonly applied when testing the performance in

literature.

ssspnt = s
size× steps

np× time
(6)

where s is a scaling factor which scales the smallest platform ssspnt to the range

of [0,1]. In this paper, s is set to be 10−7 for all test cases. size is the problem

size, steps is the iteration steps and time is the program wall clock time for

steps iterations.

4.3. Grid Growth for Weak Scaling

In the weak scaling analysis, the problem size needs to be increased accord-

ingly when the number of processors increases. However, the way the problem

scales can vary. For the BDC codes, since the problem is a 3D problem, the

problem can increase in either 1D, or 2D, or 3D. Therefore, we will investigate

the effect of how problem size grows on the weak scaling performance. Two

types of grid growth for the weak scaling are applied, seen in Table 1 and Ta-

ble 2. Table 1 keeps the problem size grow in the exactly the same way when

increasing the number of processors, no matter whether the codes uses 3D, 2D

and 1D decomposition, and Table 2 scales the problem size in accordance with

the way the number of processors grow. For example, if using 8 processors,

the problem size for 3D decomposition is 512 × 512 × 512, for 2D decomposi-

tion it is 256 × 512 × 1024, and for 1D decomposition it is 256 × 256 × 2048 or

2048× 256× 256 (as the processor dims can be either 1× 1× 8 or 8× 1× 1). If

not specified, the paper uses the grid growth in Table 2.

14

Table 1: Grid growth type 1

Problem size 3D decomposition 2D decomposition 1D decomposition

(256,256,256) (1,1,1) (1,1,1) (1,1,1)

(256,256,512) (1,1,2) (1,1,2) (1,1,2) or (2,1,1)

(256,512,512) (1,2,2) (1,2,2) (1,1,4) or (4,1,1)

(512,512,512) (2,2,2) (1,2,4) (1,1,8) or (8,1,1)

(512,512,1024) (2,2,4) (1,4,4) (1,1,16) or (16,1,1)

(512,1024,1024) (2,4,4) (1,4,8) (1,1,32) or (32,1,1)

Table 2: Grid growth type 2

of processors 3D decomposition 2D decomposition 1D decomposition

1 (256,256,256) (256,256,256) (256,256,256)

2 (256,256,512) (256,256,512)
(256,256,512) or

(512,256,256)

4 (256,512,512) (256,512,512)
(256,256,1024) or

(1024,256,256)

8 (512,512,512) (256,512,1024)
(256,256,2048) or

(2048,256,256)

16 (512,512,1024) (256,1024,1024)
(256,256,4096) or

(4096,256,256)

32 (512,1024,1024) (256,1024,2048)
(256,256,8192) or

(8192,256,256)

4.4. Multi-CPU Scaling Performance

A systematic multi-CPU scaling performance test is performed on all the

three clusters mentioned earlier in this paper. CPU strong scaling and weak

scaling performance using 1D, 2D and 3D decompositions are shown in Fig. 4.

Here CPUs are added by sockets, i.e., adding a certain number of sockets every

time (only using one CPU in each socket, similar to adding GPUs as every socket

only has one GPU), or equivalently setting the processor per node (ppn) to be 2.

15

Fig. 4 highlights a tradeoff that exists for the different domain decomposition

techniques. Choosing a domain decomposition scheme is a balance between

maintaining a small surface to volume ratio of the subdomains and minimizing

the number of neighbors for each subdomain. From Fig.4, 1D decomposition

generally performs the worst for both the strong and weak scaling on NewRiver

and Cascades. 1D decomposition has only 2 neighbors but it has the highest

surface to volume ratio meaning that there is a lot of data to transfer between

the blocks. 2D and 3D decomposition perform the best for the strong scaling

and weak scaling, respectively. 3D decomposition has the smallest surface to

volume ratio but has 6 neighbors meaning it has to perform 6 communications

each with their own overhead. The weak scaling curves are flatter than the

strong scaling, which is reasonable as the CPU has more work to do. It is

also found that decomposing in the x dimension should be avoided for the

CPU in strong scaling as the performance deteriorates faster compared to other

decompositions, which is especially obvious on the Cascades cluster.

(a) CPU strong scaling (b) CPU weak scaling

Figure 4: Multi-CPU scaling using different decompositions

Also, Fig. 4 shows that a super-linear scaling occurs on the NewRiver cluster.

To investigate why there is super-linear phenomenon, the ppn is changed. Fig. 5

shows the effect of ppn on the performance. For both the strong and weak

scaling performance shown in Fig. 4, since the ppn is 2, the number of CPUs is

increased along with other resources such as memory and memory bandwidth

16

increased at the same pace (as the number of sockets increases), which may

reduce the communication overhead and latency cost. To test this hypothesis,

we also tried setting ppn to be higher than 2 (using less nodes) and did not

observe the super-linear scaling. Also, no matter what the ppn is, the Cascades

cluster does not show a super-linear scaling. It can be concluded that the super-

linear phenomenon depends highly on the platform communication system and

the implementation.

(a) CPU strong scaling (b) CPU weak scaling

Figure 5: The effect of ppn (3D decomposition)

Although multi-CPU implementation is not the focus of this paper, we are

interested in the CPU performance comparison between different platforms,

which is shown in Fig. 6. All the results here use 3D domain decomposition. It

can be found that the platform affects the performance most, not the number

of CPUs or whether the scaling is strong or weak. The performance on Cas-

cades is about 1.245 times faster as that on NewRiver, which is very close to

the clock rate ratio of 1.25 (3Ghz/2.4Ghz). For the CPU scaling, 3D domain

decomposition maintains the efficiency very well so it is recommended.

17

Figure 6: Multi-CPU performance comparison across platforms (3D domain decomposition)

4.5. Multi-GPU Scaling Performance

The focus of this paper is the multi-GPU implementation and its perfor-

mance optimizations. There are multiple optimizations of the GPU-accelerated

CFD code in this subsection: the first version is a baseline code, which can be

regarded as a naive GPU implementation based on the CPU code, and the other

versions are incremental optimization versions, with more optimizations based

on the previous version. Actual memory bandwidth can be improved greatly as

well communication overhead can be reduced by applying these optimizations.

When showing results later, the ”1D”, ”2D” and ”3D” in the legend denotes

1D, 2D and 3D decompositions, respectively. For 1D decomposition, the letter

in the parentheses after ”1D” denotes which dimension to decompose. More

details about these different GPU-accelerated versions are given as follows.

Baseline. The multi-CPU code is directly ported to GPUs by inserting Ope-

nACC directives in the parallel CPU code. This baseline GPU code does not use

GPUDirect techniques. Therefore, data on devices need to be updated to/from

hosts using ”!$acc update” clauses. Asynchronization clauses are used to

reduce some synchronization overhead between hosts and devices.

Optimized V1. This version is to improve the actual memory bandwidth and

reduce latency cost using 3D decomposition, as we found that the actual band-

width between the host and the device is very small because of non-contiguous

18

data transfer. As Fortran is a column-majored language, the first index i of a

matrix A(i, j, k) denotes the fastest change. If any decomposition exists in the i

index direction (3D decomposition or 1D decomposition in i), the decomposition

in the i index direction can generate chunks of data (at j − k planes) which are

highly non-contiguous. Therefore, the optimization is targeted at solving this

issue by converting the non-contiguous data into a temporary contiguous array

in parallel and updating this temporary array between hosts and devices using

OpenACC update clauses. For this optimization, temporary arrays are created

only if decomposition in the direction with the fastest change (i index direction)

exists, as decomposition in other index directions can still generate chunks of

contiguous data. A pseudo code of how to use buffers is given in Listing. 1. The

procedure can be summarized as follows:

1. Allocate send/recv buffers only for boundary cells on i planes on de-

vices and hosts if decomposition happens in the i dimension, as the non-

contiguous data on i planes makes data transfer very slow.

2. Pack the noncontiguous block boundary data to a buffer on the sender

device side. This process can be parallelized using ”!$acc loop” clauses

and has little overhead. The host buffer is then updated using OpenACC

update host clauses.

3. Have hosts transfer the data through MPI Isend/MPI Irecv calls (which

are one-sided non-blocking calls). Then block MPI calls using MPI WAITALL

to finish data transfer.

4. Update the recv buffer on devices using OpenACC update device clauses

and finally unpack the contiguous data stored in recv buffer back to

noncontiguous memory on devices, which can also be parallelized using

”!$acc loop” clauses.

Listing 1: A pseudo code of optimization on non-contiguous data transfer between hosts and

devices

19

!$acc data present(send_buffer(:,:), soln(:,:,:,:))

!Pack send_buffer(:,1) with back boundary data

!$acc parallel loop collapse(4) async(1)

do var = 1, 5

do k= 1, k_nodes

do j= 1, j_nodes

!Pack up two layers of cells

do i = 1, 2

indx = var*k_nodes*j_nodes*2+k*j_nodes*2+j*2+i

!Interior cell index starts at 3

send_buffer(indx,1) = soln(i+2,j,k,var)

!Similar routine to pack send_buffer(:,2) with front boundary

data async(2)

!Update send_buffer on hosts

!$acc update host(send_buffer)

!$acc wait

!Send/Recv between hosts

MPI_IRECV(recv_buffer)

MPI_ISEND(send_buffer)

MPI_WAITALL

!Update recv_buffer on devices

!$acc update device(recv_buffer)

!$acc wait

!$acc data present(recv_buffer(:,:), soln(:,:,:,:))

!Unpack the data in recv_buffer to soln ghost locations

20

Optimized V2. The use of only one stencil in the Optimized V1 makes the

communication pattern and implementation simpler but may not be efficient.

Optimized V2 is designed to reduce the amount of data exchanged. Since the

pressure requires a larger stencil while other primitive variables do not, We can

transfer less less data based on their own stencil size compared to Optimized V1.

What is more, more overlap of asynchronous communication can be achieved as

a big loop is split into two asynchronous loops. A pseudo code of this optimiza-

tion is given in Listing. 2. It should be noted that only changes based on the

previous optimization are emphasized in a new Listing.

Listing 2: A pseudo code of stencil based communication optimization

!$acc data present(send_buffer(:,:), soln(:,:,:,:))

!Pack send_buffer(:,1) with back boundary data

!Move pressure into send_buffer(:,1)

!$acc parallel loop collapse(3) async(1)

do k= 1, k_nodes

do j= 1, j_nodes

do i = 1, 2

var = 1 ! pressure only

indx = k*j_nodes*2+j*2+i

send_buffer(indx,1) = soln(i+2,j,k,var)

!Update starting index in send_buffer(:,1)

indx_p = k_nodes*j_nodes*2

!Move velocities & temperature into send_buffer(:,1)

!$acc parallel loop collapse(3) async(2)

do var = 2, 5

do k= 1, k_nodes

do j= 1, j_nodes

indx = (var-2)*k_nodes*j_nodes+k*j_nodes+j

send_buffer(indx_p+indx) = soln(3,j,k,var)

21

!Pack send_buffer(:,2) with front boundary data

!$acc parallel loop collapse(3) async(3) & async(4)

!Update send_buffer on hosts

...

!Send/Recv between hosts

...

!Update recv_buffer on devices

...

!$acc data present(recv_buffer(:,:), soln(:,:,:,:))

!Unpack the data in recv_buffer to soln ghost locations

async(1:4)

Optimized V3. In the Optimized V1 and Optimized V2, contiguous-memory

arrays are created only for the i index direction. However, if an decomposition

exists in the j or k index direction, then we may also need an array in the j

and k direction. It should be noted that although real cell data on k boundary

faces do not need to be packed into buffers, using buffers on k faces may still be

helpful considering that there are ghost cells on k boundary faces which breaks

the contiguity. We found that on the HokieSpeed cluster, using such arrays

improves the performance very little, but the performance can be improved

significantly on the NewRiver and Cascades cluster. The procedure of creating

arrays and parallelizing the pack/unpack process in the j and k direction is very

similar to that in the i direction, so there is no need to show an pseudo code

here. Readers can reference Listing. 1.

We will first show the benefit of applying Optimized V1 on the HokieSpeed

cluster, i.e., creating the contiguous-memory and parallelizing the process of

22

pack/unpack. Fig. 7 shows the weak scaling efficiency of the different GPU

code versions introduced earlier. The Baseline version using 3D decomposi-

tion performs poorly, which is very bandwidth limited due to noncontiguous

data transfer when 3D decomposition is used. Both Baseline 2D and 1D per-

form much better than Baseline 3D. Although the baseline GPU version using

3D decomposition performs poorly, its two optimizations scales as well as the

baseline using 2D decomposition or even better. This indicates that memory

throughput is improved greatly and latency cost is reduced after optimization,

although there is some pack/unpack overhead. Therefore, special attention

should be paid to non-contiguous data movement between hosts and devices.

Also, Fig. 7 shows that Optimized V2 performs better than Optimized V1 be-

cause it transfers less data and overlaps asynchronous data transfers better.

Similar performance improvement can also be seen on the NewRiver and Cas-

cades clusters but the baseline scaling performance are not shown in this paper,

as the baseline version runs too slow (or it can be regarded as an improper

implementation) and its performance assessment is not a focus in this paper.

Figure 7: Multi-GPU scaling performance on the HokieSpeed cluster

From Fig. 7, we know that Optimized V2 performs the best on the Hok-

ieSpeed cluster. It should be mentioned that Optimized V2 and Optimized V3

perform equivalently on HokieSpeed. However, NewRiver and Cascades show

different favors. The performance comparison of Optimized V2 and Optimized

V3 on NewRiver and Cascades will be shown in Sec 4.6, as there the perfor-

23

mance of applying different MPI compilers and GPUDirect will include such an

comparison. To avoid redundant contents, only the Optimized V3 performance

on NewRiver and Cascades are shown here. The GPU strong scaling and weak

scaling performance using 1D, 2D and 3D decompositions are shown in Fig. 8.

From Fig. 8, 3D decomposition performs the best for the strong scaling, then

2D decomposition follows. 1D decomposition in the x or z dimension makes the

performance drop quickly, especially on Cascades. Similar to the CPU weak

scaling, the weak scaling curves are flatter than strong scaling. Recall that this

weak scaling applies the grid growth type 2, which is in Table 2. Since the

problem size increases in accordance with the way np grows, 1D decomposition

performs the best as every decomposed block has the least number of neighbours

compared to 2D and 3D decomposition.

(a) GPU strong scaling (b) GPU weak scaling

Figure 8: Multi-GPU scaling using different decompositions (Optimized V3)

Fig. 9 shows the performance comparison across platforms. Different from

Fig. 6, multiple factors can affect the multi-GPU performance significantly, in-

cluding the number of processors, platforms, whether a strong or weak scaling.

When the number of GPUs increases, the efficiency drops significantly for both

the strong and weak scaling, but the weak scaling efficiency holds a relatively

higher value compared to the strong scaling. Cascades shows an about 2 times

faster speedup compared to NewRiver.

24

Figure 9: Multi-GPU performance comparison across platforms (Optimized V3)

To investigate the effect of different grid growth methods on the weak scaling

performance, some cases are tested on NewRiver and Fig. 10 shows such results.

Since the two grid growths are the same if applying 3D decomposition, there is

only one curve for 3D decomposition. It can be found that the performance is

better for growth type 2. If growth type 1 is applied, then 3D decomposition

performs the best, and it may mislead readers that 3D decomposition is the

best for the GPU weak scaling, which is not this paper’s intention. It should be

emphasized again that which decomposition should be used for the weak scaling

depends on how the grid grows.

Figure 10: Weak scaling performance applying different grid growth methods (Optimized V3)

25

4.6. CUDA-aware MPI and GPUDirect

The optimizations introduced in Section 4.5 have improved the efficiency

significantly on different platforms. However, we are still interested in improving

the scaling performance further on NewRiver and Cascades since they have some

modern GPUs. Thus, it became important to determine ways of reducing this

communication cost by using CUDA-aware MPI and GPUDirect [23]. Later,

performance comparisons will be made between using Open MPI, MVAPICH2

or MVAPICH2-GDR with GPUDirect.

HokieSpeed does not support CUDA-aware MPI. Thus, all inter-node GPU

communications on HokieSpeed had to go through host memory. This staging

deteriorates the performance greatly. Using CUDA-aware MPI, we only need

to send GPU buffers instead of CPU buffers. CUDA-aware MPI has two per-

formance benefits [23]. First, operations which require message transfer can be

pipelined, which improves the memory throughput. Second, acceleration tech-

niques such as GPUDirect can be utilized by the MPI library transparently to

the user.

GPUDirect is an umbrella word for several GPU communication acceleration

technologies. It provides high bandwidth and low latency communication be-

tween NVIDIA GPUs. There are three levels of GPUDirect [24]. The first level

is GPUDirect Shared Access, introduced with CUDA 3.1. This feature avoids an

unnecessary memory copy within host memory between the intermediate pinned

buffers of the CUDA driver and the network fabric buffer. The second level is

GPUDirect Peer-to-Peer transfer (P2P transfer) and Peer-to-Peer memory ac-

cess (P2P memory access), introduced with CUDA 4.0. This P2P memory access

allows buffers to be copied directly between two GPUs on the same node. The

last is GPU RDMA (Remote Direct Memory Access), with which buffers can

be sent from the GPU memory to a network adapter without staging through

host memory. The last feature is not supported on NewRiver and Cascades as

it pertains to specific versions of the drivers (both from NVIDIA for the GPU

and Mellanox for the Infiniband) which are not installed (other dependencies

exist on NewRiver and Cascades, particularly parallel filesystems). Although

26

GPU RDMA is not available, the other aspects of GPUDirect can be tested to

determine its effect on the scaling performance using MVAPICH2-GDR.

4.6.1. Intra-Node Scaling Performance Results

In this subsection, we will first show the benefits of applying GPUDirect in

a node. Table 3 shows the strong scaling performance comparison of different

GPU code versions using 2 GPUs (intra-node performance) on NewRiver. The

problem size is 2563. The versions defined here are similar to the versions

introduced in Section. 4.5, with the Baseline to be the non-optimized GPU

version, Optimized V3 uses the pack/unpack in all the available dimensions and

the stencil-based communication method, and GPUDirect uses the P2P transfer

technology applied to both of these versions of the code. Within a node, we are

using GPUDirect P2P transfer between the memory of two GPUs on the same

system/PCIe bus.

Table 3: Strong scaling comparison of different GPU code versions using 2 GPUs (NewRiver)

GPU code versions Decompositions ssspnt Efficiency

Single GPU (1,1,1) 93.8 100%

Baseline (1,1,2) 145.9 77.8%

Baseline (2,1,1) 22.0 11.7%

Optimized V3 (1,1,2) 167.2 89.2%

Optimized V3 (2,1,1) 169.8 90.5%

Baseline + GPUDirect (1,1,2) 155.8 83.1%

Baseline + GPUDirect (2,1,1) 154.7 82.5%

Optimized V3 + GPUDirect (1,1,2) 177.9 94.9%

Optimized V3 + GPUDirect (2,1,1) 179.4 95.7%

Using MVAPICH2, the baseline code decomposed in the i direction performs

poorly, about 1/7 of that decomposed in the k direction. After a series of

optimizations the ssspnt value changes from 22.0 to 169.8, indicating again the

importance of the coalesced memory access when doing host-device transfers.

27

GPU direct P2P transfer on the baseline code is also able to avoid the cost of

host-device transfers and is able to maintain an efficiency of 83% even though

the data is not contiguous. Combining the performance optimizations with the

use of GPUDirect can improve the efficiency to approximately 95% on 2 GPUs.

Table. 4 shows the weak scaling performance comparison of different GPU

code versions using 2 GPUs in the intra-node mode. The result also shows either

the optimizations proposed in this paper or GPUDirect (or both if applicable)

should be used, if non-contiguous data transfers happen. It is also reasonable

to see that the weak scaling generally performs better than the strong scaling.

Table 4: Weak scaling comparison of different GPU code versions using 2 GPUs (NewRiver)

GPU code versions Decompositions ssspnt Efficiency

Single GPU (1,1,1) 93.8 100%

Baseline (1,1,2) 161.6 86.1%

Baseline (2,1,1) 21.4 11.4%

Optimized V3 (1,1,2) 175.3 93.5%

Optimized V3 (2,1,1) 176.3 94.0%

Baseline + GPUDirect (1,1,2) 167.9 89.5%

Baseline + GPUDirect (2,1,1) 154.9 82.6%

Optimized V3 + GPUDirect (1,1,2) 180.0 96.0%

Optimized V3 + GPUDirect (2,1,1) 180.9 96.5%

4.6.2. Inter-Node Scaling Performance Results

Strong Scaling Performance Results. Since there are three different MPI options

(Open MPI, MVAPICH2 and MVAPICH2-GDR with GPUDirect turned on) on

NewRiver and Cascades, scaling performance results using the three different

compilers/options are given. Fig. 11 shows the strong scaling performance us-

ing different MPI options, respectively. Considering 3D growth is much more

common in CFD such as applying systematic mesh refinement so the 3D decom-

position is of more interest. As mentioned earlier, when applying MVAPICH2 or

MVAPICH2-GDR on Cascades, the performance drops to 1% if using 16 GPUs,

28

so the maximum number of GPUs used in that occasion is 8. Since the results

are for the strong scaling, we cannot expect a very high efficiency if scaling up

to a large number of GPUs. Using MVAPICH2-GDR generally achieves the

best performance especially when combined with Optimized V3 but it shows

a significant performance drop when using 4 GPUs, which is more obvious on

Cascades. The performance curves using Open MPI on both platforms are much

smoother than using MVAPICH2 and MVAPICH2-GDR.

Also, a comparison can be made between Optimized V2 and Optimized V3

to address the importance of using more buffers for multi-GPU computing on

modern GPUs. Since Optimized V3 generally uses more transfer buffers than

Optimized V2, the performance can be much better if decomposition exists in

more dimensions.

(a) Open MPI (b) MVAPICH2 (c) MVAPICH2-GDR

Figure 11: Strong scaling performance across platforms (3D decomposition)

Weak Scaling Performance Results. When measuring the weak scaling perfor-

mance, grid growth type 2 is applied. Fig. 12 shows the weak scaling per-

formance using different MPI options. For each MPI option, results of using

different decompositions for different grid growth are given. MVAPICH2 and

Open MPI perform equivalently but there are still some differences. MVAPICH2

performs better than Open MPI for Optimized V3, and generally worse for Opti-

mized V2, compared to Open MPI. It is reasonable as MVAPICH2 is designed to

reduce communication overhead for complicated communication patterns, but

there is some overhead associated with this optimization. It can also be seen

that GPUDirect (with MVAPICH2-GDR) brings some performance benefits and

29

performs the best for both Optimized V2 and Optimized V3.

(a) OpenMPI (b) MVAPICH2 (c) MVAPICH2-GDR

Figure 12: Weak scaling performance across platforms (3D decomposition)

4.7. Overlapping Communication and Computation

When overlapping communication and computation, every decomposed block

is further separated into two components: internal and external domains. For

large enough problems, the internal domain will have significantly more grid

points than the external domain. These internal points do not need data from

other blocks so they can compute their updates while the communication is oc-

curring for the external portion of the block. After communication is finished,

the external domain continues to finish the remaining computation. Overlap-

ping will not reduce latency but it can hide the latency caused by inter-block

communication. In this paper, overlapping communication and computation

was applied to both CPUs and GPUs. Communication is always done on CPUs

while computation can be performed on CPUs or GPUs.

Case studies to compare the overlap and non-overlap versions have been

made on different platforms, using different decompositions and code versions,

and for the strong and weak scaling performance. The overlap version performs

more slowly compared to the non-overlap version. Fig. 13 shows the strong and

weak scaling performance for both the CPU and GPU on the NewRiver cluster,

with a performance comparison between the overlap version (extended from

Optimized V3) and the non-overlap (Optimized V3) version. For both the CPU

and GPU, overlap performs about 20% to 30% slower than non-overlap up to 16

processors, which was out of our initial expectation. The main reason is that the

30

asynchronous progression is not supported well, potentially caused by the MPI

and the communication system used. To figure out whether the asynchronous

progression engine was activated or not, we used NVIDIA Visual Profiler [25]

to trace the program kernel executions on GPUs and found that the MPI used

does not trigger communication until the code runs to a MPI WAITALL call,

although communication is launched as early as possible. Since there is no

actual overlap, and the non-overlap version only needs to setup the residual

calculation kernel once while the overlap version has to do the setup multiple

times (as it contains the internal domain and external domains), this overhead

makes the overlap slower than the non-overlap version.

(a) CPU scaling (b) GPU scaling

Figure 13: Overlap of communication and computation on NewRiver (3D decomposition)

In fact, the MPI standard [26] does not guarantee there is an actual overlap,

which also means that the it may or may not be possible for communication

to make progress when control has returned to the application, depending on

the communication software and the underlying hardware. In Ref [27], it is

also concluded that the degree of actual overlap for an application depends on

the overlap potential of both the application and the underlying communication

subsystem. In our case, we tested the overlap on different Virginia Tech super-

computing platforms using different MPI options and different decompositions,

and none of them improved the performance using multiple GPUs. It should be

mentioned that the MPI standard allows for non-blocking operations to only be

31

progressed to completion if a proper test/wait call was made. Thus, we tried to

add many MPI TESTALL (dips into the MPI progression engine many times)

or similar calls for the GPU code right after communication initialization. This

makes overlap slightly better (observed through tracing). However, some over-

head is produced due to adding these wait calls, also the degree of overlap is still

not fully complete. The benefits of the performance enhancements are negligible

compared with the overhead for our BDC code.

Our conclusion is that overlapping communication and computation is not a

universal performance improvement for all applications and platforms, including

the BDC problem using only MPI+OpenACC. Only if both the MPI compiler

and the architecture supports asynchronous progression can overlap perform

well and be used to hide some latency, which is difficult. An alternative way of

improving the overlap is using MPI+OpenACC+OpenMP, in which OpenMP

is used to generate multiple threads. These threads can work on different tasks

such as computation and communication so that the actual degree of overlap can

be increased [28, 29, 30, 31, 32]. In fact, there are more literature discussing how

to improve the overlap performance and almost all of them use multiple threads.

Therefore, developers who have an interest in the overlap version for their own

codes may need to do some simple tests first and should not only depend on

overlap to get high performance. Since multi-threading is not a focus in this

paper, no in-depth investigation of multi-threading is applied in this paper.

5. Conclusions

It is shown in the paper that OpenACC directives offer a convenient way

to accelerate a CFD code fast on multiple platforms. All the platforms can

generally use the same code with little code intrusion, which is a big advan-

tage over CUDA and OpenCL. Some general optimizations are examined to

improve the multi-GPU code performance, such as the pack/unpack method

and stencil-based communication method. The optimizations introduced are

shown to be very effective for both strong scaling and weak scaling, greatly re-

32

ducing communication overhead and latency cost on GPUs. Further optimiza-

tions such as the overlap of communication and computation, asynchronous

progression, and the use of CUDA-aware MPI and GPUDirect are also im-

plemented and discussed. Overlapping communication and computation using

only MPI+OpenACC is shown to be not an efficient way to improve the multi-

GPU performance. GPUDirect is shown to be effective in a CFD application

like the BDC code in this paper, as GPUDirect enables GPUs to communi-

cate with each other directly and also increases the bandwidth between host

and device. This avoids overhead between host and device and is important

for communication-bound problems. Also, a combination of the use of GPUDi-

rect and the optimizations proposed in this paper can improve both the strong

and weak scaling performance substantially. 3D domain decomposition gener-

ally performs the best for the strong scaling on different platforms. For weak

scaling, which decomposition performs best depends on how the grid growth is.

Acknowledgements

The authors would like to thank Andrew J. McCall and Behzad Baghapour

for creating the original BDC code as well as giving advice, and thank Charles

W. Jackson for reviewing the paper and participating in various helpful discus-

sions.

References

[1] S. Jamshed, Using HPC for Computational Fluid Dynamics: A Guide to

High Performance Computing for CFD Engineers, Academic Press, 2015.

[2] B. Barney, OpenMP, 2018. URL: https://computing.llnl.gov/

tutorials/openMP/.

[3] B. Barney, Message Passing Interface (MPI), 2019. URL: https://

computing.llnl.gov/tutorials/mpi/.

33

https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/mpi/

[4] R. Rabenseifner, G. Hager, G. Jost, Hybrid MPI and OpenMP Par-

allel Programming, 2013. URL: https://openmp.org/wp-content/

uploads/HybridPP_Slides.pdf.

[5] GPUs for Scientific Computing, 2009. URL: https://people.maths.

ox.ac.uk/gilesm/talks/bristol_hpc.pdf.

[6] J. Luitjens, Global Memory Usage and Strategy, NVIDIA Corpo-

ration, 2011. URL: https://developer.download.nvidia.com/

CUDA/training/cuda_webinars_GlobalMemory.pdf.

[7] S. Memeti, L. Li, S. Pllana, J. Ko lodziej, C. Kessler, Benchmarking

OpenCL, OpenACC, OpenMP, and CUDA: programming productivity,

performance, and energy consumption, in: Proceedings of the 2017 Work-

shop on Adaptive Resource Management and Scheduling for Cloud Com-

puting, ACM, 2017, pp. 1–6.

[8] OpenACC-Standard.org, The OpenACC Application Programming In-

terface, OpenACC-Standard.org, 2018. URL: https://www.openacc.

org/sites/default/files/inline-files/OpenACC.2.7.pdf.

[9] S. Wienke, P. Springer, C. Terboven, D. an Mey, Openaccfirst experiences

with real-world applications, in: European Conference on Parallel Process-

ing, Springer, 2012, pp. 859–870.

[10] A. Sabne, P. Sakdhnagool, S. Lee, J. S. Vetter, Evaluating performance

portability of openacc, in: International Workshop on Languages and Com-

pilers for Parallel Computing, Springer, 2014, pp. 51–66.

[11] T. Hoshino, N. Maruyama, S. Matsuoka, R. Takaki, CUDA vs OpenACC:

Performance case studies with kernel benchmarks and a memory-bound

CFD application, in: Cluster, Cloud and Grid Computing (CCGrid), 2013

13th IEEE/ACM International Symposium on, IEEE, 2013, pp. 136–143.

34

https://openmp.org/wp-content/uploads/HybridPP_Slides.pdf
https://openmp.org/wp-content/uploads/HybridPP_Slides.pdf
https://people.maths.ox.ac.uk/gilesm/talks/bristol_hpc.pdf
https://people.maths.ox.ac.uk/gilesm/talks/bristol_hpc.pdf
https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GlobalMemory.pdf
https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GlobalMemory.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf

[12] J. Gong, S. Markidis, E. Laure, M. Otten, P. Fischer, M. Min, Nekbone

performance on gpus with openacc and cuda fortran implementations, The

Journal of Supercomputing 72 (2016) 4160–4180.

[13] R. Searles, S. Chandrasekaran, W. Joubert, O. Hernandez, Mpi+ openacc:

Accelerating radiation transport mini-application, minisweep, on heteroge-

neous systems, Computer Physics Communications (2018).

[14] B. P. Pickering, C. W. Jackson, T. R. Scogland, W.-C. Feng, C. J.

Roy, Directive-based GPU programming for computational fluid dynamics,

Computers & Fluids 114 (2015) 242–253.

[15] B. Baghapour, A. J. McCall, C. J. Roy, Multilevel parallelism for cfd codes

on heterogeneous platforms, in: 46th AIAA Fluid Dynamics Conference,

2016, p. 3329.

[16] W. Xue, C. W. Jackson, C. J. Roy, Multi-cpu/gpu parallelization, op-

timization and machine learning based autotuning of structured grid cfd

codes, in: 2018 AIAA Aerospace Sciences Meeting, 2018, p. 0362.

[17] A. J. Chorin, A numerical method for solving incompressible viscous flow

problems, Journal of computational physics 135 (1997) 118–125.

[18] A. Ytterström, A tool for partitioning structured multiblock meshes for

parallel computational mechanics, The International Journal of Supercom-

puter Applications and High Performance Computing 11 (1997) 336–343.

[19] J. Rantakokko, Partitioning strategies for structured multiblock grids, Par-

allel Computing 26 (2000) 1661–1680.

[20] Hokiespeed, 2017. URL: https://www.arc.vt.edu/

hokiespeed-cpugpu/.

[21] Newriver, 2019. URL: https://www.arc.vt.edu/computing/

newriver/.

35

https://www.arc.vt.edu/hokiespeed-cpugpu/
https://www.arc.vt.edu/hokiespeed-cpugpu/
https://www.arc.vt.edu/computing/newriver/
https://www.arc.vt.edu/computing/newriver/

[22] Cascades, 2020. URL: https://arc.vt.edu/computing/

cascades/.

[23] J. Kraus, An Introduction to CUDA-Aware MPI, 2013. URL: https:

//devblogs.nvidia.com/introduction-cuda-aware-mpi/.

[24] NVIDIA, NVIDIA GPUDirect, 2019. URL: https://developer.

nvidia.com/gpudirect.

[25] Profiler User’s Guide, NVIDIA Corporation, 2019. URL: https://docs.

nvidia.com/cuda/profiler-users-guide/index.html.

[26] MPI: A message-passing interface standard, 2015. URL: https://www.

mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.

[27] D. E. Bernholdt, J. Nieplocha, P. Sadayappan, A. G. Shet, V. Tipparaju,

Characterizing Computation-Communication Overlap in Message-Passing

Systems, Technical Report, The Ohio State University, 2008.

[28] M. Jiayin, S. Bo, W. Yongwei, Y. Guangwen, Overlapping communica-

tion and computation in mpi by multithreading, in: Proc. of International

Conference on Parallel and Distributed Processing Techniques and Appli-

cations, 2006.

[29] K. Vaidyanathan, D. D. Kalamkar, K. Pamnany, J. R. Hammond, P. Bal-

aji, D. Das, J. Park, B. Joó, Improving concurrency and asynchrony in

multithreaded mpi applications using software offloading, in: SC’15: Pro-

ceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, IEEE, 2015, pp. 1–12.

[30] H. Lu, S. Seo, P. Balaji, Mpi+ ult: Overlapping communication and com-

putation with user-level threads, in: 2015 IEEE 17th International Con-

ference on High Performance Computing and Communications, 2015 IEEE

7th International Symposium on Cyberspace Safety and Security, and 2015

IEEE 12th International Conference on Embedded Software and Systems,

IEEE, 2015, pp. 444–454.

36

https://arc.vt.edu/computing/cascades/
https://arc.vt.edu/computing/cascades/
https://devblogs.nvidia.com/introduction-cuda-aware-mpi/
https://devblogs.nvidia.com/introduction-cuda-aware-mpi/
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

[31] A. Denis, F. Trahay, Mpi overlap: Benchmark and analysis, in: 2016 45th

International Conference on Parallel Processing (ICPP), IEEE, 2016, pp.

258–267.

[32] E. Castillo, N. Jain, M. Casas, M. Moreto, M. Schulz, R. Beivide, M. Valero,

A. Bhatele, Optimizing computation-communication overlap in asyn-

chronous task-based programs, in: Proceedings of the ACM International

Conference on Supercomputing, 2019, pp. 380–391.

37

	1 Introduction
	2 CFD Code: Buoyancy Driven Cavity Solver
	3 Implementation
	3.1 Stencil Computation
	3.2 Domain Decomposition
	3.3 Hardware Configuration

	4 Results
	4.1 BDC Solution
	4.2 Scaling Performance Metrics
	4.3 Grid Growth for Weak Scaling
	4.4 Multi-CPU Scaling Performance
	4.5 Multi-GPU Scaling Performance
	4.6 CUDA-aware MPI and GPUDirect
	4.6.1 Intra-Node Scaling Performance Results
	4.6.2 Inter-Node Scaling Performance Results

	4.7 Overlapping Communication and Computation

	5 Conclusions

