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Summary

Smoke has a very bad effect on the outdoor vision system. Not only are the videos
with poor visual effects obtained, but also the quality and structure of the videos are
reduced. In this paper, we propose a video smoke removal method based on low-rank
tensor completion via spatial-temporal continuity constraint. The proposed method
is based on the smoke mixing model and consider the sparseness of smoke and the
global and local consistency of clean video. Then, the optimal solution of the smoke
removal algorithm model is quickly realized by the Alternating Direction Method of
Multiplier. Finally, we evaluate the experiment results of real-world data and simu-
lated data from the visual effects and objective indicators. And the experiment results
show that our proposed algorithm can achieve better smoke removal results.
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1 INTRODUCTION

Smoke would reduce the visibility of video so that smoke removal is of great significance. After that, it has practical appli-
cations in target recognition1 and tracking2 3 4, disaster processing5 and so on. Therefore, video smoke removal is an important
issue in outdoor vision systems and has extremely important practical significance.
However, researchers have focused more on smoke detection, with little consideration given to smoke removal. And smoke

detection6 7 8 9 is mainly used to prevent fires and ensure people safety. With the development of computer vision, smoke removal
algorithms are slowly emerging and have received widespread attention from researchers.Until now, most of the current smoke
removal technologies and algorithms are based on several existing frameworks or models for a small amount of improvement.
These algorithms only enhance the original models to further reduce the proportion of smoke in photos or videos.
It was originally based onwavelet transform proposed by Cheng et al.10. Themethod was based on the characteristics of space-

frequency domain and multi-resolution analysis of wavelet transform. And this method was mainly effective for smoke removal
of solid rocket motor images, but not suitable for smoke images of other scenes. After, Lu et al.11 proposed a fast joint trigono-
metric filtering dehazing algorithm. Describes a method for enhancing underwater images through image defogging. Yu et al.12
proposed a novel removal algorithm to single image based on a self-learning framework and structured sparse representation.
This algorithm can also remove rain streaks component while preserving most of geometric details. However, the processed
picture would be a little fuzzy. Xu et al.13 proposed a smoke removal method based on spectral separation technology to remove
smoke from optical remote sensing images. The algorithm first detected the smoke component by using a spectral blending
analysis to generate a sub-pixel smoke fraction mask, and then subtracted the smoke component from each smoke pixel. Finally,
the attenuated signal is recovered by re-adjusting the abundance of the classes presented in each pixel. This method is highly
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FIGURE 1 Smoke removal example applied on a simulated video frame. Left: A smoky video frame. Right: Smoke removal
by our algorithm

feasible and does not depend on other auxiliary data. Enlightened by Nishino et al.14, Kotwal et al.15 and Baild et al.16 suggest
Bayesian inference-based laparoscopy image desmoking, accompanied with denoising and specularity removal in addition to
denoising, respectively. The authors present the undamaged image as a Markov random field, and use the maximum posterior
estimation to obtain the enhanced version. Chen et al.17 considered that there were some limitations in the method of dehaze
for smoke removal. Thus, they proposed a new smoke removal algorithm based on machine learning and smoke detection tech-
nology. The training algorithm corresponding to the model of each color channel was proposed based on the difference in the
intensity distribution of the different color channels observed in the smoke image and the smoke is removed from the RGB chan-
nel, respectively. With the development of artificial intelligence(AI), deep learning18 and reinforcement learning19 has adopted
into many fields. Lu et al.20developed an intelligent learning model called “Brain Intelligence (BI)”. Furthermore, the inte-
gration of the ocean network with artificial intelligence has become a topic of increasing interest for oceanology researchers.
The cognitive ocean network (CONet)21 will become the mainstream of future ocean science and engineering developments.
Specifically, Bolkar et al.5 proposed a smoke removal solution based on deep neural network, which can improve the quality
of surgical video frames in real time. In addition, Li et al.22 explored the contrast of the Laplacian sharpening first histogram
equalization algorithm to clear the smoke image, and verified the algorithm from both subjective and objective perspectives.
In addition to smoke extraction, there are many low-level optimizations. Liu et al.23 and others proposed a novel low-rank

representation (LRR) method to solve the single-person sample (SSPP) problem in face recognition by using both subspace
and block sparse structure. By representing both the subspace and the block sparse structure as a unified objective function,
the differentiation of the representation can be further promoted. Gao et al.24 proposed a method called Multi-layer Locally
Constrained Structure Orthogonal Procrustes Regression (MLCSOPR), which learns the pose discriminative representation
features and enhances the consistency between LR and HR image spaces. It is effective in cross-resolution face matching with
pose changes. Moreover, many works have exploited the adaptive relaxation methods25 to handle the sparsity and low rank for
specific works, Yu et al.26 made the L2,1 norm to explore the exact approximation for the affinity feature. Motivated by these
discussions, We plan to use the low rank and sparsity property to achieve the desmoke task from the perspective of optimization.
Figure 1 shows the smoke removal result of one of our simulated data. It can be seen that our algorithm has achieved a very

good visual effect. In the subsequent experimental part, we will measure this result from the objective evaluation index of the
image. The smoke removal algorithm in this paper is mainly aiming at the smoke removal under the outdoor environment. In this
paper, we propose a novel video smoke removal algorithm model based on low-rank tensor completion via temporal continuity
constraint. Firstly, we consider that the clean video is low-rank. This paper is the first time to introduce the concept of low rank
into the smoke removal algorithm. In general, this concept is used in many other fields. For example, the hyper-spectral image
denoise27. Secondly, we consider that the clean video is smooth and continuous in spatial-temporal dimension like the work in28

, we introduce the concept of spatial-temporal continuity constraint29. into the smoke removal algorithm. Finally, the Alternating
Direction Method of Multiplier can accelerate the proposed smoke removal algorithm in this paper. It has an extremely large
advantage for the solution of convex optimization.
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Based the above aspects, we proposed a novel video smoke removal algorithm model based on low-rank tensor completion
via temporal continuity constraint. The specific algorithm will be explained in detail in the following sections. In this paper,
there are mainly three contributions:

• This paper introduces the concept of low rank into the proposed smoke removal algorithm.

• This paper introduces the concept of spatial-temporal continuity constraint into the proposed smoke removal algorithm.

• This paper uses the Alternating Direction Method of Multipliers (ADMM) to optimize the solution of the proposed smoke
removal algorithm model.

The paper is organized as follows. In Section 2, we review our proposed smoke removal model theory background and
construct a smoke removal model based on this background. The proposed smoke removal model based on low rank tensor com-
pletion via temporal continuity constraint is presented in Section 3. The alternating direction method of Multipliers is adopted to
optimize the whole algorithm model in Section 4. In Section 5, some experimental results and discussion are presented. Finally,
conclusions are drawn in Section 6.

2 MOTIVATION

In the most advanced video-based smoke detection and removal methods, the representation of smoke is primarily dependent
on the visual information in the current image frame. Although these methods can deal with the problem of vision-based smoke
detection and removal to a certain extent, there are common problems between them, which are that they only use various
visual information of the smoke area. A notable feature of smoke is transparency. Regardless of the color of the smoke, we can
observe that the background is covered by smoke. In other words, if the features of the smoke are extracted based on the image
with light smoke, the visual information of the original background will inevitably affect the extracted features. These extracted
features reflect the true visual characteristics of the smoke and therefore represent smoke more reliably. Based on the above
observation, in order to demonstrate the superiority of smoke detection and removal using smoke components, we introduce an
image separation proposed by Tian et al.27 to detect and remove smoke in a fixed captured image sequence.
A hybrid image model was constructed, primarily a linear combination of background and smoke components, while also

defining smoke opacity to describe the contribution of smoke components to the composite image. And the hybrid image model
is written as:

I = �S + (1 − �)B + n (1)
where � ∈ [0, 1] represents the contribution of pure smoke image to the input image. B represents the background of the image,
S represents the pure smoke, n represents the additional noise.
According to such a model, algorithm optimization is performed to solve the smoke opacity and smoke components. The

algorithm of this chapter is based on this model. By analyzing the characteristics of smoke sparse in video images and com-
bining the global and local consistency of clean video, a video smoke removal method based on spatial-temporal consistency is
proposed. The experimental results of the simulation data verify the effectiveness of the algorithm in this chapter.

3 PROPOSED MODEL

We promote the Equation (1) to the smoke video, so the smoky video can be presented as:

 = � + (1 − �) + (2)

where  ,  ,  represent the smoky video, clean video, and pure smoke. They are all three order tensor and have the same
size of m × n × t . In addition, the original image needs to be removed additional noise by Gauss filter.
In this section, our smoke removal algorithm based on spatial continuity method is presented. According to the characteristics

of smoke sparse in video images and combining the global and local consistency of clean video, the smoke removal model can
be written as:

min

� ‖ − � − (1 − �)‖22 + rank() + �‖‖1 +

�
2
‖

‖

Dt‖‖
2
F (3)



4 Hu Zhu ET AL

The first item of the model is the fidelity item, the second represents the low rank of the clean video, the third represents the
sparseness of the smoke, and the last represents the local consistency of the clean video, where Dt is an auxiliary matrix. Then
the entire smoke removal model was constructed.

4 OPTIMIZATION

For the smoke removal model (3) proposed in last chapter, the Alternating Direction Method of Multipliers (ADMM) is used
to optimize the solution. First, we introduce auxiliary variables, and  ,  and add some constraints , then model (3) can be
written as:

min

� ‖‖

2
2 + ‖‖∗ +

�
2
‖‖2F + �‖‖1

s.t.  =  − � − (1 − �),
 = 
 = Dt

(4)

Then the augmented Lagrangian function of model (4) can be obtained as:

L( , ,, ,) =� ‖‖

2
2 + ‖‖∗ +

�
2
‖‖2F + �‖‖1

+ < Λ1, −  + � + (1 − �) >

+
�1
2
‖ −  + � + (1 − �)‖2F

+ < Λ2, −  > +
�2
2
‖ − ‖2F

+ < Λ3, −Dt > +
�3
2
‖

‖

 −Dt‖‖
2
F

(5)

where �1, �2, �3 are parameter greater than zero, and Λ1 , Λ2, Λ3are augmented Lagrangian multipliers.
Then the model (3) is transformed from solving the clean video into a clean video by coordinating the auxiliary variables,

and get the global solution. Then the solution process can be divided into the following parts:

• About the  sub-problem:

min

� ‖‖

2
2 + < Λ1, > +

�1
2
‖ −  + � + (1 − �)‖2F (6)

So the optimal solution of  :

k+1 =
�1( − �k − (1 − �)k) − Λk1

2� + �1
(7)

• About the  sub-problem:

min


‖‖∗+ < Λ2, > +
�2
2
‖ − ‖2F (8)

Here the Tensor Nuclear Norm is used to solve the low rank problem. And the above formulation can be simplified to:

min


‖‖∗+ < Λ2, > +
�2
2
‖ − ‖2F (9)

So the optimal solution of  :

k+1 = 1
3

3
∑

i=1
foldi

[

SVD+

(

Unfoldi(k −
Λk2
�2
)

)]

(10)

• About the  sub-problem:

min


�
2
‖‖2F + < Λ3, > +

�3
2
‖

‖

 −Dt‖‖
2
F (11)

This is a question about the least squares method, which is easy to solve. So the optimal solution of  is

k+1 =
�3Dtk − Λk3

� + �3
(12)
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• About the  sub-problem:

min


�‖‖1 +
�1
2
‖ −  + � + (1 − �)‖2F (13)

The solution of the L1 norm can be handled by a closed soft thresholding. So the optimal solution of  is

�k+1 = Shrink �
��1

(

 −  − (1 − �) +
Λk1
�1

)

(14)

• About the  sub-problem:

min


⟨

(1 − �)Λ1 − Λ2 −DT
t Λ3,

⟩

+
�1
2
‖ −  + � + (1 − �)‖2F

+
�2
2
‖ − ‖2F +

�3
2
‖

‖

Z −Dt‖‖
2
F

(15)

Involving the difference operator, we need to solve with the help of fast Fourier transform (FFT) and inverse fast Fourier
transform (IFFT) to get the solution of  :

k+1 = −1

(

 (k
1)

 (k
2)

)

(16)

where  () represents Fast Fourier Transform of , and −1() represents Inverse Fast Fourier Transform of , and

1 =DT
t Λ3 + Λ2 − (1 − �)Λ1 + �1(1 − �)( −  − �) + �2 + �3DT

t  (17)

2 = �1(1 − �)2 + �2 + �3DT
t Dt (18)

• About the Λ sub-problem of update:

According to the multiplier update rule of ADMM, the update is performed according to the following formula:
Λk+11 = Λk1 + �1(

k −  − �k − (1 − �)) ,
Λk+12 = Λk2 + �2

(

k − k) ,
Λk+13 = Λk3 + �3

(

k −Dtk) .
(19)

The proposed smoke removal algorithm flow is given as Algorithm 1

Algorithm 1 Smoke Removal Algorithm Based on Spatial Continuit
1: Input: Smoky video 
2: When ‖

‖

k+1 − k
‖

‖

∕ ‖
‖

k
‖

‖

> ", where " is a predetermined value, Do:
3: step1: Update  by (7)
4: step2: Update  by (10)
5: step3: Update  by (12)
6: step4: Update  by (14)
7: step5: Update  by (15)
8: step6: Update the Multipliers of ADMM by (19)
9: step7: k = k + 1

10: End

5 EXPERIMENTAL RESULTS AND DISCUSSION

The performances of the proposed method from both simulated data and real-world data will be discussed in the section.
What’s more, the objective evaluation criteria for the images of the two kinds of data are also discussed below.



6 Hu Zhu ET AL

FIGURE 2 Selected frame randomly from four Simulated Smoky Videos

5.1 Experimental Setting
Firstly, four simulated data shown in Figure 2 are used to test. In the simulated experiments, we use the image quality

assessment index PSNR, SSIM30, and FSIM 31 to measure the quality of reconstruction of the method.
(a) Peak Signal-to-Noise Ratio(PSNR)

PSNR = 10 × log10
mn

m
∑

x=1

n
∑

y=1
[u(x, y) − û(x, y)]2

(20)

(b) Structural Similarity Index Measurement (SSIM)

SSIM =
(2�u�û + C1)(2�uû + C2)

(�u2 + �û2 + C1)(�u2 + �û2 + C2)
(21)

where the reference and the restored image is denoted by u and û respectively. �u and �û represent the average values of image’s
u and û.The variances are denoted by �u and �û, and �uû is the covariance between u and û. What’s more, higher SSIM and PSNR
values show the better restoration results.
(c) Feature Similarity Index Measurement (FSIM)
FSIM is a measure of similarity from two phases: the first phase calculates the similarity map for the local similarity of the

phase consistency and the local similarity of the gradient, and the second phase combines the two similarity maps to a similarity
evaluation.
(1) The first phase:

SPC (x) =
2PCu(x) ⋅ PCû(x) + Tu
PC2u (xx) + PC

2
û (x) + Tu

(22)

SG(x) =
2Gu(ux) ⋅ Gû(ux) + Tû
G2u(x) + G

2
û(u(x, y)) + Tû

(23)

(2) The second phase:
SL(x) = [SPC (x)]� ⋅ [SG(x)]� (24)
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FIGURE 3 Selected frame randomly from two Real-World Smoky Videos

Weighting is performed using the value of the structure information at this point in response to the value of the structure
information at this pixel:

FSIM =
Σx∈ΩSL(x) ⋅ PCm(x)

Σx∈ΩPCm(x)
(25)

where � and � are the parameters influencing the relative importance of phase consistency (PC) and amplitude (GM), generally
take the value of 1, Ω refers to the range of values of the entire image.
Secondly, the real-world data shown in Fig.3 are used to test. In the real-world experiments, we use the mean value and the

contrast of the image to evaluate the reconstruction results.
(a) Mean Value
The mean value reflects the brightness of the image. The larger the mean value, the larger the brightness of the image, the

smaller the opposite.

M = 1
mn

m
∑

xx=1

n
∑

y=1
u(x, y) (26)

(b) Contrast
The contrast of the image characterizes the contrast of the grayscale of a pair of images. It is usually used to represent the

sharpness of edges and textures. The greater the contrast, the clearer the image and the sharper the color of the image.

C = 1
mn

m
∑

xx=1

n
∑

y=1
(u(x, y) −M) (27)

5.2 Simulated Experiments
This section uses simulated smoky data to verify the effectiveness of our proposed smoke removal algorithm, mainly from

two aspects: subjective visual evaluation and objective image measurement evaluation index value of PSNR, SSIM, FSIM. We
selected four smoke videos for comparison experiments, and the sizes of the four videos are 420 × 630 × 12 , 400 × 602 × 12 ,
418 × 678 × 12 and 424 × 298 × 12, and one frame image of the four smoke videos is shown in Fig.2.
This section selects the following four methods of haze removal for comparative experiments:
(1) DCP: the dehaze method based on Dark Chanel Prior, proposed by He et al.32in 2009, on single image haze removal using

dark channel prior.Although this method was proposed earlier, it was a very important algorithm in the field of smoke removal
at that time.
(2) DehazeNet: the multi-scale Neural Network Haze Removal method, proposed by Cai et al.33on an end-to-end system for

single image haze removal.He learns directly from fog tiles and corresponding transmission rates.
(3) NLD: the non-local Image Dehaze method, proposed by Berman et al.34 on non-local image dehazing.
(4) MLP: a single image defogging method based on multi-layer perceptron, proposed by Salazar-Colores et al.35on single

image dehazing using a multilayer perceptron.
Fig.4 show the experimental results of four sets of simulated smoke video. In these figures, (a)-(e) represent the smoke removal

effects of the DCP method, the DehazeNet method, the NLD method, and the MLP method, respectively, and (f) represents the
ground true of the video data. Intuitively, the other four contrast methods are not able to remove the smoke from the smoke
video. Our proposed algorithm slightly reduces the contrast of the smoke video, but completely removes the smoke. The DCP
method makes the density of the smoke lighter, but it cannot effectively remove the smoke, and reduces the contrast of the
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FIGURE 4 The smoke removal results of four sets simulated smoke video. (a) using DCPmethod, (b) using DehazeNet method,
(c) using NLD method, (d) using MLP method, (e) using our proposed method, (f) ground truth.

image background. The NLD method deepens the concentration of smoke and cannot achieve the effect of removing smoke.
The DehazeNet and MLP methods have less influence on the smoke video, and the experimental results show that the smoke
still exists.
Fig.5 - Fig.8 show the evaluated results of quality assessment index PSNR, SSIM and FSIM corresponding to the four sim-

ulated smoke videos, respectively. In these figures, (a)-(c) compare the PSNR value, the SSIM value, and the FSIM value of
selected frames from the recovered video, respectively. Obviously, it can be seen that our proposed algorithm achieves the highest
PSNR value, SSIM value and FSIM value than other algorithms, which means that one smoky data processed by our algorithm
can remove the smoke to the greatest extent, and maintain the largest structural and feature similarity with the original image.
Combining visual effects and evaluation index curves discussed above, we can conclude that our proposed algorithm has

certain advantages in removing smoke, and also confirms the effectiveness of the algorithm.

5.3 Real-World Experiments
In this section, we uses real-world smoky data to verify the effectiveness of our proposed smoke removal algorithm, mainly

from two aspects: subjective visual evaluation and objective image measurement evaluation index values of Mean Value and
Contrast. We selected two smoke videos for comparison experiments. And they are dry leaf smoke and sParkingLot respectively.
What’s more, the sizes of the two videos are both 240× 320× 10 . One frame image of the four smoke videos is shown in Fig.3.
Fig.9 and Fig.10 visually show the experiment results of two kinds of real-world smoky videos. Fig.9 (a) is the selected

original smoky frame of Dry leaf smoke video, (b)-(f) are the experiment results of DCP method, DehazeNet method, NLD
method, MLP method, and our proposed smoke removal method respectively. Fig.10 (a) is the selected original smoky frame of
sParkingLot video, (b)-(g) are the experiment results of DCP method, DehazeNet method, NLD method, MLP method, and our
proposed smoke removal method respectively. From these figures, it is obviously that our proposed method better achieves the
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(a) PSNR (b) SSIM (c) FSIM

FIGURE 5 Quality assessment index of smoke removed results for the simulated Smoky Video (1).

(a) PSNR (b) SSIM (c) FSIM

FIGURE 6 Quality assessment index of smoke removed results for the simulated Smoky Video (2).

(a) PSNR (b) SSIM (c) FSIM

FIGURE 7 Quality assessment index of smoke removed results for the simulated Smoky Video (3).

(a) PSNR (b) SSIM (c) FSIM

FIGURE 8 Quality assessment index of smoke removed results for the simulated Smoky Video (4).
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FIGURE 9 The smoke removal experiments of Dry leaf smoke video. (a) selected original smoky frame, (b) DCP method’s
smoke removal result, (c) DehazeNet method’s smoke removal result, (d) NLD method’s smoke removal result, (e) MLP
method’s smoke removal result, (f) our proposed method’s smoke removal result.

TABLE 1 Mean Value of Two Smoky Data
Video Method frame Mean value

DCP 62.446107 62.749909 61.855651 62.668346 62.577682
DN 73.494734 73.250115 74.529303 74.299131 73.469587

sParkingLot NLD 73.588242 74.152305 74.126172 72.659635 72.110456
MLP 76.938061 77.138262 77.025695 77.064374 77.124972
Ours 127.126730 127.134182 127.135976 127.1318446 127.122953
DCP 61.361341 61.505495 61.640365 61.500990 61.330391
DN 63.693823 63.859486 63.992342 63.875260 63.510371

Dry leaf Smoke NLD 61.043841 61.852682 61.032031 61.336862 61.403307
MLP 70.448134 69.565666 69.668507 70.965741 71.076125
Ours 78.632741 77.772004 77.233356 77.260031 77.998769

purpose of smoke removal. DCP, DehazeNet, and MLP method have slight smoke removal effects. NLD method strengthens
the contrast between background and smoke. And can not completely remove the smoke.
In addition, we select the mean and contrast of last five consecutive frames of the two smoky data as an objective measure

of smoke removal results as shown in Table 1 and Table 2. From Table 1, we can see that our proposed smoke removal method
achieved the highest mean values. This also shows that our smoke removal algorithm has better performance on smoke removal
and also improves the brightness of video to some extent. From Table 2, we can see that our proposed smoke removal method
achieved the highest contrast values.The greater the contrast, the clearer the image and the sharper the color of the image.
After the above comparison results in subjective visual evaluation and objective image measurement evaluation index values,

it is obvious to show that our proposed smoke removal algorithm occupies a certain advantage compared to other algorithms.
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FIGURE 10 The smoke removal experiments of sParkingLot video. (a) selected original smoky frame, (b) DCPmethod’s smoke
removal result, (c) DehazeNet method’s smoke removal result, (d) NLD method’s smoke removal result, (e) MLP method’s
smoke removal result, (f) our proposed method’s smoke removal result.

TABLE 2 Contrast Value of Two Smoky Data
Video Method frame Contrast value

DCP 0.244074 0.245261 0.241766 0.244942 0.244588
DN 0.287258 0.286302 0.291301 0.290402 0.287159

sParkingLot NLD 0.287623 0.289828 0.289726 0.283994 0.281847
MLP 0.300716 0.301499 0.301059 0.301210 0.301447
Ours 0.496910 0.496910 0.496917 0.496901 0.496866
DCP 0.239834 0.240397 0.240924 0.240380 0.239713
DN 0.248950 0.249598 0.250117 0.249660 0.248233

Dry leaf Smoke NLD 0.238593 0.241754 0.238547 0.239738 0.239998
MLP 0.275350 0.271901 0.272303 0.277373 0.277804
Ours 0.307340 0.303976 0.301870 0.301975 0.304862

5.4 The Analysis of Computational Complexity
Here, we discuss the computational complexity of our model with a detailed specification of the running environment. We

define that the experimental video’s size isH ×W ×N , ℎ and w are the rows and columns of the input video, n is its channel
number.
As is shown in the Algorithm 1, the computational complexity is mainly decided by step 5. To get the solution of , we

introduce fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT). As a result, the complexity isO(ℎ2×w2×n).We
perform the time consumption test usingMATLABR2016a on a laptop with an Intel Core i7-4270HQCPU and 16 GB of RAM.
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FIGURE 11 The convergence of our proposed algorithm

5.5 Parameters Setting and Convergence Analysis
In this subsection, we discuss the parameters that we set in the proposed method and preform the analysis of convergence of

our algorithm.
As mentioned above, the fidelity of the video recovery is controlled by � and �. The value of � and � determines the sparse-

ness of the smoke and local consistency of the clean video respectively. After comparing the experimental results by setting
parameters many times, we find that when we set the value of �, �, �,� to 0.1, 60, 50, 40 separately, the removal results are the
best.
To demonstrate the convergence of our proposed algorithm, we use the value of normalized step difference energy (NSDE)

to evaluate our approach. The lower the value is, the more similar the corresponding features of the processed video and the
original video are, and the better the smoke removal effect is. We illustrate the convergence result in Fig.11. We can observe that
our proposed method converges very quickly. After many experiments, we get the conclusion that the best result is preformed
when it iterates 10 to 12 times.

6 CONCLUSION

By analyzing the characteristics of smoke, based on the smoke mixing model, considering the sparseness of smoke and the
global and local consistency of clean video, a video image smoke removal method based on space-time consistency is proposed
in this paper. Then, the optimal solution of the smoke removal algorithm model is quickly implemented by the alternating
direction multiplier method (ADMM). Finally, the visual effects and quality of the restored video images are evaluated from the
subjective and objective aspects by simulation data.
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