
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

Elastic Deployment of Container Clusters across Geographically
Distributed Cloud Data Centers for Web Applications

Yasser Aldwyan1,2 | Richard O. Sinnott1 | Glenn T. Jayaputera1

1School of Computing and Information
Systems, The University of Melbourne,
VIC, 3010, Australia

2Faculty of Computer and Information
Systems, Islamic University of Madinah,
Madinah, Saudi Arabia

Correspondence
Yasser Aldwyan, School of Computing and
Information Systems, The University of
Melbourne, Australia.
Email: yaldwyan@student.unimelb.edu.au

Summary
Containers such as Docker provide a lightweight virtualization technology. They
have gained popularity in developing, deploying and managing applications in and
across Cloud platforms. Container management and orchestration platforms such as
Kubernetes run application containers in virtual clusters that abstract the overheads
in managing the underlying infrastructures to simplify the deployment of container
solutions. These platforms are well suited for modern web applications that can give
rise to geographic fluctuations in use based on the location of users. Such fluctuations
often require dynamic global deployment solutions. A key issue is to decide how to
adapt the number and placement of clusters to maintain performance, whilst incur-
ring minimum operating and adaptation costs. Manual decisions are naive and can
give rise to: over-provisioning and hence cost issues; improper placement and perfor-
mance issues, and/or unnecessary relocations resulting in adaptation issues. Elastic
deployment solutions are essential to support automated and intelligent adaptation of
container clusters in geographically distributed Clouds. In this paper, we propose an
approach that continuously makes elastic deployment plans aimed at optimising cost
and performance, even during adaptation processes, to meet service level objectives
(SLOs) at lower costs.Meta-heuristics are used for cluster placement and adjustment.
We conduct experiments on the Australia-wide National eResearch Collaboration
Tools and Resources Research Cloud using Docker and Kubernetes. Results show
that with only a 0.5ms sacrifice in SLO for the 95th percentile of response times
we are able to achieve up to 44.44% improvement (reduction) in cost compared to a
naive over-provisioning deployment approach.

KEYWORDS:
Placement, Containers, Dynamic deployment, Multi-cluster, Docker, Kubernetes.

1 INTRODUCTION

Cloud-based web applications often need to be intelligently
deployed to specific geographical locations to improve end
user experiences, e.g., regarding performance. Containers, a
lightweight virtualization technology, have gained popularity
for deploying applications efficiently in such distributed envi-
ronments 1, 2, 3. They provide application packaging that
allows consistent, portable deployment across multiple Clouds
4 as well as abstracting away many of the overheads when
deploying and managing containers and infrastructures 4, 5.

These infrastructures used for container deployment models in
Clouds are usually clusters of virtual machines (VMs), where
each cluster of VMs has a container cluster management sys-
tem, e.g., Kuberenetes 6, that is used to deploy, manage and
scale containers across Cloud resources. Container manage-
ment platforms, such as Google Anthos 7 and Rancher 8, take
all management responsibilities to automate the deployment
and simplify the management of such clusters and containers
across Clouds 1. Most of these platforms support multi-cluster
deployment models, giving application providers capabilities
to deploy/remove clusters in Clouds to fit their needs e.g., iso-
lation, location or application scaling 7, 9, 3. The multi-cluster

This is the author manuscript accepted for publication and has undergone full peer review but has
not been through the copyediting, typesetting, pagination and proofreading process, which may lead
to differences between this version and the Version of Record. Please cite this article as doi:
10.1002/cpe.6436

This article is protected by copyright. All rights reserved.

http://dx.doi.org/10.1002/cpe.6436
http://dx.doi.org/10.1002/cpe.6436
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpe.6436&domain=pdf&date_stamp=2021-06-09

2 Aldwyan ET AL

Geo-

DNS

Entry point

Containers

Distributed
Clouds

Cluster nodes
(VMs)

Geo-Area 1 Geo-Area N

...

...

DC 1

Cluster 1

...

DC 1

Cluster 1

...

DC N

Cluster N

...

DC N

Cluster N

Multi-Cluster Geo-DeploymentMulti-Cluster Geo-Deployment

FIGURE 1 Container-based multi-cluster deployment of web
applications across geographically distributed clouds

deployment models for distributed Clouds are well suited for
modern web applications that can exhibit global fluctuations
over time based on the user base demand. This requires intel-
ligent dynamic global deployments of container clusters 10,
including application containers, to data centers, e.g., they
should be deployed in proximity to end users to maintain
performance as shown in Figure 1.
However, due to the absence of automated elastic deploy-

ment acrossmultiple distributed Clouds, adapting such deploy-
ments to handle spatial workload variations is a daunting task.
A key issue is to decide when and how to adapt the deploy-
ments of clusters, in terms of their quantity and location to
maintain performance and minimise operating and adaptation
costs. In particular, we consider the geographical (spatial) dis-
tribution of workloads, i.e., the locations of an application can
depend on the where user requests are concentrated and this
should be used to determine the optimal data center(s) for host-
ing the application. Spatial fluctuations in user workloads can
occur due to the variations in application popularity across
countries and/or cities over time. For instance, tracing the web
traffic of 6.5 million user check-ins to the social media plat-
form Gowalla over a two-year period (2009 and 2010), showed
obvious variations in monthly rate in user growth across many
(global) locations 11. The application became popular in some
areas due to local events, e.g., festivals. However the resources
that deliver this platform may be deployed in distant Cloud
data centers. Geographical distance typically increases net-
work latency 11, 12, 13, which ultimately has negative impacts
on businesses with poor user experience resulting in lost rev-
enues 14 and on given service level objectives (SLOs) that
have been set. Such increased latencies incur delays in the
response times of user requests that are often unacceptable

for zero-tolerance-to-delay web applications, e.g., e-commerce
web sites. According to Forrester 15, 40% of customers leave
online e-commerce sites if loading a page takes more than
3 seconds. Additionally, applications running on clusters in
given areas may become less popular over time resulting in
monetary costs that are incurred with no benefits to the users.
Although most container management platforms in dis-

tributed Clouds are relatively mature with many advanced fea-
tures, e.g., automation and governance 2, they do not currently
offer elastic deployment techniques to handle spatial work-
load variations. Instead, application providers typically decide
(manually) to add/remove clusters across Clouds. Such man-
ual adaptation decisions are naive and inefficient as they can
lead to costly, over-provisioning issues (excessive deployment
of clusters), performance issues (improper cluster placement)
and/or adaptation issues e.g., performance degradation dur-
ing adaptation and/or unnecessary cluster relocation. Much of
the prior work on elastic container deployment problems in
the Cloud does not consider spatial aspects of workload vari-
ations as they focus on local techniques within a single data
center to handle fluctuations in workload volumes through
localised auto-scaling of containers 16, 17, 18, 19, clusters
20, 21, 22, or both 23, 24. Other work proposes techniques
to handle geo-workload variations 11, 25, however, they do
not use containers and hence do not benefit from the ben-
efits of container-based solutions, and they do not maintain
application performance during adaptation.
Container-aware elastic deployment techniques for handling

spatial workload fluctuations are essential to support auto-
mated deployment adaptation of container clusters in geo-
distributed Cloud environments to efficientlymaintain cost and
performance during adaptation. They need to make intelli-
gent decisions to add, relocate and/or remove clusters across
data centers as required. Also, they need to consider latencies
between data centers when making such adaptation decisions
tomaintain performance (response times) and SLOs during the
adaptation.
In this paper we propose an elastic deployment approach for

web applications using container solutions. We argue that con-
tainer management platforms should support elastic deploy-
ment techniques to support web application Quality of Service
(QoS) and support SLOs at lower costs. This work makes
three key contributions. Firstly, we present an elastic deploy-
ment technique that automatically and continuously makes
proper deployment plans to optimise the number and place-
ment of clusters. The core idea is that sacrificing an acceptable
level of performance can help to reduce operating cost. For
cluster placement, genetic algorithms are used that consider
proximity to users and cost of adaptation (i.e., number of
relocated/new clusters and inter-data center latencies), while

Aldwyan ET AL 3

a heuristic is introduced for adjusting cluster quantity. Sec-
ondly, we present a framework to demonstrate how container
platforms can support automated elastic deployment of con-
tainer clusters in geographically distributed Clouds. Thirdly,
we carry out experiments using case studies based on Kuber-
netes on the Australia-wide and highly distributed NeCTAR
Research Cloud. Results show that with only a 0.5ms sacri-
fice in the SLO for the 95th percentile of response times, our
approach achieves 16.67% - 44.44% reduction in cost com-
pared to static and over-provisioning deployment solutions.
The rest of the paper is organised as follows. In Section 2,

we cover related work. Section 3 describes the application and
the container deployment models that are adopted as well as
provides the problem definition. Section 4 discusses the pro-
posed solution. We evaluate the proposed approach in Section
5. Finally in Section 6 we provide conclusions and identify
potential future research directions.

2 RELATEDWORK

Container Deployment in Distributed Clouds. Significant
efforts have been made in container deployment across dis-
tributed Clouds to tackle different challenges such as automa-
tion, migration and multi-cluster management. Regarding
automation, solutions likeKops 26 andKubespray 27 automate
the deployment of Kubernetes clusters across multiple Clouds.
Orchestration solutions automate the deployment of contain-
ers across multi-zone clusters and across multi-region/multi-
Cloud clusters, e.g., Nomad 28. Moreover, migration solutions
can relocate container clusters across data centers, either via
rescheduling 10 or live migration 29, 30. Container man-
agement platforms, like Rancher 8, Google Anthos 7 and
OpenShift 31 make container clusters easier to deploy in dis-
tributed clouds 1. In addition to multi-cluster governance and
visibility, they provide application providers the ability to eas-
ily adapt the deployment of container clusters across data
centers through a unified user interface or API. However,
as it is the application provider’s responsibility to make the
deployment and adaptation plans, and these are unlikely to
be optimal. These plans require accurate workload analysis
that correctly estimate workloads 32. Hence, automated elastic
container deployment techniques are needed to fill in this gap
to provide accurate workload estimation and adapt the deploy-
ment to changes to maintain application performance and cost
requirements.
Elastic Container Deployment in Cloud Computing. The

problem of elastic container deployment in Cloud computing
has been studied intensively at different resource levels: con-
tainer deployment 16, 17, 18, 19, cluster deployment 20, 21, 22
or both 23, 24. These approaches use horizontal methods

21, 23, 17, 22, vertical methods 18, 24 or hybrid approaches
19, 20, 16 depending on the elasticity dimensions. However
these solutions lack the ability to include spatial aspects in
their adaptation processes, which is essential to reduce network
latency - a key performance factor for global web applica-
tions. Instead they focus on local, auto-scaling techniques,
i.e., within a single data center, to support scalability, elastic-
ity and utilisation of Cloud resources to handle variations in
workloads in a cost-efficient manner for both application and
Cloud providers. Geo-elastic container deployment techniques
are complementary mechanisms to these local solutions, and
needed to adapt application deployment in geo-distributed
Cloud environments, exploiting the lightweight and portable
nature of containers.
Spatial Workload Management. The problem of spatial

workload management has been tackled in different computing
environments, e.g., Edge and Fog computing, although they
have different demands and associated scenarios.
Geographical load balancing is a common approach for

managing spatial workloads. Domain Name System (DNS)-
based geographical load balancing solutions, like AWS Route
53 33 and Azure traffic manager 34 can distribute load to dif-
ferent Cloud data centers based user geo-locations to reduce
latency and other factors such as energy savings 35, 36.
Centralised geographical load balancers gather all incoming
requests and distribute them to an appropriate data center
based on one or more factors, e.g., carbon footprint and energy
costs 37. These centralised solutions add extra latency to
every request and can limit the benefit of distributing appli-
cation replicas. Decentralised agent-based geographical load
balancing solutions avoid issues with centralised solutions
since each data center running applications has an individ-
ual load balancer realised as an agent. Agents coordinate with
each other in a decentralised manner to distribute load. In 38,
authors propose a decentralised geographical load balancing
solution suitable for Edge computing and Internet of Things
(IoT) applications. They assume a multi-cluster architecture
at the edge layer where each cluster consists of edge nodes
and has an orchestrator used to manage workload distribu-
tion, either locally or globally across clusters. The aim is to
optimise end-to-end latency of IoT applications in Edge infras-
tructures. Similarly, the authors in 39 present a decentralised
geographical load balancing solution suitable for multi-Cloud
web applications to manage short-term spatial workload varia-
tions. This approach, however, is not adequate when managing
long-term spatial variations of web applications, e.g., with
monthly/seasonal variations as user requests are usually dis-
tributed to predefined and static locations. New workloads can
arrive from new areas that may be distant from those static
locations and such distances can incur latency issues for user
requests and thus affect the overall QoS.

4 Aldwyan ET AL

Another approach to handle spatial workloads is to use a
geographical load balancing solution to direct users to appro-
priate, possibly new data centers according to given factors,
e.g., latency, with auto-scaling capability at each data center.
SeaClouds 40 provides a platform for the seamless manage-
ment of applications on multi-Cloud environments based on
this approach. It uses a geographical load balancer to redi-
rect requests to the application replica closer to the user and
uses a policy, called follow-the-sun, to auto-scale resources
for applications with possibility to move replicas closer to
the user. In 41 a centralised geographical load balancing and
adaptive resource provisioning solution is presented. The geo-
graphical load balancer in this solution acts as an entry point
to the application and selects an appropriate data center for
users according to regulation requirements and other factors,
e.g., latency, with resources auto-scaled at each data center.
Even though such an approach can handle long-term spatial
workloads, it is not suitable to our needs as it only considers
optimising latency for each user individually and this can lead
to deployment of application replicas at excessive number of
data centers close to users. This can be costly as each data cen-
ter will run their own container cluster. Reducing the number
of clusters would reduce the number of master nodes and thus
reduce the operating costs. Therefore, a technique to adapt the
deployment and placement of container clusters in distributed
Clouds, according to accumulated workloads for all clusters,
is required to achieve including optimising the overall latency
with minimum costs.
A better approach formanagingworkload variations is to use

deployment optimisation techniques to intelligently adapt the
deployment of applications across distributed computing envi-
ronments, when needed, to maintain application needs, e.g.,
QoS and cost. In 42, the authors present a solution to support
the adaptive deployment of multi-component IoT applications
to Fog infrastructure factoring in limited infrastructure capa-
bilities, latency, and bandwidth to achieve QoS. This solution
is not applicable to multi-replica web application deploy-
ment here as Cloud infrastructures provide scalable, unlimited
resources and advanced data center networks 39.
In the context of distributed Cloud and web applications,

solutions such as 11, 25 propose geo-elastic deployment tech-
niques of multi-replica web applications to maintain perfor-
mance to support SLOs at lower costs. These solutions, along
with geographical load balancers, can manage long-term spa-
tial workload variations as they can dynamically adapt the
number and placement of web application replicas across geo-
distributed data centers. Work in 11 assumes cross-data center
eventual data consistency whereas the solution in 25 targets
web applications requiring strong consistency between data
centers. Furthermore, the solution in 25 considers the number

of cross-data center application relocations as a cost of adap-
tation that should be minimised while 11 does not, hence this
can lead to needless relocation of application. However, none
of these approaches consider inter-data center latency as a cost
of adaptation (i.e., latencies between data centers for the cur-
rent deployment and data centers for a new deployment) when
choosing new data centers for new deployment plans to help to
maintain application performance. Such considerations would
minimise the latency between source and destination data cen-
ters and thus reduce the geo-replication overheads needed for
web applications that require to maintain the state (e.g., user
sessions).
Containerisation provides a lightweight portable runtime to

facilitate the elastic deployment of applications to distributed
heterogeneous Cloud platforms 43, compared to heavyweight
VM-based models used in 11, 25. Elastic deployment tech-
niques using containers allow rapid adaptation of applica-
tion deployment in geographically distributed clouds since
they eliminate the significant latency incurred with VM-
based models when provisioning new applications and new
instances. Copying container images across data centers is
also much faster than copying large-sized VM images. To
reduce provisioning latency in VM-based models, pre-copying
optimisation techniques were proposed in 11. However, they
require determination of new potential future Cloud locations
in advance and periodically copying VM images which lim-
its the capabilities of deployment optimisation techniques to
choose Cloud locations other than pre-selected ones when
needed. Also, by using containers such deployment techniques
can utilise more Cloud locations as they provide consis-
tent, portable deployment of applications across data centers
regardless of the underlying Cloud infrastructure. Container
images provide an abstraction that can isolate the application
environment from the underlying deployment infrastructure 4.
Container-based solutions also provide a cross-Cloud overlay
networking that facilitates the process of geo-replication and
migration. Thus container-based solutions have many direct
benefits for elastic deployment demands compared to historic
Infrastructure-as-a-Service solutions.
Application Placement in Distributed Computing Envi-

ronments. Placement solutions to tackle latency management
have been studied in different distributed computing envi-
ronments. A solution in 42 adaptively places IoT application
components across Fog and Cloud infrastructure, while con-
sidering inter-fog node and fog-Cloud latency issues and other
factors such as bandwidth constraints. Similarly, in integrated
edge-Cloud environments, the authors in 44 propose a dynamic
placement solution for IoT requests, aimed at reducing task
latency times and system power consumption. Also, work in
38 presented an approach to place IoT requests across local

Aldwyan ET AL 5

or remote cluster of edge nodes (or Cloud servers), consider-
ing inter-edge-node and edge-Cloud communications, queuing
and processing delays, to achieve better response times.
In the distributed Cloud context, a body of work has been

proposed considering proximity to users, e.g., 11, 45, 46, inter-
data center latency issues, e.g., 47 or both 25, 12, 48. Work
has explored place virtual desktops 45 and service-oriented
solutions 48, 46, web solutions 25, 11, 12 or diverse 47 appli-
cations across data centers. Works have explored either a static
12, 47 or dynamic 25, 11, 45, 48 deployments using VMs
25, 11, 45, 48, 47, 46 or containers 12 to achieve inter-data
center strong data consistency and performance 25. Other
works have considered high availability and performance even
after complete or partial Cloud outages 12 factoring in budget
and performance issues 46 or performance issues alone, e.g.,
11, 45, 48, 47.
Dynamic placement (replacement) solutions such as 25, 48

consider inter-data center latency issues to optimise perfor-
mance at deployment times. None of them however consider
inter-data center latency to optimise performance during the
adaptation. Solutions that tackle real time deployment scenar-
ios are thus needed. In this work, we consider eventual data
consistency between data centers, inter-data center latency
during deployment is not considered.

3 PROBLEM FORMULATION

This section provides an overview of the assumptions made
for container deployment and containerised web applications
in distributed Cloud environments. A specification of the
problem definition is also provided.

3.1 Assumptions for Container and
Application Deployment Models
As shown in Figure 1, we assume that multiple container clus-
ters are deployed on top of Infrastructure-as-a-Service (IaaS)
distributed Clouds. Each Cloud has a number of geograph-
ically distributed data centers. We assume one cluster per
data center and that clusters are deployed at different geo-
areas. Each cluster should ideally serve users within its given
geo-area. A geo-location DNS (geo-DNS) service, e.g., Azure
Traffic Manager 34 can be used to determine the traffic to
appropriate clusters based on the user geo-location. This can
be obtained using IP-to-Location mapping services such as
IP2Location†. These can associate user requests to the nearest
cluster.

†Identifying Geographical Location by IP Address
https://www.ip2location.com

In this work, we assume each cluster runs a full copy of
containerised web applications as this model enables an appli-
cation to scale globally 3, which fits our needs. We assume
each application service, e.g., web server and database, is auto-
scaled to cope with dynamic local workload volumes. For the
underlying web application data model, at least one full copy
is assumed to be present at each data center running a cluster.
While data consistency model between replicas within a data
center can be supported, eventual consistency between inter-
data center copies is required to improve scalability without
performance loss.
A cluster infrastructure consists of a number of VMs that

can be scaled elastically by provisioning/terminating VMs
from a data center through the associated Cloud APIs. Each
VM is assumed to have a container runtime, e.g., a Docker
engine 49 installed that allows it join the cluster as a worker
node to run containers. On top of the cluster, a container
orchestration and cluster management platform is assumed, e.g
Kubernetes. Kubernetes has management components such as
an API server and scheduler that provide a control plane for the
cluster. The control plane runs on one or more master nodes
for availability.
We also assume a multi-cluster container management plat-

form that runs on an individual VM and logically runs on top
of the running clusters. This should include a set of manage-
ment services, e.g., for migration and cross-cluster workload
monitoring, required to add new clusters or relocate/migrate
existing ones.

3.2 Problem Definition
As stated, a geo-elastic container deployment technique for
multi-cluster deployment of web applications in distributed
Clouds is essential to maintain application QoS and SLOs at
lower costs. Any solution needs to be able to modify the cur-
rent state of the cluster deployment to a new, desired state, by
adding, relocating and/or removing container clusters, when-
ever a geo-workload fluctuation leads to unacceptable SLO
violations and/or one or more idle or redundant clusters gives
rise to unnecessary costs. The key challenges for deploy-
ment modifications are how to decide how many clusters are
required; where they should be placed, which existing clusters
should be removed/replaced and the underlying capabilities
needed for cross-data center migration and replication to reach
a desired deployment state. This work focuses on cluster quan-
tity adjustment and associated, dynamic cluster replacement
strategies.
To adjust the number of clusters, a mechanism is needed to

minimise the number of running clusters, where possible, to
reduce the associated operating costs. For the cluster replace-
ment problem, it can be formulated as an optimisation problem

6 Aldwyan ET AL

where an objective function is used to reduce the violation
rates and decrease costs. Maximising the function should help
to achieve such aims. Using symbols in Table 1, the objective
function can be represented as follows.

maximise f (current, cand,Wt) =
R (current, cand,Wt)

adapt_cost (current, cand,Wt)
subject to F ⊂ A, |F| = N

(1)
where R (current, cand,Wt) is the estimated amount of
reduction in the violation rate when changing the deploy-
ment (current) to the candidate one (cand) and where
adapt_cost (current, cand,Wt) is the estimated cost of that
adaptation for a given workload (Wt) at time (t).
Formally, the cluster replacement problem can be defined as

follows. Using the terms defined in Table 1 at a given a point in
time (t), for N required clusters and workloadWt for a system
with current clusters, we want to select a set of Cloud data cen-
ters, F = {data_center1, data_center2, … , data_centern},
where |F| = N , to (re)place container clusters across data cen-
ters in F such that the objective function in Eq. 1 is maximised.

4 PROPOSED GEO-ELASTIC
DEPLOYMENT APPROACH

To handle the above-mentioned issues, we present a geo-
elastic deployment approach. In this approach, we propose
two mechanisms that work together as one technique to make
appropriate elastic scaling decisions, when needed. The first
mechanism is a geo-elastic deployment controller that deter-
mines how many clusters are required. It implements an
SLO-based heuristic that attempts to establish an optimal size
adjustment of the current deployment (n_clusters) among dif-
ferent possible adjustments to avoid/minimise SLO violations
under cost and performance constraints. Within each possible
adjustment, the controller uses the second mechanism, a clus-
ter replacement method, to handle spatial aspects of elasticity,
i.e., finding the best location for cluster deployments across
geographically distributed Cloud data centers (cand). A can-
didate deployment plan with minimal cost of adaptation and
acceptable SLO violation rate is selected as the new deploy-
ment plan. Moreover, we present a framework to support the
automated elastic deployment of container clusters in geo-
graphically distributed Clouds. This factors in the geographical
distance between users and data centers running application
containers and between data centers themselves as key factors
that affect network latency (performance). We refer to this as
geo-elastic deployment.

TABLE 1 Terms Used in the Models

Term Meaning
current Current deployment of container clusters

n_clusters Size of the current deployment
cand New deployment candidate
A Set of available data centers
D Set of the data centers of the current deployment (current)
F Set of selected data centers of the candidate deployment

(cand)
K Set of new and/or relocated clusters
Wt Workloads collected at time t
N Number of required clusters for the new deployment
S tj Number of sessions in data center j at time t
V t
j Number of violated sessions in data center j at time t

nli j Estimated round-trip-time (RTT) network latency between
user i and data center j if that user is served by an applica-
tion running a cluster in j

ilj k Estimated inter-data center (RTT) network latency between
data center j and data center k (migration)

Utℎr Upper bound of acceptable Session Based Violates Rates
(SBV R)

Gtℎr Gain threshold to be considered an improvement in SBV R
when SBV R is below Utℎr

� Consecutive periods for cool down
T Time interval
P Pause interval

4.1 Requirements and Assumptions
The approach requires pre-agreed SLOs for user requests to
be provided by application providers. Periodic collection of
workloads (i.e., user requests) from running container clus-
ters is also obtained. Each cluster is assumed to have a load
balancer that distributes incoming user requests to appropri-
ate application containers. Such requests are stored in log
files. The request logs are assumed to have information about
users including their IP addresses that can be mapped to geo-
locations. The geo-locations of data centers are assumed to be
known and available.
Moreover, the approach depends on knowing the network

latency between users and data centers and between data cen-
ters themselves. Round-trip-time network latency data can
be obtained using third party services, e.g., Ookla 50, or by
latency estimators to estimate latencies between users and data
centers, e.g., 51, or through empirical measurement. Addition-
ally we assume that the processing time of requests is constant
and that clusters have sufficient Cloud resources and negligi-
ble internal communication overheads within data centers due
to the high-speed networking capabilities. Finally, we assume
that homogeneous VMs (in terms of size and price) exist for
clusters running at different Clouds.

Aldwyan ET AL 7

Container

Management

Infrastructure

Provisioning

1. Provision VMs

2. Deploy containers

(new cluster)

Distributed Clouds

D
e
p
lo

y
m

e
n
t

E
x

e
c
u
to

r

Container

Deployment

Action-taking

Multi-cluster Container Platform

Decision-making

(Proposed)

DC 81DC 81

DC 45DC 45

DC 8 3DC 8 3

DC 8DC 8

DC 41DC 41

DC 95DC 95
DC 3DC 3

DC 5 2DC 5 2

DC 2 5DC 2 5

DC 5 7DC 5 7

DC 6 5DC 6 5

DC 7 7DC 7 7

DC 4 4DC 4 4

DC 7 5DC 7 5

DC 1 6DC 1 6

2. Relocate(41 to 98)

(migrating cluster)

Individual Cluster

DC 98DC 98

Cluster

Replacement

Geo-Elastic

Deployment

Controller

Container

registry
Data

new

state

workloads

Container cluster

YAMLYAML

App Container

Agent Container

App Container

Agent Container

FIGURE 2 A framework of enabling automated elastic deployment of container clusters in geographically distributed Clouds

4.2 Adaptation Triggers
In this section, we investigate the dynamic characteristics of
web application geo-workloads and identify how to trigger
the adaptation process to make appropriate elastic actions. We
identify three cases.
Case 1: Geographical growth of workloads. Applications

may gain more popularity in particular areas. In this case, geo-
workloads on current clusters running application containers
can violate SLOs because of the potentially large geographi-
cal distances between users and the data centers clusters and
the associated network latencies that can arise. This situa-
tion should trigger the geo-elastic deployment approach to
geo-expand the current deployment.
Case 2: Geographical shrinkage of workloads. This case is

the opposite of the previous one. Applications at some point
in time may lose popularity in some regions causing clusters
running in data centers within those regions to become under-
utilised. This can cause unnecessary expenses to be incurred
due to the over-provisioned deployment of clusters. This con-
dition should be a trigger to geo-shrink the current deployment.
Case 3: Geographic shift in workloads. In this case, the

popularity of applications can shift between regions, hence
clusters already running in data centers may need to be par-
tially redeployed to other ones. This case should be used as
a trigger to relocate some of the running clusters at new data
centers to meet the geo-area needs of users at that time.

4.3 Geo-elastic Deployment Framework
As shown in Figure 2, the framework’s components are divided
into two main categories: decision-making and action-taking.

This work mainly focuses on the decision-making compo-
nents. Components in such multi-cluster platforms communi-
cate with container cluster platforms running in data centers
through agents. An agent, which can be deployed as a con-
tainerised service, receives commands from components and
executes them on the local cluster platform. Agents can also
communicate with other agents running in other cluster plat-
forms in different data centers, when needed, to provide inter-
cluster management services such as container relocation and
data replication between clusters.
The functionality of the framework’s components and how

they interact are discussed below.

Decision-making Components
Decision-making components such as a geo-elastic deploy-
ment controller and cluster replacement component are
responsible for making elastic decisions in terms of the quan-
tity and placement of container clusters as required, e.g., to
periodically assess and produce new, desired states of the
deployment to meet evolving web application requirements.
Once a new state of deployment is determined, it is passed as
a deployment plan to the deployment executor component.
Geo-Elastic Deployment Controller. The geo-elastic

deployment controller component is responsible for deciding
on the optimal quantity of container clusters based on cur-
rent geo-workloads and pre-agreed SLOs. It needs to strike
a balance between acceptable SLO violation rates and the
least possible number of container clusters distributed geo-
graphically across different Cloud data centers. An SLO-based
violation model to estimate SLO violation rates of a given
deployment is discussed in section 4.4.
This component implements a decision-making algorithm

for the geo-elastic deployment controller mechanism, which

8 Aldwyan ET AL

is discussed in more detail in section 4.5. The geo-scaling
decisions include: geo-expanding, geo-shrinking and geo-
relocation. Within the algorithm, the cluster replacement com-
ponent is called to determine the optimal placement of clusters
for any new, deployment plan produced as part of a given
scaling decision.
Cluster Replacement. The cluster replacement component

aims to automatically handle the spatial aspect of the adap-
tation process by finding the optimal placement of container
clusters for any potential deployment plan. It implements a
meta-heuristic using genetic algorithms for dynamic cluster
placement as discussed in Sections 4.6 and 4.7.

Action-taking Components
Action-taking components consist of components that take
appropriate actions based on any new deployment plan
obtained from the geo-elastic deployment controller. Each con-
tainer cluster in a given deployment plan has a set of possible
conditions for a given cluster: new, migrating and leave-as-
is. A container cluster with a new condition requires creation
of a new cluster while a cluster with a migrating condition
indicates that the cluster already exists however it needs to be
relocated to another data center. A cluster with a leave-as-is
condition implies the cluster is already running at a data center
and should remain there.
Deployment Executor. This component is responsible for

taking elastic actions to change the current state of the deploy-
ment to a new, desired state. Specifically, it determines the con-
dition of container clusters involved in any proposed deploy-
ment plan, and subsequently makes appropriate actions for
each container cluster based on its current condition and the
intended future state.
Only clusters with new and/or migrating conditions require

actions to be taken. Both conditions initially require container
clusters to be prepared for a given selected data center. Fol-
lowing this, clusters with a new condition, require creation
of application containers to be deployed, while for migrat-
ing clusters, containers need to be relocated to the remote
(selected) data centers. The required implementations of those
actions should be abstracted in the individual cluster manage-
ment components as discussed below.
Individual Cluster Management Components. Individ-

ual cluster management has three components: cluster infras-
tructure provisioning; container deployment and container
management. Each component is responsible for providing
different elastic actions.
Cluster Infrastructure Provisioning. This component

automates the process of providing the infrastructure-related
actions that are responsible for making a container platform

ready at a new, selected data center. It implements all infras-
tructure automation capabilities required for this action includ-
ing provisioning VMs through Cloud APIs to create a new
cluster as well as installing required container-related software
(e.g., Docker and Kubernetes) on the cluster nodes. This min-
imises risks related to human errors and expedites the deploy-
ment process. This automation should abstract the different
implementations required to make the proposed geo-elastic
deployment feature suitable for multi-Cloud environments.
Multi-Cloud libraries, e.g., Apache Libcloud‡ and jclouds§ are
examples of technologies that can be used to manage Cloud
resources from different Cloud providers using a unified API.
For Kubernetes, automation tools like Kops 26 or Kubespray
27 can be used here.
Container Deployment. This component supports the

deployment of new application containers at container clus-
ters with a new condition set. It abstracts the implementation
details needed to perform the container deployment including
dealing with the related data. To achieve this, this component
sends a deployment request (e.g., in the form of a YAML or
JSON configuration file) to a given agent. The agent then geo-
replicates the application data from the nearest data center that
is already running a cluster or from the data storage located in
a data center running the multi-cluster container management
platform. Following this, the agent passes the deployment file
to the local container cluster platform (e.g., Kubernetes) via
the cluster APIs. Then the local container platform pulls the
required container images from a nominated container image
registry.
Container Management. This component provides a

migration action for existing clusters to relocate containers and
their data from a source cluster to a destination cluster at a
new, selected data center. It implements all techniques and ser-
vices required to migrate running clusters for clusters with the
migrating condition set. It needs to provide agents in the source
and destination clusters with the required inter-cluster manage-
ment services to complete the migration process. Solutions for
such services have been proposed in several other works, e.g.,
30, 52, 53.

4.4 SLO-based Violation Model
In this section, we introduce a SLO-based violation model to
estimate the violation rate of an application deployment at a
given time, t, based on pre-agreed SLOs. This is used as a met-
ric, Session Based Violation Rate (SBVR), to evaluate the

‡Apache Libcloud https://libcloud.apache.org
§Apache jclouds https://jclouds.apache.org

Aldwyan ET AL 9

performance of a given deployment. Using terms defined in
Table 1, the violation model is defined as follows:

fSBV R (X,Wt) =
∑

V t
j

∑

S tj
∀j ∈ X (2)

At a given point in time, t, and given a deployment (i.e., the
container clusters to be deployed at data centers in X) as well
as the current user geo-workloads,Wt, collected from running
clusters at time t, then the SBVR of the deployment can be
calculated as the total number of violated user sessions,

∑

V t
j ,

divided by the total number of user sessions,
∑

S tj , where each
j in X represents a data center running or potentially running
a cluster. In this work, a user session consists of a set of suc-
cessive requests. These are considered to be violated if the
average response time of the requests is beyond the defined
SLOs. Since we assume the processing times of requests are
constant, an SLO refers to the acceptable network latency, plus
the (processing) constant.

4.5 Multi-cluster Geo-elastic Deployment
Controller Algorithm
In this section, we present a decision-making algorithm
(Algorithm 1) for automatically controlling the size of multi-
cluster deployment according to the geo-dynamics of work-
loads. The algorithm aims to provide a balance between per-
formance and cost. When adjusting the size of the deployment,
it relies on a cluster replacement method, which will be dis-
cussed in the following sections, to modify the actual location
of the clusters.
As discussed, there are three types of elastic decisions: geo-

shrinking, geo-relocation and geo-expanding, and each one is a
form of adaptation trigger. Selecting the right decision requires
detecting changes in workloads. Using the terms defined in
Table 1, the algorithm uses the SBVR of a deployment as a
performance indicator to detect changes in workloads and as
the basis for making appropriate decisions. Once the current
workloads are obtained, the SLO-based violation model pre-
sented in the previous section is used to calculate the violation
rates, SBVR, for both current and any candidate deployments.
If the SBVR of the current deployment is beyond a pre-defined
upper bound of acceptable SBVR, Utℎr, then geo-relocation or
geo-expanding decisions should bemade to reduce the network
latency and thus reduced the SBVR (below Utℎr). On the other
hand, if the SBVR of the current deployment has remained
under Utℎr, there are two possible courses of action. The first
is to try geo-shrinking the deployment to reduce the cost. The
second one, which should be used if the resultant candidate
deployment is not able to maintain an acceptable violation
rate, is to consider geo-relocation decisions and accept them if

the new, candidate deployment is more likely to improve the
SBVR beyond a predefined gain threshold, Gtℎr.
In more detail, the input of the algorithm is the initial

(current) deployment of the container clusters. The genetic
algorithm-based cluster replacement algorithm in Section 4.7
is used throughout as part of the replace_clusters function.
The redeploy_clusters function should pass the accepted,
candidate deployment to the deployment executor introduced
previously. It should be noted that the intervals between con-
secutive decisions should be determined carefully to avoid
unnecessarily loading the system with many status request
updates. To address this we introduce a pre-configured param-
eter, pause time (P), to enforce these intervals.
After the initialisation steps, the algorithm runs a control

loop. At every time interval, T , if a decision was made in the
last iteration, T − 1, then we pause the algorithm for P (Lines
5-8) to ensure that the system is not perpetually asking for
update information. Then, the current user workloads,Wt, are
collected from the container clusters comprising the current
deployment (current). It will try to geo-shrink the deployment
if the SBVR of the current deployment has remained under a
given threshold (Utℎr) for a consecutive number of periods (�
as shown in Lines 10-18). It then gets the potential, candidate
deployments, cand, by decreasing the number of clusters by
one and then replacing the clusters, when needed, through the
cluster replacement method. If the violation rate of the new,
candidate deployment is below the threshold, Utℎr, then the
algorithm will call the redeploy_clusters function to pass the
new deployment plan to the deployment executor to take the
appropriate actions and update the current deployment and ter-
minate the execution of the current iteration of the loop whilst
waiting for a new interval, T + 1.
Following this the algorithm continues to explore geo-

relocation decisions (Lines 19-33). When a geo-shrinking
decision is not made or the SBVR of the current deployment is
beyond the threshold,Utℎr. It obtains the candidate deployment
by replacing clusters only. This decision can be made when
one of the two following conditions is satisfied. Firstly when
the candidate deployment can help to reduce the unacceptable
SBVR of the current deployment to be under the threshold,
Utℎr (Lines 21-24). Secondly when the SBVR of the current
deployment is acceptable and the candidate deployment can
improve the SBVR for a value that is greater than the gain
threshold,Utℎr (Lines 25-28). Lastly, a geo-expanding decision
is made when the SBVRs of the current deployment as well as
the candidate one, produced in the previous step,remain greater
than the threshold, Utℎr (Lines 34-40).

10 Aldwyan ET AL

Algorithm 1: Decision-making Algorithm for the
Multi-cluster Geo-elastic Deployment Controller
Input : init_deploy

1 current = init_deploy;
2 n_clusters = size(init_deploy);
3 paused = False;
4 for every T do
5 if paused is True then
6 pause (P);
7 paused = False;
8 end

/* Get clusters workloads at time t */
9 Wt = get_workloads(current);

/* Geo-shrinking decision */
10 if fSBV R (current,Wt) < Utℎr for � then
11 cand = replace_clusters(n_clusters-1, current,

Wt);
12 if fSBV R (cand,Wt) < Utℎr then

/* To deployment executor */
13 redeploy_clusters(cand);
14 current = cand; paused = True;
15 n_clusters − −;
16 continue;
17 end
18 end

/* Geo-relocation decision/same size */
19 cand = replace_clusters(n_clusters, current,Wt);
20 relocate = False;
21 if fSBV R (current,Wt) ≥ Utℎr and
22 fSBV R (cand,Wt) < Utℎr then
23 relocate = True;
24 end
25 if fSBV R (current,Wt) < Utℎr and
26 (fSBV R (cand,Wt) − fSBV R (current,Wt)) ≥ Gtℎr

then
27 relocate = True;
28 end
29 if relocate is True then
30 redeploy_clusters(cand);
31 current = cand; paused = True;
32 continue;
33 end

/* Geo-expanding decision */
34 if fSBV R (cand,Wt) > Utℎr and
35 fSBV R (current,Wt) > Utℎr then
36 cand = replace_clusters(n_clusters+1, current,

Wt);
37 redeploy_clusters(cand);
38 current = cand; paused = True;
39 n_clusters + +;
40 end
41 end

4.6 Cluster Replacement Method for Spatial
Adaptation
The cluster replacement method, which is the second proposed
mechanism of our geo-elastic deployment solution handles
the spatial aspect of adaptation to improve the performance,
geo-scalability and cost-effectiveness. This is an optimisation
problem as discussed in section 3. It requires the following
challenges to be addressed. One challenge is to determine how
to estimate the improvement in performance as well as the cost
of adaptation of a candidate deployment plan to be used by
the objective function. Another challenge is to design algo-
rithms to rapidly establish near-optimal solutions (i.e., finding
potential data centers for candidate deployments) to support
dynamic and near-real time scaling decisions.

Cost of Adaptation
The cost of adaptation refers to the potential cost of changing
the current deployment to a new one. To improve web applica-
tion demands for cost-effectiveness and performance, this cost
needs to aim at minimising the operational cost as well as the
adaptation time (i.e., time to complete the adaptation process).
While the former can be reduced by minimising the number
of clusters that are deployed and/or relocated to new cloud
data centers, the latter can be reduced by minimising the total
inter-data center network latencies. These latencies can occur
between a data center running a multi-cluster platform or data
centers of a current deployment, D, and selected data centers
put forward for a candidate deployment, F.
Using the terms in Table 1, the cost of an adaptation function

that can be used as the denominator of the objective function
in Eq 1 is defined as:

adapt_cost = 1 + |K| + (1 − 1
1 +

∑

k min
DCj ∈D

ilj k
)

∀ k ∈ K, K ⊂ F
(3)

where |K| is the number of new and/or relocated clusters,
DCj is a data center j and 1 − 1

1+
∑

k min
DCj ∈D

ilj k
is the weight

of the total inter-data center latencies needed to make clus-
ters in K ready. It should be noted that one is added to avoid
division by zero in our objective function when there is no
cost of adaptation. Since the aim is to minimise the cost of
adaptation and maximise the reduction in the violation rate,
a candidate deployment that helps to realise this aim should
be selected by the cluster replacement algorithms. These algo-
rithms use the objective function to propose new data centers
in F to be geographically near the currently running ones (to
reduce the overheads of inter-data center latencies during adap-
tation to speed up the adaptation process) as well as near new

Aldwyan ET AL 11

geo-workloads (to reduce user-to-data center latency after new
deployment takes place).
Inter-data center latency consideration during adaptation

help to reduce the geo-replication overheads and thus its ben-
efits can be realised in two ways. One obvious benefit is that it
speeds up the adaptation process since it reduces the network
latencies by expediting the relocation of containers and/or data.
Another one is that it helps to maintain performance (e.g.,
response times) during the adaptation by lowering the over-
heads involved in geo-replicating the state (e.g., current user
sessions) until the adaptation finishes and DNS records are
updated. For example, the green and red lines represent the
amount of inter-data center latencies between some data cen-
ters in Fig 2, where it is clear that adding 15ms to the response
time as an overhead is better than adding 30-50ms.

Violation Rate Improvement
One way to improve the performance is to let the cluster
replacement method select a candidate deployment that can
produce the maximum reduction in SBVR. Selecting a deploy-
ment in this way can be costly due to the high possibility
of over-provisioning. In other words, reaching the maximum
reduction amount in SBVR can result in provisioning more
clusters than required.
Another way is to find a balance between performance and

cost when adapting deployments. In some situations, the oper-
ational cost can be reduced by minimising the number of
running clusters albeit with an acceptable sacrifice in per-
formance. This may cause an increase in the SBVR but this
increase may not go beyond the upper bound of acceptable
SBVR, Utℎr. However it may also give rise to increased net-
work latency with no increase in the SBVR since the response
times of requests cause an increased delay, yet still be under
the threshold of the defined SLOs. To achieve this, we pro-
pose two cases for the reduction function,R, that is used in the
objective function in Eq 1 and represented as follows.

R =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Utℎr − fSBV R (cand,Wt)
if fSBV R(current,Wt) ≥ Utℎr or |cand| < |current|

fSBV R (current,Wt) − fSBV R (cand,Wt)
otℎerwise

(4)
Choosing which case to be used in the reduction function

depends on the SBVR of the current deployment or the sug-
gested elastic decision made by the controller. The first case
is chosen if at least one of the following conditions are satis-
fied. The first condition is met when the SBVR of the current
deployment, current, is above the acceptable SBVR, Utℎr. In

this condition, the first case requires a candidate deployment
that reduces the SBVR below the Utℎr threshold and max-
imises the reduction amount in SBVR from the Utℎr threshold.
The second condition of the first case is satisfied when the
suggested elastic decision is to geo-shrink the deployment,
|cand| < |current|. In this condition, any candidate deploy-
ment with smaller size and the maximum reduction amount
in SBVR from the Utℎr threshold will be chosen. In this sec-
ond condition, the cost is reduced by possibly increasing the
SBVR, however it should still be under the upper bound for
acceptable SBVR,Utℎr. If none of the above-mentioned condi-
tions are met, the second case of the reduction function will be
selected. This case aims to choose a candidate deployment that
can maximise the reduction amount in SBVR from its current
status.
It is noted that considering both cases is necessary in Eq

4 since ignoring one of them can lead to improper elastic
decisions being made under certain conditions. Consider the
following example. Using Eq. 1 and 3 and assuming the inter-
data center network latency is constant at 1, the objective
function can be presented as f = R

1+|K|

. Now assume at some
time the violation rate SBVR of the current deployment is 30%
and the upper bound of acceptable SBVR Utℎr is 10%. Also
assume that there are two candidate deployments, cand1 with
SBVR: 15% and K: 1 and cand2 with SBVR: 8% and K: 2. If
the second case is only considered, then f for cand1 and cand2
will be 7.5 and 7.3 respectively. Since the aim is to maximise
the function, cand1will be returned by the cluster replacement
algorithm (Algorithm 1). That is, in Algorithm 1, the decision
is geo-expanding as the if-condition in Line 34 is met.
On the other hand, if we consider the two cases for R, then

f for cand1 and cand2will be -2.5 and 0.6 respectively. There-
fore, the right candidate deployment cand2 will be selected
and returned. In this case, in Algorithm 1 the if-condition in
Line 21 is met and the decision is geo-relocate. Hence, consid-
ering both cases for R improves the reduction in SBVR to be
under Utℎr without the need to increase the number of clusters
while the one-case-only approach fails to choose the right can-
didate deployment and hence increases the cost as it requires
an increased number of clusters.

Hardness of The Problem
Since the cluster replacement problem considers the cost of
network latencies between users and data centers as well as
the cost of adaptation, it falls into the class of Mobile Facil-
ity Location Problems 54 that are hard to solve 55, 56. These
problems are a form of problem of moving each facility from
one location to another and assigning each client to some facil-
ity such that the total costs of moving facilities and client
assignments are minimised. They also generalise the NP-hard
k-median problem 54, which given a set of points, involves

12 Aldwyan ET AL

identifying k centers such that the total distances of the points
to their closest centers are minimised. Our problem can be
shown to beNP-hard by restriction, which is amethod of show-
ing that an already-knownNP-hard problem is a special case of
the target problem. We prove the hardness of our problem by
showing that the NP-hard k-median problem is a special case
of this problem.
Proof. Suppose at some point in time, t, a given reduction

in a potentially remote workload occurs (i.e. Case 2 in Section
4.2) and the predefined, constant Utℎr is set to 1. This causes
a geo-shrinking decision of the current deployment, current,
to be triggered and hence the number of required clusters,
N , for the new candidate deployment, cand, becomes N =
|current| − 1. If we let ilj k and K be zero in Equation 3 since
no new/existing cluster can be deployed or relocated. In this
case, the cost of adaptation is adapt_cost = 1, which is con-
stant. Since |cand| < |current| is satisfied in Eq 4 and theUtℎr
is constant, thenR = −fSBV R (cand,Wt). By applying the last
two steps to adapt_cost and R in Eq 1 and transforming the
maximisation problem to a minimisation one, the problem can
be represented as minimise fSBV R (cand,Wt). Given a fixed
amount of estimated SLO violations between any user, i, and
data center, j, and given a set of available data centers,Awhere
N data centers are to be chosen from A for deploying clusters
for users in, Wt. Minimising the total amount of SLO viola-
tions is the k-median problem. Hence the cluster replacement
problem ∈ NP-hard.
As our problem is NP-hard, we need algorithms that can

approximate global optimisation by finding good solutions in
polynomial time.

Cluster Replacement Algorithm
To address this optimisation problem, we present an approach
based on genetic algorithms. This meta-heuristic suits our
problem for several reasons. First, it is used for approximat-
ing global optimisation for many problems as it generally finds
good global solutions and has the power to evade local optima
57. It has also been used to solve a variety of related prob-
lems in diverse contexts as it is able to make a good trade-off
between the quality of solutions and the completion time since
it solves problems efficiently 12, 25, 48, 58, 59. Theoretically,
by considering the complexity of the algorithm and assuming
all inputs are of the same size n, then the worst-case complex-
ity is O (n4), which is polynomial. Generally, in practice the
number of required clusters,N , is relatively small for cost and
administrative reasons and thus we can say the upper bound
of the running time of the algorithm is O (n3). Empirically,
this approach provides good solutions to our problem within
timeframes that are acceptable in our context. As the aim
of this algorithm is to maintain SLO violation rates below a

TABLE 2 Terms Used in Cluster Replacement Algorithm

Term Meaning
r Crossover rate
m Mutation rate
g Number of generations (iterations)
p Number of individuals (feasible solutions) in the population
gmax Maximum number of generations
cands Candidate deployments
candbest Best candidate deployment (individual) with maximum fit-

ness

pre-defined upper bound Utℎr, genetic algorithms are able to
achieve this for all runs requiring only 19 iterations.
Additionally, meta-heuristics, like genetic algorithms, pro-

vide ease of use and flexibility to add new selection criteria
to given objective functions, e.g. data center failure rate to
improve availability. Finally, even though algorithms based on
genetic algorithm can be used to solve large-sized problems,
they can suffer from long computational complexity. However
such meta-heuristic can be easily parallelised as it implic-
itly supports parallelisation techniques 60. Furthermore, the
resources required to realise parallel versions of genetic algo-
rithms should not be an issue in our context because Cloud
computing promises scalable, powerful compute-optimised
resources. However, for our problem we found that proposed
normal, non-parallelised versions of this algorithm was effec-
tive as will be discussed in section 5.

4.7 Genetic Algorithm for Cluster
Replacement
A genetic Algorithm provides a meta-heuristic approach based
on the realisation of natural iterative improvements in popula-
tion genetics. It relies on a set of bio-inspired operators, e.g.,
selection, crossover and mutation to iteratively modify popula-
tions and thus evolve successive populations. Using a genetic
algorithm to design an algorithm requires a genetic representa-
tion used to encode candidate solutions based on the problem
domain and a fitness function to evaluate the quality of each
solution.
For the genetic representation in this work, a chromosome

(or an individual) can be represented by a non-duplicated set
of data centers (i.e., a current/candidate deployment withD/F)
where an individual gene of the individual is represented by
a data center. Duplicated genes in an individual are forbid-
den and the order of the genes are unimportant. For increased
efficiency, genes are enumerated to rapidly detect duplicate
genes.
For the fitness function, the objective function in Eq. 1

is used to select an individual (i.e., a candidate deployment,

Aldwyan ET AL 13

cand) with the highest fitness. A fitness function is presented
as:

fitness (current, cand,Wt) = max f (current, cand,Wt)
(5)

A genetic algorithm-based cluster replacement algorithm is
shown in Algorithm 2. Using the symbols defined in Tables
1 and 2, the algorithm works as follows. The inputs of the
algorithm are the number of required data centers of a can-
didate deployment (i.e., number of required genes to form an
individual), the current deployment, current, as well as accu-
mulated workloads collected from running clusters at time t,
Wt. The algorithm initialises a population, P , by randomly
generating p candidate deployments using available data cen-
ters in A (Line 2). Duplicate individuals are not allowed in
a population. The algorithm then evaluates each candidate
deployment in the population, P , and then sorts candidate
deployments and the number of generations, g (Lines 3-6).
The algorithm then iterates to produce new successive gen-

erations by applying the bio-inspired operators: selection,
crossover and mutation (Lines 7-23). At each iteration, it cre-
ates an empty new generation, Pnew (Line 8). Then it applies
a selection operator by selecting (1 − r) ⋅ p candidate deploy-
ments from the start of the population, P , and adds them to the
new population, Pnew, (Lines 9-10). The crossover operator is
then applied (Lines 11-13). This operator selects r ⋅ p

2
pairs of

candidate deployments from the beginning of the population,
P . For each pair, it produces two children (two new candidate
deployments) by randomly selecting a data center from each
pair of members and then swaps the two selected data centers.
It then adds all children to the new population, Pnew.
The algorithm then applies the mutation operator (Lines 14-

15) by randomly choosingm⋅p candidate deployments from the
new population, Pnew, and replaces a randomly selected data
center from each chosen deployment with a randomly selected
data center fromA. It updates the population, P , and then eval-
uates and sorts candidates in descending order (Lines 16-18).
If the fitness of the best candidate deployment is less than the
fitness of the first candidate deployment in the current popu-
lation, P , it updates the best candidate deployment with the
first candidate deployment in the current population (Lines 19-
21). Then, the number of generations, g, is incremented by 1
(Line 22). The algorithm terminates when the number of gen-
erations, g, reaches the maximum number of generations, gmax.
The algorithm returns the best candidate deployment, candbest,
that has the maximum fitness (Line 24).
In terms of the time complexity of the genetic algorithm,

the approach requires calculating the running time of an iter-
ation (generation) using the terms given in Tables 1 and 2.

Algorithm 2: Genetic Algorithm for Cluster Replace-
ment
Input : N, current,Wt

1 Set the number of data centers (genes) of a candidate
deployment toN ;
/* Initialise population */

2 P ← Generate p candidate deployments (cands)
randomly using data centers in A;
/* Evaluate */

3 For each cand in P , compute fitness(cand) using Eq.
5;

4 Sort cands in P by their (descending) fitness;
5 candbest ← first cand in P ;
6 g = 1;
7 while g < gmax do

/* Create a new generation Pnew */
8 Pnew ← ∅

/* Apply selection */
9 Select (1 − r) ⋅ p cands from the start of P ;
10 Add selected cands to Pnew;

/* Apply Crossover */
11 Select r ⋅ p

2
pairs of cands from the start of P ;

12 For each pair, ⟨c1, c2⟩, produce two children (new
cands) by swapping a randomly selected data
center from c1 with a randomly selected one from
c2;

13 Add all children to Pnew;
/* Apply mutation */

14 Choose m ⋅ p cands randomly from Pnew;
15 For each chosen cand, replace a randomly selected

data center of cand with a randomly selected data
center from A;
/* Update */

16 P ← Pnew;
/* Evaluate */

17 For each cand in P , compute fitness(cand) using
Eq. 5;

18 Sort cands in P by their (descending) fitness;
19 if fitness(candbest) < fitness(first cand in P)

then
20 candbest ← first cand in P ;
21 end
22 Increment g by 1;
23 end
24 Return candbest that has the maximum fitness;

The selection, crossover and mutation operators at each iter-
ation require O ((1 − r) ⋅ p), O (r ⋅ p) and O (m ⋅ p),

14 Aldwyan ET AL

respectively. With regards to the evaluation phase, comput-
ing the fitness of each individual in a population, P , requires
finding the best data center (gene) with the least network
latency overheads in for each Wt and this requires (N − 1)
comparisons. As a result, evaluating an individual requires
O (|Wt| ⋅ N) thus evaluating all individuals in the popula-
tion requires O (p ⋅ |Wt| ⋅ N). Also, sorting individual of a
population requires O (p log p). Hence, the evaluation phase
runs in O (max { p ⋅ |Wt| ⋅ N, p log p}) = O (p ⋅ |Wt| ⋅ N).
As a consequence, the running time of an iteration is given
by O (max { (1 − r) ⋅ p , r ⋅ p , m ⋅ p , p ⋅ |Wt| ⋅ N}) =
O (p ⋅ |Wt| ⋅ N). The time complexity of genetic algorithm
is therefore given by O (g ⋅ p ⋅ |Wt| ⋅ N).

5 PERFORMANCE EVALUATION

To evaluate the proposed geo-elastic deployment solution,
experiments were carried out on the Australia-wide National
eResearch Collaboration Tools and Resources (NeCTAR -
www.nectar.org.au) research Cloud. Experiments are classi-
fied into three sets. In the first set, we study the behaviour of our
geo-elastic deployment approach towards geo-workload vari-
ations to maintain performance and cost using the SLO-based
violation rates, SBVR, and the number of container clusters as
performance and cost metrics respectively. We also examine
the cost of adaptation.
In the second set of experiments, we evaluate the proposed

geo-elastic deployment approach on the NeCTAR Cloud. This
set considers end-to-end response times to requests after adapt-
ing deployments according to geo-workload changes, as well
as the number of container clusters as the key evaluation
metrics. In the third set of experiments, we evaluate the effec-
tiveness of the proposed cluster replacement algorithm, genetic
algorithm, using the metrics, SBVR and the execution time.
To clarify, the operating costs of a given deployment in the

Cloud are proportional to the total number of container clus-
ters from multiple perspectives. First, each container cluster
incurs a management fee, e.g. Kubernetes clusters in Google
and Amazon Web Services costs $0.10 per cluster per hour. A
deployment of 3 clusters can reduce the total cost of manage-
ment fees by 50% compared to one with 6 clusters. Secondly,
more container clusters used require more VMs to run master
and worker nodes. For master nodes, highly available clus-
ters require at least 2 master nodes per cluster (i.e. 2 VMs). A
deployment of 3 clusters requires 6 VMs while a single cluster
requires only 2 VMs. For worker nodes, increasing the number
of clusters can reduce the chance of condensing containers to
fewer VMs. For instance, assume each worker node runs on a
VM that consists of 4 CPUs and 2 user workloads from differ-
ent locations require 2 and 6 CPUs respectively. If containers

handle these two loads run in 2 separate clusters, the worker
nodes for clusters will require 1 and 2 VMs respectively, i.e.
a total of 3 VMs. However, if they can run in one cluster and
ensuring that the Cloud location is carefully selected to opti-
mise network latency for both user workloads, their containers
will be condensed into only two 2 VMs. Hence this deploy-
ment reduces the cost by 33% compared to the one with two
clusters.
In all experiments, we refer to the SLO as the pre-agreed

upper level of a response time for a user request, which
includes the network latency between a user and a data center,
the processing time of the request and communication over-
heads when interacting with the data center. This represents
the threshold that application/platform providers should pre-
serve for their response times to achieve a satisfactory user
experience. Common settings among all experiment sets are
explained in the next section. Individual settings are described
separately within each experiment set.

5.1 General Settings
Cloud Data Centers and Compute Resources
Settings
We ran extensive experiments on the NeCTAR Research
Cloud. The NeCTAR Cloud is a geographically distributed
Cloud comprising 19 availability zones (data centers in our
context) distributed around Australia. For cluster replacement
problem, since this number of available data centers is rela-
tively small, we added another 41 data centers (60 in total)
scattered across the globe including AWS Singapore, London,
Cape Town, Stockholm and numerous others. This expands the
search space and thus allows to accurately evaluate the perfor-
mance of the search algorithms in finding optimal solutions
from an expanded and realistic global Cloud search space. To
make sure that the candidate deployments with SLO viola-
tion rates were below a pre-defined upper bound for acceptable
violation rates, we selected global data centers specifically to
be highly distributed and hence likely to incur network laten-
cies. Therefore, selecting one (or more) of these data centers
will increase the estimated violation rate and hence increase
the likelihood that it will go beyond the upper bound of the
acceptable violation rate. This will make the search algorithms
explore more solutions and ideally demonstrate that they select
NeCTAR data centers for their optimal deployment locations.
With regards to compute resources, every VM instance used

in all experiments was assigned the following resources: 4 vir-
tual CPUs and 16 GB of RAM running Ubuntu 18.04 LTS
(Bionic) as the operating system.

Aldwyan ET AL 15

1 2 3 4 5 6
Time Period

0

1

2

3

4

N
um

be
r o

f G
eo
-w

or
kl
oa
d
Lo

ca
tio

ns

FIGURE 3 Geographic workload changes over time

TABLE 3Workload locations over time periods for the differ-
ent experiments.

Time Period Workload Locations
1 Canberra, Melbourne
2 Canberra, Melbourne, Brisbane
3 Canberra, Melbourne, Brisbane, Sydney
4 Canberra, Melbourne, Sydney, Tasmania
5 Melbourne, Sydney, Tasmania
6 Melbourne, Tasmania

Geo-workload Variation Scenarios
Five different locations around Australia were chosen to be
sources of workloads: Brisbane, Canberra,Melbourne, Sydney
and Tasmania. To simulate real-world geo-workload change
scenarios over time, we synthesised a series of consecutive
geo-workload variation scenarios as shown in Figure 3 and
Table 3. This was used to generate spatial workload variations
in user growth across different locations, e.g. cities, across
Australia. We targeted workloads within Australia because,
as discussed earlier, our experiments were carried on the
Australia-wide NeCTAR Research Cloud. Also, we refer to
time periods as blocks of time where in the beginning of each
block of time, a geo-workload variation scenario occurs.
In experiments sets 1 and 2, we used these scenarios to

reflect spatial changes in workloads over time to understand
how the proposed and baseline approaches react to those
changes. Additionally, in experiment set 2 we set the length
of each period to 1,200s. Changes in geo-workloads were
carefully chosen to allow geo-elastic deployment approaches
to make three possible elastic decisions: geo-shrinking, geo-
relocation and geo-expanding. It is noted that to infer an elastic
decision at any period in these experiments, we calculate the
difference between the size of the deployment at that period

and the one beforehand. The size of deployments over peri-
ods are shown in Figures 4c, 4d and 6b. If the difference is
greater than 0, then the decision is geo-expanding. If it is less
than 0, then it is geo-shrinking. Otherwise, the decision is
geo-relocation or no change.

The Proposed Geo-elastic Deployment and
Baselines Settings
In these experiments, the default settings of the geo-elastic
deployment controller’s parameters T , P , �, Utℎr, Gtℎr were
set to 2 min, 20 min, 1 period, 10% and 3% respectively. For
genetic algorithm parameters, we set r, m, p and gmax to 0.7,
0.2, 60 and 120 respectively. Tuning genetic algorithm param-
eters for our problem is discussed in section 5.4.2. We refer to
our approach as Geo-elastic (proposed).
Regarding baselines, we have two baseline approaches:

over-provisioning and static deployment. Over-provisioning
approach is a latency-sensitive, cost-unaware geo-elastic
deployment solution that only considers proximity to users.
It adapts deployments with the aim of improving the per-
formance by selecting data centers for clusters such that the
network latency between application users and data centers
hosting container clusters regardless is minimised. It is inde-
pendent of the cost of the adaptation. This approach is similar
to work described in 11 as it only considers network latency
between users and data centers and completely ignores inter-
DC latency. Furthermore work in 25 only considers inter-DC
latency and ignores inter-data center latency as the cost of
adaptation. We refer to this approach as Over-provisioning.
Nevertheless, the parallels of using over-provisioning for the
baseline is consistent with these other works.
The static deployment approach, as its name suggests, is a

non-elastic approach used for the number and location of clus-
ters, i.e., it does not include the spatial aspect of adaptation.
It also only supports local elasticity. In all experiments, the
deployment size of this approach was set to two container clus-
ters and the clusters were statically located at two data centers.
We refer to this approach as Static. This approach has no cost
of adaptation since it is static.

Network Latency Data
To estimate unknown network latencies between users and
data centers, we use an approach based on our previous work
12 that relies on the distance between them. The approach
simply relies on a correlation between network latencies and
geographic distances between data centers. We empirically
measured the round trip time among all data centers using the
ping utility to obtain network latencies between data centers.

16 Aldwyan ET AL

To calculate the geographical distances we used the Harver-
sine formula. We use this approach because the correlation
coefficient is found to be strongly positive (0.97).

5.2 Experiment Set 1: Evaluation of the
Proposed Geo-elastic Deployment Approach
The aim of this experiment set is to investigate the effect of our
geo-elastic deployment approach on maintaining the perfor-
mance as well as the cost of deployment and adaptation, when
adapting cluster deployments to handle geo-workload changes.
In this set, the delay, caused by the processing time of a user
request as well as all inner-data center communication over-
heads, is constant and fixed to 10 ms. We run experiments 32
times (except for the static case) .

5.2.1 User Setting
To simulate realistic workloads (user request logs), Wt, to be
used as input to geo-elastic deployment approaches, we first
model 300 user sessions at each workload location and set the
number of requests per session to 10. Then, we obtain realis-
tic geo-locations of users for each workload location by using
Twitter data collected from each workload location, extract-
ing the geo-locations of tweeters and then assigning those
geo-locations to the users in our model. When generating
user request log files for container clusters, we inject the geo-
location of a user instead of the IP address at each request
record. The user geo-locations and number of requests for each
user are key information needed from the workloads. Finally,
user workloads at each time period of geo-workload varia-
tion scenarios as shown in Figure 3 and Table 3 are generated
depending on the number and locations of geo-workloads over
that period.

5.2.2 Experimental Procedure
In the first experiment, we set SLO to 20 ms and the cur-
rent deployment to the initial deployment using two clusters.
Then, we run experiments for each stochastic approach 32
times independently on a VM. At each run, the geo-elastic
deployment controller iterates 6 times to simulate the number
of time periods shown in Figure 3 and Table 3. At each period,
the controller retrieves the workloads over that period. Then,
the controller either makes an elastic decision and produces a
new deployment plan or leaves the current deployment as it
is. Then, we evaluate the new/current deployment and record
the SBVR for the number of clusters. We also record the cost
of any adaptation (the number of relocated/new clusters and
the total inter-data center latency) if there is a change in the
deployment at that period that is put forward.

For the static deployment approach, we run the experiment
once since it is a deterministic approach. We simply evaluate
the single, static deployment against workloads over all peri-
ods. In the second experiment, we set SLO to 25 ms and then
repeat the same steps followed in the first experiment.

5.2.3 The Impact of Geo-elastic Deployment
on Performance and Cost
In this section, we present the impact of considering geo-
elastic deployment solutions as well as the importance for
those solutions on both performance and cost when adapting
deployments of container clusters with geo-workload vari-
ations across geo-distributed data centers. Figures 4a and
4b indicate that all geo-elastic deployment approaches (geo-
elastic and over-provisioning) undoubtedly show very low
SLO violation rates, SBVR, at all periods for both SLO settings
(20 and 25 ms). They adapt deployments against workload
changes that result in successfully maintaining SBVR below
the pre-defined upper bound of acceptable SBVR (Utℎr = 10%)
in all cases. On the other hand, the static approach unsurpris-
ingly incurs significantly higher SBVR and exceeds 10% at all
periods for both SLO settings except for period 1 when SLO is
25 ms.
Furthermore, while the geo-elastic and over-provisioning

approaches have the same SBVR level in all cases, our
approach as shown in Figures 4c and 4d, successfully reduce
the cost in most cases, especially when SLO is relaxed further
(SLO = 25 ms). For SLO with 20 ms, our approach shrinks
the size of deployment by one cluster at periods 3 and 4 when
compared to the over-provisioning approach. Moreover Figure
4d shows that relaxing SLO by only 5 ms (i.e., from 20 to 25)
is exploited to reduce the number of running clusters by one at
every period, compared to the 20-ms SLO setting. Overall, our
approach shows a 37.5% improvement in cost when the SLO
is relaxed to 25 ms as the total number of clusters for all peri-
ods decreases from 16 to 10 clusters. As these results show,
the over-provisioning approach is very costly since it requires a
total of 18 clusters for all periods, even after relaxing the SLO
to maintain the system performance.
The reason behind this improvement is that the cost-

effectiveness in our approach, as discussed in section 4.6,
balance performance and cost (where possible) by sacrific-
ing an acceptable amount of performance to reduce the cost,
i.e., they tolerate acceptable increases in user-to-data center
network latencies to select data centers that are moderately dis-
tant from users with a lower number of clusters. This sacrifice
need not result in response times that violate the defined SLOs
and upper level threshold for the SBVR. On the other hand,
the over-provisioning approach only considers improving per-
formance by maximising the reduction in SBVR resulting in

Aldwyan ET AL 17

� � � 	
 �
�������"� �

�

��
�

��
�

��
�

	�
	

�

��
�

��
�

�

��
�

���

��
�
��
��

�

�� ����#$����!" ! #���
�%�"�!" %�#� ����

�$�$��

(a) SBVR (SLO = 20 ms)

� � � 	
 �
�������"� �

�

��
�

��
�

��
�

	�
	

�

��
�

��
�

�

��
�

���

��
�
��
��

�

�� ����#$����!" ! #���
�%�"�!" %�#� ����

�$�$��

(b) SBVR (SLO = 25 ms)

� � � � 	
 ���
�������#�!�

�
�
�
�
�
	

�
�

��
��
��
��
��
�	
�

��
��

�
&�

��
#�!

���
!

%�
�
�#
��
�&
$%�

#$

��!����$%����"#!"!$���
�'�#�"#!'�$�! � �

�%�%��

(c) Size of deployment (SLO = 20 ms)

� � � � 	
 ���
�������#�!�

�
�
�
�
�
	

�
�

��
��
��
��
��
�	
�

��
��

�
&�

��
#�!

���
!

%�
�
�#
��
�&
$%�

#$
��!����$%����"#!"!$���
�'�#�"#!'�$�! � �

�%�%��

(d) Size of deployment (SLO = 25 ms)

FIGURE 4 Performance and cost comparison with 3 different approaches for multi-cluster deployment against geographic
workload changes over 6 time periods using various SLOs. The lower the SBVR and size of deployment the better. Each approach
with different SLOs ran 32 times.

provisioning more clusters at different data centers close to
geo-distributed users.
From these results, it is evident that geo-elastic deploy-

ment with cost and latency awareness plays a crucial rule in
improving performance under cost constraints.

5.2.4 The Cost of Adaptation
In this section, we evaluate the impact of the cost of adap-
tation on geo-elastic deployment approaches. As discussed,
we refer to the cost here as the number of relocated/new

container clusters combinedwith the total inter-data center net-
work latency when a geo-elastic deployment solution adapts a
given deployment. As illustrated in Figure 5, our geo-elastic
approach avoids the cost of adaptation at period 3 and at peri-
ods, 1 and 3, when the SLO set to 20 and 25 ms respectively.
Over-provisioning solutions, on the other hand, incur costs at
periods, 1, 2, 3 and 4, for both SLO settings. It should be
noted that all approaches have no cost of adaptation at peri-
ods, 5 and 6, because the elastic decision is for geo-shrinking
or no change required at those periods. The static deployment
solution is ignored since it does not have an adaptation ability.

18 Aldwyan ET AL

� � � 	
 � ���
�������!���

�

�

�

�

	

�
$�

��
!��

���
��
��
�#
��
��

�&
�
��

#�
��
�!
�
�$
"#�

!"

�������"#���� !� �"��� �%�!� !�%�"������

(a) Number of Relocated/New Container Clusters (SLO = 20 ms)

� � � 	
 � ���
�������!���

�

�

�

�

	

�
$�

��
!��

���
��
��
�#
��
��

�&
�
��

#�
��
�!
�
�$
"#�

!"

�������"#���� !� �"��� �%�!� !�%�"������

(b) Number of Relocated/New Container Clusters (SLO = 25 ms)

� � � � 	
 ��
�������!���

�
	

��
�	
��
�	
��
�	
��
�	
	�
		

�

	
��
�	
��

$�
!�
��
��
�#
��
���

#�
!��

��
��

#�
��
%�
��

"�

�������"#���� !� �"���
�$�!� !�$�"������

(c) Average total inter-data center (DC) latency (SLO = 20 ms)

� � � � 	
 ��
�������!���

�
	

��
�	
��
�	
��
�	
��
�	
	�
		

�

	
��
�	
��

$�
!�
��
��
�#
��
���

#�
!��

��
��

#�
��
%�
��

"�
�������"#���� !� �"���
�$�!� !�$�"������

(d) Average total inter-data center (DC) latency (SLO = 25 ms)

FIGURE 5 Cost of adaptation of 2 different geo-elastic deployment approaches against geographic workload changes over 6
time periods using various SLOs. Each approach has different SLOs and is run 32 times.

Overall, in terms of the number of relocated/new clusters,
our approach reduces the cost of relocating running clusters
or adding new clusters by 25% for all periods of SLO with 20
ms, compared to the over-provisioning approach as shown in
Figure 5a. When the SLO is relaxed as shown in Figure 5b,
our solution takes advantage of this relaxation and decreases
the cost by 50%, compared to the over-provisioning case. With
regards to the total inter-data center network latency, as shown
in Figures 5c and 5d, our approach obviously has less inter-data
center latencies than those of over-provisioning in all cases.
Thus our approach is capable of speeding up the adaptation
of cluster deployments as well as maintaining better response
times during adaptation. We can conclude that such cost of

adaptation considerations can help geo-elastic deployment
solutions to minimise the number of relocated/new clusters as
well as the total inter-data center network latencies.

5.3 Experiment Set 2: Evaluation of the
Proposed Geo-elastic deployment Solution in a
Real Cloud Context
The aim of this experiment set is to evaluate the deploy-
ments made by the geo-elastic deployment approaches in real
distributed-Cloud contexts using the NeCTAR Cloud to cope
with geo-workload variations. Workloads here are realisti-
cally generated from different locations. We show that our

Aldwyan ET AL 19

geo-elastic deployment approach is capable of maintaining
performance and meeting SLOs (or at least minimising SLO
violations) at lower operational costs. A key web application
metric, end-to-end response times, and the number of oper-
ating container clusters are used as evaluation metrics for
performance and cost.
The assumptions considered regarding processing times

of requests as well as internal-data center communication
delays are relaxed here because these times and delays vary
in real Cloud experiments. Since our geo-elastic deployment
approach considers performance related to network latencies
(to improve geo-scalability), we consider mitigating the impact
of this variation and avoid any possible overload issues by tak-
ing the two following steps. First, we generate workloads for
experiments in a moderated way. Second, we provision more
resources for each cluster to allow the cluster platform (Kuber-
netes) auto-scale the containers when needed (i.e., providing
enough resources as local elasticity out of scope).

5.3.1 Experimental Set-up
SLO and the Geo-elastic Deployment Settings
We set the SLO to 25ms. Aswith standard benchmarks, we use
the 95th percentile of response time as a benchmark where it
should be within 25 ms. We set the upper bound of acceptable
SBVR, Utℎr to 5%.

Realistic Workload Generation and Request
Routing
To generate realistic workloads from the five locations dis-
cussed in Section 5.1, we use a workload generator running on
a VM at each location and a single workload manager running
on a separate VM. Each workload generator consists of Locust,
an open-source modern load testing framework and an agent.
The agent runs as a daemon and waits for commands from the
manager to activate/deactivate the generation of user requests.
It also checks the health of the target cluster using heartbeats
and records the response times of requests. We set the num-
ber of concurrent user sessions at each generator to 80 users.
Each user session consists of 10 requests: 7 read and 3 write
requests.
The workload manager simulates geo-workload changes

over different time periods (see Figure 3 and Table 3) and
provides a request routing service similar to Geo-DNS ser-
vices. At the beginning of each period, the manager selects the
required workload generator at that period and sends appro-
priate commands to agents to activate workload generators or
deactivate unnecessary workload generators related to previ-
ous period (if required).
The request routing service routes traffic for workload gen-

erators at each period (first case) and reroutes traffic when

adapting deployments requires changes in the IP addresses of
clusters (second case). In the first case, when a workload gen-
erator is activated, it asks the request routing service for an IP
of a cluster (similar to Geo-DNS lookup for IPs). The request
routing service responds with an IP of a cluster in the current
deployment at that time with the least network latency. In the
second case, once a new deployment of clusters takes place,
the request routing service is updated with new IPs of clus-
ters, if any. Then, if any agent of running workload generators
does not receive any response from the target cluster, it asks the
request routing service for a new IP of the cluster. The request
routing service then responds with a new IP (i.e., redirecting
traffic).

Sample Application and Container Cluster
Platforms
For web application benchmarking, we use a real-world trans-
actional web e-Commerce benchmark (TPC-W) application
61, which simulates business-oriented activities of an online
bookstore. A Java implementation of TPC-W is used where
the main application components are containerised individu-
ally using Docker. Those components include Tomcat (v8.5)
as a web server, Couchbase database (v5.5.0) as a user ses-
sion manager and MySQL database (v5.7) as the application
database. A copy of the application data exists at each data
center prior to any load on the system.
Whenever a cluster is required at a data center, 3 VMs

are provisioned at that data center as cluster nodes. For each
node we use Docker (v18.06.2) 49 as a container Runtime and
Kubernetes (v1.16.3) 6 as a cluster platform with HAProxy
load balancer (v1.9) as an ingress controller for Kubernetes.
One node is a master while the others are workers. The ini-
tial deployment of application services has 3 web servers, 1
session manager and 1 database deployed as containers.

Multi-cluster Container Platform
The multi-cluster container platform runs on a VM. It has
the components for the geo-elastic deployment framework
implemented in Python. Since this work focuses on decision-
making components, only the necessary aspects of the action-
components are implemented to complete the evaluation.
Therefore, when adapting a deployment, if the provisioned
cluster is with a new condition, then a deployment configura-
tion (YAML file) is passed to the master, which pulls container
images from the image registry.
If the cluster is with a migrating condition then several

steps are necessary. First, a new master VM at the destina-
tion data center joins the running cluster at the source data
center as another master replica (to share the current cluster
state). Then, the two new destination workers join the cluster

20 Aldwyan ET AL

� � � � 	
 ���
�����������

�

	

��

�	

��

�	

��

�	

�	
th
��

��
��

�!
���

��
���

�
��

�
��
��

�
��
��

 �

������ !��������� ���
�"������"� ������

�!�!���

(a) 95th percentile of response time

� � � � 	
 ���
�������#�!�

�
�
�
�
�
	

�
�

��
��
��
��
��
�	
�

��
��

�
&�

��
#�!

���
!

%�
�
�#
��
�&
$%�

#$

��!����$%����"#!"!$���
�'�#�"#!'�$�! � �

�%�%���

(b) Size of deployment

FIGURE 6 Performance and cost comparison of 3 different approaches for multi-cluster deployment running on the Australia-
wide NeCTAR Cloud and reacting against geographic workload variations over 6 time periods. At each period, workloads are
generated from different locations around Australia to simulate geographic changes over time. Each period lasts for 20 min
(1200s). Each experiments was run 3 times. (SLO = 25 ms).

as worker nodes. The Kubernetes cluster is then instructed to
drain the two source workers to evict all running pods (contain-
ers). In this case, all evicted pods will be scheduled to run at
the newworkers at the destination data center. Finally all nodes
at the source are removed and hence the cluster relocation is
complete.

5.3.2 Experimental Procedure
We run experiments for each approach three times. For all
experiments, we fix the locations of two clusters for the initial
deployment. At each run, once the clusters of the initial deploy-
ment are ready at the pre-determined data centers, their IPs are
registered at the request routing service. Then, the workload
manager iterates over the 6 periods of time. At each period,
the following steps are repeated. First, the workload man-
ager selects workload generators to start generating requests
for that period. Next, the geo-elastic deployment approach
collects log files. It makes scaling decisions and actions if
needed to adapt the current deployment. Whether the deploy-
ment has been adapted or not, the request routing service is
updated with IPs and the number of clusters for that period
is recorded. Once the request routing service is updated, the
workload manager instructs running workload generators to
start recording response times for the length of the period
(1200 seconds with a resolution of one second). For the static
deployment approach, the workload manager, at each period,

selects workload generators and records the response times
immediately.

5.3.3 Results and Discussions
Maintaining Performance at Lower Cost
Figure 6 displays the 95th percentile of response time as well
as the size of the deployment of the three approaches. In terms
of performance, as Figure 6a shows, the 95th of response time
of the over-provisioning for every period unsurprisingly sat-
isfies the SLO, 25 ms. For our approach, the 95th percentiles
of response time, for periods, 1, 2 and 3, meet the SLO while
for the other periods, 4, 5 and 6, they exhibit very mild vio-
lations (i.e., only 0.5 ms above the SLO). The static approach
shows higher SLO violations by at least 5 ms for most periods.
It should be noted that the 95th percentile of response time of
the static approach for the first period meets the SLO because
geo-workloads at the first period were close to the clusters of
the static deployment approach by chance.
With regard to the cost, Figure 6b shows that the improve-

ment in performance for over-provisioning comes at high cost
for all periods. Our approach, when compared to the over-
provisioning solution, shows a noticeably lower cost at every
period. This gives a justification for our approach, i.e., we sac-
rifice small amounts of performance to reduce costs. In more
detail, we improve the cost-effectiveness by reducing the size
of deployment by 1 at periods (1, 2, 5 and 6) and by 2 at peri-
ods (3 and 4) compared to the over-provisioning approach. In

Aldwyan ET AL 21

TABLE4The difference in response time and cost for different
approaches for all time periods. Each approach runs 3 times.
Geo: Geo-elastic (proposed). OP: Over-provisioning

Difference in Response time Mean in ms Difference in Cost
95% CI Estimate P-value n_clusters %

Geo - Static (-3.24, -3.07) -3.16 0.00 -2 -16.67
OP - Static (-5.95, -5.81) -5.89 0.00 6 50.00
Geo - OP (2.68, 2.77) 2.72 0.00 -8 -44.44

other words, costs are reduced by 33% at periods (2 and 5) and
by 50% at periods (1, 3, 4 and 6).
Table 4 shows the results comparing the three approaches

using t-test. This indicates that over-provisioning and our
approach, on average improve the response time by 5.89 ms
and 3.16 ms respectively compared to the static approach.
While this performance improvement requires an over-
provisioning solution that increases the cost by 50%, our
approach reduces the cost by approximately 16%. Moreover,
compared to the over-provisioning approach, our approach
incurs onlyminor delays in response time, on average only 2.71
ms whilst reducing the cost by 44.44%. As a consequence, it
is evident that our approach has the ability to preserve perfor-
mance and minimise SLO violations with at greatly reduced
cost.

5.4 Experiment Set 3: Evaluation of the
Proposed Cluster Replacement Algorithm
In this experiment set, we evaluate the genetic algorithm-based
cluster replacement algorithm. Experiments here are classified
into two groups. In the first group, the aim of the experiments
is to tune the genetic algorithm parameters for our problem.
In the second group, we show the benefits of network latency
awareness when (re)placing clusters as well as examine the
performance of genetic algorithm. We use SBVR and the
execution time as key evaluation metrics.
For all experiments here, we set problem-specific parame-

ters as introduced in the next section.

5.4.1 Problem-specific Parameter Settings
We set SLO and processing time to 20 ms and 10 ms, respec-
tively. For the workload, Wt, we choose five locations to
generate workload and set the number of user sessions to 240
per location, i.e., we have a total of 1200 users. The size and
SBVR of the current deployment is 3 and 76.40% respectively.
The number of required clusters for the new deployment N
is set to 4. As mentioned before, there are 60 potential data
centers available, hence we have a total of 487,635 candidate
deployments (feasible solutions).

TABLE 5 Estimate and standard error (SE) of the average fit-
ness and SBVR for genetic algorithm (GA) over 32 runs as well
as the number of generations for all runs to converge using dif-
ferent GA parameter settings. The higher the fitness the better.
The lower the SBV R the better.

GA parameters Iterations to
Convergence
(all runs)

Average Fitness Average SBVR (%)

Crossver Mutation Estimate SE Estimate SE
0.7 0.2 54 -0.89 0.02 7.39 0.09
0.5 0.1 61 -0.9 0.02 7.46 0.09
0.7 0.1 61 -0.87 0.02 7.33 0.09
0.7 0.7 68 -0.85 0.02 7.22 0.08
0.5 0.5 88 -0.88 0.02 7.32 0.09

5.4.2 Group 1: Genetic Algorithm Parameter
Tuning
Two key parameters of the genetic algorithm are the crossover
rate, r, and the mutation rate, m. These need to be tuned for
the cluster replacement problem. Therefore, we run 16 experi-
ments with the genetic algorithm where each experiment has a
different parameter setting. To obtain these 16 parameter set-
tings, we combine different values of the two parameters. The
values for r and m are set to 0.2, 0.5, 0.7 and 0.9 and to 0.1,
0.2, 0.5, 0.7 respectively.
Tables 5 shows the best five parameter settings for the

genetic algorithm ordered based on their speed rate (i.e., num-
ber of iterations) to converge on the problem over the 32
runs. From the results, it is evident that the fastest rate of
convergence occurs when setting r andm to 0.7 and 0.2 respec-
tively. The convergence curve using these parameter settings
is indicated in Figure 7a.

5.4.3 Group 2: Effectiveness of Genetic
Algorithm
Proposed Algorithms and Baselines Settings
Genetic algorithm parameter settings were discussed in section
5.1. Regarding the baselines, we have two baseline algorithms:
Brute force algorithm, which examines all possible solutions in
the solution space and latency unaware algorithm, which does
not consider network latency and randomly selects data centers
for cluster (re)placement.
For stochastic algorithms genetic algorithm and latency

unaware, we run experiments on each algorithm 32 times. We
also run the deterministic algorithm, brute force, once. The
algorithms run independently on the VMs.

Impact of Network Latency Consideration
Table 6 indicates that the latency unaware algorithm shows a
very high violation rate in SBVR, 90.41%, while our genetic

22 Aldwyan ET AL

� � �� �� �� �� �� �� �� �� �� �� 	�
���������

�

��

��

�	

�

���

��
��
���

��
��

��
���

��
���

�

(a) Convergence curve

� 	 �� �	 �� �	 �� �	 �� �	 	� 		
�
���������

�

��

��

��

��

	�

�

��
�
�
��

�

Uthr

(b) SBVR improvement

FIGURE 7 Convergence curve and SBVR improvement for proposed genetic algorithm. The algorithm is run 32 times and
converges at the 54th iteration. The higher the objective function value, the better (the optimal value is -0.52). The lower the
SBVR the better (the optimal SBVR value is 5.6%).

TABLE 6 95% confidence interval (CI), estimate and stan-
dard error (SE) of the mean of the objective function value
and SBV R for different algorithms run 32 times. The higher
the objective function value, the better. The lower the SBV R
the better. The optimal SBVR value is 5.6%. GA: Genetic
Algorithm. LU: Latency Unaware.

Algorithm Objective function value SBVR (%)
95% CI Estimate SE 95% CI Estimate SE

GA (-0.96, -0.82) -0.89 0.04 (7.03, 7.75) 7.39 0.18
LU (-19.22, -17.21) -18.22 0.51 (85.46, 95.36) 90.41 2.53

TABLE 7 95% confidence interval (CI), estimate and p-value
of the difference in means of the objective function value and
SBV R between different algorithms. Each algorithm ran 32
times. GA: Genetic Algorithm. LU: Latency Unaware.

Difference
in Mean

Objective function value SBVR (%)

95% CI Estimate P-value 95% CI Estimate P-value
GA - LU (16.29, 18.37) 17.33 0.00 (-88.16, -77.88) -83.02 0.00

algorithm, which takes into account network latency, has very
low SBVR violation rates, 7.39%. As shown in Table 7, the
genetic algorithm improves the performance since it reduces
SBVR by at least 83.02%. In other words, compared to latency
unaware algorithm, the genetic algorithm achieves 91.83%
improvement in SBVR. It can therefore clearly be concluded
that network latency considerations reduce SLO violation rates
and hence improve performance.

The Performance of Genetic Algorithm
In this section, we examine the performance of the proposed
genetic algorithm from two aspects: speed and accuracy. For
speed, we use two metrics: the execution time (in seconds) as
well as rate of convergence (number of iterations to converge
for all runs). Regarding the accuracy, we evaluate the accuracy
of the algorithm by measuring the average SBVR and deter-
mining how far this average differs over iterations from the
optimal SBVR. The optimal SBVR value, which is obtained
from the brute force algorithm, is 5.6%.
With regards to execution time, the execution time of brute

force algorithm is 27,859s (approximately 8 hours). The esti-
mate and 95% confidence interval (CI) of the average execution
time over the 32 runs for the genetic algorithm are 347.6s
(about 6 min) and (347.11s, 348.08s) respectively. Compared
to brute force algorithm, the genetic algorithm is dramatically
faster. Regarding the rate of convergence, as Figure 7a shows,
the genetic algorithm converges at the 54th iteration.
With respect to accuracy, as shown in Tables 6 and 7, the

distance for our genetic algorithm to the optimal value is
only 1.79%. Moreover, as indicated in Figure 7b, the genetic
algorithm obviously meets the upper bound of acceptable vio-
lation rateUtℎr for all runs at the 18th iteration. This shows that
it provides acceptable level of accuracy. We can conclude that
the genetic algorithm achieves good quality of solutions.

Aldwyan ET AL 23

6 CONCLUSIONS AND FUTURE
DIRECTIONS

We have proposed a geo-elastic container deployment
approach for multi-cluster deployment that leverages the capa-
bilities of distributed, potentially global scale Cloud environ-
ments to elastically and intelligently scale web applications.
The approach enables container platforms to automatically
adapt the deployment of container clusters based on geograph-
ically diverse workload variations. The aim is to maintain
system performance to meet/support SLOs even during the
adaptation process, whilst minimising operational costs. For
cluster replacement, a genetic algorithm, considering prox-
imity to users and the cost of adaptation, i.e., the number
of relocated/new clusters and inter-data center latencies, was
explored. A heuristic for cluster quantity adjustment was pre-
sented.We also presented a framework to show how automated
elastic multi-cluster deployment is enabled. To evaluate our
approach we carried out extensive experiments on the NeC-
TAR Research Cloud using Kubernetes clusters and TPC-W
web application and demonstrated optimal deployment solu-
tions that minimise cost and meet performance demands.
Our future work will focus on cross-cluster resource man-

agement as Cloud-based elasticity solutions are not suited to
handle unexpected, large scale and bursty overloads due to the
overheads of provisioning VMs. This overhead usually lasts
for a few minutes before the cluster node is ready to run new
containers. During this time, users requests may be dropped or
they may experience delays in response times. To handle this
problem, we intend to propose a cross-cluster resource man-
agementmechanisms that allows overloaded clusters to borrow
already-running (idle) VMs from other clusters with normal
or reduced loads in different Cloud locations. This mechanism
is more suited to handle sudden spikes in loads due to the
warm-started VMs.

References

1. Gartner . Competitive Landscape: Container Management
Software, 2019. .

2. IBM . IBM Cloud Pak for Multicloud Management. .
3. Ambasssador . UnderstandingMulti-Cluster Kubernetes. .
4. Burns B, Grant B, Oppenheimer D, Brewer E, Wilkes

J. Borg, Omega, and Kubernetes. Queue 2016. doi:
10.1145/2898442.2898444

5. Leung A, Spyker A, Bozarth T. Titus: Introducing Con-
tainers to the Netflix Cloud. Commun. ACM 2018; 61(2):
38–45. doi: 10.1145/3152529

6. Kubernetes . Kubernetes: an Open-source System for
Automated Container Deployment, Scaling, and Manage-
ment of containerized applications. 2020.

7. Google Cloud . Anthos: A modern application manage-
ment platform. .

8. Rancher Labs . Rancher: One Platform for Kubernetes
Management. .

9. D2IQ . Using DC/OS to manage multiple clusters. .
10. Kratzke N. About the Complexity to Transfer Cloud

Applications at Runtime and How Container Platforms
Can Contribute? BT - Cloud Computing and Service Sci-
ence. In: Ferguson D, Muñoz VM, Cardoso J, Helfert M,
Pahl C. , eds. Communications in Computer and Infor-
mation Science. 864. Springer International Publishing;
2018; Cham: 19–45

11. Guo T, Shenoy P. Providing Geo-Elasticity in Geograph-
ically Distributed Clouds. ACM Trans. Internet Technol.
2018; 18(3): 38:1–38:27.

12. Aldwyan Y, Sinnott RO. Latency-aware failover strategies
for containerized web applications in distributed clouds.
Future Generation Computer Systems 2019; 101: 1081–
1095.

13. Nikolay G, Rajkumar B. Inter-Cloud architectures and
application brokering: taxonomy and survey. Software:
Practice and Experience; 44(3): 369–390.

14. Nygren E, Sitaraman RK, Sun J. The Akamai Network:
A Platform for High-performance Internet Applications.
SIGOPS Oper. Syst. Rev. 2010; 44(3): 2–19.

15. Consulting F. eCommerce Web Site Performance Today:
An Updated Look At Consumer Reaction To A Poor
Online Shopping Experience. 2009.

16. Santos G, Paulino H, Vardasca T. QoE-aware auto-scaling
of heterogeneous containerized services (and its applica-
tion to health services). In: ; 2020

17. Toka L, Dobreff G, Fodor B, Sonkoly B. Adaptive AI-
based auto-scaling for Kubernetes. In: ; 2020: 599–608

18. Al-Dhuraibi Y, Paraiso F, Djarallah N, Merle P. Auto-
nomic Vertical Elasticity of Docker Containers with
ELASTICDOCKER. IEEE International Conference on
Cloud Computing, CLOUD 2017; 2017-June: 472–479.
doi: 10.1109/CLOUD.2017.67

19. Rossi F, Nardelli M, Cardellini V. Horizontal and vertical
scaling of container-based applications using reinforce-
ment learning. In: ; 2019

20. Herrera J, Molto G. Toward Bio-Inspired Auto-Scaling
Algorithms: An Elasticity Approach for Container
Orchestration Platforms. IEEE Access 2020. doi:
10.1109/ACCESS.2020.2980852

21. Zhong Z, Buyya R. A Cost-Efficient Container Orches-
tration Strategy in Kubernetes-Based Cloud Comput-
ing Infrastructures with Heterogeneous Resources. ACM

http://dx.doi.org/10.1145/2898442.2898444
http://dx.doi.org/10.1145/2898442.2898444
http://dx.doi.org/10.1145/3152529
http://dx.doi.org/10.1109/CLOUD.2017.67
http://dx.doi.org/10.1109/ACCESS.2020.2980852
http://dx.doi.org/10.1109/ACCESS.2020.2980852

24 Aldwyan ET AL

Transactions on Internet Technology 2020. doi:
10.1145/3378447

22. Alfonso dC, Calatrava A, Moltó G. Container-based vir-
tual elastic clusters. Journal of Systems and Software
2017; 127: 1–11. doi: 10.1016/J.JSS.2017.01.007

23. Srirama SN, Adhikari M, Paul S. Application deploy-
ment using containers with auto-scaling for microservices
in cloud environment. Journal of Network and Com-
puter Applications 2020; 160(March): 102629. doi:
10.1016/j.jnca.2020.102629

24. Al-Dhuraibi Y, Zalila F, Djarallah N, Merle P. Coordi-
nating vertical elasticity of both containers and virtual
machines. CLOSER 2018 - Proceedings of the 8th Inter-
national Conference on Cloud Computing and Services
Science 2018; 2018-Janua(Closer 2018): 322–329. doi:
10.5220/0006652403220329

25. Qu C, Calheiros RN, Buyya R. SLO-aware deployment
of web applications requiring strong consistency using
multiple clouds. In: ; 2015: 860–868.

26. Kubernetes . kops: Kubernetes Operations. .
27. Kubernetes . Kubespray: Deploy a Production Ready

Kubernetes Cluster. .
28. Harshicop . Nomad: a simple, flexible, and production-

grade workload orchestrator. .
29. OpenVZ . CRIU: Checkpoint/Restore In Userspace. .
30. Govindaraj K, Artemenko A. Container Live Migration

for Latency Critical Industrial Applications on Edge Com-
puting. In: . 1. ; 2018: 83–90

31. Red Hat Inc. . Red Hat OpenShift Container Platform. .
32. Nawab F, Agrawal D, El Abbadi A. The Challenges of

Global-scale Data Management. In: No. 1 in SIGMOD
’16. ACM; 2016; New York, NY, USA: 2223–2227

33. Amazon . Amazon Route 53: a scalable and highly avail-
able Domain Name System (DNS). 2018.

34. Microsoft Azure . Azure Traffic Manager. .
35. Liu Z, Lin M, Wierman A, Low S, Andrew LL. Greening

geographical load balancing. IEEE/ACM Transactions on
Networking 2015. doi: 10.1109/TNET.2014.2308295

36. Zhang Y, Wang Y, Wang X. GreenWare: Greening cloud-
scale data centers to maximize the use of renewable
energy. In: ; 2011

37. Toosi AN, Buyya R. A Fuzzy Logic-Based Controller
for Cost and Energy Efficient Load Balancing in Geo-
distributed Data Centers. In: ; 2015

38. Azimi S, Pahl C, Shirvani MH. Particle Swarm Optimiza-
tion for Performance Management in Multi-cluster IoT
Edge Architectures.. In: ; 2020: 328–337.

39. Qu C, Calheiros RN, Buyya R.Mitigating impact of short-
term overload on multi-cloud web applications through
geographical load balancing. Concurrency Computation
2017; 29(12): 1–15. doi: 10.1002/cpe.4126

40. Brogi A, Carrasco J, Cubo J, et al. SeaClouds: An open
reference architecture for multi-cloud governance. In: ;
2016

41. Grozev N, Buyya R. Multi-cloud provisioning and load
distribution for three-tier applications. ACM Transac-
tions on Autonomous and Adaptive Systems 2014. doi:
10.1145/2662112

42. Brogi A, Forti S. QoS-aware deployment of IoT applica-
tions through the fog. IEEE Internet of Things Journal
2017. doi: 10.1109/JIOT.2017.2701408

43. Pahl C. Containerization and the PaaS Cloud.
IEEE Cloud Computing 2015; 2(3): 24–31. doi:
10.1109/MCC.2015.51

44. Fang J, Ma A. IoT Application Modules Placement
and Dynamic Task Processing in Edge-Cloud Comput-
ing. IEEE Internet of Things Journal 2020: 1. doi:
10.1109/JIOT.2020.3007751

45. Guo T, Gopalakrishnan V, Ramakrishnan KK, Shenoy
P, Venkataramani A, Lee S. VMShadow: Optimizing the
performance of latency-sensitive virtual desktops in dis-
tributed clouds. Proceedings of the 5th ACM Multimedia
Systems Conference, MMSys 2014 2014: 103–114. doi:
10.1145/2557642.2557646

46. Shi T, Ma H, Chen G, Hartmann S. Location-Aware and
Budget-Constrained Service Deployment for Composite
Applications in Multi-Cloud Environment. IEEE Trans-
actions on Parallel and Distributed Systems 2020; 31(8):
1954–1969. doi: 10.1109/TPDS.2020.2981306

47. AlicherryM, Lakshman TV. Network aware resource allo-
cation in distributed clouds. In: ; 2012

48. Zhu J, Zheng Z, Zhou Y, Lyu MR. Scaling service-
oriented applications into geo-distributed clouds. In:
IEEE. ; 2013: 335–340

49. Docker Inc. . Docker Engine: Open-source Containeriza-
tion Technology. 2018.

50. Ookla . The Definitive Source for Global Internet Metrics.
2018.

51. Szymaniak M, Pierre G, Van Steen M. Scalable coopera-
tive latency estimation. In: ; 2004

52. Ha J, Park J, Han S, Kim M. Live Migration of Virtual
Machines and Containers over Wide Area Networks with
Distributed Mobility Management. In: MobiQuitous ’18.
ACM; 2018; New York, NY, USA: 264–273

53. Reber A. Container Migration Around The World. .
54. Ahmadian S, Friggstad Z, Swamy C. Local-Search Based

Approximation Algorithms for Mobile Facility Loca-
tion Problems. In: SODA ’13. Society for Industrial and
Applied Mathematics; 2013; USA: 1607–1621.

55. Friggstad Z, Salavatipour MR. Minimizing movement in
mobile facility location problems. ACM Transactions on
Algorithms 2011. doi: 10.1145/1978782.1978783

http://dx.doi.org/10.1145/3378447
http://dx.doi.org/10.1145/3378447
http://dx.doi.org/10.1016/J.JSS.2017.01.007
http://dx.doi.org/10.1016/j.jnca.2020.102629
http://dx.doi.org/10.1016/j.jnca.2020.102629
http://dx.doi.org/10.5220/0006652403220329
http://dx.doi.org/10.5220/0006652403220329
http://dx.doi.org/10.1109/TNET.2014.2308295
http://dx.doi.org/10.1002/cpe.4126
http://dx.doi.org/10.1145/2662112
http://dx.doi.org/10.1145/2662112
http://dx.doi.org/10.1109/JIOT.2017.2701408
http://dx.doi.org/10.1109/MCC.2015.51
http://dx.doi.org/10.1109/MCC.2015.51
http://dx.doi.org/10.1109/JIOT.2020.3007751
http://dx.doi.org/10.1109/JIOT.2020.3007751
http://dx.doi.org/10.1145/2557642.2557646
http://dx.doi.org/10.1145/2557642.2557646
http://dx.doi.org/10.1109/TPDS.2020.2981306
http://dx.doi.org/10.1145/1978782.1978783

Aldwyan ET AL 25

56. Demaine ED. Minimizing Movement. : 258–267.
57. Lavine BK. 3.20 - Feature Selection: Introduction. In:

Brown SD, Tauler R, Walczak BBTCC., eds. Comprehen-
sive ChemometricsOxford: Elsevier. 2009 (pp. 601–607)

58. Mennes R, Spinnewyn B, Latré S, Botero JF. GRECO:
A distributed genetic algorithm for reliable application
placement in hybrid clouds. In: IEEE. ; 2016: 14–20.

59. Shi T, Ma H, Chen G. A Genetic-Based Approach to
Location-Aware Cloud Service Brokering in Multi-Cloud
Environment. In: ; 2019: 146–153

60. Dawn Thompson J. 3 - Statistical Alignment Approaches.
In: Dawn Thompson J. , ed. Statistics for Bioinformat-
icsElsevier. 2016 (pp. 43–51)

61. Transaction Processing Performance Council . TPC-W: a
transactional web e-commerce benchmark. 2018.

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Aldwyan, Y;Sinnott, RO;Jayaputera, GT

Title:
Elastic deployment of container clusters across geographically distributed cloud data
centers for web applications

Date:
2021-11-10

Citation:
Aldwyan, Y., Sinnott, R. O. & Jayaputera, G. T. (2021). Elastic deployment of container
clusters across geographically distributed cloud data centers for web applications.
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 33 (21), https://
doi.org/10.1002/cpe.6436.

Persistent Link:
http://hdl.handle.net/11343/298638

http://hdl.handle.net/11343/298638

	Elastic Deployment of Container Clusters across Geographically Distributed Cloud Data Centers for Web Applications
	Abstract
	Introduction
	Related Work
	Problem Formulation
	Assumptions for Container and Application Deployment Models
	Problem Definition

	Proposed Geo-elastic Deployment Approach
	Requirements and Assumptions
	Adaptation Triggers
	Geo-elastic Deployment Framework
	SLO-based Violation Model
	Multi-cluster Geo-elastic Deployment Controller Algorithm
	Cluster Replacement Method for Spatial Adaptation
	Genetic Algorithm for Cluster Replacement

	Performance Evaluation
	General Settings
	Experiment Set 1: Evaluation of the Proposed Geo-elastic Deployment Approach
	User Setting
	Experimental Procedure
	The Impact of Geo-elastic Deployment on Performance and Cost
	The Cost of Adaptation

	Experiment Set 2: Evaluation of the Proposed Geo-elastic deployment Solution in a Real Cloud Context
	Experimental Set-up
	Experimental Procedure
	Results and Discussions

	Experiment Set 3: Evaluation of the Proposed Cluster Replacement Algorithm
	Problem-specific Parameter Settings
	Group 1: Genetic Algorithm Parameter Tuning
	Group 2: Effectiveness of Genetic Algorithm

	Conclusions and Future Directions
	References

