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ABSTRACT

The computational science community is reluctant to write large-
scale computationally-intensive applications in Java due to con-

cerns over Java's poor performance, despite the claimed software

engineering advantages of its object-oriented features. Naive Java

implementations of numerical algorithms can perform poorly com-

pared to corresponding Fortran or C implementations. To achieve

high performance, Java applications must be designed with good

performance as a primary goal. This paper presents the object-

oriented design and implementation of two real-world applications

from the field of Computational Fluid Dynamics (CFD): a finite-
volume fluid flow solver (LAURA, from NASA Langley Research

Center), and an unstructured mesh adaptation algorithm (2D_TAG,

from NASA Ames Research Center). This work builds on our pre-

vious experience with the design of high-performance numerical

libraries in Java. We examine the performance of the applications

using the currently available Java infrastructure and show that the

Java version of the flow solver LAURA performs almost within a

factor of 2 of the original procedural version. Our Java version of

the mesh adaptation algorithm 2D_TAG performs within a factor

of 1.5 of its original procedural version on certain platforms. Our
results demonstrate that object-oriented software design principles

are not necessarily inimical to high performance.

1. INTRODUCTION
The Java programming language has many features that are at-

tractive for both general-purpose and scientific computing. Among

them are: support for object-oriented concepts such as inheritance,

encapsulation, and polymorphism that allow the abstraction of com-

mon physical concepts and the development of reusable class li-

braries for them; the architecture-neutrality of Java byte code, which

enables portability across multiple platforms; garbage collection,

which simplifies memory management; and language-level support

for multithreading, which allows parallel applications to be devel-

oped more easily in Java. However, scientific programs written
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in Java usually run slower than corresponding programs written in
Fortran and C, due either to the intrinsic overhead of these fea-

tures or to the relative immaturity of current Java Virtual Machine

(JVM) implementations. Because high performance is a primary

concern in computational science, that community has been reluc-

tant to adopt Java as the language of choice for numerical applica-

tions.

To demonstrate the viability of high-performance computing in

Java and to encourage its greater adoption in the computational sci-

ence community, several authors have ported numerical libraries

to Java [1, 5, 19], written Fortran-to-Java translators [8, 10], de-

veloped compilation technology for Java [6, 7, 25], and written

class libraries to address deficiencies in the Java language for nu-

merical computing [26]. Although these studies demonstrate the

potential of Java for high-performance computing, several factors
limit their usefulness in determining whether large-scale scientific

applications written in Java can achieve high performance. First,
numerical and class libraries form only part of such applications.

The only previous ports of large-scale codes to Java that we know

of are a geophysical simulation by Jacob et al. [20] and a parallel

multi-pass renderer by Yamauchi et al. [31 ]. Second, "line-by-line"
translations of procedural codes written in Fortran or C to Java do

not exploit object-oriented techniques, one of the main advantages

to programming in Java.

The primary goal of the work described in this paper is to demon-

strate that realistic scientific applications can be written in Java that

make full use of the language's object-oriented capabilities and still

show good performance on current standards-conforming JVM im-

plementations. Secondary goals include characterizing the perfor-

mance and identifying the bottlenecks in different JVM implemen-

tations, identifying design principles for portable high-performance

object-oriented software in Java, and making available additional

benchmarks for the high-performance Java community. It is our

thesis that in order to achieve high performance with such appli-

cations, one must consciously design for performance in both the

definition and the implementation of the software components that

comprise them. We choose two real-world examples from the field

of Computational Fluid Dynamics (CFD) for our study. The first

example is the Langley Aerothermodynamic Upwind Relaxation

Algorithm (LAURA) [9, 12], a finite-volume flow solver devel-

oped at NASA Langley Research Center for multiblock, structured

grids. LAURA has been widely used to compute hypersonic, vis-

cous, reacting-gas flows over reentry vehicles such as the Shut-

tle Orbiter [14], the Mars Pathfinder [24], and the X-33 Reusable

Launch Vehicle [15]. The second example is the Two-Dimensional

Triangular Adaptive Grid (2D_TAG) code [27] developed at NASA
Ames Research Center for adaptation of unstructured meshes. This
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Figure 2: Block class abstraction.
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Figure 3: Fiowfield class abstraction.

BlockFace, to minimize the effects of adding new chemistry mod-

els and boundary conditions to the software. The GasProperties

class is subelassed for each particular chemistry model. Currently,
only the perfect gas model is supported in the Java version as it is
the only gas model available in the version of LAURA released to

us by NASA Langley Research Center. The BlockFace class is sub-
classed for each of four different boundary conditions. Diagrams
showing the geometry and flowfield class abstractions are given in
Figures 2 and 3. The EquilAir and NonequilAir classes pictured in

Figure 3 are not currently implemented, but illustrate how subclass-
ing would be used to extend the abstract GasProperties class in a
full-featured version of LAURA. Where possible, only references
to the abstract base classes are made.

2.2.1 Design Patterns

Gamma et at. [11] define design patterns as "descriptions of

communicating objects and classes that are customized to solve

a general design problem in a particular context." Our Java code
uses the Factory creational pattern to manage the construction of

the various geometric objects and the Singleton creational pattern
to control access to atmospheric constants. However, there are ad-

ditional design patterns that we did not use. The lterators pattern

would be useful in sweeping over a block, but the multidimensional

array package we use does not contain them. The Strategy pattern
would be useful in managing changes to the choice of relaxation
algorithms. We did not use it in our version because the original
Fortran version of LAURA supports only one relaxation algorithm.

2.2.2 Multithreading

We added multithreading by subdividing a single block into mul-

tiple blocks and assigning a Java thread to each sub-block. This

follows the domain decomposition strategy used to parallelize the

original Fortran version of LAURA for distributed machines [28].

In this multithreaded version, two Block objects will share a single
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Figure 4: An example of an unstructured mesh.

BlockFace object. Conflicts may occur if each Block tries to mod-
ify the shared BlockFace at the same time. Java provides a monitor

locking mechanism with the synchronized keyword for per-

forming mutual exclusion on an object. Use of synchronized
for the appropriate methods is the safest approach to handling this
block interface conflict in that it prevents an inconsistent update

of the boundary cells and cell faces at the boundary between two

blocks. However, by using the point-implicit relaxation strategy,

blocks may be relaxed asynchronously. Blocks do not need to be

kept in lock step at the same iteration level. For this algorithmic

reason, our code does not use the synchron5, zed keyword.

3. 2D_TAG

2D_TAG [4, 27] is a two-dimensional, unstructured mesh adapta-
tion scheme that locally refines and/or coarsens the computational

grid. It is written in C and is a simplified version of a corresponding
three-dimensional algorithm. Biswas and Strawn [4] describe the

details of the algorithm. Oiiker and Biswas [27] discuss its perfor-

mance under different parallel processing strategies.
It is important to note here the different roles of a mesh adap-

tation algorithm like 2D_TAG and a flow solver like LAURA. A
mesh adaptation code is a tool used to support the flow solver by
concentrating the solver's computation in regions of interest such as
shocks and shear flows. During the computation of a steady-state
flow field, the mesh is adapted infrequently, on the order of once

every several hundred solver iterations. In this scenario, the mesh

adaptation may consume 5% of the total running time. For time-

dependent calculations, the mesh is adapted much more frequently

and may account for 30--40% of the total computation time. Good

performance of both the solver and of the mesh adaptation scheme
is therefore desirable.

3.1 Algorithm
A mesh is described as a collection of two-dimensional triangu-

lar elements, as shown in Figure 4. The mesh is unstructured in

that there is no logical ordering of an element and its neighbors as

with the structured grids used with LAURA. The mesh is locally

adapted. This involves adding points to the existing grid in regions
where some user-specified error indicator is high, and removing

points from regions where the indicator is low. The advantage of



Figure 6: Side view of the 10xl0xl0 grid around the
paraboloid.

Mesh Vertices Triangles Edges

Initial 14,605 28,404 43,009

Level 1 26,189 59,000 88,991

Level 2 62,926 156,498 235,331

Level 3 169,933 441,147 662,344

Level 4 380,877 1,003,313 1,505,024

Level 5 488,574 1,291,834 1,935,619

Table 2: Progression of grid sizes through five levels of adapta-
tion.

We use the computational mesh over an airfoil to test the perfor-
mance of 2D_TAG. This is the same test case used by Oliker and

Biswas [27]. For an actual flow simulation over an airfoil travel-

ing at transonic Mach numbers, shocks form on both the upper and

lower surfaces of the airfoil. The mesh is typically refined in the

area containing the shocks as well as around the stagnation point

located at the leading edge of the airfoil. This scenario is simulated

by geometrically refining the mesh in these regions. The actual test

case consists of reading the initial coarse mesh into 2D_TAG and

proceeding through five levels of refinement. Table 2 gives the re-

sulting grid sizes at each level of refinement. Note that the final

mesh is more than 40 tin'ies larger than the initial one. Figure 7

shows a close-up view of the initial mesh.

4.2 Testing Environment
Table 3 lists the platforms and JVMs we used for measuring per-

formance. All IVMs were run using Just-ln-Time (JIT) compilation

and with garbage collection enabled. All machines were relatively
unloaded at the time of each test, and several runs were made at

Figure 7: Close-up view of the initial mesh around the airfoil.

each test condition with the best time recorded. The initial and

maximum heap sizes were set using the -Xms and -Xrax options
to values on the order of 500 MB to discourage excessive garbage

collection. The typical variation in run times was less than I sec-
ond for run times on the order of 60 seconds. All JVMs are freely

available except for Jalapeho [2, 7], a research JVM developed at
IBM T.J. Watson Research Center. Although the Jalapefio JVM

contains an optimizing JIT compiler, it is not tuned for scientific

codes. For instance, it does not perform traditional optimizations

for scientific computing such as loop unrolling. Jalapeho also has

an adaptive compiler using dynamic feedback[3] that may recom-

pile methods at different optimization levels during the course of a
code's execution. We chose to use Jalapefio's optimizing compiler

instead, because it provided us with more control over optimization

options.

4.3 LAURA Results

Tables 4 and 5 give the performance of the single-precision, na-

tive and Java versions of LAURA on the different platforms. Run-

ning times are normalized by the total number of cells and itera-
tions. The times are normalized to help show variations in running

time with grid size and to help determine running time for different

grid sizes and iteration counts. Recall that the C version of LAURA

(see Section 2.1) does not contain the copying to and from tempo-

rary work arrays that is present in the original Fortran version. We

consider the performance of the C version to be the benchmark

against which the performance of the Java version should be com-

pared.
Several observations regarding the timing measurements are in

order.

I. As shown in Table 5, the performance of the Java version

of LAURA is within a factor of 3 of the corresponding C

version on the Sun Ultra and the Pentium when using the
Sun JVM and within a factor of 2.5 on the Pentium when

using the IBM JVM. The fastest Java version on the PowerPC

with the Jalapefio JVM is still 3 times slower than the native
C version. The focus of the Jalapeho JVM research project

has not been on optimization of scientific codes and floating

point calculations.

2. The relative performance of the Java version on the SG! is



JVM Grid IBM [26] Co[t [18] Native
Java

Sun JDK 1.3.0 10x 10× 10 49.3 51.6 51.7

20x 20x 20 55.8 57.5 58.0

40x40x40 60.0 64.9 64.7

IBM JDK !.3.0 10x 10x 10

20x20x20

40x40x40

39.4 39.4 39.5

39.8 40.0 40.2

44.0 45.8 46.2

Table 6: Time per cell per iteration (psec) of LAURA-Java us-

ing different array packages on Pentium.

is more difficult in that many of the array bounds checks may

have already been removed by the -O1 and -02 optimiza-
tion levels. Because a run with the -O0 -no-bounds-

checks options was not made, we hesitate to draw defini-

tive conclusions from the data except to say that array bounds

checks (difference between -02 and -02 -no-bounds-

checks times) account for at least 4% of the total running

time.

4.3.1 Array Packages

We next examine the effect of the multidimensional array pack-

age on the performance of LAURA. Table 6 lists the performance of

several versions of LAURA on the Pentium, each using a different

array package to manage the collections of geometric objects found
in a block. The performance of LAURA using native Java arrays is

also listed. The conventional wisdom is that native Java arrays are

inefficient due to the array bounds checking that Java requires and

the possible lack of data locality of the Java "array of arrays" [26].

While this statement is certainly true, it must be evaluated in terms

of the actual application. Unlike many other CFD applications, we

are not using multidimensional arrays in LAURA to store primitive

floating-point values such as pressure, velocity, and density, nor are

we using arrays to perform matrix factorization or multiplication.

In the case of LAURA, we are using multidimensional arrays as

containers of Cell, CellFace, and Point objects which in turn store

the primitive data. Most of the running time is spent in getting this

data from memory to the registers and then executing floating point

operations with them. The time spent in get and set: operations
in the various array packages is small in comparison. Therefore,

the choice of array packages has little impact on the performance
of LAURA.

4.3.2 Multithreaded Performance

Figure 8 shows the multiprocessor speedup of the Java version of

LAURA on the 4-processor Pentium machine and the 12-processor
PowerPC machine. As mentioned in Section 2.2.2, our Java ver-

sion of LAURA does not use synchronized methods due to the

asynchronous relaxation allowed by the point-implicit relaxation

strategy. With only minimal modifications to the code, we are able
to achieve near ideal speedup using the Jalapefio JVM on the Pow-

erPC and a modest speedup of around 3 on the 4-processor Pentium

machine.

4.4 2D_TAG Results

Tables 7 and 8 list the performance of the C and Java versions

of 2D_TAG on the various architectures. The "Startup" time rep-

resents the time spent reading in the original mesh and allocating

and initializing relevant data structures. The "Adapt" time repre-

sents the time spent in refining the mesh. The total running time

of a version is the sum of these times. The "Adapt Time Ratio" for
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Figure 8: Speedup of LAURA-Java on 4-processor Pentium
and on 12-processor PowerPC with Jalapeno. The grids used.
are 24×24×24 (Pentium) and 32×32x32 (PowerPC).

Machine Startup Adapt
(sec) (sec)

Sun Ultra" 1.60 4.01

SG! 0.77 7.89

Pentium 0.58 3.75

PowerPC 1.94 7.17

Table 7: Running times of C version of 2D_TAG for five levels

of refinement. Note that the grid is refined only three times on
the Sun Ultra due to memory constraints.

a Java version is the ratio of its adaptation time to the adaptation

time of the original C version. Smaller values of this ratio indicate

better performance of the Java code. The "GC" time represents the

time spent in garbage collection by the Java versions, as indicated

by the -verbosegc flag. Due to memory constraints, the ini-

tial mesh is refined only three times on the Sun Ultra instead of

five. We tested three Java versions: a procedural version obtained

by a "line-by-line" translation of the original C version; an object-

oriented (O-O) version as described in Section 3.2 that uses Java

arrays to store Element, Edge, and Vertex objects; and an O-O ver-

sion that uses linked lists to store the collections of mesh objects.

Using linked lists avoids array bounds checks and also avoids the

need to preallocate the storage for the final refined mesh. Because

the original C version as well as the other Java versions use arrays

for storage, they require the final mesh size to be specified at run

time. The difference in performance between the three Java ver-

sions gives an imperfect indication of the performance "cost" of

writing object-oriented code.

Generally, the Java versions perform quite well, with the O-O

versions running within 6% of the performance of native code on

the PowerPC using the Jalapefio JVM and within 33% on the Pen-
tium with the IBM JVM. In fact, the O-O versions actually out-

perform the Java procedural version on the PowerPC, SGI, and Sun

Ultra. Examining the hardware counters on the SGI using per rex
shows an increased number of Translation Lookaside Buffer (TLB)

misses in the procedural version. We conjecture that the O-O ver-

sion does a better job of achieving locality in the TLB by encapsu-

lating data in the Vertex, Edge, and Element classes.
One of the main differences between the procedural and O-O

.....................



• Suwc pa_bO,,w_ o s

_0!" J .. "" "

i •
e _

s J 0

2 4 8 8 I

f_o_¢nbq. _ I_,l),a)dm

Figure 9: Speedup of 2D_TAG on 12-processor PowerPC with

Jalapeno.

static partitioning time is 0.20 sec on the PowerPC which is small

compared to the startup and adaptation times of 2D_TAG (see Ta-
ble 8) and is not included in the total running time when computing

speedup. The speedup using this strategy is only slightly better than
with using locks, reaching a maximum speedup of 1.54 when using

12 threads. The poor performance is not due to excessive synchro-
nization but due to load imbalance. Because we are only partition-

ing once, the computational load becomes increasingly imbalanced
with each level of refinement. The solution is to repartition the re-

fined mesh at each step. To simulate more favorable load balancing,

we ran 2D_TAG using "Static Partitioning with Random Marking".

Edges are marked for refinement randomly and not according to a

error criteria. The submeshes remain approximately the same size

during the five levels of refinement, and this fact accounts for the

improved speedup, which reaches 4.71 when using 12 threads. In-

cluding repartitioning times would increase the running times and

reduce these measured speedups somewhat. This is not a realistic

scenario, but in the absence of repartitioning, does demonstrate the

parallel performance of the multithreaded Java version of 2D_TAG

on similarly-sized submeshes.

5. CONCLUSIONS AND FUTURE WORK

We have described the design, implementation, and evaluation

of object-oriented "100% Pure" Java codes for two representative

CFD applications that differ radically in their characteristics. The
flow solver LAURA is structured, largely static, and floating-point

intensive. The mesh adaptation algorithm 2D_TAG is unstructured,

very dynamic, fine-grained, and limited by the speed of object ma-

nipulation. We have demonstrated that LAURA's running time is
almost within a factor of 2 and 2D_TAG's is within a factor of 1.5

of their optimized native, procedural counterparts using current off-

the-shelf Java compilers and JVM technology. We feel that this

level of performance is extremely promising and is susceptible to

further improvement as Java technology matures.
Performance should of course be considered in the larger con-

text of the software design cycle. In both codes, the Java versions

are smaller in size than the original versions: 5300 lines of Java to
14500 lines of Fortran for LAURA, and 1300 lines of Java to 1900

lines of C for 2D_TAG. In addition, the Java versions are much

more modular and hierarchically structured. The Java version of

LAURA contains 49 classes organized in a three-deep inheritance

hierarchy, while the O-O version of 2D_TAG contains eight classes

in a two-deep hierarchy. Such modularization makes it easier to

extend the functionality of the code, e.g.. to add different bound-

ary conditions, gas chemistry options, or relaxation algorithms in

LAURA. Programmer productivity also needs to be considered.
The Java versions of both codes were designed and implemented in

18 months by a single programmer with minimal Java experience

at the beginning of the effort. The original versions, by contrast,

represent many person-years of effort.

The performance of the codes indicates the complex design trade-

offs in JVM implementations and highlights several aspects of JVM

behavior that should be investigated further for high-performance

Java. First, the user can control garbage collection activity only

in very indirect ways, such as by specifying the initial and maxi-

mum heap sizes. The wide variety of GC algorithms, their different

performance characteristics, and the black-box nature of this com-

ponent of the JVM, make this level of user interaction inadequate

for high-performance applications. Greater user interaction with

the garbage collector within the constraints of the Java platform

need to be investigated. Second, the performance of multithread-

ing varies widely among platforms, and needs to be improved to

scale to large numbers of threads.
Regarding future work, we plan to implement a parallel, three-

dimensional version of the 2D_TAG code as well as continue our

experimentation.
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