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ABSTRACT

The computational science community is reluctant to write large-
scale computationally-intensive applications in Java due lo con-
cerns over Java's poor performance, despite the claimed software
engineering advantages of its object-oriented features. Naive Java
implementations of numerical algorithms can perform poorly com-
pared to corresponding Fortran or C implementations. To achieve
high performance, Java applications must be designed with good
performance as a primary goal. This paper presents the object-
oriented design and implementation of two real-world applications
from the field of Computational Fluid Dynamics (CFD): a finite-
volume fluid flow solver (LAURA, from NASA Langley Research
Center), and an unstructured mesh adaptation algorithm (2D.TAG,
from NASA Ames Research Center). This work builds on our pre-
vious experience with the design of high-performance numerical
libraries in Java. We examine the performance of the applications
using the currently available Java infrastructure and show that the
Java version of the flow solver LAURA performs almost within a
factor of 2 of the original procedural version. Our Java version of
the mesh adaptation algorithm 2D_TAG performs within a factor
of 1.5 of its original procedural version on certain platforms. Our
results demonstrate that object-oriented software design principles
are not necessarily inimical to high performance.

1. INTRODUCTION

The Java programming language has many features that are at-
tractive for both general-purpose and scientific computing. Among
them are: support for object-oriented concepts such as inheritance,
encapsulation, and polymorphism that allow the abstraction of com-
mon physical concepts and the development of reusable class li-
braries for them; the architecture-neutrality of Java byte code, which
enables portability across multiple platforms; garbage collection,
which simplifies memory management; and language-level support
for multithreading, which allows paralle! applications to be devel-
oped more easily in Java. However, scientific programs written
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in Java usually run slower than corresponding programs written in
Fortran and C, due either to the intrinsic overhead of these fea-
tures or to the relative immaturity of current Java Virtual Machine
(JVM) implementations. Because high performance is a primary
concern in computational science, that community has been reluc-
tant to adopt Java as the language of choice for numerical applica-
tions.

To demonstrate the viability of high-performance computing in
Java and to encourage its greater adoption in the computational sci-
ence community, several authors have ported numerical libraries
to Java [1. 5, 19]. written Fortran-to-Java translators (8, 10], de-
veloped compilation technology for Java [6, 7. 25], and writien
class libraries to address deficiencies in the Java language for nu-
merical computing [26]). Although these studies demonstrate the
potential of Java for high-performance computing, several factors
limit their usefulness in determining whether large-scale scientific
applications written in Java can achieve high performance. First,
numerical and class libraries form only part of such applications.
The only previous ports of large-scale codes to Java that we know
of are a geophysical simulation by Jacob et al. [20] and a parallel
multi-pass renderer by Yamauchi et al. {31]. Second, “line-by-line”
translations of procedural codes written in Fortran or C to Java do
not exploit object-oriented techniques, one of the main advantages
to programming in Java.

The primary goal of the work described in this paper is to demon-
strate that realistic scientific applications can be written in Java that
make full use of the language’s object-oriented capabilities and still
show good performance on current standards-conforming JVM im-
plementations. Secondary goals include characterizing the perfor-
mance and identifying the bottlenecks in different JVM implemen-
tations, identifying design principles for portable high-performance
object-oriented software in Java, and making available additional
benchmarks for the high-performance Java community. It is our
thesis that in order to achieve high performance with such appli-
cations, one must consciously design for performance in both the
definition and the implementation of the software components that
comprise them. We choose two real-world examples from the field
of Computational Fluid Dynamics (CFD) for our study. The first
example is the Langley Aerothermodynamic Upwind Relaxation
Algorithm (LAURA) [9, 12], a finite-volume flow solver devel-
oped at NASA Langley Research Center for multiblock, structured
grids. LAURA has been widely used to compute hypersonic, vis-
cous, reacting-gas flows over reentry vehicles such as the Shut-
tle Orbiter [14], the Mars Pathfinder [24], and the X-33 Reusable
Launch Vehicle {15). The second example is the Two-Dimensional
Triangular Adaptive Grid (2D_TAG) code [27] developed at NASA
Ames Research Center for adaptation of unstructured meshes. This
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Figure 2: Block class abstraction.
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Figure 3: Flowfield class abstraction.
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BlockFace, to minimize the effects of adding new chemistry mod-
els and boundary conditions to the software. The GasProperties
class is subclassed for each particular chemistry model. Currently,
only the perfect gas model is supported in the Java version as it is
the only gas model available in the version of LAURA released to
us by NASA Langley Research Center. The BlockFace class is sub-
classed for each of four different boundary conditions. Diagrams
showing the geometry and flowfield class abstractions are given in
Figures 2 and 3. The EquilAir and NonequilAir classes pictured in
Figure 3 are not currently implemented, but illustrate how subclass-
ing would be used to extend the abstract GasProperties class in a
full-featured version of LAURA. Where possible, only references
1o the abstract base classes are made.

2.2.1 Design Patterns

Gamma et al. [11] define design patterns as “descriptions of
communicating objects and classes that are customized to solve
a general design problem in a particular context.” Our Java code
uses the Factory creational pattern to manage the construction of
the various geometric objects and the Singleton creational pattern
to control access to atmospheric constants. However, there are ad-
ditional design patterns that we did not use. The lterators pattern
would be useful in sweeping over a block, but the multidimensional
array package we use does not contain them. The Strategy pattern
would be useful in managing changes to the choice of relaxation
algorithms. We did not use it in our version because the original
Fortran version of LAURA supports only one relaxation algorithm.

2.2.2  Multithreading

We added multithreading by subdividing a single block into mul-
tiple blocks and assigning a Java thread to each sub-block. This
follows the domain decomposition strategy used to parallelize the
original Fortran version of LAURA for distributed machines [28].
In this multithreaded version, two Block objects will share a single
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Figure 4: An example of an unstructured mesh.

BlockFace object. Conflicts may occur if each Block tries to mod-
ify the shared BlockFace at the same time. Java provides a monitor
locking mechanism with the synchronized keyword for per-
forming mutual exclusion on an object. Use of synchronized
for the appropriate methods is the safest approach to handling this
block interface conflict in that it prevents an inconsistent update
of the boundary cells and cell faces at the boundary between two
blocks. However, by using the point-implicit relaxation strategy,
blocks may be relaxed asynchronously. Blocks do not need to be
kept in lock step at the same iteration level. For this algorithmic
reason, our code does not use the synchronized keyword.

3. 2D.TAG

2D_TAG [4, 27] is a two-dimensional, unstructured mesh adapta-
tion scheme that locally refines and/or coarsens the computational
grid. Itis written in C and is a simplified version of a corresponding
three-dimensional algorithm. Biswas and Strawn [4] describe the
details of the algorithm. Oliker and Biswas [27] discuss its perfor-
mance under different parallel processing strategies.

It is important to note here the different roles of a mesh adap-
tation algorithm like 2D_TAG and a flow solver like LAURA. A
mesh adaptation code is a tool used to support the flow solver by
concentrating the solver’s computation in regions of interest such as
shocks and shear flows. During the computation of a steady-state
flow field, the mesh is adapted infrequently, on the order of once
every several hundred solver iterations. In this scenario, the mesh
adaptation may consume 5% of the total running time. For time-
dependent calculations, the mesh is adapted much more frequently
and may account for 30-40% of the total computation time. Good
performance of both the solver and of the mesh adaptation scheme
is therefore desirable.

3.1 Algorithm

A mesh is described as a collection of two-dimensional triangu-
lar elements, as shown in Figure 4. The mesh is unstructured in
that there is no logical ordering of an element and its neighbors as
with the structured grids used with LAURA. The mesh is locally
adapted. This involves adding points to the existing grid in regions
where some user-specified error indicator is high, and removing
points from regions where the indicator is low. The advantage of



Figure 6: Side view of the 10x10x10 grid around the
paraboloid.

Mesh Vertices  Triangles Edges

Initial 14,605 28,404 43,009

Level 1 | 26,189 59,000 88,991

Level 2 | 62926 156,498 235,331

Level 3 | 169,933 441,147 662,344

Level 4 | 380,877 1,003,313 1,505,024

Level 5 | 488,574 1,291,834 1,935,619

Table 2: Progression of grid sizes through five levels of adapta-
tion.

We use the computational mesh over an airfoil to test the perfor-
mance of 2D_TAG. This is the same test case used by Oliker and
Biswas [27]. For an actual flow simulation over an airfoil travel-
ing at transonic Mach numbers, shocks form on both the upper and
lower surfaces of the airfoil. The mesh is typically refined in the
area containing the shocks as well as around the stagnation point
located at the leading edge of the airfoil. This scenario is simulated
by geometrically refining the mesh in these regions. The actual test
case consists of reading the initial coarse mesh into 2D_TAG and
proceeding through five levels of refinement. Table 2 gives the re-
sulting grid sizes at each level of refinement. Note that the final
mesh is more than 40 tiries larger than the initial one. Figure 7
shows a close-up view of the initial mesh.

4.2 Testing Environment

Table 3 lists the platforms and JVMs we used for measuring per-
formance. All JVMs were run using Just-In-Time (JIT) compilation
and with garbage collection enabled. All machines were relatively
unloaded at the time of each test, and several runs were made at

r 1 "
RIS AR AN
AvaVAVAY, KD <550
A TAYA T e S8 STAVAV, A AL Y2
AN JIEX

V!
%av;

4!

SAAVAYAVLY, AVAVAVav,y.
\ 25
1/

- WAVAVLY, &V, e
% AV, 45""

52

A

s VAYs
ORAZ
FAVA AV

AV
2

[\
V‘e

AV
YOS
v, ‘VA%'AeA#A"e
LN NAZOQANN

N
V4

KT
9

Figure 7: Close-up view of the initial mesh around the airfoil.

each test condition with the best time recorded. The initial and
maximum heap sizes were set using the -Xms and -Xmx options
to values on the order of 500 MB 1o discourage excessive garbage
collection. The typical variation in run times was less than 1 sec-
ond for run times on the order of 60 seconds. All JVMs are freely
available except for Jalapefio [2, 7), a research JVM developed at
IBM T.J. Watson Research Center. Although the Jalapefio JVM
contains an optimizing JIT compiler, it is not tuned for scientific
codes. For instance, it does not perform traditional optimizations
for scientific computing such as loop unrolling. Jalapefio also has
an adaptive compiler using dynamic feedback(3] that may recom-
pile methods at different optimization levels during the course of a
code’s execution. We chose to use Jalapefio’s optimizing compiler
instead, because it provided us with more control over optimization
options.

4.3 LAURA Results

Tables 4 and 5 give the performance of the single-precision, na-
tive and Java versions of LAURA on the different platforms. Run-
ning times are normalized by the total number of cells and itera-
tions. The times are normalized to help show variations in running
time with grid size and to help determine running time for different
grid sizes and iteration counts. Recall that the C version of LAURA
(see Section 2.1) does not contain the copying to and from tempo-
rary work arrays that is present in the original Fortran version. We
consider the performance of the C version to be the benchmark
against which the performance of the Java version should be com-
pared.

Several observations regarding the timing measurements are in
order.

1. As shown in Table 5. the performance of the Java version
of LAURA is within a factor of 3 of the corresponding C
version on the Sun Ultra and the Pentium when using the
Sun JVM and within a factor of 2.5 on the Pentium when
using the IBM JVM. The fastest Java version on the PowerPC
with the Jalapefio JVM is still 3 times slower than the native
C version. The focus of the Jalapefio JVM research project
has not been on optimization of scientific codes and floating
point calculations.

2. The relative perforrance of the Java version on the SGI is



[ JvM Grid IBM [26] Colt(18] Native
Java
SunJDK 1.3.0 [| 10x10x10 493 51.6 51.7
20x20x20 558 375 58.0
40x40x 40 60.0 64.9 64.7
IBMJDK 1.3.0 || 10xI0x10 394 94 395
20x20x20 39.8 40.0 40.2
40x40x40 440 45.8 46.2

Table 6: Time per cell per iteration (usec) of LAURA-Java us-
ing different array packages on Pentium.

is more difficult in that many of the array bounds checks may
have already been removed by the -01 and -02 optimiza-

tion levels.

Because a run with the -00 -no-bounds-

checks options was not made, we hesitate to draw defini-
tive conclusions from the data except to say that array bounds
checks (difference between -02 and -02 -no-bounds-
checks times) account for at least 4% of the total running

time.
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Figure 8: Speedup of LAURA-Java on 4-processor Pentium
and on 12-processor PowerPC with Jalapeno. The grids used-
are 24 x24x 24 (Pentium) and 32x32x32 (PowerPC).

4.3.1 Array Packages

We next examine the effect of the multidimensional array pack-
age on the performance of LAURA. Table 6 lists the performance of
several versions of LAURA on the Pentium, each using a different
array package 1o manage the collections of geometric objects found
in a block. The performance of LAURA using native Java arrays is
also listed. The conventional wisdom is that native Java arrays are
inefficient due to the array bounds checking that Java requires and
the possible lack of data locality of the Java “array of arrays” [26].
While this statement is certainly true, it must be evaluated in terms
of the actual application. Unlike many other CFD applications, we
are not using multidimensional arrays in LAURA to store primitive
floating-point values such as pressure, velocity, and density, nor are
we using arrays to perform matrix factorization or multiplication.
In the case of LAURA, we are using multidimensional arrays as
containers of Cell, CellFace, and Point objects which in turn store
the primitive data. Most of the running time is spent in getting this
data from memory to the registers and then executing floating point
operations with them. The time spent in get and set operations
in the various array packages is small in comparison. Therefore,
the choice of array packages has little impact on the performance
of LAURA.

4.3.2 Multithreaded Performance

Figure 8 shows the multiprocessor speedup of the Java version of
LAURA on the 4-processor Pentium machine and the 12-processor
PowerPC machine. As mentioned in Section 2.2.2, our Java ver-
sion of LAURA does not use synchronized methods due to the
asynchronous relaxation allowed by the point-implicit relaxation
strategy. With only minimal modifications to the code, we are able
to achieve near ideal speedup using the Jalapefio JVM on the Pow-
erPC and a modest speedup of around 3 on the 4-processor Pentium
machine.

4.4 2D_TAG Results

Tables 7 and 8 list the performance of the C and Java versions
of 2D_TAG on the various architectures. The “Startup” time rep-
resents the time spent reading in the original mesh and allocating
and initializing relevant data structures. The “Adapt” time repre-
sents the time spent in refining the mesh. The total running time
of a version is the sum of these times. The “Adapt Time Ratio” for

Machine Startup  Adapt
(sec) (sec)

Sun Ulwra® 1.60 4.01
SGI 0.77 7.89
Pentium 0.58 375
PowerPC 1.94 7.17

Table 7: Running times of C version of 2D_TAG for five levels
of refinement. Note that the grid is refined only three times on
the Sun Ultra due to memory constraints.

a Java version is the ratio of its adaptation time to the adaptation
time of the original C version. Smaller values of this ratio indicate
better performance of the Java code. The “GC" time represents the
time spent in garbage collection by the Java versions, as indicated
by the -verbosegc flag. Due to memory constraints, the ini-
tial mesh is refined only three times on the Sun Ultra instead of
five. We tested three Java versions: a procedural version obtained
by a “line-by-line” translation of the original C version; an object-
oriented (O-O) version as described in Section 3.2 that uses Java
arrays to store Element, Edge, and Vertex objects; and an O-O ver-
sion that uses linked lists to store the collections of mesh objects.
Using linked lists avoids array bounds checks and also avoids the
need to preallocate the storage for the final refined mesh. Because
the original C version as well as the other Java versions use arrays
for storage, they require the final mesh size to be specified at run
time. The difference in performance between the three Java ver-
sions gives an imperfect indication of the performance “cost” of
writing object-oriented code.

Generally, the Java versions perform quite well, with the O-O
versions running within 6% of the performance of native code on
the PowerPC using the Jalapeiio JVM and within 33% on the Pen-
tium with the IBM JVM. In fact, the O-O versions actually out-
perform the Java procedural version on the PowerPC, SGI, and Sun
Ultra. Examining the hardware counters on the SGI using perfex
shows an increased number of Translation Lookaside Buffer (TLB)
misses in the procedural version. We conjecture that the O-O ver-
sion does a better job of achieving locality in the TLB by encapsu-
lating data in the Vertex, Edge, and Element classes.

One of the main differences between the procedural and O-O
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Figure 9: Speedup of 2D_TAG on 12-processor PowerPC with
Jalapeno.

static partitioning time is 0.20 sec on the PowerPC which is small
compared to the startup and adaptation times of 2D_TAG (see Ta-
ble 8) and is not included in the total running time when computing
speedup. The speedup using this strategy is only slightly better than
with using locks, reaching 2 maximum speedup of 1.54 when using
12 threads. The poor performance is not due to excessive synchro-
nization but due to load imbalance. Because we are only partition-
ing once, the computational load becomes increasingly imbalanced
with each level of refinement. The solution is to repartition the re-
fined mesh at each step. To simulate more favorable load balancing,
we ran 2D_TAG using “Static Partitioning with Random Marking”.
Edges are marked for refinement randomly and not according to a
error criteria. The submeshes remain approximately the same size
during the five levels of refinement, and this fact accounts for the
improved speedup, which reaches 4.71 when using 12 threads. In-
cluding repartitioning times would increase the running times and
reduce these measured speedups somewhat. This is not a realistic
scenario, but in the absence of repartitioning, does demonstrate the
parallel performance of the multithreaded Java version of 2D_TAG
on similarly-sized submeshes.

5. CONCLUSIONS AND FUTURE WORK

We have described the design, implementation, and evaluation
of object-oriented *“100% Pure” Java codes for two representative
CFD applications that differ radically in their characteristics. The
flow solver LAURA is structured, largely static, and floating-point
intensive. The mesh adaptation algorithm 2D_TAG is unstructured,
very dynamic, fine-grained, and limited by the speed of object ma-
nipulation. We have demonstrated that LAURA’s running time is
almost within a factor of 2 and 2D_TAG's is within a factor of 1.5
of their optimized native, procedural counterparts using current off-
the-shelf Java compilers and JVM technology. We feel that this
level of performance is extremely promising and is susceptible to
further improvement as Java technology matures.

Performance should of course be considered in the larger con-
text of the software design cycle. In both codes, the Java versions
are smaller in size than the original versions: 5300 lines of Java to
14500 lines of Fortran for LAURA, and 1300 lines of Java to 1900
lines of C for 2D_TAG. In addition, the Java versions are much
more modular and hierarchically structured. The Java version of
LAURA contains 49 classes organized in a three-deep inheritance

hierarchy, while the O-O version of 2D_TAG contains eight classes
in a two-deep hierarchy. Such modularization makes it easier to
extend the functionality of the code. e.g.. to add different bound-
ary conditions, gas chemistry options. or relaxation algorithms in
LAURA. Programmer productivity also needs to be considered.
The Java versions of both codes were designed and implemented in
18 months by a single programmer with minimal Java experience
at the beginning of the effort. The original versions, by contrast,
represent many person-years of effort.

The performance of the codes indicates the complex design trade-
offs in JVM implementations and highlights several aspects of JVM
behavior that should be investigated further for high-performance
Java. First, the user can control garbage collection activity only
in very indirect ways, such as by specifying the initial and maxi-
mum heap sizes. The wide variety of GC algorithms, their different
performance characteristics, and the black-box nature of this com-
ponent of the JVM, make this level of user interaction inadequate
for high-performance applications. Greater user interaction with
the garbage collector within the constraints of the Java platform
need to be investigated. Second. the performance of multithread-
ing varies widely among platforms, and needs to be improved to
scale to large numbers of threads.

Regarding future work, we plan to implement a parallel, three-
dimensional version of the 2D_TAG code as well as continue our
experimentation.
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