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SUMMARY

In this paper we present a platform independent analysis of the dynamic profiles of Java programs when
executing on the Java Virtual Machine. The Java programs selected are taken from the Java Grande Forum
benchmark suite and five different Java-to-bytecode compilers are analysed. The results presented describe
the dynamic instruction usage frequencies, as well as the sizes of the local variable, parameter and operand
stacks during execution on the JVM.

These results, presenting a picture of the actual (rather than presumed) behaviour of the JVM, have
implications both for the coverage aspects of the Java Grande benchmark suites, for the performance of the
Java-to-bytecode compilers and for the design of the JVM. Copyright c© 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Java paradigm for executing programs is a two stage process. Firstly the source is converted into a
platform independent intermediate representation, consisting of bytecode and other information stored
in class files [1]. The second stage of the process involves hardware specific conversions, perhaps
by a JIT compiler for the particular hardware in question, followed by the execution of the code. The
problem addressed by this research is that while there exist static tools such as class file viewers to look
at this intermediate representation (e.g. [2]), there is currently no easy way of studying the dynamic
behaviour at this point in the program. This research therefore sets out to perform dynamic analysis at
the platform independent level and investigate whether or not useful results can be gained. In order to
test the technique, the Java Grande Forum’s benchmark suite [3,4] was used.
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The remainder of this paper is organized as follows. Section 2 discusses the background to this work,
including the rationale behind bytecode-level dynamic analysis, and the test suite used. Sections 3
and 4 summarize the profiles of each of the Grande programs studied. In particular, Section 3 presents
a method-level view of the dynamic profile, while Section 4 presents a more detailed bytecode-level
view. Sections 5 and 6 discuss some of the issues that can affect these figures. Section 5 discusses
the influence of compiler choice on dynamic analysis, and describes the variations caused by five of
the most common Java compilers. Section 6 profiles the method stack frame sizes, since the size and
distribution of data on the stack has an influence on the position-specific bytecodes used (e.g. iconst 1).
Section 7 concludes the paper.

2. BACKGROUND

The increasing prominence of internet technology and the widespread use of the Java programming
language has given the Java Virtual Machine (JVM) a unique position in the study of compilers and
related technologies. To date, much of this research has concentrated in two main areas:

• static analysis of Java class files, for purposes such as optimization [5] or compression [6];
• the performance of the bytecode interpreter, yielding techniques such as just-in-time (JIT) (e.g.

[7,8]) and hotspot-centred compilation (see [9] for a survey).

The platform-independent bytecode analysis presented in this paper describes the bytecode as
it is interpreted, without the interference of JIT compilation or any machine-specific issues. The
virtual machine is instrumented and run in interpretative mode for the purpose of making dynamic
measurements. The JIT compiler is not used during the gathering of this data, but we feel the resulting
data will be of use to those involved in the design or implementation of JIT compilers and JVMs.
This type of analysis can help to clarify the potential impact of the data gained from static analysis,
can provide information on the scope and coverage of the test suite used and can act as a basis for
machine-dependent studies.

The production of bytecode for the JVM is, of course, not limited to a single Java-to-bytecode
compiler. Not only is there a variety of different Java compilers available, but there are also compilers
for extensions and variations of the Java programming language, as well as for other languages such as
Eiffel [10] and ML [11], all targeted on the JVM. In previous work we have studied the impact of the
choice of source language on the dynamic profiles of programs running on the JVM [12]. The compiler
comparisons presented in this paper help to calibrate this and other such studies by showing the effect
of compiler choice on the data collected.

2.1. Dynamic bytecode-level analysis

The static bytecode frequency, which is the number of times a bytecode appears in a class file or
program, has been studied in [6]. A wide difference was found between the bytecodes appearing in
different class files, with each class file using on average 25 different bytecodes. The dynamic frequency
of an instruction is the number of times it is executed during a program run. Dynamic bytecode analysis
is a valuable technique for studying the behaviour of Java Programs and the design of the JVM. Even
though the majority of Java code executed may now be using some form of JIT compiler, dynamic
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analysis of interpreted bytecode usage and associated dynamic analysis of stack frame usages can
provide valuable information for the profiling of programs and for the design and implementation of
virtual machines.

The output of a dynamic bytecode analysis will therefore be important for the design of both Java-
to-bytecode and JIT bytecode-to-native compilers. Also of particular interest is the instruction set used
by an intermediate representation to implement platform independence. By dynamically analysing
the Java bytecodes, lessons may be drawn to facilitate construction of more efficient intermediate
representations for both procedural object-oriented programming languages like Java and programming
languages from different categories.

Speed comparisons of the Java Grande benchmark suite using different Java platforms have been
performed [3,4] and differences in execution times have been found. However, it has not been known
whether the resulting differences measured have been due to the Java compiler, the JIT compiler
or the virtual machine implementation on the particular underlying operating system and hardware
architecture. This paper shows, by means of the dynamic bytecode analysis technique, that the
bytecodes executed by a particular Grande application are very similar for a wide variety of Java
compilers, implying compiler choice is not the main explanation of execution speed variations for
these programs. In addition, it is possible to study how representative of Grande-size programs the
chosen benchmark suite is.

In order to study dynamic method usage, it was necessary to modify the source code of a JVM.
Kaffe [13] is an independent implementation of the JVM distributed under the GNU Public License.
It comes with its own standard class libraries, including Beans and Abstract Window Toolkit (AWT),
native libraries, and a configurable virtual machine with a JIT compiler for enhanced performance.
Kaffe version 1.0.6 was used for these measurements. The results will be the same for any virtual
machine using the platform independent dynamic technique, except where there are differences in the
Java API library source code, the execution of which we record seperately. The changes to the Kaffe
virtual machine, together with the raw data and the tools to analyse it, are available from the authors.

2.2. Grande programs measured

A Grande application is one which uses large amounts of processing, I/O, network bandwidth or
memory. The Java Grande Forum benchmark suite [3,4] is intended to be representative of such
applications and thus provides a basis for measuring and comparing alternative Java execution
environments. It is intended that the suite should include not only applications in science and
engineering, but also, for example, corporate databases and financial simulations. The applications
in the suite are as follows.

• The euler benchmark solves a set of equations using a fourth-order Runge–Kutta method. This
suite demonstrates a considerable clustering of functionality in the Tunnel class, as well as a
comparatively high percentage of methods with very large local variable requirements.

• The moldyn benchmark is a translation of a Fortran program designed to model the interaction
of molecular particles. Its origin as non-object-oriented code probably explains its relatively
unusual profile, with a few methods which make intensive use of fields within the class, even
for temporary and loop-control variables. This program may still represent a large number of
Grande-type applications that will initially run on the JVM.
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• The montecarlo benchmark is a financial simulation using Monte Carlo techniques to price
products derived from the price of an underlying asset. Its use of classical object-oriented get and
set methods accounts for the relatively high proportion of methods with no temporary variables
and 1 or 2 parameters (including the this-reference).

• The raytracer measures the performance of a 3D ray tracer rendering a scene containing 64
spheres. It is represented using a fairly shallow inheritance tree, with functionality (as measured
in methods) fairly well distributed throughout the classes.

• The search benchmark solves a game of connect-4 on a 6 × 7 board using alpha-beta pruning.
Intended to be memory and numerically intensive, this is also the only application to demonstrate
an inheritance hierarchy of depth greater than two.

Version 2.0 of the benchmark suite (Size A) was used. The default Kaffe maximum heap size of
64 M was sufficient for all programs except mon, which needed a maximum heap size of 128 M. The
ray application failed its validation test when interpreted, but as the failure was by a small amount, it
was included in the measurements. All of the applications discussed in Sections 3 and 4 were compiled
using SUN’s javac compiler, standard edition (JDK build 1.3.0-C). It should be noted that the JIT
compiler was not used and the bytecodes were dynamically interpreted to generate the measurements.

3. DYNAMIC METHOD EXECUTION FREQUENCIES

In this section we present our dynamic profile of the Grande programs studied. Here we partition the
execution profiles based on methods, since these provide both a logical source of modularity at source-
code level, as well as a likely unit of granularity for hotspot analysis [14,15]. It should be noted that
these figures are not the usual time-based analysis such as found in, e.g., [3,4] for the Java Grande suite,
or [16] for the SPEC98 suite. Rather, the figures are based on the more platform-independent method
frequency and bytecode usage analyses. We believe the platform-independent dynamic measurements
capture different (and useful) information compared to time-based measurements. For example the
trade-off in JIT compilation could be better based on the number of times a bytecode would be
interpreted, rather than the underlying time its execution would take in the run time environment. It
should be noted that all measurements in this paper were made with the Kaffe API library, which may
differ from other Java API libraries.

Table I shows measurements of the total number of method calls including native calls by Grande
applications. For the programs studied, on average 14.3% of methods are API methods which are
implemented by native code. As the benchmark suite is written in Java it is possible to conclude that
any native methods are in the API. This paper is confined to studying how the Java methods execute.
Table I must be interpreted carefully as it is a method frequency table, without reference to bytecode
usage and so may not correlate with eventual running times. For example, there is no guarantee that
API methods have the same bytecode frequencies or execution times as non-API methods.

The figures on the left of Table II show measurements of the Java method calls excluding native
calls. A more detailed view is given by the figures on the right of Table II which show the number of
bytecodes executed for each application. While nearly 70% of method calls are directed to non-API
methods, Java method execution is even more focused (92% on average) in the non-API bytecodes
of the programs. This is a significant difference from traditional Java applications such as applets or

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:459–484



PLATFORM INDEPENDENT DYNAMIC JVM ANALYSIS 463

Table I. Measurements of total number of method calls
including native calls by Grande applications, compiled
using SUN’s javac compiler. Also shown is the percentage
of the total which are in the API, and percentage of total

which are both in the API and are native methods.

Total API
Program methods API % native %

eul 3.34 × 107 58.0 12.6
mol 5.49 × 105 22.7 19.9
mon 8.07 × 107 98.7 37.4
ray 4.58 × 108 3.1 1.6
sea 7.12 × 107 0.0 0.0

ave 1.29 × 108 36.5 14.3

Table II. Measurements of Java method calls excluding native calls
made by Grande applications compiled using SUN’s javac compiler.

Java method calls bytecodes executed

Program Number % in API Number % in API

eul 2.92 × 107 51.9 1.46 × 1010 0.5
mol 4.40 × 105 3.4 7.60 × 109 0.0
mon 5.05 × 107 97.9 2.63 × 109 38.0
ray 4.50 × 108 1.5 1.18 × 1010 0.1
sea 7.12 × 107 0.0 7.10 × 109 0.0

ave 1.20 × 108 30.9 8.75 × 109 7.7

compiler-type tools which spend most of the time in the API [17]. Mixed compiled interpreted systems
which precompile the API methods to some native format will therefore not be as effective at speeding
up Grande applications like these. The finding that API usage is very low may imply that the benchmark
suite may not be fully representative of a broad range of Grande applications. It is interesting to observe
that while 98% of Java methods are API for the mon benchmark, these account for only 38% of the
bytecodes executed. Again, this point highlights the greater information provided by a bytecode-level
analysis.

Table III shows dynamic measurements of the Java API package method call percentages and
Table IV shows API bytecode percentages. The figures in these two tables are broadly similar, implying
the API methods each execute the same number of bytecodes. As would be expected for the programs
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Table III. Breakdown of Java (non-native) API method dynamic
usage percentages by package for Grande applications compiled using
SUN’s javac compiler. The percentages show the number of non-

native API method calls directed to methods in each package used.

Package eul mol mon ray sea ave

io 2.4 2.9 0.0 0.0 3.0 1.7
lang 97.6 82.3 2.3 100.0 80.2 72.5
net 0.0 0.8 0.0 0.0 1.1 0.4
text 0.0 0.3 0.0 0.0 0.0 0.1
util 0.0 13.7 97.6 0.0 15.7 25.4

Table IV. Breakdown of Java (non-native) API bytecode percentages
by package for Grande applications compiled using SUN’s javac
compiler. The percentages show the proportion of (non-native) API

bytecodes executed from each package.

Package eul mol mon ray sea ave

io 7.6 1.2 0.3 0.0 1.2 2.1
lang 92.2 69.5 2.0 99.3 69.6 66.5
net 0.0 1.1 0.0 0.0 1.3 0.5
text 0.0 0.6 0.0 0.0 0.0 0.1
util 0.1 27.6 97.7 0.7 28.0 30.8

considered, the applet and awt packages are not used at all as graphics have been removed from the
benchmarks. A Grande application should use large amounts of processing, I/O, network bandwidth
or memory, yet it is interesting to note how little of the API packages are dynamically used by this
benchmark suite.

Tables V and VI present two contrasting analyses of method usage. Table V ranks methods based on
the frequency with which they are called at run-time. Table VI on the other hand ranks methods based
on the proportion of total executed bytecodes that they account for. The figures in Table V are related
to the method reuse factor as described in [16], proposed as an indication of the benefits obtained
from JIT compilation. However, we suggest that the difference in rankings between Tables V and VI
shows that the method-call figures do not give a full picture of where the program is spending its time.
The difference is most striking in mol, where Table V seems to show an equal distribution of effort
between four methods, yet Table VI clearly shows that just one method, particle.force(), accounts for
the majority of the bytecodes executed. In fact, particle.force() contains a significant loop, while the
other three methods do not contain any loop at all.
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Table V. Dynamic method execution frequencies for the most frequently called methods for the Grande
applications, compiled using SUN’s javac compiler. The percentage represents the proportion of the total number

of (non-native) method calls that were calls to this method during the program’s execution.

Methods from %

eul
java.lang.Math.abs 28.1
java.lang.Object.<init> 22.4
Statevector.<init> 22.4
Statevector.svect 22.0
Vector2.dot 2.1
Vector2.magnitude 1.6
java.io.StreamTokenizer.lookup 0.3
java.io.StreamTokenizer.chrRead 0.2

mol
particle.velavg 23.3
particle.mkekin 23.3
particle.force 23.3
particle.domove 23.3
random.update 1.8
java.lang.String.indexOf 1.2
random.seed 0.7
java.lang.Object.<init> 0.7

mon
java.util.Random.next 50.4
java.util.Random.nextDouble 25.2
java.util.Random.nextGaussian 19.8
java.lang.StringBuffer.append 0.6
java.lang.Object.<init> 0.4
PathId.get dTime 0.2
java.lang.Math.abs 0.2
java.lang.Character.forDigit 0.2

ray
Vec.dot 47.7
Vec.sub2 23.6
Sphere.intersect 23.1
java.lang.Object.<init> 1.3
Vec.<init> 0.8
Vec.normalize 0.6
Isect.<init> 0.6
RayTracer.intersect 0.4

sea
Game.wins 46.5
SearchGame.ab 10.3
Game.makemove 10.3
Game.backmove 10.3
TransGame.hash 9.3
TransGame.transpose 5.3
TransGame.transtore 4.0
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Table VI. Dynamic method bytecode percentages for the Grande applications, compiled using SUN’s javac
compiler. The percentages in this table represent the proportion of the total number of bytecodes executed by

the program that belonged to this method.

Methods from %

eul
Tunnel.calculateR 51.3
Tunnel.calculateDamping 16.0
Tunnel.doIteration 8.7
Tunnel.calculateG 6.6
Tunnel.calculateF 6.6
Tunnel.calculateStateVar 4.1
Tunnel.calculateDeltaT 3.3
Statevector.svect 1.5

mol
particle.force 99.6
particle.mkekin 0.1
particle.domove 0.1
md.runiters 0.1
random.update 0.0
random.seed 0.0
random.<init> 0.0
particle.velavg 0.0

mon
ReturnPath.computeVariance 19.0
java.util.Random.next 17.4
java.util.Random.nextGaussian 12.4
ReturnPath.computeMean 10.6
MonteCarloPath.computeFluctuationsGaussian 10.3
MonteCarloPath.computePathValue 8.0
RatePath.getReturnCompounded 7.6
java.util.Random.nextDouble 7.3

ray
Vec.dot 32.8
Sphere.intersect 29.5
Vec.sub2 19.8
RayTracer.intersect 14.0
Vec.normalize 1.0
RayTracer.shade 1.0
Vec.<init> 0.3
Vec.comb 0.3

sea
Game.wins 32.6
SearchGame.ab 30.7
TransGame.hash 8.2
Game.makemove 8.1
Game.backmove 7.9
TransGame.transpose 7.3
TransGame.transput 3.8
TransGame.transtore 0.6
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Figure 1. Average dynamic bytecode percentages for the 10 hottest methods for the Grande
applications compiled using SUN’s javac compiler. That is, 47.1% of bytecodes executed were in

the hottest method, 18.7% in the second hottest, etc.

Figure 1 shows that on average, for the Grande programs studied, 66% as measured by bytecode use
of the execution time is spent in the top two methods.

4. DYNAMIC BYTECODE EXECUTION FREQUENCIES

In this section we present a more detailed view of the dynamic profiles of the Grande programs studied
by considering the frequencies of the different bytecodes used. These figures help to provide a detailed
description of the nature of the operations being performed by each program, and thus give a picture
of the aspects of the JVM actually being tested by the suite. This also provides an alternative to typical
time-based analysis, which, while useful for efficiency analysis, can be considerably influenced by the
underlying architecture’s proficiency in dealing with different types of bytecode instructions.

Table VII shows total (API and non-API) dynamic bytecode usage frequencies by Grande
applications. The JVM instruction set has special efficient load and store instructions for the first
four local variable array entries and less efficient generic instructions for higher local variable array
positions. The first thing that stands out from Table VII is that for mol, sea and eul the highest frequency
instruction is a generic load, rather than an efficient load from one of the first four elements of the local
variable array. For mol one third of instructions are a single load of this type.
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Table VII. Total (API and non-API) dynamic bytecode usage frequencies by Grande applications compiled using
SUN’s javac compiler. The top 35 instructions are presented for each application.

eul mol mon ray sea

iload 19.7 dload 33.3 aload 0 16.8 getfield 26.1 iload 13.2
aaload 18.2 iload 7.0 getfield 13.7 aload 0 16.1 aload 0 8.6
getfield 16.2 dstore 6.8 iload 1 4.8 aload 1 10.9 getfield 7.3
aload 0 8.3 dcmpg 5.5 daload 4.6 dmul 6.5 iaload 5.4
dmul 4.1 dsub 4.7 dload 4.1 dadd 4.7 istore 5.3
dadd 4.0 dmul 4.3 ldc2w 4.1 dsub 3.7 ishl 4.3
putfield 3.3 getfield 4.3 dmul 3.4 putfield 3.1 bipush 3.8
iconst 1 3.2 getstatic 4.3 dadd 3.3 aload 2 2.8 iload 1 3.6
dload 2.8 aaload 4.2 if icmplt 3.1 dload 2 1.9 iadd 3.5
daload 2.0 dcmpl 4.1 putfield 3.1 dreturn 1.9 iand 3.5
isub 2.0 dneg 4.1 iinc 3.0 invokestatic 1.9 iload 2 2.6
dup 1.7 ifge 4.1 iload 2 2.7 invokevirtual 1.9 iload 3 2.5
aload 3 1.5 ifle 4.1 bipush 2.4 iload 1.8 iconst 1 2.3
dsub 1.4 dadd 3.4 dsub 2.0 aload 1.3 ior 2.3
aload 1.3 ifgt 1.4 invokevirtual 1.9 dload 1.1 iconst 2 2.1
aload 2 1.3 if icmplt 1.4 isub 1.7 dcmpg 1.0 dup 2.0
iadd 1.1 iinc 1.4 dstore 1.6 dconst 0 1.0 iinc 1.7
iload 3 1.1 dload 1 1.0 dastore 1.5 dstore 1.0 ifeq 1.6
ldc2w 1.1 aload 0 0.1 dup 1.5 ifge 1.0 iastore 1.5
dstore 1.0 putfield 0.1 iload 3 1.5 return 1.0 iconst 4 1.4
ddiv 0.6 aastore 0.0 ladd 1.5 aaload 0.9 iconst 5 1.4
aload 1 0.4 aconst null 0.0 invokestatic 1.2 aconst null 0.9 if icmplt 1.4
dconst 0 0.4 aload 0.0 ddiv 1.1 areturn 0.9 if icmple 1.3
dload 1 0.3 aload 1 0.0 i2l 1.0 arraylength 0.9 dup2 1.0
dload 3 0.3 aload 2 0.0 iconst 1 1.0 astore 0.9 invokevirtual 1.0
if icmplt 0.3 aload 3 0.0 ireturn 1.0 dstore 2 0.9 if icmpgt 0.9
iinc 0.3 anewarray 0.0 l2i 1.0 if icmplt 0.9 isub 0.9
dastore 0.2 areturn 0.0 land 1.0 ifnull 0.9 istore 3 0.8
dstore 1 0.2 arraylength 0.0 lmul 1.0 iinc 0.9 ldc1 0.8
dstore 3 0.2 astore 0.0 lushr 1.0 dload 1 0.2 iconst 0 0.7
dcmpg 0.1 astore 0 0.0 dreturn 0.9 dcmpl 0.1 ifne 0.7
dload 0 0.1 astore 1 0.0 aload 1 0.8 ddiv 0.1 imul 0.7
dneg 0.1 astore 2 0.0 iload 0.8 dload 3 0.1 istore 1 0.7
dreturn 0.1 astore 3 0.0 dconst 1 0.7 dup 0.1 putfield 0.7
goto 0.1 athrow 0.0 dload 3 0.7 goto 0.1 aload 0.6
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Table VIII. Categories of Java bytecodes.

Category Number Bytecodes

misc 5 nop, iinc, athrow, wide, breakpoint
push const 20 1–20
local load 25 21–45
array load 8 46–53
local store 25 54–78
array store 8 79–86
stack 9 87–95
arithmetic 24 96–119
logical shift 6 120–125
logical boolean 6 126–131
conversion 15 133–147
comparison 5 148–152
conditional branch 16 153–166, 198, 199
unconditional branch 2 goto, goto w
subroutine 3 jsr, ret, jsr w
table jump 2 tableswitch, lookupswitch
method return 6 172–177
object fields 4 178–181
method invoke 4 182–185
object manage 3 new, checkcast, instanceof
array manage 4 188–190, 197
monitor 2 monitorenter, monitorexit

Although the Java to bytecode compiler does not have access to dynamic execution data, it should
be able to put the most heavily used local variables into one of the efficient slots most of the time (see
also Table XI). Alternatively, if the compiler simply assigns the local variables in the order they are
declared, the application programmer might be able to alter the sequence to increase efficiency in some
cases, but not if the compiler always puts the parameters first and there are a large number of these.
This is further highlighted later in this paper under dynamic stack frame analysis (see Table XVI).

The mol benchmark has the same number of getfield as getstatic instructions, uses a much
smaller set of instructions than the other benchmarks and does not have method invocations in its high-
frequency instructions, suggesting it may not have been designed in an object-oriented fashion. The
comparison instruction dcmpg is also at very high frequency in mol relative to the other benchmarks,
suggesting something different is happening in the structure of the code involving a high number of
dynamic decisions. invokevirtual does not appear at all in the high-frequency instructions for eul
or mol and is under 2% for the other three applications, suggesting that worries about the inefficiencies
of virtual method invocation in the Java language may have been overstated for Grande applications. Of
course, the execution time for the invokevirtual instruction will be much higher than for ordinary
instructions on any hardware platform. ray and mon seem to be the most object-oriented programs,
using getfield and aload 0 to access the this-reference as their most frequent instructions.
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Table IX. Dynamic percentages of category usages by the applications
in the Java Grande suite compiled using SUN’s javac compiler.

Category eul mol mon ray sea ave

local load 37.1 41.4 33.2 36.2 31.4 35.9
object fields 19.5 8.7 16.8 29.2 8.3 16.5
arithmetic 13.3 16.5 14.0 15.0 5.8 12.9
array load 20.2 4.2 4.6 0.9 5.8 7.1
push const 4.7 0.0 8.4 2.1 13.7 5.8
conditional branch 0.6 11.0 3.8 2.9 6.9 5.0
local store 1.4 6.8 2.0 2.8 7.5 4.1
comparison 0.1 9.6 0.2 1.1 0.1 2.2
method invoke 0.3 0.0 3.1 3.9 1.0 1.7
misc 0.3 1.4 3.0 0.9 1.7 1.5
stack 1.7 0.0 1.9 0.1 3.5 1.4
method return 0.2 0.0 1.9 3.8 1.0 1.4
logical boolean 0.0 0.0 1.0 0.0 6.1 1.4
logical shift 0.0 0.0 1.5 0.0 4.7 1.2
conversion 0.0 0.0 2.5 0.0 0.4 0.6
array store 0.2 0.0 1.5 0.0 1.5 0.6
array manage 0.0 0.0 0.4 0.9 0.1 0.3
unconditional branch 0.1 0.0 0.0 0.1 0.5 0.1
table jump 0.0 0.0 0.0 0.0 0.0 0.0
subroutine 0.0 0.0 0.0 0.0 0.0 0.0
object manage 0.0 0.0 0.0 0.1 0.0 0.0
monitor 0.0 0.0 0.0 0.0 0.0 0.0

For the purposes of this study, the 202 bytecodes can be split into 22 categories as shown in
Table VIII. By assigning those instructions that behave similarly into groups it is possible to describe
clearly what is happening. Table IX is summarized in Figure 2. As is the case for the programs studied
in [12] local load, push const and local store instruction categories account for very close to 40% of
instructions executed, a property of the JVM instruction set, irrespective of source language, compiler
or compiler optimisations used. As can be seen in Figure 2, local load = 35.9%, push const = 5.8%
and local store = 4.2%, giving a total of 45.9% of instructions moving data between operand stack and
local variable array. It is also worth noting that, in practice, loads are dynamically executed roughly ten
times as often as stores.

We have shown above that for Grande applications Java method execution time is shown to be
predominantly in the non-API bytecodes of the programs (92% average). This is a significant difference
from traditional Java applications such as applets or compiler-type tools which spend most of the
time in the API. We have shown that useful information can be gained from a platform-independent
study of bytecode-level data. We believe that this is borne out in particular in the analysis of methods
presented in Tables V and VI, where the bytecode counts help to present a different picture of where
the interpreter is spending its time.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:459–484



PLATFORM INDEPENDENT DYNAMIC JVM ANALYSIS 471

Figure 2. A summary of dynamic percentages of category usages by the applications in the Java
Grande suite compiled using SUN’s javac compiler.

5. COMPARISONS OF DYNAMIC BYTECODE USAGES ACROSS DIFFERENT
COMPILERS

In this section we consider the impact of the choice of Java compiler on the dynamic bytecode
frequency figures. Java is relatively unusual (compared to, say, C or C++) in that optimizations can be
implemented in two separate phases: first when the source program is compiled into bytecode and again
when this bytecode is executed on a specific JVM. In C, platform-independent and platform-dependent
optimizations can of course both be performed. The difference is that a Java program is distributed
and stored in a platform-independent form, giving rise to a distinct division of labour, whereas in C
the ultimate hardware is known at compile time so there is no reason to ever divide the phases of
optimization. We consider here those optimizations that are implemented at the compiler level, and
thus may be considered to be platform independent and which must be taken into account in any study
of the bytecode frequencies.

For the purposes of this study we used five different Java compilers, from the following development
environments:

• kopi—KOPI Java Compiler Version 1.3C http://www.dms.at/kopi
• pizza—Pizza version 0.39g, 15-August-98 http://www.cis.unisa.edu.au/˜pizza/
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Table X. Percentage differences for total non-API dynamic bytecode
usage, relative to SUN’s javac compiler, for Grande Applications. In
each case the figures represent the per cent increase in the total number
of bytecodes executed compared with jdk13. For gcj, a minor alteration

to the sea program source was needed to get it to compile.

Compiler eul mol mon ray sea ave

jdk13 0.0 0.0 0.0 0.0 0.0 0.0
pizza 0.3 1.4 4.9 1.8 2.9 2.3
borl 0.3 1.4 4.9 1.8 3.1 2.3
kopi 8.1 0.0 1.2 0.0 3.6 2.6
gcj 8.7 1.4 6.1 0.9 6.0 4.6

• gcj—The GNU Compiler for the Java Programming Language, version 2.95.2
http://sources.redhat.com/java/

• jdk13—SUN’s javac compiler, Standard Edition (JDK build 1.3.0-C)
• borl—Borland Compiler 1.2.006 for Java http://www.borland.com/

The API was not recompiled and those bytecodes have been excluded from the dynamic comparisons
in this section.

The figures for the Java compiler from 1.2 of SUN’s JDK, as well as version 1.06 of the IBM Jikes
compiler were also computed, but since the code produced was almost identical to that produced by
the compiler from version 1.3 of the JDK we do not consider them further here.

Table X shows the percentage differences in total non-API dynamic bytecode counts for the Grande
programs using different compilers, as compared to the JDK. While it is difficult to draw direct
conclusions based on these figures, two facts are at least apparent. First, examining each column of
Table X, it can be seen that there are differences between total number of bytecodes executed for a
single application between the different compilers. Second, this variance is not consistent through all
five applications and it is clear that a more detailed analysis, which we now present, is necessary to
account for these differences.

Ideally, the optimizations implemented by each compiler should be described in the corresponding
documentation; regrettably this is not the case in reality. Also, since each of the applications produces
significantly large bytecode files, a static analysis of the differences between these files is not practical.
Further, a bytecode-level static analysis would not be sufficient for determining those differences which
resulted in a significant variance in the dynamic profiles. A static analysis would involve looking at the
bytecodes for every method in every application and seeing where they differed. However, one extra
goto, for example, might never be executed, might be executed only once, or might produce millions
of extra bytecodes. Therefore dynamic analysis is superior to static analysis in highlighting significant
compiler differences.

Instead, a detailed analysis of the dynamic bytecode executed frequencies was carried out. The raw
statistics are presented in Tables XI–XV which show the top 35 most executed instructions for each
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Table XI. Non-API dynamic bytecode usage frequencies for eul using
different compilers. The top 35 instructions are presented.

Instruction borl gcj kopi pizza jdk13 ave

aaload 18.2 19.8 19.9 18.2 18.3 18.9
iload 19.8 7.8 21.3 19.8 19.8 17.7
getfield 16.2 16.6 16.5 16.2 16.2 16.3
aload 0 8.3 9.4 9.2 8.3 8.3 8.7
dmul 4.1 3.8 3.8 4.1 4.1 4.0
dadd 4.0 3.7 3.7 4.0 4.0 3.9
putfield 3.3 3.0 3.0 3.3 3.3 3.2
iconst 1 3.2 3.0 3.0 3.2 3.2 3.1
dload 2.8 3.0 2.6 2.8 2.8 2.8
iload 3 1.1 6.1 1.0 1.1 1.1 2.1
isub 2.0 1.9 1.9 2.0 2.0 2.0
daload 2.0 1.8 1.8 2.0 2.0 1.9
aload 3 1.5 1.6 1.3 1.5 1.5 1.5
iload 2 0.0 7.2 0.0 0.0 0.0 1.4
dsub 1.4 1.3 1.3 1.4 1.5 1.4
aload 1.4 1.0 1.3 1.4 1.4 1.3
aload 2 1.3 1.2 1.2 1.3 1.3 1.3
ldc2w 1.1 0.9 1.1 1.1 1.2 1.1
dstore 1.0 1.3 1.0 1.0 1.0 1.1
iadd 1.1 1.0 1.1 1.1 1.1 1.1
dup 1.7 0.0 0.0 1.7 1.7 1.0
ddiv 0.6 0.6 0.6 0.6 0.6 0.6
dconst 0 0.4 0.3 0.3 0.4 0.4 0.4
aload 1 0.4 0.4 0.4 0.4 0.4 0.4
iinc 0.3 0.3 0.3 0.3 0.3 0.3
if icmpge 0.4 0.4 0.1 0.4 0.1 0.3
goto 0.4 0.4 0.1 0.4 0.1 0.3
iload 1 0.0 1.1 0.0 0.0 0.0 0.2
dload 1 0.3 0.0 0.2 0.3 0.3 0.2
dload 3 0.3 0.0 0.3 0.3 0.3 0.2
dstore 1 0.2 0.0 0.2 0.2 0.2 0.2
dstore 3 0.2 0.0 0.2 0.2 0.2 0.2
dastore 0.2 0.2 0.2 0.2 0.2 0.2
dneg 0.1 0.1 0.1 0.1 0.1 0.1
if icmplt 0.0 0.0 0.3 0.0 0.3 0.1
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Table XII. Non-API dynamic bytecode usage frequencies for mol
using different compilers. The top 35 instructions are presented.

Instruction borl gcj kopi pizza jdk13 ave

dload 32.8 32.8 33.3 32.8 33.3 33.0
iload 6.9 6.9 7.0 6.9 7.0 6.9
dstore 6.7 6.7 6.8 6.7 6.8 6.7
dcmpl 4.1 4.1 9.7 4.1 4.1 5.2
dsub 4.7 4.7 4.7 4.7 4.7 4.7
dmul 4.3 4.3 4.3 4.3 4.3 4.3
dcmpg 5.4 5.4 0.0 5.4 5.5 4.3
aaload 4.2 4.2 4.2 4.2 4.2 4.2
getstatic 4.2 4.2 4.3 4.2 4.3 4.2
getfield 4.2 4.2 4.3 4.2 4.3 4.2
dneg 4.1 4.1 4.1 4.1 4.1 4.1
ifge 4.1 4.1 4.1 4.1 4.1 4.1
ifle 4.1 4.1 4.1 4.1 4.1 4.1
dadd 3.4 3.4 3.4 3.4 3.4 3.4
iinc 1.4 1.4 1.4 1.4 1.4 1.4
ifgt 1.4 1.4 1.4 1.4 1.4 1.4
dload 1 1.0 1.0 1.0 1.0 1.0 1.0
if icmpge 1.4 1.4 0.0 1.4 0.0 0.8
goto 1.4 1.4 0.0 1.4 0.0 0.8
if icmplt 0.0 0.0 1.4 0.0 1.4 0.6
aload 0 0.1 0.1 0.1 0.1 0.1 0.1
putfield 0.1 0.1 0.1 0.1 0.1 0.1
nop 0.0 0.0 0.0 0.0 0.0 0.0
aconst null 0.0 0.0 0.0 0.0 0.0 0.0
iconst m1 0.0 0.0 0.0 0.0 0.0 0.0
iconst 0 0.0 0.0 0.0 0.0 0.0 0.0
iconst 1 0.0 0.0 0.0 0.0 0.0 0.0
iconst 2 0.0 0.0 0.0 0.0 0.0 0.0
iconst 3 0.0 0.0 0.0 0.0 0.0 0.0
iconst 4 0.0 0.0 0.0 0.0 0.0 0.0
iconst 5 0.0 0.0 0.0 0.0 0.0 0.0
lconst 0 0.0 0.0 0.0 0.0 0.0 0.0
lconst 1 0.0 0.0 0.0 0.0 0.0 0.0
fconst 0 0.0 0.0 0.0 0.0 0.0 0.0
fconst 1 0.0 0.0 0.0 0.0 0.0 0.0
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Table XIII. Non-API dynamic bytecode usage frequencies for mon
using different compilers. The top 35 instructions are presented.

Instruction borl gcj kopi pizza jdk13 ave

aload 0 17.1 19.8 20.7 17.1 17.9 18.5
getfield 17.0 17.4 18.2 17.0 17.8 17.5
daload 7.0 6.9 7.3 7.0 7.3 7.1
iload 1 5.9 5.8 6.1 5.9 6.1 6.0
dload 4.7 4.6 4.8 4.7 4.9 4.7
dadd 4.7 4.6 4.8 4.7 4.9 4.7
iinc 4.7 4.6 4.8 4.7 4.9 4.7
iload 2 4.1 4.6 4.8 4.1 4.3 4.4
dmul 2.9 2.9 3.0 2.9 3.1 3.0
if icmpge 4.7 4.6 0.0 4.7 0.0 2.8
goto 4.7 4.6 0.0 4.7 0.0 2.8
iload 3 2.3 2.3 2.4 2.3 2.5 2.4
dastore 2.3 2.3 2.4 2.3 2.5 2.4
dsub 2.3 2.3 2.4 2.3 2.5 2.4
putfield 2.4 2.4 2.5 2.4 2.5 2.4
if icmplt 0.0 0.0 4.8 0.0 4.9 1.9
dstore 1.8 1.7 1.8 1.8 1.8 1.8
dup 2.3 0.0 0.0 2.3 2.5 1.4
iconst 1 1.2 1.2 1.2 1.2 1.2 1.2
iload 1.2 1.2 1.2 1.2 1.2 1.2
aload 1 1.2 1.2 1.2 1.2 1.2 1.2
isub 1.2 1.2 1.2 1.2 1.2 1.2
invokestatic 1.2 1.2 1.2 1.2 1.2 1.2
aload 3 0.6 0.6 0.6 0.6 0.6 0.6
ddiv 0.6 0.6 0.6 0.6 0.6 0.6
invokevirtual 0.6 0.6 0.7 0.6 0.7 0.6
arraylength 0.6 0.6 0.6 0.6 0.6 0.6
dup2 0.6 0.0 0.0 0.6 0.6 0.4
nop 0.0 0.0 0.0 0.0 0.0 0.0
aconst null 0.0 0.0 0.0 0.0 0.0 0.0
iconst m1 0.0 0.0 0.0 0.0 0.0 0.0
iconst 0 0.0 0.0 0.0 0.0 0.0 0.0
iconst 2 0.0 0.0 0.0 0.0 0.0 0.0
iconst 3 0.0 0.0 0.0 0.0 0.0 0.0
iconst 4 0.0 0.0 0.0 0.0 0.0 0.0
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Table XIV. Non-API dynamic bytecode usage frequencies for ray
using different compilers. The top 35 instructions are presented.

Instruction borl gcj kopi pizza jdk13 ave

getfield 25.7 25.9 26.1 25.7 26.1 25.9
aload 0 15.8 16.1 16.2 15.8 16.1 16.0
aload 1 10.7 10.8 10.9 10.7 10.9 10.8
dmul 6.4 6.5 6.6 6.4 6.6 6.5
dadd 4.6 4.7 4.7 4.6 4.7 4.7
dsub 3.6 3.6 3.7 3.6 3.7 3.6
putfield 3.0 3.1 3.1 3.0 3.1 3.1
aload 2 2.7 2.8 2.8 2.7 2.8 2.8
invokevirtual 1.8 1.9 1.9 1.8 1.9 1.9
invokestatic 1.9 1.9 1.9 1.9 1.9 1.9
iload 1.8 1.8 1.8 1.8 1.8 1.8
dreturn 1.8 1.8 1.8 1.8 1.8 1.8
dload 1.1 2.9 1.1 1.1 1.1 1.5
dload 2 1.8 0.0 1.9 1.8 1.9 1.5
aload 1.3 1.2 1.3 1.3 1.3 1.3
aconst null 1.7 0.9 0.9 1.7 0.9 1.2
dstore 1.0 1.8 1.0 1.0 1.0 1.2
dconst 0 0.9 1.0 1.0 0.9 1.0 1.0
ifge 1.0 1.0 1.0 1.0 1.0 1.0
return 0.9 1.0 1.0 0.9 1.0 1.0
aaload 0.9 0.9 0.9 0.9 0.9 0.9
astore 0.9 0.9 0.9 0.9 0.9 0.9
iinc 0.9 0.9 0.9 0.9 0.9 0.9
areturn 0.9 0.9 0.9 0.9 0.9 0.9
arraylength 0.9 0.9 0.9 0.9 0.9 0.9
dcmpg 1.0 1.0 0.0 1.0 1.0 0.8
dstore 2 0.9 0.0 0.9 0.9 0.9 0.7
goto 0.9 0.9 0.1 0.9 0.1 0.6
if icmpge 0.9 0.9 0.0 0.9 0.0 0.5
ifnull 0.0 0.9 0.9 0.0 0.9 0.5
if icmplt 0.0 0.0 0.9 0.0 0.9 0.4
if acmpeq 0.9 0.0 0.0 0.9 0.0 0.4
dcmpl 0.1 0.1 1.1 0.1 0.1 0.3
dload 1 0.2 0.2 0.2 0.2 0.2 0.2
iconst 0 0.1 0.1 0.1 0.1 0.1 0.1
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Table XV. Non-API dynamic bytecode usage frequencies for sea using
different compilers. The top 35 instructions are presented.

Instruction borl gcj kopi pizza jdk13 ave

iload 12.8 12.4 13.5 12.9 13.2 13.0
aload 0 8.3 8.9 9.6 8.3 8.6 8.7
getfield 7.1 7.6 8.0 7.1 7.3 7.4
iaload 5.2 5.1 5.2 5.2 5.4 5.2
istore 5.2 5.2 5.2 5.2 5.4 5.2
ishl 4.2 4.1 4.2 4.2 4.3 4.2
bipush 3.6 4.3 3.6 3.7 3.8 3.8
iadd 3.4 4.1 4.2 3.4 3.5 3.7
iand 3.4 4.1 3.4 3.4 3.5 3.6
iload 1 3.5 2.8 3.8 3.5 3.6 3.4
iload 2 2.5 3.3 2.5 2.6 2.6 2.7
iload 3 2.5 3.3 2.7 2.5 2.5 2.7
ior 2.3 2.2 2.2 2.3 2.3 2.3
iconst 1 2.2 2.0 2.0 2.2 2.3 2.1
iconst 2 2.0 2.0 2.0 2.0 2.1 2.0
dup 1.9 1.8 1.5 1.9 2.0 1.8
iinc 1.7 1.6 1.7 1.7 1.7 1.7
iconst 5 1.4 1.7 1.8 1.4 1.4 1.5
iconst 0 2.6 0.7 0.7 2.5 0.7 1.4
iconst 4 1.4 1.4 1.4 1.4 1.4 1.4
iastore 1.4 1.4 1.4 1.4 1.5 1.4
if icmpgt 1.7 1.4 0.9 1.7 0.9 1.3
goto 1.5 1.5 0.4 1.5 0.5 1.1
ifeq 0.1 1.9 1.2 0.1 1.6 1.0
invokevirtual 1.0 0.9 1.0 1.0 1.0 1.0
isub 0.9 0.8 0.9 0.9 0.9 0.9
if icmple 0.6 0.8 1.3 0.6 1.3 0.9
ldc1 0.9 0.8 0.8 0.8 0.8 0.8
istore 3 0.8 0.8 0.8 0.8 0.8 0.8
if icmpeq 1.7 0.2 0.2 1.7 0.2 0.8
if icmplt 0.5 0.5 1.3 0.5 1.4 0.8
dup2 1.0 0.3 0.1 1.0 1.0 0.7
imul 0.7 0.6 0.6 0.7 0.7 0.7
if icmpge 1.1 0.9 0.1 1.1 0.1 0.7
putfield 0.7 0.7 0.7 0.7 0.7 0.7
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application. In order to analyse these tables, the differences in each row were selected and the relevant
sections of the corresponding source code were then examined.

It is notable that the different applications, in exercising different areas of the instruction set, reflected
compiler differences to varying degrees. In particular, the figures for mol are virtually identical across
all compilers, and gcj seems to exhibit the greatest variations across applications. Below we summarize
the main differences exhibited in these tables.

5.1. Main compiler differences

There were three main differences between the optimizations implemented by the compilers, which we
now give.

5.1.1. Loop structure

The figures show a difference in the use of comparison and jump instructions between the compilers.
For each usage of the if cmplt instruction by kopi and jdk13 there is a corresponding usage of
goto and if cmpge by pizza, gcj and borland. This can be explained by the implementation of loop
structures. For example, a loop of the form:

while (expr) { stats }
is implemented by the different compilers as follows. kopi/jdk13:

goto end
beg: stats
end: expr

if_cmplt beg

and pizza/gcj/borland:

beg: expr
if_cmpge end
stats
goto beg

end:

A simple static analysis would regard these as similar implementations, but the dynamic analysis
clearly shows the savings resulting from the kopi/jdk13 approach.

5.1.2. Specialized load instructions

Tables XI and XV highlight an important difference between the compilers in their treatment of
specialized iload instructions. gcj gives a significantly lower usage of the generic iload instruction
relative to all other compilers and a corresponding increase in the more specific iload 2 and
iload 3 instructions, showing that this compiler is attempting to optimize the programs for integer
usage.
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However, it is interesting to note that this is not significant for the other three applications. This can
be explained directly by the nature of the programs involved—mol, mon and ray make greater use of
doubles and objects and gcj does not appear to optimize the stack positions for these types.

5.1.3. Usage of the dup instruction

There is a dramatic difference in the use of dup instructions shown in Table XI and, to a lesser extent,
in Table XV, with kopi and gcj having a much lower usage than the other compilers. (dup instructions
do not account for a significant proportion of bytecode usage in the other applications.) This can be
explained by the usage of the shorthand arithmetic instructions (such as +=) in the source Java code.
For example, the eul suite contains lines of the form:

r[i][j].a += ...

A simple translation of this line to the longer form

r[i][j].a = r[i][j].a + ...

results in code which references the expression r[i][j].a twice.
The pizza, jdk13 and borland compilers optimize for the first form by duplicating the value of

the expressions. The other two compilers do not and show a corresponding increase in the usages
of aload, aaload and getfield instructions.

The presence of the line in what is evidently a program hotspot gives particular relevance to this
compiler optimization in this case.

5.2. Minor compiler differences

Some minor differences between the frequencies can also be noted as follows.

5.2.1. Comparisons with 0 and null

As well as generic comparison instructions for each type, Java bytecode has two specialized
instructions for comparison with zero: ifeq and ifne. As can be seen from Table XV, the frequencies
for these instructions for both the pizza and borland compilers is lower than the other compilers and a
price is paid in a correspondingly higher use of iconst 0 and if icmpeq instructions.

As before, this variance is shown to differing degrees dependent on the application: none of the
other four programs rate this difference as significant. However, Java bytecode also has a specialized
instruction for comparing object references with null, ifnull. The object-intensive program ray
(Table XIV) exhibits the results of the pizza and borland compilers not using this instruction, with
a corresponding increase in aconst null and if acmpeq instructions.

5.2.2. The decrement instruction

There are two approaches to decrementing an integer value. Either you can push minus 1 and add
(iconst m1, iadd), or push 1 and subtract (iconst 1, isub). Only the kopi and gcj compilers
choose the former and so Table XV shows an increase in the use of iadd instructions, along with a
corresponding drop in the use of iconst 1 instructions.
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5.2.3. Constant propagation

The gcj compiler does not do as much constant propagation as the other compilers and this is evidenced
in Table XI. The eul application has a number of constant fields, and this is reflected by a drop in ldc2w
instructions and a corresponding increase in the number of getfield instructions.

5.2.4. Comparison operations

A minor variation is shown in Table XII for the usages of dcmpl and dcmpg instructions, with
the kopi compiler showing a strong preference for the former; the dependent statement blocks in the
corresponding if-statements are reorganized accordingly.

6. DYNAMIC STACK FRAME USAGE ANALYSIS

Each Java method that executes is allocated a stack frame which contains (at least) an array holding
the actual parameters and the variables declared in that method. Instance methods will also have a slot
for the this-pointer in the first position of the array. This array is referred to as the local variable
array and those variables declared inside a method are called temporary variables. In this section we
dynamically examine the size of this array, its division into parameters and temporary variables, along
with the maximum size of the operand stack during the method’s execution. As well as having an
impact on the overall memory usage of a Java program, this size also has implications for the possible
usage of specialized load and store instructions, which exist for the first four slots of the array.

Table XVI shows dynamic percentages of local variable array sizes and further divides this into
parameter sizes and temporary variable array sizes. One finding that stands out is the absence of zero
parameter size methods across all applications. All the Grande applications have some zero parameter
methods, but these appear as zero in the percentages as they are swamped by those methods with high
bytecode counts in the Grande applications which have non-zero parameter sizes.

An interesting point here is the percentages of methods with local variable array sizes of less than
4, since these methods should be able to exclusively use the specialized versions of load and store
operations dealing with these array locations. These figures are: eul, 2.6%; mol, 0.2%; mon, 62.5%; ray,
54.0%; sea, 8.0%. Indeed, these figures are an under-estimation of the possibility of using specialized
load and store operations, since register allocation techniques can reduce these stack sizes further.
As already noted, the overall figures for specialized load instructions eul presented in Table XI do not
seem to reflect the high proportion (97.5%) of the methods which would facilitate this.

Table XVII presents two perspectives on the dynamic percentages for the operand stack sizes; these
figures are determined by the complexity of expressions evaluated at run time, as well as the need
to push parameters onto the operand stack before calling a method. Looking at the figures based on
numbers of method calls, we see that a significant number of methods called have low operand stack
sizes, reflecting the number of trivial constructors, as well as simple get and set methods. However, the
figures based on the number of bytecodes executed show that while calls to methods with low operand
stack sizes may be common, they typically involve very little internal computation. We suggest that
both method-call and bytecode-level analyses are necessary in order to present a complete picture of
operand stack usage.
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Table XVI. Bytecode based dynamic percentages of local
variable array sizes, as well as temporary and parameter
sizes for Grande programs compiled using SUN’s javac
compiler. The local variable array and parameter sizes

include the this-reference for non-static methods.

Size eul mol mon ray sea ave

Local variable array size
0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.7 0.1 7.5 0.2 0.0 1.7
2 0.4 0.0 47.2 32.8 0.0 16.1
3 1.5 0.1 7.8 21.0 8.0 7.7
4 0.1 0.0 14.5 0.4 0.8 3.2
5 8.7 0.1 0.1 0.0 12.2 4.2
6 0.0 0.0 0.1 0.3 48.5 9.8
7 0.0 0.0 0.1 14.3 0.0 2.9
8 0.0 0.0 0.0 0.2 0.0 0.0

>8 88.6 99.7 22.8 30.7 30.5 54.5

Parameter size
0 0.0 0.0 0.0 0.0 0.0 0.0
1 64.2 0.1 57.3 1.3 24.4 29.5
2 2.0 0.0 17.7 62.4 8.1 18.0
3 16.0 0.2 24.5 20.0 34.9 19.1
4 17.8 0.0 0.3 14.3 32.5 13.0
5 0.0 0.0 0.0 0.4 0.0 0.1
6 0.0 0.0 0.0 0.3 0.0 0.1
7 0.0 99.6 0.0 0.3 0.0 20.0
8 0.0 0.0 0.0 1.0 0.0 0.2

>8 0.0 0.0 0.0 0.0 0.0 0.0

Temporary variable size
0 1.1 0.3 25.4 54.0 0.6 16.3
1 1.5 0.0 43.8 0.2 0.0 9.1
2 0.1 0.1 7.7 1.0 43.6 10.5
3 0.0 0.0 0.1 14.2 0.8 3.0
4 8.7 0.0 0.1 0.0 16.5 5.1
5 0.0 0.0 0.0 0.0 7.9 1.6
6 4.1 0.0 0.0 0.0 0.0 0.8
7 0.0 0.0 0.0 29.5 0.0 5.9
8 0.0 0.0 12.5 0.0 0.0 2.5

>8 84.4 99.6 10.3 1.2 30.5 45.2
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Table XVII. Dynamic percentages of maximum operand stack
sizes for the methods in the Java Grande programs, compiled
using SUN’s javac compiler. (a) presents percentages calculated
based on proportions of methods called, while (b) measures the

proportion of total bytecodes executed.

Size eul mol mon ray sea ave

(a)
0 22.4 0.7 0.4 1.3 0.0 5.0
1 0.3 0.2 0.4 0.6 0.0 0.3
2 0.5 0.4 1.3 0.1 5.3 1.5
3 22.6 2.1 1.0 0.8 46.5 14.6

>3 54.3 96.6 96.9 97.3 48.2 78.6

(b)
0 0.0 0.0 0.0 0.1 0.0 0.0
1 0.0 0.0 0.0 0.1 0.0 0.0
2 0.0 0.0 0.2 0.1 7.3 1.5
3 0.7 0.0 0.3 0.4 32.5 6.8

>3 99.8 100 99.5 99.3 60.2 91.7

7. CONCLUSIONS

This paper set out to investigate platform-independent dynamic JVM analysis using the Java Grande
Forum benchmark suite as a test case. This type of analysis, of course, does not look in any way
at hardware specific issues, such as JIT compilers, interpreter design, memory effects or garbage
collection, which may all have significant impacts on the eventual running time of a Java program and is
limited in this respect. It has been shown above, however, that useful information about a Java program
can be extracted at the intermediate representation level, which can be used partly to understand their
ultimate behaviour on a specific hardware platform.

For Grande applications, Java method execution time is shown to be predominantly in the non-
API bytecodes of the programs (92% average). This is a significant difference from traditional Java
applications such as applets or compiler-type tools which spend most of the time in the API. Since
a Grande application should use large amounts of processing, I/O, network bandwidth or memory, it
is interesting to note how little of the API packages are dynamically used by this benchmark suite.
Precompiling the API to some native representation therefore will not yield significant speedup.

A constant theme of this paper is that useful information can be gained from a platform-independent
study of bytecode-level data. We believe that this is borne out, in particular, in the analysis of methods
presented in Table V and Table VI, where it is shown that method execution frequency and a count of
bytecodes executed by a method provide different pictures of where the interpreter is actually spending
its time. Table XVII also demonstrates the additional perspective gained from a bytecode-level analysis.

Overall, this study raises questions about the balance of optimization work between Java compilers
and the execution component of the JVM. One possibility is that compiler writers are trying to

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:459–484



PLATFORM INDEPENDENT DYNAMIC JVM ANALYSIS 483

produce as closely as possible the bytecodes produced by the original SUN compiler, so as to avoid
incompatibility with the run-time bytecode verifier or platform specific JIT compilers. If this is so, it
may explain why various standard efficiency improvements have not been used by different compilers.

Although the Java to bytecode compiler does not have access to dynamic execution data, it should be
able to put the most heavily used local variable into one of the efficient slots most of the time following
algorithms such as those in [18,19], yet only the gcj compiler seems to make a significant attempt at
this. A more common optimization was in the translation of loop constructs, where each successful
iteration involves executing two branching instructions, a potential branch if the condition is false and
a backward goto (unconditional branch) at the end of the loop for the pizza, gcj and borland compilers,
whereas the other compilers combine both of these into a single conditional branch at the end of the
loop.

Clearly, run-time optimization techniques will always be essential within the JVM, because of both
the potential inefficiency of the compiler and the extra information about the run-time architecture
available to the JVM. However, it is not obvious that Java compilers are putting much effort into
generating efficient bytecode and it is possible that the JVM may be bearing an unreasonable part of the
burden of performing these optimizations. If Java compilers performed various standard optimizations
such as constant propagation, branch folding, dead assignment elimination etc, then the code to do this
could be eliminated from the virtual machine, making its design less complex. Further research would
be necessary to determine to what extent (if any) running time and memory usages could be improved
by moving as much work as possible into the platform-independent phase of compilation.
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