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SUMMARY

Computational Grids are emerging as a new paradigm for sharing and aggregation of geographically
distributed resources for solving large-scale compute and data intensive problems in science, engineering
and commerce. However, application development, resource management and scheduling in these
environments is a complex undertaking. In this paper, we illustrate the development of a Virtual Laboratory
environment by leveraging existing Grid technologies to enable molecular modelling for drug design on
geographically distributed resources. It involves screening millions of compounds in the chemical database
(CDB) against a protein target to identify those with potential use for drug design. We have used the
Nimrod-G parameter specification language to transform the existing molecular docking application into a
parameter sweep application for executing on distributed systems. We have developed new tools for enabling
access to ligand records/molecules in the CDB from remote resources. The Nimrod-G resource broker along
with molecule CDB data broker is used for scheduling and on-demand processing of docking jobs on the
World-Wide Grid (WWG) resources. The results demonstrate the ease of use and power of the Nimrod-G
and virtual laboratory tools for grid computing. Copyright © 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computational Grids [1] enable the sharing of a wide variety of geographically distributed resources
including supercomputers, storage systems, databases, data sources and specialized devices owned
by different organizations in order to create virtual enterprises and organizations. They allow
selection and aggregation of distributed resources across multiple organizations for solving large-
scale computational and data intensive problems in science, engineering and commerce. The parallel
processing of applications on wide-area distributed systems provide a scalable computing power.
This enables exploration of large problems with huge data sets, which is essential for creating new
insights into the problem. Molecular modelling for drug design is one of the scientific applications that
can benefit from the availability of a large computational capability.

Drug discovery is an extended process that can take as many as 15 years from the first compound
synthesis in the laboratory until the therapeutic agent or drug, is brought to market [2]. Reducing the
research timeline in the discovery stage is a key priority for pharmaceutical companies worldwide.
Many such companies are trying to achieve this goal through the application and integration of
advanced technologies such as computational biology, chemistry, computer graphics and high-
performance computing (HPC). Molecular modelling has emerged as a popular methodology for drug
design—it can combine computational chemistry and computer graphics. Molecular modelling can be
implemented as a master—worker parallel application, which can take advantage of HPC technologies
such as clusters [3] and Grids for large-scale data exploration.

Drug design using molecular modelling techniques involve screening a very large number (of the
order of a million) of ligandi records or molecules of compounds in a chemical database (CDB) to
identify those that are potential drugs. This process is called molecular docking. It helps scientists
to predict how small molecules, such as substrates or drug candidates, bind to an enzyme or a protein
receptor of known three-dimensional (3D) structure (see Figure 1). Docking each molecule in the target
chemical database is both a compute and data intensive task. It is our goal to use Grid technologies to
provide cheap and efficient solutions for the execution of molecular docking tasks on large-scale, wide-
area parallel and distributed systems.

While performing docking, information about the molecule must be extracted from one of the many
large chemical databases. As each chemical database requires storage space in the order of hundreds of
megabytes to terabytes, it is not feasible to transfer the chemical database to all resources in the Grid.
Also, each docking job only needs a ligand or module record, not the whole database. Therefore, access
to a chemical database must be provided as a network service (see Figure 2). The chemical databases
need to be selectively replicated on a few nodes to avoid any bottleneck due to providing access to
the database from a single source. Intelligent mechanisms (e.g. CDB broker) need to be supported
for selecting optimal sources for CDB services depending on the location of resources selected for
processing docking jobs.

Fundamentally, drug design is a computational and data challenge problem since it involves
screening millions of compounds in chemical databases. Screening each compound, depending on
structural complexity, can take from a few minutes to hours on a standard PC, which means

¥ An ion, a molecule or a molecular group that binds to another chemical entity to form a larger complex.
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! Molecules

Figure 1. X-ray crystal structure of a target protein receptor and small molecules to be docked.

screening all compounds in a single database can take years! For example, we are looking into a
drug design problem that involves screening 180000 compounds. Each job screening a compound
is expected to take up to three hours of execution time on a desktop computer (e.g. Pentium-based
Linux/Windows PC). That means, if we aim to screen all these compounds on a single PC, it can
take up to 540000 hours, which is roughly equivalent to 61 years! If we use a typical cluster-based
supercomputer with 64 nodes, we can solve this problem in one year. The problem can be solved with
a large scale Grid of hundreds of supercomputers within a day. If we use a massive network of peer-to-
peer style Grid computing infrastructure such as SETI@Home [4], the drug discovery problem could
be solved within a few hours.

The rest of this paper is organized as follows. A high-level operational model for molecular
modelling on the Grid is presented in Section 2. A layered architecture for building the Virtual
Laboratory environment is presented in Section 3. It leverages the existing Grid technologies and
supports new tools that are essential for Grid-enabling the chemical database and the docking
application on distributed resources. Formulation of molecular docking as a parameter sweep
application is presented in Section 4. The results of two experiments on scheduling molecular docking
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Figure 2. Resource brokering architecture for screening molecules on distributed resources.

jobs for processing on the World-Wide Grid (WWG) [2] testbed resources are presented in Section 5.
The final section summarizes the paper along with suggestions for future works.

2. OPERATIONAL MODEL

The Virtual Laboratory tools transform the existing molecular modelling application (without the need
for making any changes to it) into a parameter sweep application for executing jobs docking molecules
in the CDBs in parallel on distributed resources. The parametrized application contains multiple
independent jobs, each screening different compounds to identify their drug potential. These jobs are
computationally intensive in nature and only a small proportion of the execution time is spent on data
communication (e.g. fetching molecular information on demand from remote databases). Applications
expressed with this task-farming computational model have high computation to communication ratio.
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Hence, they can tolerate high network latency, which makes them suitable for executing in parallel on
Internet-wide distributed resources.

A high-level operation model of docking molecules on the Grid is shown in Figure 2. The drug
designer formulates the molecular docking problem, submits the application to the Grid resource
broker (e.g. Nimrod-G [6,7]) along with performance and optimization requirements—‘screen 2000
molecules within 30 min and the available budget for processing is $10° [7]. The broker discovers
resources, establishes their cost and capability, and then prepares a schedule to map docking jobs
to resources. Let us say, it identified a Grid Service Provider (GSP), say GSP2 and assigned a job
of screening a molecule 5 to it. A job has a task specification that specifies a list of operations
to be performed. To process a job on GSP2, the broker dispatcher deploys its Agent on resource
GSP2. The agent executes a list of commands specified in the job’s task specification. A typical task
specification contains necessary commands to copy executables and input files from the user machine,
substitution of parameters declared in the input file, execution of the program and finally copying
results back to the user. It can also contain special commands for accessing the input data from the
remote database. For example, a docking task can contain a special command (e.g. an instruction to
fetch molecule record from the CDB) to make a request to the data broker (e.g. CDB broker) for
a molecule record. The data broker looks at the replica catalogue for a list of sites providing CDB
services, checks the status of those sites, and selects a suitable site (e.g. a node with fast network
connectivity) and recommends the same. The molecule fetch command can then request the CDB
service provider for a molecule record and write the molecule structure to a file that acts as an input to
the docking program. After executing the docking program, the agent executes commands related to
copying docking results to the user home node.

3. ARCHITECTURE—THE SOFTWARE STACK

The Virtual Laboratory builds on the existing Grid technologies and tools for performing data intensive
computing on distributed resources. It provides new tools for managing and accessing remote chemical
databases as a network service. There are many scientific and commercial applications (e.g. molecular
modelling, high-energy physics events processing and financial investment risk-analysis) that explore
a range of scenarios. Instead of explicitly developing them as parallel applications using interfaces
such as MPI, they can be composed as parameter sweep applications using tools such as Nimrod [8].
Such application jobs can be executed in parallel on distributed resources using the Nimrod-G resource
broker (see Figure 2). A layered architecture and the software stack essential for performing molecular
modelling on distributed resources is depicted in Figure 3. The components of the Virtual Laboratory
software stack are:

e the DOCK software for molecular modelling [9];

e the Nimrod Parameter Modelling Tools [8,10] for enabling DOCK as a parameter sweep
application;

e the Nimrod-G Grid Resource Broker [6,7] for scheduling DOCK jobs on the Grid;

e chemical database (CDB) management and intelligent access tools:

— CDB database lookup/index table generation;
— CDB and associated index-table replication;

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:1-25
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Figure 3. Layered architecture of Virtual Laboratory for drug design.

CDB replica catalogue for CDB resource discovery;

— CDB servers for providing CDB services;

— CDB broker for selecting a suitable CDB service (replica selection);
— CDB clients for fetching molecular records (data movement);

e the GrACE software for resource trading toolkit [11];
e the Globus middleware for secure and uniform access to distributed resources [12].

The Grid resources (e.g. multiprocessors or clusters) at each location are generally presented as a
single entity using resource management systems such as OS-fork, LSF, Condor and SGE.

3.1. Docking code

The original docking code developed by researchers at the University of California in San Francisco
(UCSF) is one of the most popular molecular docking applications [13]. The program evaluates the
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Figure 4. Relation between key programs in the dock suite.

chemical and geometric complementarities between a small molecule and a macromolecular binding
site. It explores ways in which two molecules, such as a drug and an enzyme or protein receptor,
might fit together. Compounds that might bind tightly to the target receptor must have complementary
chemical and spatial natures. Thus docking can be seen as a 3D puzzle searching for pieces that
will fit into the receptor site. It is important to be able to identify small molecules (compounds),
which may bind to a target macromolecule. This is because a compound, which binds to a biological
macromolecule, may modulate its function and with further development eventually become a drug
candidate. An example of such a drug is the anti-influenza drug Relenza which functions by binding to
influenza virus attachment proteins thus preventing viral infection.

The relationship between the key programs in the dock suite is depicted in Figure 4 [13]. The receptor
coordinates at the top represent the 3D structure of a protein. The molecular modeller identifies the
active site and other sites of interest, and uses the program sphgen to generate the sphere centres,
which fill the site [14]. The program grid generates the scoring grids [9]. The program dock matches
spheres (generated by sphgen) with ligand atoms and uses scoring grids (from grid) to evaluate ligand
orientations [9,14]. It also minimizes energy-based scores [15]. The focus of our work is on docking
molecules in CDB with receptors to identify potential compounds that act as a drug. Hence, discussion
in this paper is centred on the execution of the program dock as a parameter sweep application on
world-wide distributed resources.

The docking code is highly portable—we have been able to compile and produce executables
for Sun-Solaris, PC Linux, SGI IRIX and Compaq Alpha/OSF1 architectures. For docking on
heterogeneous resources, the Nimrod-G broker selects the correct executable automatically based on
the resources it discovers at runtime.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:1-25
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3.2. Nimrod-G tools

The Nimrod-G toolkit provides a suite of tools and services for creating parameter sweep applications,
managing resources and scheduling applications on the world-wide distributed resources. It supports
a simple declarative programming language and GUI tools for creating scripts and parametrization
of application input data files and a programmable grid resource broker for processing jobs on grid
resources.

3.2.1.  Tools for creating parameter sweep applications

The Nimrod-G toolkit provides a suite of tools and services for creating parameter sweep applications,
managing resources and scheduling applications on the world-wide distributed resources. It provides
a simple declarative programming language or GUI tools for parametrization of application input data
files and creation of task-script to be performed by each job; and a programmable grid resource broker
for processing jobs on Grid resources.

The steps involved in distributed parametric execution are:

(i) parametrize input files;

(ii) prepare a plan file containing the commands that define parameters and their values;
(iii) generate a run file, which converts the generic plan file to a detailed list of jobs;
(iv) schedule jobs for processing on distributed machines; and

(v) control and monitor the execution of the jobs.

The application execution environment handles online creation of input files and command line
arguments through parameter substitution. The GUI tools supported by enFuzion, a commercial
version of Nimrod, can also be used for parametrizing applications. enFuzion uses the same syntax
as Nimrod for parameter specification [10]. Both Nimrod and enFuzion have been successfully used
for performing parameter studies in a single administrative domain such as clusters. Nimrod-G [6,7]
extends the capabilities of Nimrod and EnFuzion with the addition of powerful resource discovery,
trading and scheduling algorithms [16]. In Section 4, we discuss the capabilities of Nimrod-G tools by
composing a molecular modelling program as a parameter sweep application for docking compounds
in CDB databases and processing docking jobs on the Grid.

3.2.2.  Nimrod-G Grid resource broker for scheduling DOCK jobs on Grid

The Nimrod-G resource broker identifies the user and application processing requirements and selects
Grid resource combination in such a way that the user requirements are met [6,7,17]. It performs
resource discovery, selection, scheduling, dispatching of docking jobs to remote resource, starting and
managing the execution of jobs and gathering results back to the home node. The sub-modules of our
resource broker are:

a persistent task farming engine;

a grid explorer for resource discovery;

a resource trading manager for establishing access price;

a scheduler that maps jobs to resources using scheduling algorithms;
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Figure 5. Deployment of Virtual Laboratory components at runtime and their interaction.

e a dispatcher and actuators for deploying agents on grid resources; and
e agents for managing execution of Nimrod-G jobs on grid resources.

When Nimrod-G deploys its agents on the Grid node, it is submitted to the local resource manager,
which then allocates a compute node? to it for executing the job.

The Nimrod-G components, grid explorer for resource discovery and dispatcher for submitting
jobs to remote resource, are implemented using the Globus GIS and GRAM services. The dispatcher
actually initiates the execution of Nimrod-G agents on remote resources, which takes care of all the
operations associated with the execution of an assigned job. The interaction between the components
of the Nimrod-G runtime machinery and Grid services during runtime is shown in Figure 5.
The Nimrod-G broker supports deadline and budget constrained (DBC) scheduling algorithms driven
by a computational economy and user requirements [16]. In Section 5, we discuss the results of the

§1t is a node/CPU that the local resource manager allocates to the Nimrod-G agent for job processing.
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Nimrod-G broker scheduling a molecular modelling application on the Grid with DBC time and cost
optimization scheduling algorithms.

3.3. Chemical database management and intelligent access tools

The chemical databases contain records of a large number of molecules from commercially available
organic synthesis libraries and natural product databases. The molecules in the CDB are represented
in MOL2 file (.mol2) format [18], which is a portable representation of a SYBYL [19] molecule.
The MOL2 file is an ASCII file that contains all the information needed to reconstruct a SYBYL
molecule. Each ligand record in a chemical database represents the 3D structural information of a
compound. The numbers of compounds in each CDB can be in the order of tens of thousands and
the database size be anywhere from tens of megabytes to gigabytes and even terabytes. We have
developed tools for turning the CDB into a network service and accessing them from remote resources.
They include tools for indexing ligand records in the CDB, a multithreaded CDB Server for serving
requests for molecule records, and a tool for fetching molecule/ligand record from remote CDB via the
network [20].

When a chemical database is available from more than one source (replica site), a suitable strategy
such as a source with high network speed or lightly loaded, can be used for selecting one of them.
It is likely that multiple users from different locations issue requests for accessing the CDB, the server
should be able to process such simultaneous requests concurrently. Therefore, we have developed a
multithreaded CDB server that can service requests from multiple users concurrently. An interaction
between a Grid node and a node running the CDB server while performing docking is shown
in Figure 5. We developed and implemented protocols shown in Figure 6 for interaction between
interaction between the CDB clients and the server. Both figures illustrate the operational model and
the flow of control between CDB clients and servers.

When the Nimrod-G schedules a docking job for processing on one of the Grid resources, it actually
submits an agent to Globus GRAM, which acts as a process server. The process server either executes
it by forking it as process on time shared system or submits to the site resource manager such as PBS,
LSF and Condor, which allocates a compute node for the agent and starts its execution. The agent
contacts the Nimrod-G dispatcher for job task information, which contains instructions for executing
a job. It copies input files, performs parameter substitution, executes programs (e.g. CDB client to
fetch a molecule record from the remote CDB server and docking program) and ships results back to
the Nimrod-G user. When the CDB server receives a request for molecule record, it reads the molecule
record from the chemical database and sends back to the client.

Instead of searching molecule records sequentially in a database, we have built tools for creating
index-tables for each CDB represent using the MOL2 format along with the record size information.
The CDB index file, organized in binary format, contains the starting address (byte location) of a
molecule record and record size of all molecules in sequence. When a molecule record is requested,
the CDB server first looks at the CDB index file to identify the record location and its size. It then
fetches the molecule record from the CDB file with a single read operation and thus improving the
access and response speed.

It is possible to screen virtual combinatorial databases in their entirety. This methodology allows
only the potential compounds to be subjected to physical (manual) screening and/or synthesis in
laboratories, which is extremely time-consuming and resource-intensive.
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Figure 6. Protocols for interaction between the CDB clients and the server.

4. APPLICATION COMPOSITION

A docking application having an ability to screen a molecule for each execution can be composed as
a task-farming, parameter sweep application for distributed execution. This can be achieved by using
Nimrod-G parameter specification language to parametrize docking application input data and files.
There is no need to make any changes to the existing (sequential) docking application neither does it
need to be developed as parallel application explicitly for distributed execution. The users just need
to parametrize the input data and files appropriately and define a Nimrod-G plan file once. Note the
value of parameters can be changed while launching the application execution. The plan file specifies
the parametric tasks and the types of the parameters and their values for these tasks. A parametric
task consists of a script defined using a sequence of simple commands, providing the ability to copy
files to and from the remote node, perform parameter substitutions in input files, execute certain
programs and copy output files back to the user home node. The parametric plan can be submitted
to the Nimrod-G runtime machinery, which creates independent docking jobs and schedules jobs for
concurrent execution on distributed resources. It takes care of replacing the actual value of parameters
in the parametrized input files before executing docking jobs.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:1-25
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score_ligand ves
minimize_ligand ves
multiple_ligands no
random_seed 7

anchor_search no
torsion_drive ves
clash_overlap 0.5
conformation_cutoff_ factor 3

torsion_minimize ves
match_receptor_sites no
random_search ves

L Molecule to
Tiaendacon tie . >+ | bescreened

receptor_site_file [Yei=an-; -,

score_grid_prefix ece

vdw_definition_file parameter/vdw.defn
chemical_definition_file parameter/chem.defn
chemical_score_file parameter/chem_score.tbl
flex_definition_file parameter/flex.defn
flex_drive_file parameter/flex_drive.tbl
ligand_contact_file dock_cnt.mol2
ligand_chemical_file dock_chm.mol2

ligand energy_ file dock_nrg.mol2

Figure 7. A configuration input file for docking application.

A sample configuration input file of the docking application is shown in Figure 7. It specifies
docking configuration parameters and molecule to be docked by indicating a name of the file in which
molecule record is stored using the parameter variable ‘ligand_atom_file’. To perform a parameter
sweep of different molecules, the value specified by the parameter variable ‘ligand_atom_file’ needs to
be parametrized. This is accomplished by replacing the current value, which represents the name of a
file containing molecule record, by a substitution place marker. The place marker T consists of a dollar-
sign ($) followed by the name of the parameter controlling the substitution, optionally surrounded by
braces.

A parametrized input file with several attributes replaced by substitution place markers is shown in
Figure 8. For example, a place marker called for the parameter ‘ligand_number’ has replaced the first
part of the ‘ligand_atom_file’ attribute value. The actual value of these parameters is defined in the
Nimrod-G plan file that contains parameter definition and task specification. The parameter definition
section of the plan file is shown in Figure 9. Each parameter is defined by a keyword ‘parameter’,
followed by the parameter name, an optional label and a parameter type. The remaining information
on each line defines valid values for the parameter.

The parameter, for example, ‘database_name’ has a label and is of type fext. Its valid values are listed
and the user will be able to select one of the values for the duration of the entire experiment. Most of
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score_ligand
minimize_ligand
multiple_ligands
random_seed
anchor_search
torsion_drive
clash_overlap
conformation_cutoff_factor
torsion_minimize
match_receptor_sites
random_search

maximum_cycles
ligand_atom_file
receptor_site_file
score_grid_prefix
vdw_definition_file
chemical_definition_file
chemical_score_file
flex_definition_file
flex_drive_file
ligand_contact_file
ligand_chemical_file
ligand_energy_file

S$score_ligand
Sminimize_ligand
smultiple_ligands
Srandom_seed

Sanchor_search
Storsion_drive
Sclash_overlap
Sconformation_cutoff_factor
Storsion_minimize

Smatch_receptor_sites

Molecule to be
screened

$random_search

${ligand_number}.mol2
S TTOME K = receptor_site_file}
SHOME/dock_inputs/${score_grid prefix}

vdw.defn

chem.defn
chem_score. tbl
flex.defn
flex_drive.tbl
dock_cnt.mol2
dock_chm.mol2
dock_nrg.mol2

Figure 8. Parametrization of a configuration input file.

the remaining parameters are single values, either text strings or integers, selected by the user, but with
default values provided if the user does not wish to choose a value.

The range parameter, ‘ligand_number’, used to select the molecule, is defined as an integer variable
with bounds. For example, to process the first 2000 molecules in the CDB, this range parameter can
vary from 1 to 2000 with the step size of 1.

The parameters ‘receptor_site_file’ and ‘score_grid_prefix’ indicate the data input files. Their values
indicate that data input files are located in the user home directory on Grid nodes. Instead of pre-staging,
these files can be copied at runtime by defining necessary ‘copy’ operations in the job’s ‘nodestart’ or
‘main’ task (see Figure 10). However, it is advisable to copy or ‘pre-stage’ large input files in the
beginning of application execution instead of copying them during execution of every job. This saves
transmission time particularly when those files are going to be used for docking with many databases.

The plan file is submitted to a job generation tool, such as the EnFuzion Generator, in order to create
a run file that contains specific instances of jobs to be run, which is then submitted to the Nimrod-
G runtime machinery for processing on the Grid. The run file contains a job for each combination of
parameters. Hence the number of jobs is the product of the number of values chosen for each parameter.
Since most of the parameters except ‘ligand_number’ are single-valued, they have no effect on the
number of jobs.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:1-25
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parameter database_name label "database_name" text select oneof "aldrich"
"maybridge" "maybridge_300" "asinex_egc" "asinex_epc" "asinex_pre"
"available_chemicals_directory" "inter_bioscreen_s" "inter_bioscreen_n"
"inter_bioscreen_n_300" "inter_bioscreen_n_500" "biomolecular_research_institute"
"molecular_science" "molecular_diversity_ preservation"
"national_cancer_institute" "IGF_HITS" "aldrich_300" "molecular_science_500"
"APP" "ECE" default "aldrich_300";

parameter CDB_SERVER text default "bezek.dstc.monash.edu.au";
parameter CDB_PORT_NO text default "5001";

parameter score_ligand text default "yes";

parameter minimize_ligand text default "yes";

parameter multiple_ligands text default "no";

parameter random_seed integer default 7;

parameter anchor_search text default "no";

parameter torsion_drive text default "yes";

parameter clash_overlap float default 0.5;

parameter conformation_cutoff_factor integer default 5;

parameter torsion_minimize text default "yes";

parameter match_receptor_sites text default "no"; MOIeCUIes to be
L screened

parameter maximum_cycles integer default 1; ‘(//////,

parameter receptor_site_file text default "ece.sph";

er score_grid_prefix text default "ece";
(:::Zgzggégfi;;igand_number integer range from 1 to 2000 step 1;

Figure 9. A plan file defining parameters type and their values.

It is also possible to set concrete values for each of the parameters at runtime when job Generator
is invoked. For the parameter ‘ligand_number’, the user may choose not to select all values from 1 to
2000, but may select a subset of these values. By default, this generated 2000 jobs, each docking a
single molecule.

The second part of Nimrod-G plan file is task specification that defines a series of operations that
each job needs to perform to dock a molecule (see Figure 10). The ‘nodestart’ task is performed once
for each remote node. Following that, the files copied during that stage are available to each job when
it is started. The ‘main’ task controls the actions performed for each job.

The first line of the ‘main’ task performs parameter substitution on the file ‘dock_base’, creating a
file ‘dock_run’. This is the action that replaces the substitution place markers in our input file with the
actual values for the job.

As each docking operation is performed on a selected molecule in the CDB database, it is not
necessary to copy such large databases on all Grid nodes. Hence, not only is the molecule file named in
the configuration file, we also go to particular lengths to copy only the data for the molecule being
tested. The executable script ‘get_molecule_fetch’ (see Figure 11) is also created using parameter
substitution, and runs the ‘vlab-cdb-get-molecule’ executable, which fetches the molecule record from
the CDB molecule server based on the parameter ‘ligand_number’. The molecule record is saved in
a file whose name is the same as integer value of the ‘ligand_number’ parameter and ‘mol2’ as its
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task nodestart
copy ./parameter/vdw.defn node: .
copy ./parameter/chem.defn node:.
copy ./parameter/chem_score. tbl node:.
copy ./parameter/flex.defn node:.
copy ./parameter/flex_drive.tbl node:.
copy ./dock_inputs/get_molecule node: .
copy ./dock_inputs/dock_base node:.
endtask
task main
node:substitute dock_base dock_run
node:substitute get_molecule get_molecule_fetch
node:execute sh ./get_molecule_fetch
node:execute $HOME/bin/dock.$0S -i dock_run -o dock_out
copy node:dock_out ./results/dock_out.$jobname
copy node:dock_cnt.mol2 ./results/dock_cnt.mol2.$jobname
copy node:dock_chm.mol2 ./results/dock_chm.mol2.$jobname
copy node:dock_nrg.mol2 ./results/dock_nrg.mol2.$jobname
endtask

Figure 10. Task definition of docking jobs.

#!/bin/sh
$HOME /bin/vlab-cdb-get-molecule.$0S $CDB_SERVER $CDB_PORT_NO ${database_name}.db $ligand_number

Figure 11. Parametrization of script for extracting molecule from CDB.

extension. For instance, if the parameter ligand_number value is 5, then molecule record will be saved
in a file ‘5.mol2’.

The main code is the ‘dock’ executable. Note that in the ‘execute’ command, there are pseudo-
parameters that do not appear in the plan file. These include environment variables, such as ‘HOME’, as
well as other useful parameters, such as ‘OS’ indicating the operating system on the node. This allows
us to select the correct executable for the node. If the ‘dock’ executable files do not exist on Grid nodes,
they need to be copied at runtime as part of the job’s ‘nodestart’ task similar to copying input files.

The dock_run file created in the substitution step previously is now provided as the input
configuration file for the docking process. The output files are then copied back to the local host and
renamed with another pseudo-parameter, the unique ‘jobname’ parameter.

5. SCHEDULING EXPERIMENTATIONS

We have performed scheduling experiments from a grid resource in Australia along with four resources
available in Japan and one in U.S.A. Table I shows the list of resources and their properties, Grid
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Figure 12. Static and dynamic input files of docking program.

services, access cost or price in terms of Grid dollar (G$) per CPU-second and the number of jobs
processed on resources with deadline-and-budget constrained (DBC) time optimization (TimeOpt) or
cost optimization (CostOpt) strategies. The resource price in terms of G$ is assigned arbitrarily at
runtime in these experiments, however, they can be set to match the power of resources and job turn
around time as valued in supercomputing centres such as the Manchester computing services [21].
The G$ can be equated to real money or tokens charged to users for accessing resources. In the
current scenario, the users get allocation of tokens via funding from the project sponsoring agents
or partnerships. There are supercomputing centres that sell tokens to commercial users and the value
of tokens correspond to the quantity of resource allocations. It is also possible to price resources based
on the real world economic models [22] that are driven by the supply and demand for resources.

We have performed a trial screening 200 molecules (from the aldrich_-300 CDB) on a target receptor
called endothelin converting enzyme (ECE), which is involved in hypotension. The 3D structure of the
receptor is derived from homology modelling using related receptor structures whose 3D structures
have been solved by x-ray crystallography experiments. In these experiments, for faster evaluation
purposes, the range parameter ‘ligand_number’ is defined with the bounds 1 and 200 and the step
size as 1, which produces 200 jobs for docking molecules. As shown in Figure 12, the dock program
takes two different types of inputs files: (i) common input files, the same files are required for all
docking jobs and (ii) ligand specific input files, which vary from one job to another. The large common
input files (receptor structure and pre-calculated score potentials) are pre-staged on resources instead of
copying them at runtime. The files are copied using the globus-rcp command and stored in the directory
location ‘$SHOME/dock _inputs/” on resources as specified by the parameters ‘receptor_site_file’ and
‘score_grid_prefix’ (see Figure 8). The two application-specific executable files, ‘dock’ and ‘vlab-
cdb-get-molecule’ invoked in the task scripts (see Figure 10 and Figure 11) are also pre-staged.
The executable files are stored in the ‘SHOME/bin/’ directory on resources.

We conducted deadline and budget constrained scheduling experiments for two different
optimization strategies [16].
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Figure 13. A snapshot of the Nimrod-G monitor during ‘Optimize for Time’ scheduling.

1. Optimize for time—this strategy aims to produce results at the earliest possible time before a
deadline and within a budget limit. It process as many jobs as possible cheapest resources for the
deadline period and uses expensive ones just to meet the deadline.

2. Optimize for cost—this strategy aims to minimize the cost of execution (spending from the given
budget) and complete the experiment on or before the deadline. It uses all resources aggressively
as long as it can afford them and tries to process all jobs at the earliest possible time.

In both experiments, we have set 60 min as the deadline limit and 50000 G$ as the budget limit at
runtime using the Nimrod-G scheduler steering and control monitor. The value of these constraints can
be changed at anytime during the execution, of course not less than the time and budget that is already
spent!

The first experiment, Optimize for time scheduling, was performed on 3 November 2001 at 23:23:00,
Australian Eastern Standard Time (AEST), with a 60 min deadline and finished on 3 November 2001
by 23:57:00. A snapshot of the Nimrod-G monitoring and steering client taken a few minutes (~5 min)
before the completion of application processing is shown in Figure 13. This experiment took 34 min
to finish the processing of all jobs using resources available at that time with an expense of 17 702 G$.
Figure 15 shows the number of jobs processed on different resources selected depending on their cost
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Figure 14. A snapshot of the Nimrod-G monitor during ‘Optimize for Cost’ scheduling.

and availability. Figure 16 shows the corresponding expenses of processing on resources. Figure 17
shows the number of jobs in execution on resources at different times. From the graphs it can be
observed that the broker selected resources to ensure that the experiment was completed at the earliest
possible time given the availability of resources and the budget limitations. After 30 min, it discovered
that it could still complete early without using the most expensive resource, hpc220-2.hpcc.jp.

It should be noted that for each job scheduled for execution on the Grid, the Nimrod-G runtime
machinery (actuator) deploys Nimrod-G agents on remote resources. The Nimrod agents setup runtime
environments (generally in scratch file space, ‘/tmp’) on remote resources and execute commands
specified in the task definition script (see Figure 10). The docking parameter files and ligand specific
files are transferred from the home node, bezek.dstc.monash.edu.au in this case. The agent uses http
protocols to fetch files via the http-based file server running on the home node. All parameter variables
in the parametrized input files (see Figure 8 and Figure 9) are substituted by their concrete values
before processing. The ligand record is fetched from the CDB database server running on the home
node. The agent then executes the dock program and stores output files in the scratch area. The required
output files are then transferred to the home node and stored with the job number as their extension.
All these steps involved in the execution of the dock program on Grid resources were completely hidden
from the user.
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Figure 15. Number of jobs processed on Grid resources during DBC time optimization scheduling.
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Figure 16. The amount spent on resources during DBC time optimization scheduling.
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Figure 18. Number of jobs processed on Grid resources during DBC cost optimization scheduling.
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The second experiment, Optimize for cost scheduling, was performed on 4 November, 2001 at
00:08:00, AEST, with a 60 min deadline and finished on 4 November, 2001 by 01:07:30. A snapshot
of the Nimrod-G monitoring and steering client taken a few minutes (~ 5 min.) before the completion
of application processing is shown in Figure 14. This experiment took almost 59.30 min to finish
the processing of all jobs using resources available at that time with an expense of 14277 GS$. It is
interesting to note that the second experiment took an extra 25.30 min and saved 3425 G$ in the
process. Figure 18 shows the number of jobs processed on different resources selected depending on
their cost and availability. Figure 19 shows the corresponding expenses of processing on resources.
Figure 20 shows the number of jobs in execution on resources at different times. From the graphs it can
be observed that the broker selected the cheapest resources to ensure that the experiment was completed
with minimum expenses, but before the deadline limit. In the beginning expensive resources are used to
ensure that the deadline can be met. If for any reason cheapest resources are unable to deliver expected
performance, then the broker seeks the help of expensive resources to meet the deadline.

6. RELATED WORK

Although many researchers have explored the use of parallel computing techniques in molecular
docking for drug design [23,24], there are only a few efforts that use the world-wide distributed
computers for processing docking jobs in parallel. One of the most related efforts is the
FightAIDS @Home project [25], which is based on the Entropia’s distributed computing network and
the Scripps Research Institute’s docking application. Here, volunteers need to download Entropia’s
screen saver program that runs in the background on the volunteer computer. The volunteer PC contacts
the Entropia server to download the data to perform docking. When docking on an assigned data is
completed, it uploads the results to the server. This execution model is different from our model where
the scheduler (Nimrod-G) assigns the work to computers that are available and initiates the execution.

Most of the efforts explicitly develop docking application as a parallel application using a special
purpose, legacy or standard, parallel programming languages and interfaces such as PVM and MPI,
which requires extra development effort and time. The scalability of such applications and runtime
systems is limited to resources available in a single domain and they need powerful computers and
networks for faster processing.

Our techniques are novel in many ways. To perform parallel and distributed docking using our tools,
there is no need to develop docking application as a parallel application. Our framework supports the
composition of the existing molecular docking application as a parameter sweep application without
making any changes to it. Our runtime machinery, the Nimrod-G resource broker, creates independent
docking jobs automatically and launches their parallel execution on world-wide distributed computers.
It hides all the complexity associated with scheduling jobs, shipping appropriated input files, starting
and monitoring their execution and shipping results back to the user. Our scheduler also supports
the deadline and budget based scheduling, which prioritizes the processing depending on the user
requirements—how quickly they need results, how much they want to spend and which one to optimize.

7. SUMMARY AND CONCLUSION

Computational Grids enable the sharing and aggregation of geographically distributed resources for
solving large-scale, resource and data-intensive problems faster and cheaper. However, application
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development, resource management and scheduling in these environments is a complex undertaking.
We have developed a Virtual Laboratory environment and tools for formulating molecular docking for
drug design as a parameter sweep application, chemical database management and scheduling docking
jobs for processing on a wide area distributed resources by leveraging existing Grid technologies.
The new tools developed include a chemical database indexer, CDB server for providing access to
molecules in chemical databases as a network service and clients for accessing CDB services from a
selected CDB service. We have used the Nimrod-G parameter specification language for composing an
existing docking application as a parameter sweep application and the Nimrod-G grid resource broker
for processing molecular docking jobs on distributed resources.

We have conducted deadline and budget constrained scheduling experiments for parallel processing
of docking jobs on the world-wide grid testbed under two different optimization scenarios. The results
of this molecular docking application scheduling on a large-scale distributed resources demonstrate the
potential of the Virtual Laboratory tools for service-oriented computing. They prove the effectiveness
of computational economy and quality of services (QoS) driven scheduling as an efficient mechanism
for the management of supply-and-demand for resources depending on the value delivered to the user.
The economy driven service oriented computing encourages the users to utilize resources effectively
by trading off between the deadline and budget depending on their QoS requirements.

Our experience with developing a prototype Virtual Laboratory environment for distributed drug
design shows the potential and applicability of the Nimrod-G tools for data intensive computing. We are
extending the current system to support adaptive mechanisms for the selection of the best CDB service
depending on access speed and cost. We are also looking into applying the experience gained in this
work to develop a virtual laboratory environment for enabling high-energy physics events processing
on distributed resources on a larger scale.
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