
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 0000; 00:1–26
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Privacy-Preserving Clustering of Unstructured Big Data for
Cloud-Based Enterprise Search Solutions

Sm Zobaed and Mohsen Amini Salehi*

High Performance Cloud Computing (HPCC) Laboratory
School of Computing and Informatics

University of Louisiana at Lafayette, Louisiana, USA

SUMMARY

Cloud-based enterprise search services (e.g., Amazon Kendra) are enchanting to big data owners by
providing them with convenient search solutions over their enterprise big datasets. However, individuals
and businesses dealing with confidential big data (e.g., criminal reports) are reluctant to fully embrace
such cloud services due to valid data privacy concerns. Solutions based on client-side encryption have been
developed to mitigate these concerns. Nonetheless, such solutions hinder data processing, especially, data
clustering, which is pivotal in applications such as real-time search on large corpora (e.g., big datasets). To
cluster encrypted big data, we propose privacy-preserving clustering schemes, called ClusPr, for three forms
of unstructured datasets, namely static, semi-dynamic, and dynamic. ClusPr functions based on statistical
characteristics of the datasets to: (A) determine the suitable number of clusters; (B) populate the clusters with
topically relevant tokens; and (C) adapt the cluster set based on the dynamism of the underlying dataset.
Experimental results, obtained from evaluating ClusPr against other schemes in the literature, on three
different test datasets demonstrate between 30% to 60% improvement on the cluster coherency. Moreover,
we notice that employing ClusPr within a privacy-preserving enterprise search system can reduce the search
time by up to 78%, while improving the search accuracy by up to 35%.
Copyright © 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Cloud trustworthiness; Encrypted clustering; Unstructured big data; Dynamic datasets

1. INTRODUCTION

It is estimated that every day 2.5 Exabytes of both structured and unstructured data are being
generated from various sources, such as sensors in weather/traffic/flight systems, organizational
documentation/reports, emails, web pages, social media activities (e.g., Facebook and Twitter),
digital pictures/videos, and transaction records [23]. The massive volume of generated data is often
referred to as big data. It is estimated that more than 95% of the big data is in unstructured (document
set) form [76].

Cloud providers recently offer scalable and convenient enterprise search services (e.g., Amazon
Kendra [1]) to enable searching over their enterprise big document sets (datasets), stored in the
cloud. Such services periodically crawl in the dataset and update their index structure that is used
for searching. Specifically, a query is searched against the index and the result-set, referencing the
relevant documents with respect to the query, is retrieved for the user. However, using enterprise
search services implies outsourcing contents to the cloud that in certain domains, such as law-
enforcement and healthcare reports, have raised serious data privacy concerns [38, 21], particularly,

∗Correspondence to: School of Computing and Informatics, University of Louisiana at Lafayette, Louisiana, USA. Email:
sm.zobaed1@louisiana.edu, amini@louisiana.edu

Copyright © 0000 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

ar
X

iv
:2

00
5.

11
31

7v
2

 [
cs

.D
C

]
 9

 J
un

 2
02

2

2

after numerous recent data privacy violations [77] in the cloud environments. In one incident [2],
more than 14 million Verizon customer accounts information were exposed from their cloud
repository in 2018. In another incident [5], confidential information of over three billion Yahoo
users were exposed.

An ideal solution for organizations should enable them to securely store their documents in the
cloud while providing real-time enterprise search ability to their authorized users who potentially
use thin-clients (e.g., hand-held devices and smartphones) with storage and processing constraints.
Client-side encryption [69, 38], in which documents are encrypted with the user’s key before
outsourcing to the cloud, is a promising method to achieve the desired data privacy. In this
method, only the client has the ability to decrypt the documents, hence, it can potentially provide
confidentiality against both internal and external attackers [40, 77]. However, the limitation of this
method is the lack of processing (e.g., search and clustering) ability on the encrypted documents.

Searchable Encryption systems (e.g., [55, 28, 72, 73, 59]) have been developed to enable privacy
preserving search ability over encrypted data. Such systems predominantly extract keywords (aka
tokens) from documents to build an encrypted index, which is traversed against a search query at the
search time to find relevant documents. The problem arises for big datasets where the index structure
is prohibitively large, such that traversing it becomes the search bottleneck [38]. One approach to
resolve the bottleneck is topic-based clustering of the index structure, thereby, pruning the search
space and limiting it only to the search query context.

However, clustering encrypted data is challenging because the data semantic is lost, once it is
encrypted. The clustering challenge gets further complicated when we consider dynamism that
exists in some big datasets. We define a static dataset as the one that remains unchanged, once
it is uploaded to the cloud. Obsoleted data (e.g., HUB5 [13]), archived data (e.g., ACCC, RFC [38]),
newsgroup data, book contents are the examples of such datasets. Alternatively, a dynamic dataset
refers to the ones whose document set grows or shrinks over time, such as criminal records[10],
digital libraries [14], and social network feeds [9].

Prior research works (e.g., [38, 71, 22]) suggest that statistical characteristics of keywords that
are present in the document set (e.g., keyword co-occurrences across different documents) can be
utilized to cluster the keywords of an encrypted document set. Accordingly, in this research, our goal
is to develop a topic-based clustering mechanism, called ClusPr, for various types of unstructured
big datasets with sensitive contents. In particular, considering the dynamism that potentially exists in
certain datasets, we propose two variants of ClusPr that are tailored for static and dynamic datasets.
Unlike straightforward K-means clustering algorithm [24] where number of clusters and cluster-
centers are initialized arbitrarily, we propose two different types of heuristics to cluster static and
dynamic datasets. We evaluate the clustering schemes on three different datasets, in terms of the
number and coherency of resulting clusters. We deploy our clustering methods within a secure
cloud-based enterprise search system, called S3BD [38], and show the advantage of our clustering
schemes in improving relevancy and timeliness of the search results.

In sum, the contributions of this research are as follows:

• We propose a method to estimate the suitable number of clusters (K) needed to partition a
given encrypted dataset (see §4.1).

• To enable privacy-preserving clustering in the cloud, we develop three clustering schemes
(namely, S-ClusPr, SD-ClusPr, and FD-ClusPr) that can cluster encrypted data across static,
semi-dynamic, and fully-dynamic unstructured datasets, respectively (see §5.2, §5.3).

• We evaluate and analyze the developed clustering schemes against both encrypted and plain-
text clustering approaches with respect to the cluster goodness metrics (see §7.3).

The rest of the paper is organized as follows. In Section 2, we discuss about background study and
related prior works. We explain the overview of our proposed system architecture in Section 3. Then,
in Section 6, we provide a review on the considered threat model and provide security analysis. We
discuss about result comparison and performance analysis in Section 7. Finally, Section 8 concludes
the paper.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

3

2. BACKGROUND AND RELATED WORK

2.1. Fundamental Data Clustering Algorithms

Once the number of clusters is determined, a dataset is ready to be clustered by utilizing various
clustering algorithms [24, 45, 36, 27, 54]. The tokens are distributed into the cluster with respect
to the most similar cluster center. Popular clustering algorithms, such as K-means, X-means build
clusters based on the convergence of center shifting. For a dataset with n datapoints, K clusters,
i iterations, and f features, provided that k × i× f ≤ n, the time complexity of K-means is
O(n× k × i× f) ≈ O(n2) [30, 15]. In addition, Elbow method [6], Silhouette coefficient [58],
and Bayesian Information Criterion (BIC) scores [67] are commonly utilized to identify the suitable
cluster set. These procedures iteratively build different sets of clusters and nominate a final set based
on the minimum loss with respect to the clusters’ centers. Adopting any of these procedures increase
the time complexity by K times. Hence, the total complexity stands to O(Kn2) that is not tractable
for big data [39, 30]. To avoid this, we propose two sub-tasks: first, from the index structure, we
find the potential centers with O(n× c) time complexity, where c denotes the maximum number of
centers and we have c << n; Second, we build a cluster-wise token distribution function to assign
each token to a proper cluster. Let q denote the number of appropriate centers (and we have q ≤ c).
Then, the overall time complexity for the two sub-tasks is O(2n× c).

The idea of topic-based clustering has been studied and applied extensively on plain-text
datasets. Correspondingly, Xu and Croft [71] proposed to build clusters on a homogeneous index
(i.e., all of the terms share a nearly similar topic) that improved the effectiveness of a search
system compared to standard distributed information retrieval systems. The authors used K-means
clustering algorithm, and to assign components among the clusters, they used KL-divergence [25].
Then, utilizing the maximum likelihood estimation theory, their proposed method determines the
highest relevant cluster based on the incoming search query. However, the overall process is
computationally intensive that impacts the real-time search over big data.

Mary and Kumar [47] addressed the challenges of clustering dynamic data (e.g., Twitter
and streaming data). They utilized Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm [64]. However, DBSCAN falls short in clustering datasets containing
different densities, which is common in big data [16]. Alternatively, ClusPr clusters datasets
irrespective to their density.

2.2. Privacy-Preserving Data Clustering Schemes

A large body of research has been undertaken to enable processing of the encrypted data
(ciphertext). Zhou et al. proposed a linear transformation-based solution for matching queries
against encrypted data while ensuring data privacy on the cloud without any intervention of the data
owner [74]. However, linear transformation methods support secure K-nearest neighbor (KNN)-
based query matching approaches but not the clustering. This is because clustering is not invariant
to linearly transformed data. The optimal linear transformation has a prerequisite of knowing the
true cluster means, which is not possible to obtain before generating the cluster [62]. In addition,
we assume that the data are tokenized and encrypted before transferring to the cloud. Therefore,
unlike [74], where the entirety of encrypted data is queried using time-consuming cryptographic
calculations, we use the statistical properties of the data without revealing any meaningful part
of it to the cloud. Sun et al. proposed a searchable encryption method by forming a tree index
structure that operates based on the cosine similarity and TF × IDF [61, 60] measures. However,
the solution is not scalable for big data, because the search index can become large to the extent that
it impacts timeliness of the search operation. We believe that our proposed clustering approach can
be a complement to [61, 60] where the central index is partitioned topically into multiple small size
index structures that can improve the search time and efficiency.

Homomorphic encryption has become a popular method to perform computation over the
encrypted data. Several variations of the homomorphic encryption such as fully or partially
Homomorphic encryption [34, 70] have been proposed to enable privacy-preserving data processing
on the cloud. Zhu et al. [75] proposed a secure aggregation and division protocol based on

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4

homomorphic encryption to securely compute clusters without tampering with the privacy of
individual peers in a peer-to-peer system. However, their clustering technique does not consider data
dynamism. Pang and Wang proposed a homomorphic scheme that provides security to outsourced
data uploaded from multiple parties in a twin-cloud system [52] that is assumed to be a semi-honest
environment, whereas, we assume cloud to be untrusted in terms of storing/processing sensitive
data [44]. Wang et al. proposed HK-Means++ that combines K-Means clustering with finding the
suitable cluster numbers [66]. In addition, the work leverages homomorphic encryption scheme to
solve the encrypted data manipulation, distance, and convergence calculation. Although our work
is comparable to HK-Means++, it can only cluster static datasets. Moreover, the experiments were
performed only on one dataset and it is not clear how the method performs on other datasets.

We note that the current implementations of the homomorphic encryption technique imply a high
computational overhead [32] which affects the real-time response of a search system, particularly,
for big datasets [75].

Vaidya and Clifton [65] proposed a solution to cluster encrypted datasets in which different data
attributes are stored in distinct storage systems. Then, the clustering was carried out in each one of
the data storage systems individually. However, this solution is time consuming and cannot serve
the real-time constraint we consider in this work.

2.3. Estimating Number of Clusters

A prerequisite to clustering is to estimate the suitable number of clusters K. However, identifying
K is an NP-hard problem [53], hence, a large body of research has been undertaken to provide
heuristic methods in which K is approximated [26, 76, 33, 27]. Established clustering methods,
such as Silhouette [58], Gap Statistic [63], Stability Selection [43], Consensus [3], and Progeny [37],
generate a series of various clustering sets upon considering various number of clusters. Later, they
select the optimal clustering set from the series. The common drawback of these methods is the
computational overhead, because the clustering has to be performed multiple times with respect to
the different number of clusters.

Pelleg and Moore [54] proposed a regularization framework for approximating K upon utilizing
X-means clustering. The method is a modified version of K-means clustering that improves cluster
distributions by frequently attempting subdivision until it satisfies a predefined stopping criterion.
However, lack of prior knowledge about the dataset makes it difficult to apply the associated
stopping criterion [36]. In X-means method, an optimization function is used to choose the smallest
number of clusters with the maximum possible amount of variation within the dataset. The algorithm
starts with K=1 and increment it until the variation reaches a plateau. This starting point is
considered as the optimal K for the K-means method [27]. Although the clustering methods are
dataset independent, estimation of an appropriate K is generally dataset-specific. K should be higher
in sparse data and lesser in comparatively dense data. Likewise, we propose to estimate appropriate
K with respect to the content of the considered dataset.

Research Works Estimating
#Clusters

Encryption
Approach

Cloud’s
Trustworthiness

Using Edge
Computing

Real-time
Support

Dynamic Data
Clustering

Multiple Data
Owners

Wang et al. [66] No Homomorphic Semi-honest No No No No
Valdiya & Clifton [65] No Homomorphic Semi-honest No Yes No Yes
Pang & Wang [52] No Homomorphic Semi-honest No Yes No Yes
Sun et al. [61, 60] No User-side Honest-but-curious No Yes No No
Zhu et al. [74] No Homomorphic Honest No No No Yes
Woodworth et al. [38] No User-side Honest-but-curious No Yes No Yes
ClusPr (proposed) Yes User-side Honest-but-curious Yes Yes Yes Yes

Table I. Summary of the existing privacy-preserving clustering approaches and positioning our proposed
work (ClusPr) with respect to them.

2.4. Positioning of the Proposed Work

Our proposed work is motivated from Woodworth et al. method for topic-based clustering on
encrypted keywords over the central index using K-means method [38]. The cluster-wise token

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

5

distribution function was determined based on the statistical data of each encrypted keyword or
token. The authors use a predefined K value. Such K value is inefficient, because the appropriate
number of clusters could be varied based on the dataset characteristics. Moreover, as the authors
only considered static/unchanged data, the proposed scheme is not capable of processing dynamic
data. On the other hand, ClusPr provides a heuristic to approximate the suitable number of clusters
and then, clustering the data while maintaining the data privacy on the cloud. For a dynamic dataset,
where documents are added or removed over time, because of the re-clustering operation, clusters
are shrunk or expanded to reflect the dynamism of the dataset.

Table I summarizes the notable related studies in the literature and positions the contribution of
this paper with respect to them.

Cloud Tier

Token
ExtractorDocs

Encrypted
Docs

Clu
ste

rs
{c 1
…c

n}

c1

c2 cn
Users

Edge Tier

Index

Query
Pre-processor

Encryptor

E(Docs)
≈

Search Query

Upload

Client Tier

Cluster
Manager

Abstracts

a1 a2 an

≈

Temp. Index

E(tokens)

Figure 1. Overview of the context where ClusPr is deployed in a three-tier architecture (of client, edge,
and cloud) to facilitate a secure cloud-based search service. The edge tier is assumed to be on the user
premises and trusted. It is used to ease the computational overheads imposed by privacy and clustering

related processes.

3. THREE-TIER ARCHITECTURE OF CLUSPR

Figure 1 presents an architectural overview of the context where ClusPr is developed. The
architecture represents applying ClusPr for S3BD, a cloud-based secure semantic search system that
requires clustering over encrypted data [38]. The architecture represents a three-tier system based
on a client device, edge system, and the central cloud system. The edge tier resides on the user’s
premises (hence, is considered trusted) to relieve the client tier from processing computationally
intensive tasks. This is particularly important for non-static (i.e., semi-, fully-dynamic) datasets
where documents have to be processed as they are uploaded to the cloud tier over time.

In the specific context of S3BD, upon uploading a document by the user, the document is
passed through Token Extractor on the edge tiers to retrieve the keywords (aka tokens) semantically
representing the document. For dynamic datasets, a temporary index structure is used to store the
extracted tokens representing the occurrences of each new token in different documents. Next, the
document is encrypted by the user’s key and is securely stored on the cloud repository. Next, a
Temporary Index structure is formed based on the extracted tokens of the documents in question
before encrypting and uploading them to the cloud. The Temporary Index structure shows the
tokens, their frequency, and their appearances across the uploaded batch. Tokens of the Temporary
Index are encrypted by the Encryptor using the user’s key. By encrypting documents as well as
the extracted tokens, Encryptor preserves the data privacy on the cloud. Note that, although we
can technically use homomorphic encryption to maintain the statistical properties (frequency and
co-appearances), for efficiency reasons, in the current implementation, we keep the properties
unencrypted. We assume that such properties do not reveal meaningful information about the data.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6

In fact, in [66], K-means clustering was used over homomorphically encrypted big data and showed
that the time overhead of clustering can be prohibitively expensive. In the next step, the Temporary
Index is fed to the Cluster Manager to make the suitable clustering decision on the cloud. Cluster
Manager may decide to keep the existing clusters and only update them by the entries of the
Temporary Index. Alternatively, upon observing a major update in the Temporary Index, the Cluster
Manager decides to exhaustively re-cluster all of the tokens. Though a few of the aforementioned
prior works can cluster encrypted data, they fall-short in clustering dynamic datasets, whereas,
ClusPr can cluster both static and dynamic data while ensuring privacy. We explain the updating
and re-clustering procedures ClusPr in Section 5. Cluster Manager is also in charge of generating
and maintaining Abstracts. Each abstract ai is a sampled summary of a corresponding cluster Ci

on the cloud tier [20]. Abstracts are to prune the search operation and navigate the search only
to clusters that are topically-related to the query. Further details about Abstracts are described in
Section 4.4.

For static datasets, the architecture is streamlined such that the extracted tokens are encrypted
and directly fed into the Index structure on the cloud tier. Once the data uploading procedure is
completed, the cloud tier initiates the clustering procedure. As there is no re-clustering procedures
defined for static clusters, the Cluster Manager is only in charge of generating and maintaining the
abstracts [20]. It is noteworthy that, in the architecture of Figure 1, the dashed arrows located in the
edge tier are to highlight the differences for dynamic datasets.

In the implementation, we chose to use RSA [31], which is a widely-adopted and highly
secure deterministic encryption technique, to encrypt the documents and extract their tokens before
uploading them to the cloud. Other techniques, such as AES with repeating initialization vector
(e.g., AES-SIV), can be used for encryption as well. It is noteworthy that probabilistic encryption
techniques [41], such as AES-CBC/GSM [17], cannot be used, because they generate different
ciphers for the same token.

The index has a key-value structure, where each key is a token and its corresponding value is a
set of pairs, each one representing the document that includes the token and the frequency of that
particular token. Note that both the keys and document names are encrypted. For this reason, in
the current implementation, we chose to maintain frequency values in the plain-text format. Further
details of the proposed static and dynamic data clustering schemes are presented in Section 4 and 5
respectively.

Cluster Ci on the cloud tier includes a group of index entries that are topically similar. As the
indexed tokens are encrypted and do not carry any semantic, topic-based clustering of them is a
challenging task. We hypothesize the tokens that are semantically similar tend to appear in the same
documents. Accordingly, clustering is performed based on the relative frequency of tokens’ co-
occurrences across all the documents. The union of K topic-based clusters (C1...Ck) is equivalent
to the index. Upon issuing a search query by the user, the abstracts with the highest similarity to the
search query are identified. Then, only the clusters associated with the abstracts are searched.

4. PRIVACY-PRESERVING CLUSTERING SCHEME FOR STATIC BIG DATASETS
(S-CLUSPR)

In this part, first (in Section 4.1), we elaborate on how to estimate the appropriate number of
clusters that should be formed to represent a static big dataset. Second, in Section 4.2, we provide
an algorithm to form the center of each cluster. Then, in Section 4.3, we explain methods to distribute
the indexed terms across clusters. Finally, in Section 4.4, we describe the way pruning is achieved,
i.e., the method that navigates a search query to relevant cluster(s).

4.1. Estimating the Number of Clusters for Static Big Datasets

Depending on the characteristics of a dataset and distribution of tokens in its documents, the
appropriate number of clusters (K) can vary significantly. However, optimally determining K
directly impacts the accuracy of topic-based clustering and, subsequently, the efficiency of the

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

7

system (e.g., search application) that uses the clusters. Encrypted tokens and their metadata,
including documents they appear in and their frequency, are the only available parameters to
estimate K. The tokens and their metadata are generated by a keyword extractor that retrieves n
single or multi-phrase tokens from each document. We assume that all documents are treated equally
and the value of n is the same across all documents in a given static dataset.

Estimating K for the static dataset is performed based on the following two steps: (1) building
Token-Document Frequency Matrix; and (2) constructing Normalized Matrix.

Step-1: Building Token-Document Frequency Matrix. To be able to follow the scheme, we
consider an example using five tokens and six documents in Table II. We initialize a token-document
matrix A from the index structure. In the matrix, each row represents a token and each column
represents a document. Although our approach does not deal with plain-text tokens, just for further
readability, in the Table II, we redundantly show the plain-text tokens (in “Word” column) along
with their encrypted forms (in “Hash” column). Each entry ai,j of matrix A represents the frequency
of ith token in jth document (denoted as f(i, j)).

Table II. Token-Document Frequency Matrix A, built based on the index structure

Word Hash d1 d2 d3 d4 d5 d6
Book Uh5W 30 0 23 4 40 0
Solve /Vdn 5 0 0 60 34 0
Traffic oR1r 0 23 0 30 0 0
Net vJHZ 52 49 0 23 0 26
Enter tH7c 0 45 68 0 3 5

For a big dataset, the matrix size can be prohibitively large and sparse. To avoid this, we trim
the matrix to include only the tokens that are influential in building clusters. We define document
co-occurrences as the number of documents containing a particular token. Then, to build the token-
document frequency matrix A, we only take into account tokens whose document co-occurrences
are either greater than or equal to the mean value of the document co-occurrences across the whole
dataset.

Step-2: Constructing Normalized Matrix. To make the relationship among tokens and
documents quantifiable and comparable, we need to normalize the token-document frequency
matrix. Considering that ai,j represents the strength of association between token ti and document
dj , the maximum value in column j of the token-document frequency matrix represents the token
with the highest association with document dj . Hence, for normalization, we divide the value of
each entry of A to the highest value in the corresponding column of the matrix and the result is
stored in a new matrix, called matrix N. The value for each entry ni,j is formally calculated based
on Equation 1.

ni,j =
ai,j

max
∀i

ai,j
(1)

Step-3: Building Probabilistic Matrices R and S The goal, in this step, is to calculate the topic
similarity among encrypted tokens. For that purpose, we need to calculate the probability that topic
of a token shares similarity with other tokens. We hypothesize that tokens that co-occur across
documents are likely to share the same topic. Besides, the magnitude of similarity between two
tokens could be influenced by the tokens’ distribution across the dataset. For instance, specific
terms appear only in a few documents and are not widely distributed throughout the dataset. Such
sparsely distributed tokens have low co-occurrences with other tokens which increases the diversity
of topics in a dataset and potentially raises the required number of clusters (K). We leverage the
normalized matrix (N) to perform a two-phase probability calculation that yields a matrix (denoted
as Q) representing token-to-token topic similarity. In the first phase, we calculate the importance of

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8

each token to each document. The importance of token ti, in document dj , denoted as τi,j , is defined
based on Equation 2.

τi,j =
ni,j∑
∀k

ni,k
(2)

Considering Equation 2 and matrix N, we generate matrix R whose entries represent the
importance of each token across all documents. In fact, each entry ri,j of R represents the
probability of choosing a document dj , having token ti. That is, ri,j = P(ti, dj).

In the second phase, we calculate the importance of each document to each token. The importance
of document dj for term ti, denoted by δj,i and is defined based on Equation 3.

δj,i =
nj,i∑
∀q

nq,i
(3)

Considering each δj,i and N, we generate S whose entries represent the importance of each
document with respect to each token. In fact, each entry si,j represents the probability of choosing
ti from dj (i.e., we have si,j = P(dj , ti)).

Step 4- Constructing Matrix Q to Determine the Number of Clusters Recall that R is a token-
to-document matrix and S is a document-to-token matrix. To identify the similarity among the
encrypted tokens, we multiply R and S. As the number of columns and rows of R and S are equal,
it is possible to multiply matrix R with S. The resultant matrix, denoted as Q, is a token-to-token
matrix and serves as the base to determine the number of required clusters. Each entry qi,j denotes
the topic similarity between token i and j. More specifically, qi,j indicates the magnitude to which
token i shares similar topic with token j for i 6= j and is calculated as qi,j =

∑
∀i,j

ri,j · sj,i. Table III

shows matrix Q for the example we discuss in this section.

Table III. Cluster decision matrix Q is built based on the multiplication of R and S matrices

Word-Hash Book
Uh5W

Solve
/Vdn

Traffic
oRir

Net
vJHZ

Enter
tH7c

Book- Uh5W 0.39 0.25 0.01 0.18 0.09
Solve- /Vdn 0.26 0.45 0.12 0.12 0.02
Traffic- oRir 0.02 0.26 0.21 0.33 0.18
Net- vJHZ 0.10 0.07 0.08 0.58 0.15
Enter- tH7c 0.09 0.01 0.08 0.28 0.37

Diagonal entries of Q signify the topic similarity of each token with itself and dissimilarity (i.e.,
separation) from other topics. More specifically, the value of qi,i indicates the magnitude that term
ti does not share its topic with other terms. Therefore, we define diagonal entries (qi,i) as separation
factor, because for each token, it represents the token’s tendency to stay separate from other topics.
As such, summation of the separation factors can approximate the number of clusters (K) needed
to partition topics of a dataset. Let m denote the total number of tokens in Q. Then, Equation 4 is
used to approximate K for a given dataset. We use the ceiling function to make K an integer value.

k = d
m∑
i=1

qi,ie (4)

Correctness ofK is verified using a hypothesis that statesK for a set should be higher if individual
elements of the set are dissimilar, otherwise K should be low [26, 29]. Equation 4 is the core of
approximating K. According to this equation, the maximum K value can reach to M , when the

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

9

documents are highly distinct and each individual token of the documents represents a unique topic,
otherwise it is lower than M . Hence, our approach conforms with the clustering hypothesis.

4.2. Center Selection

In K-means clustering, generally, the clusters’ centers are arbitrarily chosen [19, 45]. Then, based
on a distance measure function (e.g., Euclidean distance [19] or semantic graph [45]), dataset
elements are distributed into the clusters. K-means operates based on iteratively shifting clusters’
centers until it converges. However, we realized that the extremely large number of tokens make
the iterative center shifting step (and therefore K-means clustering) prohibitively time-consuming
for big data [18]. Accordingly, in this part, we are to propose a big-data-friendly method to cluster
encrypted tokens.

The key to our clustering method is to dismiss the iterative center shifting step. This change entails
initial clusters’ centers not to be chosen arbitrarily, instead, they have to be chosen proactively so
that they cover various topics of the dataset. For that purpose, a naı̈ve method can choose the top
K tokens that have the highest number of associated documents. Although this approach chooses
important (highly associated) tokens, it ends up selecting centers that have a high topical overlap.
We propose to choose tokens that not only have high document association but also cover diverse
topics exist in the dataset.

We define centrality of a token i, denoted Φi, as a measure to represent a topic and relatedness
to other tokens of the same topic. Assume that tokens are sorted in a descending manner, based
on the degree of document association. Let U represent the union of documents associated to the
currently chosen centers. Also, for token i, let Ai represent the set of documents associated to i.
Then, uniqueness [38] of token i, denoted ωi, is defined as the ratio of the number of documents
associated to i but not present in U (i.e., |Ai − U |) to the number of documents associated to i
and are present in U (i.e., |Ai ∩ U |). Uniqueness indicates the potential of a token to represent a
topic that has not been identified by other tokens already chosen as centers. Particularly, tokens
with uniqueness value greater than 1 have high association to documents that are not covered by the
currently chosen centers, hence, can be chosen as new centers.

Recall that each entry qi,j of matrix Q represents the topic similarity between tokens i and
j. Besides, diagonal entry qi,i measures separation of token i from others. Therefore, the total
similarity token i shares with others can be obtained by Σ∀j|j 6=iqi,j . Note that for token i, we
have Σ∀jqi,j = 1, hence, the total similarity for token i is equal to 1− qi,i. Centrality of a token
is measured by the uniqueness of the token, the magnitude of similarity the token shares with
others, and the magnitude of it being isolated. That is, for token i, centrality is defined as:
Φi = ωi × qi,i × (1− qi,i).

Algorithm 1 shows the high-level pseudo-code to select maximum of K centers from the set of
indexed tokens of a dataset. In addition to K, the algorithm receives the central index and the Q as
inputs. The algorithm returns a set of at most K center tokens, denoted centers, as output. In the
beginning, the output set is initialized to null. U represents the set of documents covered with the
chosen centers. A heap structure, denoted Θ, is used to store a pair for each token and its centrality
value. For each token i, the uniqueness and centrality values are calculated (Steps 5− 13) and the
corresponding pair is inserted to the heap. Note that tokens with uniqueness lower than one do not
have the potential to serve as a cluster center. In the next step, we select at most K center tokens
that have the highest centrality values.

4.3. Distributing Encrypted Tokens Across Clusters

Once K tokens are nominated as cluster centers, the remaining tokens of the index are distributed
across the clusters with respect to their relatedness (a.k.a. distance) with the center tokens.

Because there is no intersection between the non-center tokens and members of the centers set,
we can model the token distribution across the clusters as a weighted bipartite graph where the
weight of each edge represents the relatedness between a token and a center. Figure 2 depicts an
example of a bipartite graph to show the relationship of each token and centers. Solid lines show
the edge with the highest weight for each token that represent the cluster that a token should be

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10

ALGORITHM 1: Pseudo-code to determine clusters’ centers
Input : K, C matrix, and Index (with tokens sorted descendingly based on the degree of document

association)
Output: centers set that includes at most K center tokens

1 Function Choose Center(k,Q, Index):
2 centers← ∅
3 U ← ∅
4 Θ← {(∅, ∅)} //Pairs of tokens and centrality values
5 foreach token i ∈ Index do
6 ωi ← CalculateUniqueness(i, U)
7 if ωi > 1 then
8 Ai ← CalculateDocumentAssoc(i, Index)
9 U ← U ∪Ai

10 Φi ← (ωi × qi,i × (1− qi,i))
11 Add pair (i,Φi) to max-heap Θ based on Φi

12 end
13 end
14 centers← Extract K max pairs from Θ heap
15 return centers
16 end

School Car Book

0.
28

0.
63

0.0
7

0.
07

0.
04

0.1
9

0.0
6

0.
76

0.020.1
5

0.
13 0.6
3

0.
48

0.7
8

Cluster centers

Tokens

Teach Pen Kia GearStory

0.0
3

Figure 2. A bipartite graph representing the relatedness among centers and remaining tokens. The weight of
each edge represents the relatedness of a token and a center. Solid lines show centers that offer the maximum

relatedness for a token.

distributed to. Established techniques (e.g., semantic graph [45], Euclidean distance [19]) are to
calculate the relatedness, however, these methods are not appropriate for encrypted tokens that are
sparsely distributed [19] [45].

As encrypted tokens lose their semantics, we ought to define the relatedness between tokens
based on their statistical characteristics and then leverage it to distribute each token to the cluster
that offers the maximum relatedness.

Intuitively, the relatedness measure between tokens ti and tj , denoted r(ti, tj), is defined based on
the magnitude of their co-occurrences, i.e., the number of documents where the two tokens appear
together [38, 76]. Let Fi and Fj respectively denote the sets of documents that ti and tj are appeared
in. Then, the intuitive co-occurrence of the two tokens is Fco = Fi ∩ Fj . However, a deeper analysis

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

11

reveals that quantifying the relatedness only based on the cardinality of co-occurrence (i.e., |Fco|)
can be misleading for the two following reasons:

First, intuitive co-occurrence ignores the magnitude of disparity across Fi and Fj that negatively
impacts the relatedness between ti and tj . The disparity is determined based on the symmetric
difference (i.e., we have Fdis = Fi ⊕ Fj). Accordingly, to consider the impact of both co-occurrence
and disparity, we define a new measure, called relative co-occurrence, and leverage it to determine
the relatedness between ti and tj .

Second, intuitive co-occurrence ignores the importance of ti and tj in each document d ∈ Fco.
Accordingly, to measure the co-occurrence value in each document d, denoted υ(ti, tj , d), we
consider the importance of each one of the tokens relative to their importance across all documents
of Fco. We use frequency of a token in a document to measure its importance in that document.
Formally, in document d, we calculate the value of co-occurrence based on Equation 5.

υ(ti, tj , d) =
f(ti, d)∑

∀m∈Fco

f(ti,m)
· f(tj , d)∑
∀m∈Fco

f(tj ,m)
(5)

Similarly, we utilize Equation 6 to measure the impact of disparity between two tokens in each
document d ∈ Fdis, denoted ϕ(ti, tj , d).

ϕ(ti, tj , d) =
f(ti, d)∑

∀m∈Fdis

f(ti,m)
+

f(tj , d)∑
∀m∈Fdis

f(tj ,m)
(6)

In document d, once we know the co-occurrence and disparity between ti and tj , we can
calculate the relative co-occurrence as ρ(ti, tj , d) = υ(ti, tj , d)− varphi(ti, tj , d). Then, the relative
co-occurrence across all documents of the two tokens (i.e., Fi ∪ Fj) is leveraged to calculate the
relatedness between them.

Assuming c as the token that represents center of a given cluster (i.e., ti = c ∈ centers), we
define relatedness between c and token t, according to Equation 7. Token t is distributed to the
cluster whose center offers the maximum relatedness. Note that, in this equation, to emphasize the
importance of token t in document d, we also consider its frequency ratio.

r(c, t) =
∑

d∈(Ft∪Fc)

ρ(t, c, d)· f(t, d)∑
∀m∈Ft

f(t,m)
(7)

4.4. Pruning Clusters to Expedite the Search Operation

The purpose of building topic-based clusters is to achieve scalable search over big data via
limiting (pruning) the search scope based on the query topic, instead of exhaustively traversing the
whole index structure. For pruning, we need to identify the clusters that are semantically relevant to
the search query and discard the irrelevant ones. However, pruning is a challenging task when we
operate on the encrypted data in the cloud.

To overcome the challenge, we require the topic of each cluster in plain-text, such that we can
identify the clusters whose topics are semantically related to the search query and only consider
those clusters for searching. For that purpose, in our previous work [20], we established a method to
represent the topic of each cluster Cx (denoted αx) by considering the top-n most-frequent tokens
of Cx. The tokens of αx are decrypted and maintained on the edge tier of ClusPr in a structure
called Abstract. Abstracts are leveraged to measure the topic similarity between a query and their
corresponding clusters. In the next step, the search is conducted on the clusters that are most relevant
to the query. For further details about creating abstracts and pruning operation, interested readers
can refer to our earlier study [20, 38].

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12

5. PRIVACY-PRESERVING CLUSTERING SCHEME FOR DYNAMIC BIG DATASETS
(DYNAMIC CLUSPR)

5.1. Overview

In the previous section, we explained clustering of static (e.g., archive) encrypted big datasets.
However, many big datasets are dynamic (e.g., healthcare data, criminal records) [47] and their
contents change over time. In this section, we deal with clustering and subsequently searching over
such datasets. We consider two types of dynamic datasets: First is the semi-dynamic datasets whose
contents are updated in batch over time (e.g., Museum of Modern Art (MoMA) dataset [14]); Second
is fully-dynamic datasets whose contents are constantly updated (e.g., Twitter streams [12]).

The latest changes on the dataset have to be reflected in the clusters. Otherwise, altered documents
are not retrieved by the search system, even if they include relevant contents. In fact, the updates on
the dataset affect the tokens’ co-occurrences and, subsequently, the clustering arrangement. As such,
the challenge is to know how the addition or deleting documents change the topics and number of
clusters.

Given the size of big datasets, reconstructing clusters (called re-clustering) upon arrival of every
single document or a small batch of documents is time-prohibitive. Moreover, the small updates
generally cause negligible changes in the co-occurrences of tokens that are unlikely to modify the
arrangement of clusters. Only significant updates can cause decisive changes on the magnitude of
co-occurrence and relatedness that entail re-clustering. Accordingly, the two followup questions are:
when to perform re-clustering? and how to re-cluster the tokens? To address these questions, based
on the type of dynamic datasets, we propose two clustering schemes in ClusPr: Semi-dynamic data
clustering scheme (SD-ClusPr) and Fully-dynamic data clustering scheme (FD-ClusPr).

5.2. Semi-Dynamic Data Clustering Scheme (SD-ClusPr)

In semi-dynamic datasets, topic-based clustering can be initially achieved on the first batch of
documents in the dataset according to the method described in the previous section. Then, the re-
clustering decisions are made depending on the changes caused by the new batch of documents.
That is, we need to determine whether the change caused by the extracted tokens of the new batch
is significant or not.

To determine the significance of changes caused by the tokens of the new batch, we utilize χ2

(chi-square) distribution test [7] that can identify significant changes observed in a variable of a
given population. The χ2 test is known as testing goodness of fit and it is represented by Equation 8,
where Oi is the observed and Ei is the expected value of a particular variable in K trials.

χ2 =

k∑
i=1

[(Oi − Ei)
2/Ei] (8)

We consider the number of the extracted tokens in the new batch and the number of tokens in the
existing clusters. Our null hypothesis (H0) is to perform re-clustering and χ2 test is employed to
check the validity of H0. If the difference between the number of new tokens and existing tokens
is small, a low value of χ2 is obtained. For one degree of freedom with 95% confidence interval,
the value of χ2 = 3.841 fails to reject H0. Alternatively, if the number of tokens in the new batch
is significantly smaller than the number of existing tokens, χ2 value becomes higher that denotes
significant deviation from H0. Then, the decision is to reject H0 and keep the existing clusters.

Once the re-clustering decision is made, we use the method explained in Section 4 to cluster
tokens of the updated dataset. In the event that re-clustering is not achieved, the new tokens are
accumulated with the of tokens of the next batches. As a result, the total number of new tokens
becomes significant that leads to a lower χ2 value and subsequently acceptance of H0.

Updating Clusters Let U1 a new batch of documents that introduces a set of new tokens
T = {t1, t2, ..., tn} that does not exist in the existing clusters. Assume that based on the re-clustering

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

13

decision method, mentioned in the previous part, we determine to keep the existing clusters
{C1, C2, ..., Cn} to accommodate T .

To distribute ti ∈ T to a cluster, we can measure the relatedness as explained in Section 4.3.
Alternatively, we can leverage the set of abstracts {A1, A2, ..., An}. As they are in the plain-text
format, a more accurate relatedness measurement can be conducted using the semantic similarity,
as opposed to inferring the relatedness based on token co-occurrences in documents. In this case, we
use Word2Vec [49] model to calculate the relatedness of ti and abstract Aj . Then, ti is assigned to a
cluster that offers the highest relatedness. To avoid poor assignments, we define θ as the relatedness
threshold that should be reached to assign ti to Cj . In the event that ti cannot join any cluster, a
new cluster, called Cnew ∈ C, is formed and ti is considered as its center. The above procedure is
repeated for all ti ∈ T .

ALGORITHM 2: Pseudo-code to update clusters in SD-ClusPr.
Input : set of abstracts A, tempIndex , θ
Output: H , map of new tokens to clusters

1 Function SD-ClusPr(A, tempIndex, θ):
2 T ← tempIndex \ CentralIndex
3 H ← ∅
4 A← ∪ni=1Ai
5 Φ← ∅
6 //Max-heap to find the abstract with highest similarity
7 foreach token t ∈ T do
8 foreach aij ∈ A do
9 s← sim (aij , t)

10 if s > θ then
11 Add (s, i) to Φ
12 end
13 end
14 if Φ 6= ∅ then
15 //Allocate t to existing cluster
16 (t, i)← Extract max pair from Φ
17 Add (t, i) to H
18 end
19 else
20 //Forming a new abstract and cluster and add it to H
21 An+1 ← {t}
22 A← ∪n+1

i=1 Ai

23 Add (t, n+ 1) to H
24 end
25 end
26 Encrypt H and push it to the cloud tier
27 end

Determining the value of θ Threshold We estimate the value of θ threshold by leveraging the
abstracts {A1, A2, ...An}. Recall that the elements of abstract Ai are the ones that best represent the
topic of its corresponding cluster Ci. We define coherency of Ai as the average similarity distance
across pairs of its elements. Let {ai1, ..., aip} be the set of elements of Ai. Then, coherency of Ai,
denoted Ki, is defined based on Equation 9 where sim(x, y) shows the similarity distance between
(x, y) ∈ Ai ×Ai.

Ki =

∑
∀(x,y)∈Ai×Ai|x 6=y

Sim(x, y)(
p
2

) (9)

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14

Then, we define θ as the global minimum across all abstracts (i.e., θ = min∀iKi). This implies
that a new token can join a cluster only if its distance does not worsen the coherency of current
clusters. Otherwise, the new token forms its own cluster.

Algorithm 2 shows the pseudo-code of how to update clusters in SD-ClusPr, in case we choose
not to perform re-clustering. In addition to the set of abstracts (A) and θ, the algorithm receives the
set of tokens for a new document batch, which is stored in form of a temporary index. The algorithm
returns the H structure that includes the mapping of new tokens to their respective clusters. In Steps
7− 9, for each new token, we calculate the similarity distance with respect to all abstract elements
aij and check whether the similarity distance exceeds θ or not. If it exceeds θ, we make a pair of
similarity distance and corresponding abstract number, denoted as (aij , t) and build max-heap Φ
based on the distance (in Step 10− 12). If Φ contains any value, we extract from it the pair that
has the largest value (i.e., the abstract that offers the most topic similarity for t). Then, in Step
17, the pair of (t, i) is added to H . On the contrary, if Φ is null, it implies that no cluster offers a
considerable similarity to t, and so, in Steps 19− 24, we build a new abstract and cluster using t.
Finally, we encrypt the tokens of H and push it to the cloud tier. On the cloud end, cluster manager
updates its clusters based on H .

5.3. Fully-Dynamic Data Clustering Scheme (FD-ClusPr)

Unlike SD-ClusPr, for fully-dynamic datasets, clusters have to be formed or updated upon arrival
of the documents. That is, continuous or burst arrival of new documents should trigger FD-ClusPr.
Accordingly, in FD-ClusPr, we consider two cases in forming clusters: (A) initial case that occurs
when first document arrives and there is no existing cluster and (B) update case, where the existing
clusters have to be updated based on the new changes in the dataset.

In the initial case, the edge tier extracts the set of new tokens from the uploaded document(s).
We designate the token with the highest frequency to represent the topic and choose it as the cluster
center too. Then, the second most frequent token is clustered based on its similarity distance with
the designated cluster center, according to the method discussed in Section 5.2. Also, to determine
joining the existing cluster or forming a new one, we initialize the threshold to θ = 0.1. This
procedure continues until all tokens are clustered. In the update case, we apply the same method as
SD-ClusPr. That is, upon uploading a document, the system decides to either perform re-clustering
or updating existing clusters.

6. SECURITY ANALYSIS

The proposed clustering schemes are applicable in the context of searchable encryption and
document retrieval systems. According to the three-tier architecture, described in Figure 1, client-
and edge tiers are in the user premises, hence, the activities conducted and the user’s key on these
tiers are considered safe and trusted. The Abstract structures are kept on the edge tier in plain-text
to enable us to measure the similarity with the search phrase and performing pruning.

On the other hand, activities performed on the cloud-tier are considered as dishonest and prone to
different types of attacks. We are concerned about both internal (i.e., affiliated parties) and external
(i.e., unaffiliated outside intruders) attackers who desire to learn the encrypted clustered tokens and
documents. To explain the threats of the attackers, we provide the following preliminaries:

View: This term denotes the portion that is visible to the cloud during any given interaction among
client, edge, and server. The central index and the set of clusters C1...Cn, the trapdoor of the given
encrypted search query Q

′
, and the collection of encrypted documents D

′
. In some models, Q

′
also

contains a particular weight for each term. The search results related to Q
′

are considered as Ic. The
view of expanded Q

′
and Ic are symbolized as V (Q

′
) and V (Ic) respectively.

Trace: This term denotes the information exposed about Ic. Our aim is to allow the attacker to
infer the information of Ic as little as possible.

The View and Trace enclose all the information that the attacker would gain. To encrypt the
document set we use probabilistic encryption model that is considered to be one of the most secure

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

15

encryption techniques [38, 56]. This does not utilize one-to-one mapping and so, D
′

is not prone
to dictionary-based attacks [68]. Each token in a cluster is deterministically encrypted. Thus, each
cluster in the View, only shows an encrypted mapping of the tokens and their co-occurrences in the
plain-text format.

If any type of attacker can gain access to the cloud, he/she could only understand the importance
of a particular encrypted token by observing the co-occurrences. It is technically possible to
encrypt co-occurrences using homomorphic encryption [34] and perform computation on the co-
occurrences while it is in the encrypted form. However, in Section 2, we discuss that this technique
practically falls short on performance [51] and affects the real-time behavior of the search system.
As such, in the current implementation, we use co-occurrence information in the plain-text format.
Note that, even when the co-occurrences are not encrypted, the attacker cannot decrypt the token.

An attacker could obtain a Trace regarding V (Q
′
). From that view, the attacker could only

understand the importance of each search term from Q
′

by analyzing the associated weights of
the query terms. Similar to the previous consideration, the attacker is not able to reveal the search
terms from Q

′
. In spite of a minimally trusted computing base, an attacker may still intend to access

the system through man-in-the-middle, either honest but compromised or untrusted cloud providers
to attack the confidentiality of the user data. By any means, if the attacker successfully performs
a man-in-the-middle attack, he/she can access the document list V (Ic) resulting from searching
Q

′
with Trace. At this point, the attacker may only obtain the documents’ names with encrypted

contents that are unreadable.
There are methods (e.g., [35]) that can be used to tackle frequency attacks when the searches and

cluster updates are predictable. Theoretically, an attacker could build a dictionary considering all
the clusters’ tokens by performing frequency attack. Eventually, the attacker tries to build a clone
document set D′ utilizing the dictionary. Although all of the tokens extracted from a particular
document are sufficient to learn the topic of the document, it is not possible to unveil the whole
document as we do not use all of the keywords of the document set to build the encrypted index.
Besides, we encrypt the whole document at once instead of word level encryption before outsourcing
it to the cloud. This procedure ensures that even if the document set is compromised on the cloud
tier, it is impossible to perform a dictionary attack.

Even if the attacker knows the trace, he/she cannot understand what exactly the retrieved
encrypted documents convey. Moreover, attacks can be occurred in the communication between
the edge and cloud tiers. In this case, by monitoring the search process, an attacker could obtain
the resultant document list for Q′. However, the attacker is not able to decrypt the documents, since
they can be decrypted only when they are downloaded on the edge system.

An attacker could also attempt to modify data (e.g., encrypted tokens and documents) in the
clusters. Such attacks can potentially tamper with the integrity of user data. However, this type of
attack could be detected, because neither the edge will be able to decrypt the modified tokens to
form or update Abstracts, nor the user will be able to decrypt the retrieved documents in the original
plain-text form. This is because of applying symmetric encryption (e.g., AES encryption) on the
user’s data with keys managed by the user. Hence, in the event that the encrypted data are altered by
an attacker, such data cannot be decrypted by the users’ keys. Actually, protecting the user’s key is
crucial to restrain possible attacks. If the key is compromised, the system cannot detect the attacker
and, therefore, both tokens and documents can be exposed.

7. PERFORMANCE EVALUATION

7.1. Experimental Setup

We developed a working version of ClusPr and made it available publicly in our Github†. We
evaluate the performance of ClusPr using three distinct datasets that have different properties and

†https://git.io/fjDsq

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

https://git.io/fjDsq

16

volumes. We compare and analyze the clustering quality with other approaches that operate in
encrypted or unencrypted domains. The experiments were conducted on a machine with two 10-
core 2.8 GHz E5 Intel Xeon processors and 64 GB of memory.

To evaluate the performance of ClusPr in handling big data, we used a subset of Amazon
Common Crawl Corpus (ACCC) dataset (available in [4]). The whole dataset size ≈ 150
terabytes that contains different web-based contents, such as blogs and social media contents. We
randomly selected 6, 119 documents that collectively form a ≈ 500 GB document set. The second
dataset, named Request For Comments (RFC) (available in [11]), is domain- specific
and includes documents about the internet and communication networks. RFC includes 2, 000
documents and its total size is ≈ 247 MB. The third dataset is BBC (available in [8]) that is
not domain-specific and includes news in certain categories such as technology, politics, sports,
entertainments, and business. It contains 2, 225 documents and is ≈ 5 MB. The reason for choosing
this small dataset is that, unlike ACCC and RFC, each document of BBC is short and we can verify
clusters’ coherency manually. For each dataset, the documents are passed through Maui keyword
extractor [48] to identify keywords semantically represent the document.

7.2. Evaluation Metrics and Baselines from Prior Works

For performance evaluation of ClusPr, we compare it against five other schemes, where two
schemes cluster plain-text data and the other three schemes cluster encrypted data. Among the two,
one of the schemes W2V Kmeans) is based on K-means clustering [24] where feature extraction is
done based on Word2Vec [49] embedding.

Another scheme, WordNet [50], is an enhanced version of K-means that generates synonym set
based on the input data and then, applies K-means clustering on the sets. Token distribution in
WordNet is performed based on edge counting method, proposed by Wu and Palmer [50].

Three encrypted clustering schemes that have been used in the comparison are namely,
S3BD [38], HK-means++ [66], and ClustCrypt [76]). We have discussed S3BD and HK-means++ in
Section 2. ClustCrypt is the preliminary version of S-ClusPr. Their difference mainly lies in the way
tokens are distributed across the clusters. In ClustCrypt, the relatedness is simply calculated based
on contribution and co-occurrences metrics, whereas in S-ClusPr, the magnitude of both similarity
and disparity are considered to measure the relatedness (see Section 4.3 for further details).

The goodness of clusters set can be quantified by a number of evaluation metrics. However,
evaluating the performance of a clustering scheme is not as simple as counting errors in classification
algorithm. Specifically, instead of considering the absolute values of cluster labels, cluster evaluation
metrics either measure the separation of clustered data similar to ground truth set of classes or
internal cluster validation. Internal cluster validation denotes that members belong to the same
class should be more similar than members of other classes and vice versa. In practice, class label
information is not always available in most of the application scenarios and, therefore, internal
validation metrics are the only option for validation in such situation [57, 42].

As there is no ground truth for the considered datasets, we choose evaluation metrics that evaluate
the clusters based on statistical analysis of the cluster members. We evaluate three widely-adopted
clustering metrics, namely Silhouette coefficient (SC), Calinski-Harabasz index (CI), and Davies-
Bouldin index (DI).

Silhouette Coefficient (SC) score interprets and validates intra-cluster consistency. In particular,
the metric signifies how similar a cluster member is to its own cluster compared to the other clusters.
The value of the SC score ranges from−1 to +1, where a high value indicates that a given member is
well matched to its own cluster and poorly matched to the other ones. Calinski-Harabasz Index (CI)
denotes how well-defined (i.e., well-separated) the clusters are. The CI value of clusters is calculated
based on the ratio of the sum of between-clusters dispersion to the sum of inter-cluster dispersion. A
higher CI value indicates a more topically separated (i.e., less overlapping) clustering and vice versa.
Similar to the CI metric, Davies Bouldin Index (DI) is used to measure the goodness of separation
across clusters and the reason we consider it in our evaluation is to verify the CI metric evaluation
for the clusters. DI is calculated based on the ratio of within-cluster distances to the between-cluster
distances. A lower DI value indicates a more topically-separated clustering and it is preferred. In

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

17

addition to these metrics, we measure the clusters’ coherency to evaluate the quality of the topic-
based clustering within each cluster. This is a similarity-based evaluation metric to calculate the
average of all possible pair-wise token similarity for a given cluster. In fact, Coherency represents
how the tokens in a cluster are related to a certain topic. Then, the average of coherency across all
clusters is calculated to represent the overall quality of a certain clustering method.

We instrument the pre-trained Google News Word2vec model [49] to determine the similarity
between any two given keywords. The model is a 300-dimension vector representation of three
million phrases. The model requires a text dataset as input to build a vocabulary from the input
dataset and learns vector representation of the words in the dataset. The model uses cosine similarity
and provides the score (−1 ≤ similarity score ≤ 1) for any two given tokens. We note that, the
pre-trained Word2vec model operates only on plain-text tokens. Subsequently, we do not encrypt
the tokens while uploading for evaluation purposes. However, the proposed schemes assume tokens
to be encrypted and do not use the properties of plain-text tokens.

7.3. Evaluation Results

7.3.1. Evaluating Silhouette Coefficient (SC) Score

Figure 3 shows the results of SC score evaluation on the three datasets and for varying number of
clusters (in the horizontal axis). We note that, for this experiment, the value of K in W2V Kmeans,
WordNet, and HK-means++ is randomly chosen and iteratively evolves. As such, we calculate the
SC score for all the considered K values and show them in multiple data points in the figure.
However, other schemes (namely, S-ClusPr, ClustCrypt, S3BD) are not iterative and provide only
one SC score for their determined K values.

As the procedure of estimating the number of clusters is similar in ClustCrypt and S-
ClusPr schemes, we can see that both of the schemes generate 69, 65, and 133 clusters for the
BBC, RFC, and ACCC datasets, respectively. As ACCC is the largest and broadest (i.e., not domain-
specific) dataset, it yields the highest K value. RFC is not the smallest dataset, however, due to its
domain-specific nature, it yields the lowest K value.

Figure 3 represents SC metric outcomes for S-ClusPrand the five other compared schemes.
According to the figure, considering all of the datasets, overall top performers are WordNet and
S-ClusPr. Moreover, S-ClusPr outperforms others in the RFC dataset. On the contrary, blue HK-
means++ and S3BD underperform in most of the situation. The experiment indicates that the cluster
sets generated by HK-means++ and S3BD contain less intra-cluster similarity. WordNet and S-
ClusPr provide the highest intra-cluster similarity and hence, outperform others in all datasets.

7.3.2. Evaluating Calinski-Harabasz Index (CI)
Table IV represents CI metric outcomes for S-ClusPr and the five other schemes. According to
the table, the RFC clusters provide large CI values compared to the BBC dataset, regardless of
the employed clustering scheme. It is noteworthy that, we had the same observation for the ACCC
dataset, however, we do not show its table due to the shortage of space. The superiority of RFC
is because it is a domain-specific dataset with a few topics compared to the other two. Within
Table IVb, we can see that although W2V-Kmeans significantly outperforms the other schemes for
most of the K values, WordNet, ClustCrypt, and S-ClusPr also provide satisfactory CI values that
imply well-partitioned clusters.

7.3.3. Evaluating Davies Bouldin Index (DI)
The DI values for the clusters, obtained by S-ClusPr and the compared schemes are expressed in
Figure 4. In most of the scenarios, we observe that increasing the number of clusters reduces the DI
value. This is because, typically, configuring clustering schemes to build more clusters on a given
dataset leads to a higher coherency within each of the clusters.

According to the figure, we observe that WordNet scheme outperforms others. The DI value for S-
ClusPr is in the acceptable range, which indicates that the scheme can offer a competitive goodness

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

18

50 100 150 200 250
Number of clusters

-0.2

-0.1

0.0

0.1
Si

lh
ou

et
te

 sc
or

e BBC

S-ClusPr
ClustCrypt
WordNet
W2V Kmeans
S3BD
HK-Means++

50 100 150 200 250
Number of clusters

0.2

0.1

0.0

Si
lh

ou
et

te
 sc

or
e RFC

50 100 150 200 250 300
Number of clusters

0.2

0.1

0.0

Si
lh

ou
et

te
 sc

or
e ACCC

Figure 3. Silhouette Coefficient (SC) metric for each dataset. The results are obtained from S-ClusPr, HK-
means++, ClustCrypt (that are encrypted-based clustering schemes), W2V-Kmeans, and WordNet clustering

schemes (that operate on plain-text tokens).

of separation across clusters in compared to the most of other schemes. On the other hand, higher
DI value yielded by HK-means++ signifies poor cluster separation.

7.3.4. Evaluating Cluster Coherency
Figure 5 shows the clusters’ coherency on the three datasets using various clustering schemes. Using
S-ClusPr, 69, 65, and 133 clusters are created for the BBC, RFC, and ACCC datasets, respectively.
As ACCC is the largest and broadest (i.e., not domain-specific) dataset, it yields the highest K value.
RFC is not the smallest dataset, however, due to its domain-specific nature, it yields the lowest K
value. For the same reason, across the three datasets, S-ClusPr offers the highest coherency value
(≈ 0.16) for the RFC dataset.

In compare to ClustCrypt, we notice that S-ClusPr offers a negligible coherency improvement
(≈ 6%) for the BBC and RFC datasets. However, for the ACCC dataset, S-ClusPr improves the
coherency by approximately 31%.

Analysis of the plain-text-based schemes reveal that, WordNet clusters offer the highest coherency
value. This is expected, because it is difficult for an encrypted clustering scheme (e.g., S-ClusPr) to
outperform the unencrypted ones, since they do not have access to the semantics of the tokens [50]
to build the clusters. However, we observe that the coherency offered by S-ClusPr competes with
the one offered by the K-means scheme. In particular, S-ClusPr provides a higher coherency value
than K-means for the RFC and BBC datasets.

To evaluate the suitability of estimated number of clusters (K) by S-ClusPr, we configure bothK-
means and WordNet to use the estimated K number of clusters for the studied datasets. According
to the figure, for RFC and BBC, S-ClusPr suggested sets of K clusters offer a higher coherency
than K-means and a comparable one to WordNet. In the case of ACCC, S-ClusPr even outperforms
WordNet in terms of coherency.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

19

50 100 150 200 250
Number of clusters

4

6
Da

vi
es

-B
ou

ld
in

 In
de

x BBC

S-ClusPr
ClustCrypt
WordNet
W2V Kmeans
S3BD
HK-Means++

50 100 150 200 250
Number of clusters

2
4
6
8

Da
vi

es
-B

ou
ld

in
 In

de
x RFC

50 100 150 200 250 300
Number of clusters

4

6

Da
vi

es
-B

ou
ld

in
 In

de
x ACCC

Figure 4. Davies-Bouldin Index (DI) for each dataset using different clustering schemes.

50 100 150 200 250
Number of clusters

0.10

0.15

Co
he

re
nc

e

BBC

S-ClusPr
ClustCrypt
WordNet
W2V Kmeans
S3BD
HK-Means++

50 100 150 200 250
Number of clusters

0.15

0.20

RFC

50 100 150 200 250 300
Number of clusters

0.10

0.15

Co
he

re
nc

e

ACCC

Figure 5. Cluster coherency for each dataset.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

20

(a) BBC

Approaches
No. of
Cluster

HK-
means++ WordNet W2V

Kmeans S3BD ClustCrypt S-ClusPr

10 - - - 8.7 - -
50 25.43 277.53 11.16 - - -
69 18.47 253.60 9.22 - 11.70 13.58

100 11.13 203.87 7.37 - - -
150 14.05 164.43 5.81 - - -
200 10.17 122.51 4.93 - - -
250 12.02 97.15 4.38 - - -

(b) RFC

Approaches
No. of
Cluster

HK-
means++ WordNet W2V

Kmeans S3BD ClustCrypt S-ClusPr

10 - - - 1247.20 - -
50 1730.26 4320.63 60380.05 - - -
65 1945.42 3980.75 51564.61 - 23760.64 29439.30

100 1834.64 3660.78 24374.17 - - -
150 1684.47 3110.25 18684.33 - - -
200 846.71 2572.89 16746.74 - - -
250 436.43 1834.58 15139.11 - - -

Table IV. Calinski-Harabasz Index for the datasets.

BBC RFC ACCC0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Co
he

re
nc

e

S-ClusPr
Original S3BD

Figure 6. Comparing the impact of clustering using S-ClusPr against original clustering of S3BD for the
studied datasets.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

21

Ne
ws

 U
pd

at
e

To
p

Mo
vie

s
Re

ce
nt

 A
tta

ck
s

Ex
tin

ct
 A

ni
m

al
Sc

or
e

Up
da

te
s

Ch
am

pi
on

s L
ea

gu
e

W
or

ld
 H

ea
lth

 Is
su

e
Pe

op
le

&
Bu

si.
Ch

in
a

Ma
rk

et
Eu

ro
pe

. S
to

ck
 E

x0.0

0.1

0.2

0.3

0.4

0.5
Re

le
va

nc
e

Sc
or

e

S-ClusPr
Original S3BD

Figure 7. Comparing the relevancy of search results using S-ClusPr vs original S3BD clustering in BBC
dataset. The value of relevancy is calculated based on TSAP@10 scoring metric.

7.3.5. Analyzing the Impact of S-ClusPr on Searchable Encryption Systems One objective of this
research is to enhance the performance of S3BD secure search system. As such, we instrumented
S-ClusPr in S3BD and compared the coherency of resulting clusters with its original clustering
scheme that predetermines a value for k = 10. Moreover, its center selection only considers the
co-occurrences. In this experiment, we intend to evaluate the improvement that S-ClusPr achieves
within S3BD on the three studied datasets. In this experiment, the estimated values of K for BBC,
RFC, and ACCC are 69, 65, and 133, respectively.

a) Impact on the Clustering Coherency of S3BD. Figure 6 shows that for all the studied datasets,
clusters generated by S-ClusPr have remarkably higher coherency than the original clustering
scheme of S3BD. This shows determining number of clusters based on dataset characteristics and
choosing center tokens based on the centrality concept is effective. Our hypothesis is that, such
efficiency improves the accuracy and offers more relevant semantic search results. This is because
tokens of the clusters are more congruent to the clusters’ topics, hence, more effective pruning is
accomplished. For further evaluation of this hypothesis, next experiments concentrate on the impact
of S-ClusPr on the search quality.

b) Impact on the Search Accuracy of S3BD The purpose of improving the clusters’ coherency
in this study is to ultimately enhance the search accuracy by retrieving more relevant documents.
To evaluate the impact of such improvement, in this part, we compare and analyze how the search
accuracy of S3BD system is affected by utilizing S-ClusPr’s clusters against the circumstance where

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

22

ACCC Dataset BBC Dataset RFC Dataset
Orlando Magic News Update Internet
Samsung Galaxy Top Movies TCP
Baseball
routine

Recent Attacks Fiber Doctor

Recommendation Endangered
Animals

Wifi

North America Score Updates IoT
Tennis
Tournament

Champions
League

Radio
Frequency

Holy Martyr World Health
Issue

UDP

Library People and
Business

Edge Computing

Stardock China Market Encryption
Schemes

Orthodox Church European Stock
Exchange

Broadcasting

Table V. Benchmark queries for each one of the studied datasets.

its original clustering method is utilized.For the evaluation, we generated a set of 10 benchmark
search queries that are listed in Table V.

To measure the relevancy of search results for each query, we use TREC-Style Average Precision
scoring method [46]. This method works based on the recall-precision concept and the score is
calculated by

∑N
i=0 ri/N , where ri denotes the score for ith retrieved document and N is the cutoff

number (number of elements in the search results) that we consider as 10. Therefore, we call it
TSAP@10.

We measure TSAP@10 score only for the RFC dataset and its benchmark queries. The reason
is that it is domain-specific and feasible to determine the relevancy of the retrieved documents. To
compare the relevancy provided by S-ClusPr against the original S3BD clustering, we apply the
benchmark queries to the S3BD search system. In Figure 7, the relevancy score of the results for
each query when the two clustering schemes are applied are measured and presented. According
to the Figure, for most of the queries, S-ClusPr clustering offers a higher relevancy score. For the
two queries that have identical TSAP@10 score, their retrieved document lists are equivalent. Also,
S-ClusPr clusters provide score for News Update and China Market benchmark queries, whereas
original S3BD clusters do not retrieve any relevant documents for these queries.

c) Impact on the Search Time of S3BD Figure 8 presents the total search time of the benchmark
queries for each dataset. The search time is measured as the turnaround time of searching each
query—from the time a query is issued until the result set is received. To eliminate the impact of
any randomness in the computing system, we searched each set of benchmarks 10 times and reported
the results in form of box plots. The figure indicates that when S-ClusPr clustering is utilized, the
search time is significantly shorter than the circumstance where the original S3BD clustering is
used. Longer search time impacts the scalability and real-time quality of the search operation on
big data. Analyzing Figures 6 to 8 reveals that integrating S-ClusPr in the search system, not only
makes it more accurate, but makes it faster and more scalable too.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

23

BBC RFC ACCC0

5

10

15

20

25

Se
ar

ch
 T

im
e

(m
s)

S-ClusPr
Original S3BD

Figure 8. Search time of S3BD when S-ClusPr is used for clustering versus when the original S3BD
clustering is used.

Update1 Update2 Update3 Update4 Update50.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Co
he

re
nc

e

Baseline
SD-ClusPr

(a) BBC Dataset

Update1 Update2 Update3 Update4 Update50.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Co
he

re
nc

e

Baseline
SD-ClusPr

(b) RFC Dataset

Update1 Update2 Update3 Update4 Update50.00

0.05

0.10

0.15

0.20

0.25

Co
he

re
nc

e

Baseline
SD-ClusPr

(c) ACCC Dataset

Figure 9. Clusters’ coherency for different updates of the three studied datasets when SD-ClusPr is applied
with and without re-clustering option.

7.3.6. Evaluation of Clustering Coherency for Dynamic Schemes In this part, we analyze
the effectiveness of dynamic clustering schemes (SD-ClusPr and FD-ClusPr). We mention in
Section 5.3 that FD-ClusPr is a specific case of SD-ClusPr. Hence, we only consider the SD-
ClusPr scheme for evaluation. To this end, we leverage the three studied datasets and build subsets
that each one serves as a batch update. Specifically, we consider an existing set of clusters based
on 500 documents for each dataset. Then, we sample five times to create a list of five updates
that each one includes a set of documents. List U includes the pairs of update names and the size of
each update as follows: U =< (U1, 25), (U2, 50), (U3, 100), (U4, 20), (U5, 200) >. To assure that the
results are not biased to any particular sample, we performed the sampling procedure 10 independent
times and report the mean and 95% confidence interval of the analysis in the results. The reason we
designated U3 and U5 to be larger is to examine SD-ClusPr decision in re-clustering. To evaluate
the scheme in terms of the cluster coherency, we build a baseline version from SD-ClusPr that
does not consider re-clustering. The baseline only performs clustering based on existing clusters (as
explained in Algorithm 2) to accommodate the new updates.

Figures 9a, 9b, and 9c, respectively, present cluster coherency of five different batch updates of
BBC, RFC, and ACCC respectively applying SD-ClusPr scheme. In Figure 9a, we observe that the
coherency of clusters are decreased in baseline for U3 whereas the coherency obtained for SD-
ClusPr beats the previous by around 105%. We observe the similar pattern of coherency variation
for U5. For baseline, the lowest coherency is obtained in U5. On the contrary, in SD-ClusPr, we
observe around 115% improvement in coherency for U5.

According to Figure 5, clusters formed for the RFC dataset shows the highest coherency.
Similarly, in 9b, we observe the highest coherency for all updates in compare with other datasets.
With respect to baseline, we observe that SD-ClusPr causes minor improvements in coherency of
both U3 and U5. Since the documents are more domain-specific, clusters do not lose coherency

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

24

significantly from one update to the other. As such, we do not observe significant improvements by
SD-ClusPr. Similar to BBC and RFC, in Figure 9c, we observe improvement in the coherency for
ACCC dataset. In particular, the improvement in coherency for U3 and U5 is approximately 45% and
35%, respectively.

From these experiments, we conclude that ClusPr scheme can improve the coherency of clustering
even for dynamic datasets. Specifically, we observed that for sufficiently large batches, such as U3

and U5, SD-ClusPr decides to re-cluster that remarkably improves the clustering coherency.

8. CONCLUSIONS

In this research, we developed ClusPr as a solution for topic-based clustering of both static
and dynamic unstructured encrypted big datasets. ClusPr approximates the number of clusters for
a dataset within a feasible time complexity. For that purpose, ClusPr leverages the tokens’ co-
occurrences to measures the tendency of each token to stay with or segregate from other tokens
and use that to estimate the number of clusters. Next, we develop a probabilistic approach to
determine the center of each cluster and disseminate encrypted tokens to the most topically related
cluster. Experimental evaluations reveal that our clustering scheme for static datasets (S-ClusPr) can
improve the clustering coherency on average by 65%. Similarly, the scheme for semi-dynamic and
dynamic datasets (SD-ClusPr) can improve the coherency by 55%. By incorporating ClusPr within
the context of a secure semantic search system, we learned that the more coherent and accurate
topic-based clustering can improve the relevancy of search results. Although ClusPr outperforms
other encryption-based clustering solutions, it is difficult for it to beat the schemes that operates on
plain-text tokens. There are several avenues to extend this research work. One avenue is to identify
the user search interest and leverage that to create more representative abstracts. Another avenue is
to improve the cluster pruning component to reduce the search time operation.

REFERENCES

1. Amazon Kendra . https://aws.amazon.com/kendra/, Accessed April ’20.
2. Cloud leak: How a verizon partner exposed millions of customer accounts. https://www.upguard.com/br

eaches/verizon-cloud-leak, Accessed April ’20.
3. Consensus Clustering. https://towardsdatascience.com/consensus-clustering-f5d25c98

eaf2, Accessed April ’20.
4. Common Crawl on Amazon Web Services (AWS). https://aws.amazon.com/public-datasets/c

ommon-crawl/, Accessed February 2, 2020.
5. Every single yahoo account was hacked - 3 billion in all. https://www.money.cnn.com/2017/10/03/t

echnology/business/yahoo-breach-3-billion-accounts/index.html, Accessed February
’21.

6. Clustering metrics better than the elbow-method. https://towardsdatascience.com/clustering-
metrics-better-than-the-elbow-method-6926e1f723a6, Accessed July 8, 2021.

7. Statistics Solution. https://www.statisticssolutions.com/using-chi-square-statistic
-in-research/, Accessed July 8, 2021.

8. BBC news classification. https://www.kaggle.com/c/learn-ai-bbc, Accessed March ’20.
9. Consuming Streaming Data. https://developer.twitter.com/en/docs/tutorials\/consumi

ng-streaming-data, Accessed March ’20.
10. Criminal Records. https://staterecords.org/criminal.php, Accessed March ’20.
11. RFC (request for comments) series. https://old.datahub.io/dataset/rfcs, Accessed March ’20.
12. Twitter stream api dataset. https://github.com/shreybatra/Twitter-Stream-API-Dataset,

Accessed March ’20.
13. 2000 HUB5 english evaluation transcripts. https://catalog.ldc.upenn.edu/LDC2002T43, Accessed

March ’21.
14. The Museum of Modern Art Data. https://tapoueh.org/blog/2018/07/batch-updates-and-c

oncurrency, Accessed March ’21.
15. Clustering algorithms: K-means. https://www.cs.princeton.edu/courses/archive/spr08/c

os435/Classnotes/clustering2toPost.pdf, Accessed November, 2020.
16. DBSCAN:what is it? when to use it? how to use it? https://medium.com/@elutins/dbscan-what-i

s-it-when-to-use-it-how-to-use-it-8bd506293818, Accessed November, 2020.
17. Ecb vesus cbc mode aes encryption. https://datalocker.com/what-is-the-difference-betw

een-ecb-mode-versus-cbc-mode-aes-encryption/, Accessed November, 2020.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

 https://aws.amazon.com/kendra/
https://www.upguard.com/breaches/verizon-cloud-leak
https://www.upguard.com/breaches/verizon-cloud-leak
https://towardsdatascience.com/consensus-clustering-f5d25c98eaf2
https://towardsdatascience.com/consensus-clustering-f5d25c98eaf2
https://aws.amazon.com/public-datasets/common-crawl/
https://aws.amazon.com/public-datasets/common-crawl/
https://www.money.cnn.com/2017/10/03/technology/business/yahoo-breach-3-billion-accounts/index.html
https://www.money.cnn.com/2017/10/03/technology/business/yahoo-breach-3-billion-accounts/index.html
https://towardsdatascience.com/clustering-metrics-better-than-the-elbow-method-6926e1f723a6
https://towardsdatascience.com/clustering-metrics-better-than-the-elbow-method-6926e1f723a6
https://www.statisticssolutions.com/using-chi-square-statistic-in-research/
https://www.statisticssolutions.com/using-chi-square-statistic-in-research/
https://www.kaggle.com/c/learn-ai-bbc
https://developer.twitter.com/en/docs/tutorials\ /consuming-streaming-data
https://developer.twitter.com/en/docs/tutorials\ /consuming-streaming-data
https://staterecords.org/criminal.php
https://old.datahub.io/dataset/rfcs
https://github.com/shreybatra/Twitter-Stream-API-Dataset
https://catalog.ldc.upenn.edu/LDC2002T43
https://tapoueh.org/blog/2018/07/batch-updates-and-concurrency
https://tapoueh.org/blog/2018/07/batch-updates-and-concurrency
 https://www.cs.princeton.edu/courses/archive/spr08/cos435/Class_notes/clustering2_toPost.pdf
 https://www.cs.princeton.edu/courses/archive/spr08/cos435/Class_notes/clustering2_toPost.pdf
https://medium.com/@elutins/dbscan-what-is-it-when-to-use-it-how-to-use-it-8bd506293818
https://medium.com/@elutins/dbscan-what-is-it-when-to-use-it-how-to-use-it-8bd506293818
 https://datalocker.com/what-is-the-difference-between-ecb-mode-versus-cbc-mode-aes-encryption/
 https://datalocker.com/what-is-the-difference-between-ecb-mode-versus-cbc-mode-aes-encryption/

25

18. Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. On the surprising behavior of distance metrics in
high dimensional space. In Proceedings of the 8th International conference on database theory, ICDT’01, pages
420–434, January 2001.

19. Swati Aggarwal, Nitika Agarwal, and Monal Jain. Performance analysis of uncertain k-means clustering algorithm
using different distance metrics. In Computational Intelligence: Theories, Applications and Future Directions-
Volume I, pages 237–245. Springer, 2019.

20. Sahan Ahmad, SM Zobaed, Raju Gottumukkala, and Mohsen Amini Salehi. Edge computing for user-centric
secure search on cloud-based encrypted big data. In Proceedings of the 21st International Conference on High
Performance Computing and Communications (HPCC’19), pages 662–669, August 2019.

21. Jalal Al-Muhtadi, Basit Shahzad, Kashif Saleem, Wasif Jameel, and Mehmet A Orgun. Cybersecurity and privacy
issues for socially integrated mobile healthcare applications operating in a multi-cloud environment. Jounral of
Health informatics journal, 25(2):315–329, May 2019.

22. L. A. Barroso, J. Dean, and U. Holzle. Web search for a planet: The google cluster architecture. IEEE Micro,
23(2):22–28, March 2003.

23. Gema Bello-Orgaz, Jason J Jung, and David Camacho. Social big data: Recent achievements and new challenges.
Journal of Information Fusion, 28:45–59, March 2016.

24. Pavel Berkhin. A survey of clustering data mining techniques. In Grouping multidimensional data, pages 25–71.
Springer, 2006.

25. Kenneth P Burnham and David R Anderson. Kullback-leibler information as a basis for strong inference in
ecological studies. Journal of Wildlife research, 28(2):111–119, 2001.

26. Fazli Can and Esen A. Ozkarahan. Concepts and effectiveness of the cover-coefficient-based clustering
methodology for text databases. Journal of ACM Trans. Database Syst., 15(4):483–517, December 1990.

27. Adam Coates and Andrew Y Ng. Learning feature representations with k-means. In Neural networks: Tricks of
the trade, pages 561–580. Springer, 2012.

28. Baojiang Cui, Zheli Liu, and Lingyu Wang. Key-aggregate searchable encryption (kase) for group data sharing via
cloud storage. Transactions of Computers, 65(8):2374–2385, 2016.

29. Douglass R Cutting, David R Karger, Jan O Pedersen, and John W Tukey. Scatter/gather: A cluster-based approach
to browsing large document collections. In ACM SIGIR Forum, volume 51, pages 148–159, August 2017.

30. Paul Inuwa Dalatu. Time complexity of k-means and k-medians clustering algorithms in outliers detection. Journal
of Pure and Applied Mathematics, 12(5):4405–4418, November 2016.

31. W. Diffie and M. Hellman. New directions in cryptography. Transactions on Information Theory, 22(6):644–654,
November 1976.

32. Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic encryption in less than a second. In
Advances in Cryptology, EUROCRYPT’15, pages 617–640, April 2015.

33. Wei Fu and Patrick O Perry. Estimating the number of clusters using cross-validation. Journal of Computational
and Graphical Statistics, pages 1–12, January 2019.

34. K. Gai and M. Qiu. Blend arithmetic operations on tensor-based fully homomorphic encryption over real numbers.
Transactions on Industrial Informatics, 14(8):3590–3598, August 2018.

35. Marilyn George, Seny Kamara, and Tarik Moataz. Structured encryption and dynamic leakage suppression. In
Proceedings of Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 370–396, October 2021.

36. P. Hammersley. Editorial – information and information systems. The Computer Journal, 32(3), January 1989.
37. Chenyue W Hu, Steven M Kornblau, John H Slater, and Amina A Qutub. Progeny clustering: a method to identify

biological phenotypes. Journal of Scientific reports, 5:12894, August 2015.
38. Mohsen Amini Salehi Jason Woodworth. S3BD: secure semantic search over encrypted big data in the cloud.

Journal of Concurrency and Computation:Practice and Experience (CCPE), 28(11), December 2018.
39. Se-Hoon Jung and Jong-Chan Kim. Efficiency improvement of classification model based on altered k-means using

pca and outlier. Journal of Software Engineering and Knowledge Engineering, 29(05):693–713, May 2019.
40. Nesrine Kaaniche and Maryline Laurent. A secure client side deduplication scheme in cloud storage environments.

In Proceedings of the 6th International Conference on New Technologies, Mobility and Security, NTMS’14, pages
1–7, March 2014.

41. Vinod Kumar, Rajendra Kumar, Santosh Kumar Pandey, and Mansaf Alam. Fully homomorphic encryption scheme
with probabilistic encryption based on euler’s theorem and application in cloud computing. In Big Data Analytics,
pages 605–611. Springer, 2018.

42. Bum Chul Kwon, Ben Eysenbach, Janu Verma, Kenney Ng, Christopher De Filippi, Walter F Stewart, and Adam
Perer. Clustervision: Visual supervision of unsupervised clustering. IEEE transactions on visualization and
computer graphics, 24(1):142–151, 2017.

43. Tilman Lange, Volker Roth, Mikio L Braun, and Joachim M Buhmann. Stability-based validation of clustering
solutions. Journal of Neural computation, 16(6):1299–1323, June 2004.

44. Ping Li, Jin Li, Zhengan Huang, Chong-Zhi Gao, Wen-Bin Chen, and Kai Chen. Privacy-preserving outsourced
classification in cloud computing. Journal of Cluster Computing, 21(1):277–286, March 2018.

45. Xiaoyong Liu and W. Bruce Croft. Cluster-based retrieval using language models. In Proceedings of the 27th
International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’04, pages
186–193, July 2004.

46. A. K. Mariappan, R. M. Suresh, and V. Subbiah Bharathi. A comparative study on the effectiveness of semantic
search engine over keyword search engine using tsap measure. Journal of Computer Applications EGovernance
and Cloud Computing Services, pages 4–6, December 2012.

47. Angel Latha Mary and KR Shankar Kumar. A density based dynamic data clustering algorithm based on
incremental dataset. Journal of Computer Science, 8(5):656–664, February 2012.

48. Olena Medelyan, Eibe Frank, and Ian H. Witten. Human-competitive tagging using automatic keyphrase extraction.
In Proceedings of the 14th Conference on Empirical Methods in Natural Language, EMNLP ’09, pages 1318–1327,
August 2009.

49. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

26

50. George A Miller. Wordnet: a lexical database for english. Journal of Communications of the ACM, 38(11):39–41,
November 1995.

51. Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic encryption be practical? In
Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop, CCSW ’11, pages 113–124,
October 2011.

52. Hongping Pang and Baocang Wang. Privacy-preserving association rule mining using homomorphic encryption in
a multikey environment. Systems Journal, 15(2):3131–3141, 2020.

53. John Paparrizos and Luis Gravano. k-shape: Efficient and accurate clustering of time series. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data, SIGMOD ’15, pages 1855–1870, May
2015.

54. Dan Pelleg and Andrew W Moore. X-means: Extending k-means with efficient estimation of the number of clusters.
In Proceedings of the 17th International Conference on Machine Learning, ICML’00, pages 727–734, June 2000.

55. Hoang Pham, Jason Woodworth, and Mohsen Amini Salehi. Survey on secure search over encrypted data on the
cloud. Journal of Concurrency and Computation: Practice and Experience, 31(17):e5284, 2019.

56. Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan. Cryptdb: Protecting
confidentiality with encrypted query processing. In Proceedings of the 23rd ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 85–100, October.

57. Mayra Z Rodriguez, Cesar H Comin, Dalcimar Casanova, Odemir M Bruno, Diego R Amancio, Luciano da F Costa,
and Francisco A Rodrigues. Clustering algorithms: A comparative approach. Journal of PloS one, 14(1):e0210236,
2019.

58. Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of
computational and applied mathematics, 20:53–65, November 1987.

59. Mohsen Amini Salehi, Thomas Caldwell, Alejandro Fernandez, Emmanuel Mickiewicz, Eric WD Rozier, Saman
Zonouz, and David Redberg. RESeED: a secure regular-expression search tool for storage clouds. Journal of
Software: Practice and Experience, 47(9):1221–1241, September 2017.

60. Wenhai Sun, Wenjing Lou, Y Thomas Hou, and Hui Li. Privacy-preserving keyword search over encrypted data in
cloud computing. In Secure cloud computing, pages 189–212. Springer, 2014.

61. Wenhai Sun, Bing Wang, Ning Cao, Ming Li, Wenjing Lou, Y Thomas Hou, and Hui Li. Privacy-preserving multi-
keyword text search in the cloud supporting similarity-based ranking. In Proceedings of the 8th symposium on
Information, computer and communications security, SIGSAC’13, pages 71–82, May 2013.

62. Thaddeus Tarpey. Linear transformations and the k-means clustering algorithm: applications to clustering curves.
Journal of the american statistician, 61(1):34–40, 2007.

63. Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of clusters in a data set via the
gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2):411–423, January
2002.

64. Thanh N Tran, Klaudia Drab, and Michal Daszykowski. Revised dbscan algorithm to cluster data with dense
adjacent clusters. Journal of Chemometrics and Intelligent Laboratory Systems, 120:92–96, January 2013.

65. Jaideep Vaidya and Chris Clifton. Privacy-preserving k-means clustering over vertically partitioned data. In
Proceedings of the 9th international conference on Knowledge discovery and data mining, pages 206–215, 2003.

66. Chen Wang, Andi Wang, Xinyu Liu, and Jian Xu. Research on k-means clustering algorithm over encrypted data.
In Proceedings of International Symposium on Cyberspace Safety and Security, pages 182–191, December 2019.

67. Ding Wang, Kaan Ozbay, and Zilin Bian. A mixture model-based clustering method for fundamental diagram
calibration applied in large network simulation. In Proceedings of 23rd International Conference on Intelligent
Transportation Systems, ITSC’23, pages 1–6, 2020.

68. Ding Wang and Ping Wang. Offline dictionary attack on password authentication schemes using smart cards. In
Information Security, pages 221–237. Springer International Publishing, 2015.

69. Jason Woodworth, Mohsen Amini Salehi, and Vijay Raghavan. S3C: An architecture for space-efficient semantic
search over encrypted data in the cloud. In Proceedings of the 4th IEEE International Conference on Big Data,
Big Data’16, pages 3722–3731, December 2016.

70. Kai Xing, Chunqiang Hu, Jiguo Yu, Xiuzhen Cheng, and Fengjuan Zhang. Mutual privacy preserving k-means
clustering in social participatory sensing. Transactions on Industrial Informatics, 13(4):2066–2076, 2017.

71. Jinxi Xu and W. Bruce Croft. Cluster-based language models for distributed retrieval. In Proceedings of the 22nd
International ACM Conference on Research and Development in Information Retrieval, SIGIR ’99, pages 254–261,
August 1999.

72. Ke Zhang, Jiahuan Long, Xiaofen Wang, Hong-Ning Dai, Kaitai Liang, and Muhammad Imran. Lightweight
searchable encryption protocol for industrial internet of things. Transactions on Industrial Informatics, 17(6):4248–
4259, 2020.

73. Mingwu Zhang, Yu Chen, and Jiajun Huang. Se-ppfm: A searchable encryption scheme supporting privacy-
preserving fuzzy multikeyword in cloud systems. Journal of Systems, 15(2):2980–2988, 2020.

74. Lu Zhou, Youwen Zhu, and Aniello Castiglione. Efficient k-nn query over encrypted data in cloud with limited
key-disclosure and offline data owner. Computers & Security, 69:84–96, 2017.

75. Youwen Zhu and Xingxin Li. Privacy-preserving k-means clustering with local synchronization in peer-to-peer
networks. Journal of Peer-to-Peer Networking and Applications, 13(6), 2020.

76. SM Zobaed, Sahan Ahmad, Raju Gottumukkala, and Mohsen Amini Salehi. Clustcrypt: Privacy-preserving
clustering of unstructured big data in the cloud. In Proceedings of the 21st International Conference on High
Performance Computing and Communications, HPCC’19, pages 609–616. IEEE, August 2019.

77. Sm Zobaed and Mohsen Amini Salehi. Big data in the cloud. In Laurie A. Schintler and Connie L. McNeely,
editors, Encyclopedia of Big Data. Springer, 2018.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

	1 Introduction
	2 Background and Related work
	2.1 Fundamental Data Clustering Algorithms
	2.2 Privacy-Preserving Data Clustering Schemes
	2.3 Estimating Number of Clusters
	2.4 Positioning of the Proposed Work

	3 Three-Tier Architecture of ClusPr
	4 Privacy-Preserving Clustering Scheme for Static Big Datasets (S-ClusPr)
	4.1 Estimating the Number of Clusters for Static Big Datasets
	4.2 Center Selection
	4.3 Distributing Encrypted Tokens Across Clusters
	4.4 Pruning Clusters to Expedite the Search Operation

	5 Privacy-Preserving Clustering Scheme for Dynamic Big Datasets (Dynamic ClusPr)
	5.1 Overview
	5.2 Semi-Dynamic Data Clustering Scheme (SD-ClusPr)
	5.3 Fully-Dynamic Data Clustering Scheme (FD-ClusPr)

	6 Security Analysis
	7 Performance Evaluation
	7.1 Experimental Setup
	7.2 Evaluation Metrics and Baselines from Prior Works
	7.3 Evaluation Results
	7.3.1 Evaluating Silhouette Coefficient (SC) Score1007
	7.3.2 Evaluating Calinski-Harabasz Index (CI)1007
	7.3.3 Evaluating Davies Bouldin Index (DI)1007
	7.3.4 Evaluating Cluster Coherency1007
	7.3.5 Analyzing the Impact of S-ClusPr on Searchable Encryption Systems
	7.3.6 Evaluation of Clustering Coherency for Dynamic Schemes

	8 CONCLUSIONS

