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training time. In addition, it is difficult to afford long training time and inference time
of big models even in high performance servers, as well. As an efficient approach
to compress a large deep model (a teacher model) to a compact model (a student
model), knowledge distillation emerges as a promising approach to deal with the big
models. Existing knowledge distillation methods cannot exploit the elastic available
computing resources and correspond to low efficiency. In this paper, we propose an
Elastic Deep Learning framework for knowledge Distillation, i.e., EDL-Dist. The
advantages of EDL-Dist are three-fold. First, the inference and the training process is
separated. Second, elastic available computing resources can be utilized to improve
the efficiency. Third, fault-tolerance of the training and inference processes is sup-
ported. We take extensive experimentation to show that the throughput of EDL-Dist
is up to 3.125 times faster than the baseline method (online knowledge distillation)

while the accuracy is similar or higher.
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1 | INTRODUCTION

Recent years have witnessed major success of deep Neural Networks (DNNs) in multiple domains, e.g., computer vision2,

natural language processing“, and bio-informatics®. More layers, neurons and parameters generally correspond to higher
accuracy while making the model bigger. For instance, BERT" and ERNIE# exploit large numbers of parameters, e.g., from
110 million to 340 million parameters for BERT® and 10 billions parameters for ERNIE. However, the big models generally
have high computational complexity and require big memory, which exceed the capacity of small devices (mobile phones or IoT
devices). In addition, it is also hard to afford the long training time or the inference time of big models.

Introduced inZ and generalized by®, as an efficient approach to distill the knowledge from a cumbersome model into a compact
model?, knowledge distillation retains the accuracy at the same time 'Y, Knowledge distillation trains a small model (a student
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model) under the supervision of a big model (a teacher model). The teacher model is a cumbersome model, which could be
an ensemble of separately trained models or a single very large model trained with a strong regularizer®. The student model is
relatively small and compact, which correspond to short inference time and requires small storage space.

A normal deep neural network is trained during the training process, after which, it is ready for inference, e.g., classification or
prediction. The process to train the student model is the training process while the process to generate supervision knowledge
from the teacher model is the inference process. Both the training process and the inference process exist within the knowledge
distillation, while the training process of the student model is carried out using the results of the inference process of the teacher
model. These inference and training processes can be performed sequentially or in parallel. Based on the training time of a teacher
model, there are typically two methods to perform knowledge distillation®. The first method is to train a student model with the
supervision of a pre-trained teacher model. The second way is to train the teacher model and the student model in parallel when
there is no available pre-trained teacher model. In this paper, we focus on the first method.

The training process of the knowledge distillation can be typically carried out using two approaches, i.e., online and offline.
The knowledge distilled from the teacher model is cached in an extra data store with the offline approach and is utilized to train
the student model separately. Although it decouples the inference process and the training process, this approach requires much
extra storage while it takes much time to distill the knowledge from the teacher model with big input data. The teacher model and
the student model are deployed in the same server with the online approach while the training process and the inference process
are synchronously performed. However, the training of the student model is restricted by the synchronization of the inference of
the big teacher model. Furthermore, these two approaches cannot exploit elastic computing resources to improve the efficiency
and cannot support the fault-tolerance.

Diverse computing resources, e.g., CPU cores or GPU cards can be exploited for the training process of knowledge distillation.
However, the computing resources may dynamically become unavailable because of other concurrent users. Therefore, a user
can utilize some dedicated computing resources for a long time while some elastic computing resources can only be ensured
for a short time. In addition the elastic computing resources may become unavailable because of other tasks of high priority.
Furthermore, some computing resources may become unavailable due to exceptions, network connection problems or other
unexpected issues, within the long training process of knowledge distillation. Some computing resources may also dynamically
become available during the training process of the knowledge distillation. The dynamically varying computing resources cards
are elastic resources. As diverse computing resources, e.g., CPUs and GPUs of diverse types, exist in a data center, the elastic
resources are generally heterogeneous. Furthermore, it is critical to exploit numerous computing resources to enable large-scale
knowledge distillation so as to achieve a short execution time. Large-scale knowledge distillation refers to the scale of distributed
computing environment. As a result, the problem of exploiting heterogeneous elastic computing resources, and ensuring the
failures-tolerance of the system to perform large-scale knowledge distillation becomes critical for the training process.

In this paper, we address the problem of how to efficiently perform large-scale knowledge distillation in a dynamically varying
heterogeneous environment. We assume that two types of computing resources, i.e., elastic and dedicated, exist in a distributed
environment, which can be utilized for the knowledge distillation. The dedicated computing resources are of high performance,
e.g, V10 GPU cards, for knowledge distillation only. The elastic computing resources may correspond to relatively lower
performance, e.g., PAY GPU cards, and can be dynamically allocated to other tasks of higher priority or knowledge distillation.
In order to address the problem, we propose an Elastic Deep Learning framework, i.e., EDL-Dist. We design a distributed
architecture within EDL-Dist with the methods to address the fault-tolerant during the knowledge distillation. We exploit an
elastic service to manage multiple computing resources for the inference process of teacher models in EDL-Dist. EDL-Dist
manages the distributed training utilizing multiple GPU cards of diverse servers (a server may have one GPU or more GPU cards)
during the training process of knowledge distillation. The training and inference are decoupled in order to improve the efficiency
and exploit heterogeneous computing resources. Inspired by the fail-over mechanism"? we use check-points and re-execution
of tasks to address the fault-tolerance. We propose two main algorithms for data scheduling distributed training of knowledge
distillation. While combining static'™® and dynamic scheduling, the scheduling algorithm associates computing resources from
different processes. The distributed training algorithm, which is denoted EDL-Dist, trains the student model in a decentralized
way with the supervision of the distilled knowledge from the teacher model. In addition, the combination of the decoupled
architecture and the distributed training algorithm enables large-scale knowledge distillation with numerous computing resources.
To the best of our knowledge, we are the first to enable distributed training for knowledge distillation with elastic heterogeneous
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computing resources. We extend the conference version!® by adding more experimentation and discussions on the limitations
and future work. We summarize our contributions as follows:
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FIGURE 1 Knowledge distillation>

e We propose the architecture of EDL-Dist, which consists of a student module, a teacher module and a coordinator module.
This architecture decouples the training process in the student module and the inference process in the teacher module,
which can accelerate the training process in the student module with elastic heterogeneous resources in the teacher modules.

e We propose dynamic hybrid resource scheduling method, the design of fault-tolerance and the EDL-Dist algorithm. The
dynamic hybrid resource scheduling method can choose appropriate teacher GPU cards for each student GPU card while
avoiding the risk to store many unused soft labels (see details in Section2)). The design of fault-tolerance enables knowledge
distillation with the consideration of the failures of teacher GPU cards during the training process. In addition, the design
exploits a checkpoint mechanism to continue the training process when there are failures or exceptions in the student
module. The EDL-Dist algorithm enables the training process with student GPU cards distributed in multiple servers while
exploiting the soft labels from the teacher module.

e We carry out extensive experimentation (with up to 32 V100 and 614 K1200 GPU cards) to show the advantage of EDL-
Dist. The experiment results show that the throughput of EDL-Dist can be similar to that of normal training and much
bigger (up to 181%) than that of online knowledge distillation. Within the normal training, the training process is performed
with multiple GPU cards without the supervision of the knowledge from a teacher model. The training time of EDL-Dist
with fine-tuned teacher GPU resources can be similar to that of normal training while it is much shorter than that of normal
training. In addition, the accuracy of EDL-Dist is slightly higher than that of normal training as mentioned in®.

This paper is organized as follows. In Section 2] we introduce the related work and background. In Section 3] we present the
EDL-Dist framework. In Section[d} we show the experimental results, which demonstrate the advantage of EDL-Dist compared
with the baseline method (the online approach) and normal training in terms of throughput and accuracy. In Section[5] we analysis
the limitations of the current solution and present the future directions. Finally, Section [ concludes.

2 | RELATED WORK

In this section, we present the background of elastic deep learning distillation, i.e., knowledge distillation. Then, we introduce the
methods for distributed and decentralized training and elastic computing resources.

Model compression based on knowledge transferring was first proposed in in order to compress an ensemble of models or a
large model to a compact model. The ensemble of models or the large model take much storage space and require a long time for
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FIGURE 2 Offline knowledge distillation.

inference while the compact model requires relatively small storage space and a short time for inference. Knowledge distillation
is based on the popular machine learning Softmax function and a temperature®, which is defined in Formula
_exp(z;/T)
@ Y, exp(z;/T)
, where z; is the output from the output layer of a teacher neural network; T is a temperature, which indicates the impact of the
output from the teacher model. The Softmax output layer computes the probability that the input data corresponds to each class
with the corresponding computed logit. The probability is related to a temperature 7, i.e., which represents the impact of the
distilled knowledge of the teacher model on the student model. A higher temperature corresponds to a weaker impact.

As shown in Figure |1} during the training of knowledge distillation, two neural networks are used: teacher model and student
model. The student model is trained based on the combination of two loss values. The first loss value is calculated from a soft
prediction, which contains the probability of each class calculated from the teacher model. The soft prediction is calculated using
Formula[I] The other loss value corresponds to a hard prediction, which is the ground truth label from the training data.

Two types of work are also related to this paper, i.e., mutual knowledge distillation and model pruning. When there is
no available teacher model, the teacher and student can be trained at the same time, i.e., an ensemble of students can learn
collaboratively and teach each other throughout the training process'®1Z, which is the mutual knowledge distillation”. Note that
the mutual knowledge distillation is also denoted “online knowledge distillation” in®. However, we use the “online knowledge
distillation” to represent the knowledge distillation with the teacher model and the student model deployed in the same GPU card
during the training process of knowledge distillation in this paper. Model pruning is also a practical method to reduce the size of
a neural network while it requires manual configuration of sensitivity for layers, which is cumbersome'’%.

In order to accelerate the training process of a deep learning network, multiple GPUs can be exploited during the training
process using data parallelism, where the model is replicated in each GPU while the data is distributed in different GPUs"?.
Model parallelism?” and pipeline parallelism®! exist for the training process with multiple GPUs while they are beyond the
scope of this paper. There are basically two approaches to exploit multiple GPUs for the training process, i.e., distributed and
decentralized. The distributed approach generally uses a centralized server to synchronize or schedule the execution of workers.
22223l 5 a typical distributed approach. With this approach, the gradients or the weights of each worker is sent to a
centralized server, which updates global gradients or weights and returns the updated global gradients or weights to each worker.
There are diverse methods to synchronize the execution in each node, e.g., Bulk Synchronized Parallel (BSP) 24 Asynchronous
Parallel (ASP)2 and Stale Synchronous Parallel (SSP)2°, in order to achieve load balancing among different computing nodes.
However, in this way, the centralized server becomes a single-point of failure and a bottle neck of the training. The decentralized
approach does not reply on a centralized server while making each computing node equally perform the calculation based on
a predefined protocol. The decentralized approach can be synchronized or asynchronizedZ. The synchronized decentralized
approach generally synchronizes within each iteration of the execution in all the workers based on an algorithm, e.g., Ring
all-reduce®. The asynchronized decentralized approach doees not synchronize can tolerate the late update of gradients or weights,
which can avoid the synchronization within each iteration, e.g., D-PSGD 29 However, the implementations of Ring all-reduce,
e.g. Horovod?Y, and D-PSGD are only designed for the training process without the consideration of knowledge distillation. In
addition, they cannot support elastic resources or fault-tolerance during the training process.

Two existing methods, i.e., online and offline, can be exploited to carry out knowledge distillation. The offline method refers to
training a teacher model before distillation, the knowledge of which can be extracted and the corresponding soft labels can be
stored in a cache, as shown in Figure[2| However, extra storage space is need for this method. The online method combines the
inference and the training process and deploys the implementation in the same GPU card in order to reduce the data transfer
between the teacher module and student module>. In this situation, a big teacher model incurs long time to synchronize the
training process and the inference, which reduces the efficiency. In addition, elastic computing resources cannot be exploited in
these two methods and they cannot address the fault-tolerance issue during the training process of knowledge distillation.

ey

Parameter server



Liu ET AL 5

Coordinator

Send input data
Student ) Teacher

Send soft labels

FIGURE 3 Functional architecture.

The computing resources can vary dynamically during the training process®l. As the computing resources are shared for
different workload, some computing resources can be dedicated to a user while some other computing resources are available
only when there are no other high-priority workloads. Some GPU cards may become unavailable because of exceptions or may
be withdrawn for other high-priority workloads. During the training process of knowledge distillation, some other computing
resources may become available to be used when the high-priority workloads are finished. Thus, it is critical to scale out and to
ensure fault-tolerance while exploiting the dynamic computing resources. In addition, as diverse types of computing resources are
available for the training and the inference process, it is also important to efficiently exploit heterogeneous computing resources
for knowledge distillation. EDL is proposed to train a deep learning model using multiple GPU cards in“Y, while it does not
support the training process of knowledge distillation.

3 | EDL-DIST

In this section, we explain our proposed EDL-Dist framework. We first introduce the distributed architecture. Then, we present
scheduling and distributed training algorithms for knowledge distillation. Afterward, we detail the fault-tolerance solution to
address the exceptions during the training process of knowledge distillation.

3.1 | Architecture

The architecture of EDL-Dist consists of three modules, i.e., Student, Teacher and Coordinator, as shown in Figure@ Student
contains dedicated computing resources, which are used to train a student model with a distributed or decentralized method.
Teacher is composed of dynamic computing resources, which can be utilized for the inference of the teacher model. Coordinator
manages the distributed training in Student and the data transfer between Student and Teacher.

A decentralized training algorithm, i.e., ring allReduce®, is exploited to realize the parallel training in Student. While it takes
much time to transfer data across multiple computing resources, the training data is partitioned and cached in the host memory of
each server for fast data access. Within the distributed training process of Student, only the gradients are transferred while the
raw data is kept within each server. The input data of the student model is composed of three parts, i.e., the input training data,
soft labels, and the hard labels.

The input data is managed by a separated module, i.e., DistilReader, which caches the data in the host memory of computing
resources of the Student module in order to accelerate the processing. DistilReader is an interface among the three modules while
it is deployed in each server of the Student module. DistilReader sends the input data to Teacher and receives the soft labels from
Teacher (see details in Figure[d). DistilReader retrieves the server information from the Coordinator model to know which Teacher
server is connected to which Student server and the availability of the Teacher servers. In addition, DistilReader searches for
other available Teacher servers from Coordinator to replace the unavailable server when a Teacher server becomes unavailable.

The Teacher module contains multiple dynamic computing resources. Each resource can become unavailable at any moment
because of exceptions or the high priority workload. A new server is first registered in the Coordinator module and then added
in the Teacher module. Afterward, a teacher model instance is deployed in the added Teacher server, which can perform the
inference process in order to generate corresponding soft labels by processing input training data. All the Teacher servers send
heartbeat messages to the Coordinator module in order to maintain its alive status until the knowledge distillation is finished.
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The Coordinator module is composed of two components, i.e., a service manager and a database. The database can be an
in-memory database in order to achieve efficient data query. The service manager receives requests from DistilReaders in the
Student module and queries the in-memory database to search for available computing resources in the Teacher module. The
register information of Teacher servers is directly stored in the in-memory database, while the alive status has a limit, i.e., Time to
live (TTL). In order to prolong the alive status, each Teacher server continues sending heartbeat messages to the service manager,
which updates the data in the in-memory database. When the Teacher server stops sending heartbeat messages for a long time,
which exceeds its TTL, the corresponding status becomes unavailable.

3.2 | Hybrid Scheduling Algorithm

It is of much importance to schedule the workloads of the inference process, which generates soft labels by process the input
training data, to computing resources in the Teacher module. A computing resource is a computing unit to perform the inference
or the training, e.g., a CPU core or a GPU card. The resource scheduling problem is a typical NP-hard problem“%. When a Student
resource is scheduled to insufficient Teacher resources, the throughput of training process of the student model is limited by the
throughput of the inference process in the scheduled Teacher resources. Otherwise, when a resource in the Student module is
scheduled to a much bigger number of Teacher resources, more and more soft labels and corresponding input data are accumulated
in the host memory of Student servers, which may occupy large amounts of memory and block the training process while making
the system unstable. Thus, it is critical to schedule appropriate computing resources in the Teacher module to each Student
resource.

In order to ensure the stability of the system, we denote the data size of soft labels in the student module by S(¢) and the
number of computing resources in the teacher module by I(#), where ¢ represents the time. Then, we have the constraint defined
in Formulas 2] in order to ensure the stability of the system.

T-1

PN |
D=Tlglc}°7§([E{S(t)}+[E{l(t)})< 00. 2

In addition, the objective of our scheduling is to minimize the overall data size and the number of the computing resources
while ensuring the throughput. In order to ensure the throughput, the data size S(#) should be bigger than a threshold defined by
the user and the number of computing resources should be enough in order to produce enough soft labels for the training process
of the student module. When the scheduling action is to send input data to Teacher, the data size of soft labels and corresponding
input data augment with speed v. When the scheduling action is to schedule an additional available Teacher resource to the
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Student server, the speed is augmented, i.e., v = v + v/, where v’ can be measured using the previous execution information.
When the scheduling action is to stop sending input data to Teacher servers, v becomes O.

Algorithm 1 Hybrid Scheduling Algorithm

Require: number of Teacher resources n
Require: lower threshold of the volume of soft labels /¢
Require: upper threshold of the volume of soft labels ut
1: schedule n Teacher resources to the Student resource
while knowledge distillation is not terminated do

2:

3 volume = get_volume(unused soft labels)

4 if volume > ut then

5 stop sending input data to Teacher servers

6: end if

7 if volume == 0 then

8 schedule an additional available Teacher resource to the Student resource
9

end if
10: if volume < /f then
11: continue sending input data to Teacher resources
12: end if

13: end while

We propose a hybrid scheduling algorithm (see Algorithm[I), i.e., which combines static and dynamic scheduling methods.
We assume historical information on the execution of the training and inference processes. For instance, the throughput of the
training in a Student server, e.g., one GPU card in Student, is ¢, and the throughput of the inference in a Teacher server, e.g., one
GPU card in Teacher, is ¢,. The throughput gives the number of images or the amount of input data that can be processed in
the same resource per time unit by the student model (or the teacher model) without restriction of another module. We assume
that the resources in the same module, e.g., Student or Teacher, are of the same type while the types of GPU cards in different
modules can be different. We set the number of Teacher resources as n = :—’ for each Student resource, i.e., we schedule [#]
Teacher resources to each Student resource. During the training of knowledge distillation, when a Student resource searches for
Teacher resources, it is scheduled [n] Teacher resources (Line 1). As the execution environment may vary during the training of
knowledge distillation, we dynamically adjust the scheduling (Lines 3-12). We use a monitoring task in each Student resource
to monitor the number of combinations of soft labels and input data (Line 3). The occupied volume is calculated based on the
number and average size of a combination of input data and soft labels, which can be measured with an offline method. When
the growing volume exceeds a predefined upper threshold value (Line 4), the Student resource stops sending input data to the
Teacher resource (Line 5) in order to consume the unused soft labels, which can meet the constraint defined in Formula[2]so as to
ensure the system stability. When the volume decreases to a smaller value than another lower bound threshold value, the Student
resource continues sending input data to Teacher resources (Lines 10-12). The upper threshold and the lower threshold can be set
by the user based on the size of storage in the resource of Student. This mechanism ensures that the number of soft labels remains
reasonable in each Student resource, which does not slow down the training or incur memory leaks in the Student resource.
Otherwise, if the resources in Student stay idle in order to wait for the soft labels from Teacher, more Teacher resources are
required by the Student resource in order to accelerate the inference in the teacher model (Lines 7-9). When there are available
Teacher resources, they are scheduled to the Student resource.

3.3 | EDL-Dist Algorithm

We now present our EDL-Dist Algorithm 2] for the parallel training in each Student resource during the training of knowledge
distillation. The input data and the hard label y are retrieved from the host memory (Line 3), which can be done by DistilReader.
Then, the soft labels are prepared by the DistReader service from Teacher in Line 4. Based on the hard label and the soft labels,
the student model @ is updated in Line 5. The loss function in each server is a weighted function based on the loss function of the
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hard labels and the soft labels. A is the learning rate, which can be set corresponding to the student model. Then, an average
student model is calculated in Line 7.

3.4 | Fault-tolerance

Algorithm 2 EDL-Dist Algorithm

Require: hard loss function ¢p(hard label, hard prediction)
Require: soft loss function y(soft labels, soft predictions)
Require: hard prediction function F (0, input)
Require: soft prediction function F’(0, input)
Require: learning rate n
Require: weight for hard loss function «
Require: weight for soft loss function f
Require: number of Student resources N
1: while not converged do

2 for 9, in resource i do
3 y, input = get_training_sample()
4 soft_labels = get_soft_labels(input)
5: 0,=0,- nVH, {ad(y, F(6,,inpur)) + Py (soft_labels, F'(6;, input)}
6 end for
7 o= =%
- N
8: end while

We consider the fault-tolerance in Student and Teacher, assuming that Coordinator is always available. If the Coordinator
server is not stable, fault-tolerance can be simply achieved by having multiple instances of the in-memory database deployed
in multiple servers using existing frameworks, e.g., Zookeeper=2. If a Teacher resource is not available, its status will become
unavailable when its TTL expires in the database. The Teacher resource can become unavailable in three cases. The first case is
before the resource is scheduled to a Student resource. In this case, EDL-Dist simply ignores this Teacher resource. The second
case is when the Teacher resource is scheduled to a Student resource that does not send input data to it or does not wait for soft
labels from it. In this case, the Student resource will search for another available Teacher resource that is not scheduled to any
Student resource. The third case is when the Teacher resource is scheduled to a Student resource that sends input data to it and is
waiting for soft labels from it. In this case, as presented in Section [3.1] the Student resource will search for another available
Teacher resource. Once a Teacher resource is re-scheduled to it, the Student resource sends the input data to the Teacher resource
again. When a new Teacher resource is available in Teacher, it is scheduled to a Student resource that is searching for Teacher
resources. If there is no such Student resource, the Teacher resource will wait for such a Student resource.

To address fault-tolerance in Student, we exploit a fail-over mechanism'? that uses check-points during the training of
knowledge distillation. A checkpoint is a copy of the student model. Before the training process, a server is selected as a master
node and saves the checkpoint at every certain iterations. The checkpoint is saved in a distributed file system, which is accessible
to all the Student servers. Each Student server updates the student model in each iteration. Then, when a Student server becomes
unavailable or a new Student server is added to Student, the training in all the Student servers stops. Afterward, each Student
server loads the student model from the checkpoint and continues the training process. Thus, the consistency of the student model
is ensured while addressing fault-tolerance.

4 | EXPERIMENTAL VALIDATION

In this section, we present our experimental validation of EDL-Dist in comparison with online knowledge distillation (Online)
(baseline) and normal training (N-training). We present the experimental setup and then give the results.
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4.1 | Experimental Setup

EDL-Dist is implemented based on the PaddlePaddle framework* and publicly available at Github ﬂ Student is based on
Paddle FleetX ﬂ which implements the ring allReduce algorithm using NCCL |"| for decentralized training. We use Redis []I] as the
in-memory database in Coordinator>,

TABLE 1 Summary of experiments. “*” represents multiple and that the number of GPU cards is not determined. “Dmodel”
represents diverse models.

. Student Teacher .
Number | Section Nodel Scale Model Scale Objective
1 4.2 MobileNetV3_small | 1 P4/CPU | Resnet50 1 P4/CPU Heterogeneous environments
2 4.3 ResNet50 1 V100 ResNet101 * P4 Number of Teacher GPU cards
3 4.4 ResNet50 8 V100 ResNet101 * P4 Multiple Student GPU cards
4 4.5 Dmodel 32 V100 Dmodel * P4/ * K1200 | Large-scale experimentation

TABLE 2 Throughput for different approaches with diverse numbers of CPU cores in Student.

CPUcores | N-training | Online | EDL-Dist | Advantage
1 14.16 5.92 14.34 142.23%
2 28.44 11.51 28.07 143.87%
4 55.17 21.76 54.92 152.39%
8 101.59 37.87 102.40 170.40%
16 168.42 59.94 168.42 180.98%

We carry out four experiments to show the advantages of EDL-Dist compared with Online and N-training. Online deploys
the teacher and student models in the same GPU server. N-training represents the training with GPU cards without knowledge
distillation. In all experiments, we use real datasets, i.e., ImageNet data setB0 In the first experiment (Section , we combine
CPUs and GPU cards, in order to show that EDL-Dist can efficiently exploit heterogeneous computing resources. In the next
two experiments, we use ResNet101 31l a5 the teacher model, ResNet502Z as the student model, and set the batch size as 32. The
second experiment (Section figures out the fine-tuned number of Teacher GPU cards (NVIDIA Tesla P4 GPU card) for each
Student GPU card (NVIDIA Tesla V100 GPU card). The single-precision performance, which represents the speed to perform
calculation, of P4 is 5.5 Teraflops while that of V100 is 14 Teraflops. The third experiment (Section4.4)) is performed with 8
V100 GPU cards in Student and various numbers of P4 GPU cards in Teacher for EDL-Dist. In the last experiment (Section
[.5), we exploit large-scale distributed computing environment to compare EDL-Dist with Online and N-training in terms of
throughput and training time with diverse student and teacher models. Large-scale knowledge distillation refers to the support of
our approach in with numerous distributed computing resources, i.e. 32 V100 GPU, up to 256 P4, and up to 614 K1200 GPU
cards. The experiments are summarized in Table|T]

“https://github.com/elasticdeeplearning/edl

$Paddle Fleet: https://github.com/PaddlePaddle/FleetX
INCCL: https://developer.nvidia.com/nccl

IRedis: https://redis.io/


https://github.com/elasticdeeplearning/edl
https://github.com/PaddlePaddle/FleetX
https://developer.nvidia.com/nccl
https://redis.io/

10| Liu BT AL

4.2 | Comparison with Heterogeneous Resources

To validate that our solution is efficient with heterogeneous computing resources, we experiment with the combination of CPU and
GPU cards for knowledge distillation. We take MobileNetV3_small® as the student model and Resnet50%7 as the teacher model.
We use Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz CPU cores and a P4 GPU card. We set the batch size as 64 in Student.

First, we take the P4 GPU card in Teacher and different numbers of CPU cores in Student. The results are shown in Table 2]
The throughput of our proposed approach, i.e., EDL-Dist, is similar to that of N-training and significantly outperforms Online (up
to 181%). Then, we take the P4 GPU card as the Student GPU card and different numbers of CPU cores as the Teacher resources.
As shown in Table[3] the throughput of EDL-Dist is smaller than that of N-training and Online when Teacher resources are not
enough (8). The throughput of EDL-Dist is similar to that of N-training and significantly outperforms Online (up to 25.22%)
when the Teacher resources are enough (12 and 16).

TABLE 3 Throughput for different approaches with diverse numbers of CPU cores in Teacher.

CPUcores | N-training | Online | EDL-Dist | Advantage
8 57.14 46.04 35.68 -22.50%
12 57.14 46.04 52.46 13.94%
16 55.17 46.04 57.65 25.22%
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FIGURE 5 Fine-tuning with various numbers of P4 Teacher GPU cards.

4.3 | Fine-tuning of EDL-Dist

The throughput of EDL-Dist increases with the number of Teacher GPU cards. With enough Teacher GPU cards, the throughput
of EDL-Dist can be similar to that of N-training. As we add more Teacher GPU cards, the throughput of EDL-Dist becomes a
little bit lower as it takes some time to manage unused intermediate soft labels from Teacher. In order to validate this property of
EDL-Dist, we also experiment using a V100 GPU card in Student and various numbers of P4 GPU cards as Teacher resources.
The throughput of EDL-Dist is shown in Figure [5a when using different numbers of P4 GPU cards. The training time is shown in
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Figure[5b] Figures[5a)and [5b|indicate that the fine-tuned number of Teacher resources (P4 GPU card) is 5 when we use a single
V100 GPU card as the Student resource. When the number of Teacher GPU cards is smaller than 5, the throughput increases
linearly as number of P4 GPU cards increases, which shows the good scalability of EDL-Dist. When the number of Teacher
GPU cards is greater than 5, the throughput slightly decreases as it takes time to manage unused soft labels in the Student server.
Furthermore, we find that the throughput of Online is much smaller (up to 93.0%) than that of EDL-Dist and the training time of
the Online is much longer (up to 92.9%) than that of EDL-Dist when the number of Teacher GPU cards is smaller than 8.

4.4 | Comparison with multiple Student GPU Cards

In this experiment, we take 8 V100 GPU cards and 40 - 56 P4 GPU cards for different approaches. We compare the throughput
between EDL-Dist, Online and N-training. We take 8 NVIDIA Tesla V100 GPU cards as dedicated Student GPU cards while
using 48 P4 NVIDIA Tesla GPU cards as Teacher GPU cards as we find 48 is the appropriate number of Teacher GPU cards as
shown in Table[d] Please note that some GPU servers are dynamically added and removed during the execution of the experiments.

Table [ shows that the accuracy (1 and 5) of EDL-Dist is similar to that of N-training and Online. Accuracy 1 represents the
accuracy of the predicted class with the highest probability. Accuracy 5 represents the accuracy of the top 5 ranked classes based
on the probability. The accuracy of EDL-Dist can be slightly higher than that of N-training (Accuracy 5). While the student

TABLE 4 Experimental Results (accuracy). Accuracy 1 is the accuracy of the predicted class with the highest probability.
Accuracy 5 is the accuracy of the top 5 ranked classes based on the probability.

| N-training | Online | EDL-Dist (40) | EDL-Dist (48) | EDL-Dist (56) |

Accuracy 1 77.1 79.0 79.0 79.0 79.0
Accuracy 5 93.5 94.3 94.5 94.5 94.5
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FIGURE 6 Experimental results with 8 Student V100 GPU cards and 40(EDL-Dist-40)/48(EDL-Dist-48)/56(EDL-Dist-56) P4
GPU cards.

model is trained with the training data and the soft labels with knowledge distillation, the trained student model from knowledge
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distillation can get more generalization information from the teacher model®. Thus, we can efficiently train a student model with
higher accuracy (compared with N-training) using EDL-Dist.

In Figure [6a] the throughput of EDL-Dist is much higher (23.5% faster) than that of Online. This shows that EDL-Dist
significantly speeds up training compared with the Online while not requiring extra storage resources. The throughput of EDL-
Dist is slightly lower than that of N-learning because of some overhead when there are multiple Student GPU cards. The training
time of N-training, Online and EDL-Dist is shown in Figure[6b] The training time of EDL-Dist (48) is almost the same as that
of EDL-Dist (56), which indicates that the bottleneck of the number of Teacher GPU cards is 48. With 48 Teacher cards, the
training time of EDL-Dist is 19.4% shorter than that of Online. Compared with N-training, the training time of EDL-Dist is
slightly longer (12.8%). As it takes time to transfer the data from Student servers to multiple Teacher servers, the training time of
EDL-Dist is slightly longer than that of N-training.

We trace the training loss for both EDL-Dist and normal training to understand the convergency as shown in Figure[7} We find
that the training loss of EDL-Dist decreases lower than that of normal training while it achieves almost the same result at the end
of 120th epoch. We believe that the slow decrease at the beginning is caused by the consideration of the soft labels from the
teacher model, which contains generalization information. After enough epochs, the training loss of EDL-Dist can be almost the
same or slightly smaller than that of normal training.

4.5 | Comparison with Multiple Models

TABLE 5 Throughput for multiple models. “48” represents ResNet101_3248d and “16” represents ResNet101_3216d. “Resources”
represents the computing resources, i.e., number and type of GPU cards, in the teacher module. The accuracy represents the
accuracy of the predicted class with the highest probability. The time unit is day. Advantage represents the advantage (times) of
EDL-Dist compared with Online.

Model Resources Accuracy Execution time Advantage
Teacher Student N-Training | EDL-Dist | Online | EDL-Dist
48 Resnet200 256 P4 80.97% 85.13% 45 14.4 3.125
48 HRNet_W64 160 P4 80.29% 85.13% 40.9 214 1.911
16 Res2Net50 | 614 K1200 79.8% 83.13% 10.1 5.25 1.923
16 HRNet_W48 | 455 K1200 78.95% 83.64% 17.6 10.02 1.725
16 HRNet_W18 | 600 K1200 76.92% 79.82% 12 6.50 1.846
16 Resnet34 600 K1200 75.98% 79.72% 16 8.9 1.798
16 Res2Net101 | 614 K1200 80.6% 83.82% 13.5 5.93 2.275

In order to analyze the throughput for diverse networks, we carried out experimentations with multiple student models, teacher
models, and computing resources. In the experimentations, we take 32 V100 GPU cards in the student module and various
numbers or types of GPU cards in the teacher module. We exploit P4 and K1200™| GPU cards in the teacher model. The results
are shown in Table

From the table, we can see that the throughput of EDL-Dist is always bigger than that of the online distillation while the
accuracy of EDL-Dist is slightly higher than that of normal training. The minimum advantage of EDL-Dist is 1.798 times
while the maximum advantage of EDL-Dist is 3.125 times in terms of throughput. In addition, the advantage of accuracy of
EDL-Dist can be up to 4.85%, compared with that of normal training. In fact, in the production environment, the ability to
use the heterogeneous computing resources can significantly reduce the monetary cost while achieving similar or even better
performance, which is of much importance for the usage of EDL-Dist.

**Parameters for K1200: https://www.nvidia.com/content/dam/en- zz/Solutions/design- visualization/quadro- product-literature/11306_DS_NV_Quadro_K1200_FEB15_
NV_US_HR.pdf


https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/11306_DS_NV_Quadro_K1200_FEB15_NV_US_HR.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/11306_DS_NV_Quadro_K1200_FEB15_NV_US_HR.pdf
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FIGURE 7 The comparison of training loss for normal training (N-training) and EDL-Dist with 40 (EDL-Dist-40) P4 GPU
cards. The training loss of EDL-Dist decreases slightly slower than that of normal training while it reaches almost the same result
at the end of 120th epoch.

S | DISCUSSION AND FUTURE WORK

In this section, we discuss the following future directions of our current approach:
e Synchronization of Ring all-reduce
e Non-negligible overhead of EDL-Dist
e Distributed computing resources in multiple data centers.

While the GPU cards become more and more heterogeneous, various types of GPU cards are available for the training
process. It is critical to take full advantage of heterogeneous GPU resources for the training process and the inference process of
knowledge distillation. In EDL-Dist, we decouple the training process and the inference process, which could exploit diverse
types of GPU cards for the training and inference process separately. However, when using heterogeneous GPU resources for the
training process, the throughput can be bottlenecked by the slowest GPU cards. For instance, the throughput corresponding to the
combination of a V100 GPU card and a P4 GPU card is 44.6% smaller than that of a single V100 GPU for normal training. The
throughput corresponding to the combination of a V100 GPU card and a P4 GPU card in the student module and a P4 GPU
card in the teacher module is 49% smaller than using two P4 GPU cards in the teacher module and a single V100 GPU card in
the student module for EDL-Dist. We believe this is incurred by the synchronization of Ring all-reduce?®. Thus, it is critical to
enable high efficient decentralized or distributed training process with heterogeneous GPU cards for knowledge distillation and
we leave this as future work.

Although the overhead of EDL-Dist is relatively small compared with the gain it brings, it is still non-negligible. As shown in
Table[d.4] the throughput of the EDL-Dist is 12.8% smaller than that of normal training, which indicates that we can further
reduce the overhead of EDL-Dist. As the input data is sent by a student server to its scheduled teacher servers, which can occupies
the bandwidth. As a result, the decentralized training process is slowed down. Thus, we can directly put the input data in the
teacher module so that the student server only needs to send a reference of the input data so as to reduce the usage of bandwidth
for transferring input data. We also leave this as future work.

When we carry out the experiments, we find that not all the GPU resources stay available at a single data center. The current
design of EDL-Dist does not consider that the GPU cards are distributed at different data centers. In addition, the data may also
be distributed at different data centers or organizations and we can exploit federated learning2?#U414243 i this case. However,
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few work has been done to enable knowledge distillation with distributed data using federated learning techniques. In the future,
we plan to extend EDL-Dist to an environment where the GPU resources and the data are distributed at diverse data centers or
organizations with the consideration of federated learning techniques.

6 | CONCLUSION

In this paper, we proposed EDL-Dist, an elastic deep learning framework for large scale knowledge distillation. EDL-Dist has a
distributed, fault-tolerant architecture that leverages heterogeneous computing resources. We did a thorough validation of our
solution by implementing an industrial-strenght prototype of EDL-Dist (available at github) and experimenting with real datasets
and large-scale distributed environments (up to 32 V100, 256 P4, and 614 K1200. The experimental results show that EDL-Dist
can be 3.125 times faster than online training while its accuracy is a little higher than that of normal training. In the future, we
may exploit federated learning“? to deal with the decentralized data in order to ensure the data security and privacy.
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