
Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

Distributed and Deep Vertical Federated Learning with Big Data

Ji Liu1 | Xuehai Zhou1 | Lei Mo2 | Shilei Ji1 | Yuan Liao1 | Zheng Li3 | Qin Gu4 | Dejing Dou1

1Baidu Inc., Beijing, China
2School of Automation, Southeast
University, Nanjing, China

3Research Center, Chengdu Medical Union
Information Co.LTD, Chengdu, China

4Research Center, Chengdu Big Data Group
Co.LTD, Chengdu, China

Correspondence
Ji Liu. Email: liuji04@baidu.com

Summary

In recent years, data are typically distributed in multiple organizations while the
data security is becoming increasingly important. Federated Learning (FL), which
enables multiple parties to collaboratively train a model without exchanging the
raw data, has attracted more and more attention. Based on the distribution of data,
FL can be realized in three scenarios, i.e., horizontal, vertical, and hybrid. In this
paper, we propose to combine distributed machine learning techniques with Vertical
FL and propose a Distributed Vertical Federated Learning (DVFL) approach. The
DVFL approach exploits a fully distributed architecture within each party in order
to accelerate the training process. In addition, we exploit Homomorphic Encryption
(HE) to protect the data against honest-but-curious participants. We conduct exten-
sive experimentation in a large-scale cluster environment and a cloud environment
in order to show the efficiency and scalability of our proposed approach. The experi-
ments demonstrate the good scalability of our approach and the significant efficiency
advantage (up to 6.8 times with a single server and 15.1 times with multiple servers
in terms of the training time) compared with baseline frameworks.
KEYWORDS:
Federated learning, Distributed system, Parallel computing.

1 INTRODUCTION

Recent years havewitnessed huge amounts of distributed data over Internet of Things (IoT) devices and organizations1. However,
data aggregation from distributed devices, multiple regions, or organizations, become almost impossible2 due to the concerns
of data security, stringent privacy and legal restrictions3,4,5,6,7. In this case, training models with distributed data from various
sources becomes critical for the collaboration among multiple parties. In order to address this issue, Federated Learning (FL)8,2
is proposed.
FL was first introduced to train a global model with unbalanced and non-Independent and Identically Distributed (non-IID)

data distributed on mobile devices8, which is referred to Horizontal Federated Learning (HFL). The concept of FL is extended
to three categories, i.e., horizontal, vertical, hybrid2. The Vertical FL (VFL), which is also denoted as feature-based federated
learning2, handles the decentralized data of the same identifications with different features while the hybrid FL deals with the
data of different identifications and different features. While many existing FL works focus on HFL, VFL remains a critical open
problem9,10. VFL is well-fit for the cases with similar sample space but differs in feature space. For instance, an investment bank
and a commercial bank in the same area may share the same group of clients (similar sample space), but the investment bank
records the investment behaviors of users while the commercial bank stores consuming habits (difference in the feature space).

ar
X

iv
:2

30
3.

04
57

4v
2

 [
cs

.D
C

]
 1

0
M

ar
 2

02
3

2 Liu ET AL

FL is an on-the-rising research area of privacy computing because jointly training a model in a privacy-preserving fashion
is in high demand. In the field of privacy computing, the Secure Multi-Party Computation (MPC)11 and Trusted Execution
Environment (TEE)12 are two mainstream research directions. The nature of TEE itself needs to provide an isolated runtime
environment and secure storage for data, which compromises much of the computation efficiency. The overlapping of FL and
MPC studies is ubiquitous, while MPC techniques like Homomorphic Encryption (HE), Oblivious Transfer (OT) or Private Set
Intersection (PSI) are regularly transited to FL settings. Nevertheless, because of the limitation of MPC algorithms, even when
they have been optimized, the computational speed is an order of magnitude slower than plaintext computing. Hence, shortening
algorithm runtime and simultaneously ensuring data security become critical in industrial applications. In this case, a distributed
deep learning structure for FL is becoming promising to address this issue.
In this paper, we combine HE and PSI techniques fromMPC studies to preserve data privacy. When the training data contains

sensitive information, such as ages, facial features, health conditions, credit card numbers, etc., the direct usage of raw data
becomes improper. As a widely used tool13,14, HE can improve the data security in FL settings. Since the data is preferably not
be transmitted explicitly, researchers naturally suggest passing in the ciphered data. While it allows computation over encrypted
data without access to the secret key, the HE technique has been generally utilized in the FL settings15. Furthermore, before
the training process, data from two parties need to be aligned using PSI. PSI methods allow two parties to obtain their data
intersection without revealing additional information to another party16,17.
Recent years have witnessed the thriving of VFL studies in multiple domains, e.g., privacy-preserving methods, performance

optimization, and application scenario extension, etc. VFL was first proposed with a Logistic Regression (LR) method in Taylor
approximation model with partially HE9. A stochastic kernel learning model is also adapted to FL18. In addition, multiparty
situation of VFL is studied in19. Some studies apply Gaussian Differential Private (DP) perturbation on LR or neural networks,
which broadens privacy-preserving approaches on VFL20. Vertical FL is exploited to collaboratively train a global model while
ensuring the privacy and security of data.Whenmultiple data owners conduct cross-silo federated learning, in order to protect the
privacy and security of data, vertical federated learning generally utilizes cryptographic operations, which incur frequent encryp-
tion and decryption. While cross-silo network bandwidth is limited, the cryptographic operations bring significant overhead,
and training time can be prolonged to several times to millions of times. Especially in industrial scenarios, such as advertising
and marketing with the collaboration from multiple companies, it may take hours or even days to collaboratively train a global
model with big data with cryptographic operations for security, which cannot meet the time requirements for rapid business
development. The efficiency of vertical FL has become a critical problem that restricts its large-scale application21,22. Nonethe-
less, despite some of above approaches consider parallel execution, these approaches are not sufficient to handle industrial big
data (generally over 10TB) in a deep learning setting. Although some frameworks, e.g., FATE23 and PyVertical24, enable the
execution of VFL, they generally cannot exploit distributed resources, e.g., multiple workers, for efficient big data processing.
In this paper, With the consideration of both efficiency and data privacy, we propose the Distributed Vertical Federated

Learning (DVFL) approach, which exploits a distributed architecture to accelerate the training process of VFL with big data
while combining HE to ensure data security. The proposed architecture can accelerate the training process of the vertical FL
with an almost linear performance improvement, which can be applied in joint marketing advertising, data federation25 in
government, joint risk control in financial companies and so on. We apply the parameter server and peer-to-peer communication
architecture to accelerate the big data processing. The proposed architecture can be deployed in a large-scale cluster environment
environment or a cloud environment26, where multiple powerful servers can be offered for parallel computing27.
We summarise our main contributions of this paper as follows:
• A fully Distributed structure for Vertical Federated Learning (DVFL) in order to handle big data in industrial applications.
• The combination of the DVFL and HE techniques to protect the security and privacy of data.
• We carry out extensive experimentation based on real-life deep learning models in a distributed environment, including

the large-scale cluster environment and the cloud environment, which shows the advantages of DVFL over state-of-the-art
platforms, i.e., FATE and PyVertical.

The rest of this paper is organized as follows. In Section 2, we give a brief overview of related works. In section 3, we list the
preliminaries. In section 4, we present our distributed solution, i.e., DVFL. In section 5, we present the experiment details and
results. In section 6, we draw our conclusion and shed light on possible future research work.

Liu ET AL 3

FIGURE 1 The basic PSI protocol54

2 RELATED WORK

In 2016, the concept of FL was first introduced by8. Their approach aims at training a Logistic Regression (LR) model based
on distributed data stored in a huge amount of global mobile users without conflicting local regulations or laws. Their approach
is classified into horizontal FL years later, because of the wide range of participants and similar data features, e.g., health
care with the attention mechanism on graphs28, 5G-empowered drone networks with reinforcement learning for smart grid or
smart cities29, frequent itemset mining30, distributed medical data31 and education data32, purchase behaviour with an atten-
tion mechanism33, and Internet of Things (IoT) devices34,31. In addition, the horizontal FL can be carried out in the Cloud for
extreme gradient boosting35 or deep learning models with the combination of synchronous36,37,38,39,40 and asynchronous mech-
anisms41,42. Later, the first FL on vertically partitioned data was proposed to train a LR model9, which exploits HE to protect
data security. Lastly, A GELU-Net model is trained based on the combination of FL and HE, while the experimentation was
carried out using the MNIST dataset, which shows a decent computation speed performance43. In addition, the 128 MBMNIST
dataset (MNIST) is far smaller than industrial big data. Hitherto, upon state-of-the-art VFL models, there is not a solution that
can efficiently handle real big data with the VFL settings.
We have witnessed the growth of the distributed learning over past years. Distributed models like DistBelief44, GraphLab45,

Petuum46, Naiad47, MLbase48, etc, have been well explored in the early years. A parameter server architecture49 can utilize
a parameter server or several parameter servers and multiple workers to train a model using a dataset of 636 TB in around 1
hour50,51. The parameter servers coordinates the execution while workers work in parallel to train the model. We were inspired
by their parameter server architecture to propose the DVFL.
There has been a fairly long history of PSI study52. PSI has been widely used as the entity resolution protocol in VFL

researches53. An efficient PSI protocol that combines Bloom Filter (see details in Section 3.1) with secret share scheme54 is used
in DVFL. Using the PSI techniques, we can transform a hybrid FL problem to a VFL problem while ensuring the data security.
Lastly, HE has been widely used in VFL settings. Two main branches of HE exist, i.e., fully HE and partially HE. The fully

HE, e.g., Brakerski-Gentry-Vaikuntanathan HE55, supports both addition and multiplication on ciphertext, while partially HE,
e.g., Paillier HE56, supports either addition or multiplication operation on ciphertext. Both the fully and partially HE can be
exploited with the VFL settings while the fully HE has the problem of high time complexity9. While it has better runtime
efficiency, partially HE corresponds to less computational flexibility. The property of the Paillier cryptosystem allows addition
on both parties of ciphertext and multiplication on one party. Paillier HE is widely utilized as the privacy-preserving strategy43.

3 PRELIMINARIES

In this section, we present the background of DVFL. We first introduce the concept of PSI and the idea of its protocol. Then,
we explicate the detail of the parameter server. Afterward, we indicate Paillier HE and its homomorphic property. Finally, we
specify the deep neural networks structure and how we apply the HE technique in DVFL.

3.1 Private Set Intersection
Private Set Intersection (PSI) refers to a solution that calculates the intersection of two parties. Each of the two parties holds
a set of items, and the two parties want to know the intersection of their sets without revealing any information outside of the

4 Liu ET AL

FIGURE 2 Parameter Server Architecture

intersection. Let us assume that one party has a set of items A = {a1, a2, ..., an} and another has a set of B = {b1, b2, ..., bm}.
PSI is a protocol that acquires the intersection of the two parties, i.e., A ∩ B, while it does not share any data excluded from the
intersection of the two sets. If ai ∉ B, then party B should learn nothing about ai with a PSI solution.
As shown in Figure 1, the PSI algorithm54 we exploit is constructed using two Bloom Filters (BF) where the BF is designed to

tell whether an element is present in a set57. Let us assume that one party is a server with set S, and another party is a client with
set C. The client computes a BF that encodes its set C and the server computes a Garbled Bloom Filter (GBF) that encodes its set
S. Note that the GBF is conceptually a BF with a security parameter while GBF has better capacity to hide the information of the
items in the union of the two sets but outside of the intersection of the two sets. Once the GBF and the BF are obtained, the server
acts as a sender and the client acts as a receiver to execute an OT protocol58. The OT protocol allows a receiver to obtain one out
of two strings held by a sender, without revealing to the sender the identity of its selection59. Then, the server and the client can
build the intersection GBFC∩S on GBFS and BFC . Thus, the client computes the C ∩ S set by querying all elements in its set
filtered by theGBFC∩S . BF has an intrinsic flaw of false positive cases, while the false positive is negligible54. In addition, since
the data is independently hashed, it is a good single program multiple data (SPMD) scenario to run this algorithm in parallel.

3.2 Parameter Server
The parameter server architecture60 consists of a server and a group of workers, which moves data processing from one com-
puting node to multiple computing nodes. Partitioned data are passed into paralleled workers. Each worker does not mutually
communicate with other workers, but only communicates with the server node to retrieve and update gradients. Workers can
run on GPUs or CPUs while the workers we utilized are CPU-oriented. Figure 2 gives the intuition of the parameter server
architecture while the number of workers could increase or decrease in different application scenarios.
When there are many layers in a neural networks, the gradients are divided into multiple chunks to be communicated. These

chunks of gradients need to be indexed, and the shared parameters are stored as key-value pairs. The key represents the ID, and
the value represents the weight. Two operations are defined to bridge the server-worker communication:

• push: a worker sends its computed weights/gradients to the server.
• pull: a worker retrieves the aggregated weights/gradients from the server.
The distributed weights/gradients in workers are pushed and aggregated in the server, e.g., by calculating the average of the

pushed weights or gradients. Then workers pull the combined gradient from the server. The server and the workers run these
two operations until the model converges.

3.3 Paillier Cryptosystem
HE allows data operates computation, sort, search, edit on the ciphertext. As mentioned earlier, fully HE and partially HE are
two HE main branches. Fully HE supports multiple operations of unbounded depth on ciphertext, which is the strongest notion
of HE. However, it is unpractical to run fully HE on big data because of its high time complexity. Even through partially HE
supports only one operation (addition or multiplication, not both) on ciphertext, researchers tend to use partially HE to achieve
a better runtime performance.
Paillier cryptosystem is a well-known partially HE, which is invented by and named after Pascal Paillier56. Let us define

plaintext numbers m1 and m2 and choose two large prime p and q. Then let n to be the multiplication of p and q. Paillier’s

Liu ET AL 5

FIGURE 3 Deep Neural Networks for vertical FL43

homomorphic property allows addition of two ciphertexts and multiplication of a ciphertext by a plaintext. When two ciphertexts
are multiplied, the result decrypts to the sum of their plaintext as shown in Equation 1.

Dpriv(Epub(m1) × Epub(m2) mod n2) = m1 + m2 mod n, (1)
where Dpriv represents the decryption operation, and Epub represents the encryption operation. When a ciphertext is raised to
the power of plaintext, the result decrypts to the product of the two plaintexts as shown in Equation 2.

Dpriv(Epub(m1)m2 mod n2) = m1 × m2 mod n (2)

3.4 Deep Neural Networks
The deep learning structure shown in Figure 3 is constructed by three levels: bottom neural networks, interactive layer, and top
neural networks43. A bottom neural network is given to any party that provides feature data. It brings more scalability to the
architecture when more parties may participate in. Note that the bottom model can be a neural network with an arbitrary number
of layers and an arbitrary number of neurons per layer. Then bottom networks are joined by a fully connected interactive layer.
Let the party that holds the label matrix be the active party, while the party that only holds a feature matrix be the passive

party. Inside the interactive layer, both passive and active parties generate noise and encrypt their data by HE. Then the merged
output are passed to the top model. The top model calculates the loss of the model and propagates the error back. The merit of
this structure is that all cross-institutional data communications are processed within the interactive layer, which significantly
reduces the risk of data leakage.

4 DVFL SOLUTION

In this section, we illuminate how the approaches mentioned in Section 3 are combined in DVFL. Moreover, we propose our
solution, i.e., Distributed Vertical Federated Learning (DVFL).
We propose DVFL to solve the problem of excessive runtime given by existing models on vertically partitioned data when

it comes to big data. We exploit the distributed architecture to address this issue. We exploit the parameter server architecture
explained in Section 3.2 for the parallelism.
We adopt the deep learning architecture discussed in Section 3.4. DVFL supports joint training with two parties, i.e., an active

party and a passive party. The active party holds the feature matrix and the label matrix, and dominates the computation in
training. The passive party holds only the feature matrix. We denote the active party Party A and the passive party Party P. Figure
4 shows the distributed architecture of DVFL. Data from Party A and Party P are partitioned to the number of n workers, {(X1,

6 Liu ET AL

FIGURE 4 Distributed architecture with parameter servers for DVFL.

Algorithm 1 DVFL
Input:

(XA, YA): active dataset;
X′

P : passive dataset;
n: the number of workers in a party

Output:
Net: a trained network

1: (XA∩P , YA∩P), X′
A∩P ← DistributedPSI((XA, YA), X′

P)
2: {(X1, Y1), (X2, Y2), ..., (Xn, Yn)}, {X′

1,X′
2, ...,X′

n}← sequentialPartition((XA∩P , YA∩P), X′
A∩P) ⊳ partition the data into n

similar length subsets
3: Net ← VerticalFL({(X1, Y1), (X2, Y2), ..., (Xn, Yn)}, {X′

1,X′
2, ...,X′

n})

Y1), (X2, Y2), ..., (Xn, Yn)} and {X′
1,X′

2, ...,X′
n}. A parameter server is applied to each party. Workers under the same server do

not communicate with each others. But they communicate with their corresponding workers across parties with a peer-to-peer
manner for the PSI process and distributed training process of vertical FL.
The procedure of DVFL is demonstrated in Algorithm 1. (XA, YA) represents the active dataset with XA representing the

features of the data set with identification set (A) in the sample space of the active party and YA representing the corresponding
label for each data item. X′

P represents the passive dataset with identification set P in the sample space of the passive party.
Once the dataset components are clarified, there are two preparation jobs before the training process of vertical FL. The first job
is that two parties securely apply a Distributed PSI protocol to their data in order to obtain the common sample space (A ∩ P)
(Line 1, see details in Algorithm 2). The second job is that two parties utilize a sequential data partitioning strategy to partition
the big data into small chunks and send them to the workers of the parameter server architecture (Line 2). The items in each
pair of data chunk with the same index in the active party and the passive party share the same identifications. Finally, a neural
network is trained using the distributed vertical FL setting (Line 3) as explained in Algorithm 3.
Algorithm 2 illustrates the distributed PSI. First, the identification sets of active party (Line 1) and passive party (Line 2)

are partitioned to n buckets of identifications with n representing the number of workers in each party using the same hash
function61. Then, each bucket of identifications is handed by a corresponding worker, e.g., Ai is handled by Work i in the active
party and Pi is handled by Work i in the passive party. As the identifications are partitioned using the same hash function, the
same identifications in active dataset and passive dataset should be partitioned into the buckets of the same index. Then, the PSI

Liu ET AL 7

Algorithm 2 Distributed PSI
Input:

A: identification set in the active dataset;
P : identification set in the passive dataset;
n: the number of workers in a party

Output:
A ∩ P : the intersection of A and P

1: {A1, A2, ..., An}← hashPartition(A) ⊳ Partition the identification set in the active party into n similar length subsets using
a hash function

2: {P1, P2, ..., Pn}← hashPartition(P) ⊳ Partition the identification set in the passive party into n similar length subsets
using the same hash function

3: for i ∈ {1, 2, ..., n} do ⊳ execution in parallel
4: Ai ∩ Pi ← PSI({Ai, Pi})
5: end for
6: A ∩ P ← (A1 ∩ P1) ∪ (A2 ∩ P2) ∪ ... ∪ (An ∩ Pn)

Algorithm 3 Vertical FL
Input:

{(X1, Y1), (X2, Y2), ..., (Xn, Yn)}: dataset in the active party;
{X′

1,X′
2, ...,X′

n}: dataset in the passive party;
Neto: an initial neural network

Output:
Net: a trained neural network

1: Net ← Neto
2: while Stop condition is not met do
3: for i ∈ {1, 2, ..., n} do ⊳ execution in parallel
4: wi ← getWeight(Xi, Yi, X′

i)
5: end for
6: Net← update(Net, {w1, w2, ..., wn})
7: end while

protocol can be performed between the corresponding workers of the same index in active and passive parties. Then, the PSI
protocol is realized within each pair of workers in parallel, i.e., the function PSI (Line 1) in the loop (Lines 3 - 5). Finally, the
intersection between A and P is obtained as the union of the intersection results of each pair of identification buckets within the
parameter servers in the active and passive parties.
The training process of the vertical FL is shown in Algorithm 3. First, the neural network (model) is randomly initialized (Line

1). Second, when the stop condition, e.g., required accuracy or a predefined number of iterations, is not met (Line 2), e.g., more
iterations should be executed, the model continues to be updated. Then, each pair of workers in the active and passive parties
calculates the weights of the model (Lines 3 and 4), which can be realized in parallel. Afterward, the workers send the weights
to the parameter servers in each party, and the parameter servers update the model using a model aggregation method, such as
BSP62. During the training process, each worker computes a local gradient on its given data, and the server aggregate these
gradients to update the global parameters in each iteration. Workers pull the updated global parameter from the server and start
the next round of iteration. The parameter server executes a great number of gradient exchanges to update the parameter until
the model converges. The details of distributed training at each worker of the active or passive party are explained in Algorithms
4 and 5, respectively.
The training process of the distributed vertical FL in the active party is illustrated in Algorithms 4. First, the global weights

are pulled from the parameter server in the active party (Line 1). Then, forward propagation is carried out with the bottom
model and the intermediate result is generated (Line 2). Afterward, after receiving the result from the worker in the passive
party (Line 4), and encrypting the intermediate result using the paillier cryptosystem as explained in Section 3.3 (Line 3), the

8 Liu ET AL

Algorithm 4 Distributed Training in the Active Party
Input:

PWi: Worker i in the passive party;
Xi: the features of dataset i in AWi;
Yi: the labels of dataset i in AWi

1: awglobal ← pull()
2: activeResult ← forwardPropagation(awglobal, Xi, activeBottomModel)
3: securedActiveResult ← HE(activeResult)
4: passiveResult ← receiveResult(PWi)
5: result ← forwardPropagation(awglobal, securedActiveResult, passiveResult, activeT opModel)
6: activeT opLoss, activeT opGradient← backPropagation(result, activeT opModel, awglobal, Yi)
7: sendLoss(activeT opLoss, PWi)
8: activeBottomGradient← backPropagation(activeT opLoss, activeBottomModel, awglobal)
9: updatedW eigℎts ← gradientDescent(activeT opGradient, activeBottomGradient, agglobal)
10: sendWeightsToActivePS(updatedW eigℎts)

Algorithm 5 Distributed Training in the Passive Party
Input:

AWi: Worker i in the active party;
X′

i : the features of dataset i in PWi
1: pwglobal ← pull()
2: activeResult ← forwardPropagation(pwglobal, X′

i , passiveBottomModel)
3: securedActiveResult ← HE(activeResult)
4: sendResult(AWi, securedActiveResult)
5: pg ← receiveLoss(AWi)
6: passiveBottomGradient← backPropagation(pg, passiveBottomModel, pwglobal)
7: updatedW eigℎts ← gradientDescent(passiveBottomGradient, pgglobal)
8: sendWeightsToPassivePS(updatedW eigℎts)

forward propagation is carried out with the top model (Line 5) and the result of the whole model is produced. We exploit the
encryption and decryption detailed in43 for the interaction between any pair of active worker and passive worker. The loss and
gradients can be calculated using the result and the labels in the active party with the top model (Line 6). The intermediate loss
is sent to the worker in the passive party (Line 7). In addition, the gradient for the bottom model can be generated through the
back propagation of the bottom model (Line 8). The model is updated with the gradient using gradient descent (Line 9). Finally,
the updated weights are sent to the parameter server in the active party.
The training process of the distributed vertical FL in the passive party is shown in Algorithms 5. First, the global weights are

pulled from the parameter server in the active party (Line 1). Then, forward propagation is carried out with the bottom model
and the intermediate result is generated (Line 2). The result is encrypted using the paillier cryptosystem as explained in Section
3.3 (Line 3) before being sent to the counterparty worker in the active party (Line 4). When receiving the gradients from the
worker in the active party (Line 4), Afterward, after receiving the loss from the worker in the passive party (Line 5), backward
propagation is carried out to calculate the gradients for the bottom model in the passive party (Line 6). The model is updated
with the generated gradients (Line 7), and the updated weights are sent to the parameter server in the passive party.
As we exploit the hash function to split the data, the overhead of the data split is (1). In addition, in Line 6 of Algorithm

3, the models should be aggregated for the model update, thus, the overhead to calculate the averaged model is (n) with n
representing the number of cores in each party. Finally, the overall complexity of DVFL is (n).

Liu ET AL 9

(a) The training time of the distributed VFL with different numbers of workers. (b) The throughput of the distributed VFL with different numbers of workers.

FIGURE 5The performance of distributedVFL in the large-scale cluster environment. As the number of worker nodes increases,
the execution time of the distributed VFL is reduce, and the throughput is improved.

5 EXPERIMENT

In this section, we present the results of experiments in a large-scale cluster environment and the Baidu AI cloud environment.
We illustrate our data source as well as data features and labels. We account for how much impact to run not only the training
process of vertical FL but also the PSI protocol parallel with different number of workers. Then, we discuss the bottleneck of
the experiment between CPU and memory usage under Baidu AI Cloud environment. Afterward, we compare the efficiency of
DVFL and state-of-the-art platforms, i.e., FATE23 and PyVertical24, with different amounts of data and numbers of workers on
the Baidu AI cloud environment. We fine tuned the parameters for both FATE and DVFL.
We implemented a prototype based on the architecture of DVFL. The data communication in DVFL between any two of the

parameter servers and workers is implemented by a Remote Procedure Call (RPC), i.e., gRPC63, and the data communication
is realized using Socket64. In the following figures, we denote n parties with m workers at each party by n ∗ m. We exploit the
”a9a” dataset from the LIBSVM library65 in the experimentation.

5.1 DVFL
The large-scale cluster environment is given by Hygon C86 7185 thirty-two 6000-core processors, 128 GB memory, four 6000-
core Distributed Control Unit (DCU), 64-bit CentOS 7.6 Linux with x86_64 architecture. To run DVFL, Party A and Party P
each contains 106 rows of data. To evaluate the system performance, we record and compare the time consumption of two parties
running DVFL under 1, 2, 4, 8, 16, 32 workers respectively. As it shown in Figure 5, with the number of workers increase, the
overall runtime drops while the total data processed per second increases. The execution time given by non-distributed system
(1-worker per party) is 25865 seconds, while the execution time given by 32-worker per party is 2252 seconds. And the data
processed per second is increased from 7732 rows (1-worker) to 88810 (32-worker). The assumption of the viability of DVFL
is confirmed by noticing the tremendous execution time drop and the immense data processing capacity by the multi-worker
system.
We also observed the training time of distributed vertical FL decreases while worker nodes increases. Because of the inevitable

communication cost, the throughput per worker of 1-worker-system is higher than a 32-worker-system. The training time dropped
significantly when the number of workers increases from one to two (25865 seconds to 12056 second). With the workers con-
tinually increasing, the training time decreasing becomes inert. When the number of workers increases, the overall throughput
of the distributed vertical FL is also augmented. However, because of the communication overhead, the increment becomes less
significant when the number of workers becomes big enough.
Additionally, we examined the execution time of the distributed PSI. In this experiment, we put 5 × 108 rows of data in Party

A and 2 × 107 rows of data in Party P in the large-scale cluster environment. As shown in Figure 6, we obtain similar tendency

10 Liu ET AL

(a) The execution time of distributed PSI with different numbers of workers. (b) The throughput of distributed PSI with different numbers of workers.

FIGURE 6The performance of Distributed PSI in the large-scale cluster environment. As the number of worker nodes increases,
the execution time of the distributed PSI is reduced, while the throughput is improved

workers per party 1 worker 2 worker 4 worker 8 worker

Machine A
peak CPU spike (%) 98.91 98.59 97.09 93.48
memory usage (G) 61.95 51.3 48 45.37

Throughput 1105 1505 1101 772

Machine B
peak CPU spike (%) 60.39 39.48 27.91 15.98
memory usage (G) 18.78 16.82 15.83 14.82

Throughput 809 324 248 175

Machine C
peak CPU spike (%) Null 98.65 97.81 96.74
memory usage (G) Null 23.29 18 15.14

Throughput Null 1843 1828 1921

Machine D
peak CPU spike (%) Null 34.8 18.37 17.03
memory usage (G) Null 12.15 11.53 10.5

Throughput Null 400 262 165
TABLE 1 Hardware usage of DVFL

in terms of the execution time and the throughput as that of DVFL. The execution time decreases from 2680 seconds to 593
seconds while the throughput increases from 186567 items per second to 843170 items per second.
We carry out another experiment to verify the performance of DVFL on the Baidu AI Cloud environment. In this experiment,

Party A holds 4 × 108 rows of data and Party P holds 2 × 107 rows of data. The environment is given by four 32-core, 64 GB
memory, and 160 GB storage machines in version 7.4 centOS Linux. Figure 7 shows the execution time of 1, 2, 4, 8 workers
per party in DVFL on above datasets and environment.
Besides drawing a similar conclusion as the previous experiment in the large-scale cluster, we also monitor the peak CPU

spike, memory usage, and throughput (TPS) as shown in Table 1. In 1-worker per party case, Machine A handles Party A and
Machine B handles Party P. In multi-worker cases, Machines A and B are responsible for Party A, while Machines C and D are
responsible for Party P. We notice the CPU is overloaded when handling the magnitude of 108 dataset in 1-worker system. Even
the number of workers increases, the peak CPU spikes decrease lethargically. However, the memory usage is also close to full-
filled to handle Party A in the 1-worker system (61.95 G out of 64 G). But the memory usage is effectively reduced while the
number of workers is increased. The throughput drops as expected when the overall I/O remains, excepting few outliers. Hence,
the limitation of CPU in a cloud environment could be a common bottleneck of DVFL when dealing with big data.
In order to analyze the overhead of Paillier HE, we carry out an experimentation to compare the training time with vanilla

vertical FL and that with Paillier HE. We set the number of rounds to 10, the learning rate to 0.05 and the batch size to 16. We

Liu ET AL 11

FIGURE 7 The training time of Deep Neural Networks (DNN) with DVFL and different numbers of workers on Baidu AI Cloud

FIGURE 8 The training time of DVFL and FATE with a single server at each party.

vary the length of the public key in Paillier HE. As shown in Table 2, the overhead of Paillier HE cannot be ignored. When we
utilize the public key of 128 bits, the training is 8.9 times longer while the inference time is slightly longer (less than 1.4%).
When the length becomes 1024, the overhead can be much more significant (213 times longer). In practice, we exploit the public
key of 128 bits to balance the security and the efficiency.

Type Vanilla HE (128) HE (1024)
Training 89 878 19021
Inference 72 73 74

TABLE 2 Execution time for training and inference. The time unit is second. “128” and “1024” represent the length of public
key.

12 Liu ET AL

(a) DVFL with 2*1 workers (b) DVFL with 2*2 workers

(c) DVFL with 2*4 workers (d) FATE with 2*1 workers

FIGURE 9 The execution time of DVFL and FATE with different numbers of workers.

5.2 Comparison of DVFL and Baseline Frameworks
In order to show the efficiency and scalability of DVFL, we compare the performance of DVFL with baseline frameworks, i.e.,
FATE and PyVertical. The major difference between DVFL and baseline frameworks is the implementation and the communi-
cation strategy. In DVFL, we exploit a peer to peer method. FATE utilizes a centralized strategy and only the parameter server
can communicate with each other between the two parties. In addition, PyVertical does not provide support for multiple cores
or workers for vertical federated learning.
The experiment is given by 128 GB memory, 16-core, 64-bit CentOS 8.2 Linux with x86_64 architecture. To run DVFL and

FATE, Party A and Party P each contains 50 thousand, 250 thousand and 500 thousand rows of data. To evaluate the performance,
we record and compare the execution time of two parties running DVFL and FATE, while each party has 1, 2, 4 servers and
each server has 1, 2, 4, 8, 16 virtual nodes respectively.
As shown in Figure 9, every time when the number of workers is doubled, the execution time of DVFL is reduced to nearly

half of the original execution. Figure 9a shows the execution with one worker in each party with DVFL, Figure 9b shows the
execution with two workers in each party with DVFL and Figure 9c shows the execution with four worker in each party with
DVFL. When the number of workers increases, the overall execution time is significantly reduced. However, as shown in Figure
9c, the execution time decreases slowly when number of workers increases from 8 to 16, the execution time is not reduced due
to the overhead of communication and synchronization.
Figure 9d shows the execution time of FATE with a server in each party. When the number of workers increases, the execution

time is reduced when the number of workers is smaller or equal to 8. When the number of workers increases from 8 to 16,
the execution time is augmented as well. This is because the bottleneck of the centralized parameter servers that realize the

Liu ET AL 13

FIGURE 10 The training time of DVFL and PyVertical with multiple cores or workers at each party.

communication between two parties. In addition, to the best of our knowledge, FATE cannot support the execution with multiple
servers at each party.
The comparison of DVFL and FATE is shown in Figure 8, when the amount of data and the number of workers are the

same, the execution time of FATE is significantly longer than that of DVFL (up to 6.8 times longer). In addition, the difference
becomes more significant with more data to process. In addition, the execution of DVFL can be up to 11.6 times faster than the
best performance of FATE with the consideration of multiple servers in each party.
As shown in Figure 10, when the amount of data is the same, the execution of PyVertical24 is shorter (up to 41.4%) than

DVFL. Please note that this difference is brought by the implementation of Paillier HE in DVFL while PyVertical only exploits
DP. Paillier HE can well protect the security of the data while DP is much faster than Paillier HE in practice. However, when
exploiting multiple cores at both party, DVFL can significantly outperform PyVertical (up to 15.1 times faster) when the data is
partitioned and processed in parallel.

6 CONCLUSION AND PERSPECTIVE

In this paper, we propose a Distributed Vertical Federated Learning (DVFL) approach, which exploit distributed architecture
for the execution of PSI and vertical federated learning. We exploit a peer-to-peer communication strategy, which corresponds
to efficient distributed execution. We carried out extensive experiments to show the efficiency and scalability of DVFL with
different scales of data, diverse numbers of servers in two environment, i.e., a large-scale cluster environment and a cloud
environment. We examined the performance with one party holding the order of 108 and another holding the order of 107
datasets in both the large-scale cluster and the cloud environments. We demonstrated the acceleration of multiple servers with
DVFL against non-distributed deep VFL in two parties scenario. In addition, we monitored the hardware usage and evaluated
the possible performance bottleneck of DVFL. Furthermore, we compare the execution time of DVFL with state-of-the-art
frameworks, i.e., FATE and PyVertical. The results shown that the advantage of DVFL can be up to 6.8 faster with single server
at each party and 15.1 times faster with multiple servers.
In the future, we plan to extend DVFL to multiple parties and meanwhile to improve its performance. In addition, the inter-

pretability66,67 is also of much importance for federated learning, we intend to enable interpretability within DVFL in the
future.

14 Liu ET AL

References

1. Liu J, Huang J, Zhou Y, et al. From distributed machine learning to federated learning: a survey.Knowledge and Information
Systems 2022; 64(4): 885-917.

2. Yang Q, Liu Y, Chen T, Tong Y. Federated machine learning: Concept and applications. ACM Trans. on Intelligent Systems
and Technology (TIST) 2019; 10(2): 1-19.

3. Standing Committee of the National People’s Congress . Cybersecurity Law of the People’s Republic of China. https://www.
newamerica.org/cybersecurity-initiative/digichina/blog/translation-cybersecurity-law-peoples-republic-china/; . Online;
accessed 22/02/2021.

4. Official Journal of the European Union . General data protection regulation. https://eur-lex.europa.eu/legal-content/EN/
TXT/PDF/?uri=CELEX:32016R0679; . Online; accessed 12/02/2021.

5. ChikWB. The Singapore Personal Data Protection Act and an assessment of future trends in data privacy reform. Computer
Law & Security Review 2013; 29(5): 554–575.

6. California Consumer Privacy Act Home Page. https://www.caprivacy.org/; . Online; accessed 14/02/2021.
7. Gaff BM, Sussman HE, Geetter J. Privacy and Big Data. Computer 2014; 47(6): 7-9.
8. McMahan B, Moore E, Ramage D, Hampson S, Arcas yBA. Communication-efficient learning of deep networks from

decentralized data. In: Int. Conf. on Artificial Intelligence and Statistics (AISTATS). ; 2017: 1273-1282.
9. Hardy S, Henecka W, Ivey-Law H, et al. Private federated learning on vertically partitioned data via entity resolution and

additively homomorphic encryption. arXiv preprint arXiv:1711.10677 2017.
10. Nock R, Hardy S, Henecka W, et al. Entity resolution and federated learning get a federated resolution. arXiv preprint

arXiv:1803.04035 2018.
11. Liu Y, Huang A, Luo Y, et al. Fedvision: An online visual object detection platform powered by federated learning. In: .

34. AAAI Conf. on Artificial Intelligence. ; 2020: 13172-13179.
12. Sabt M, Achemlal M, Bouabdallah A. Trusted Execution Environment: What It is, and What It is Not. In: . 1. IEEE Int.

Conf. on Trust, Security and Privacy in Computing and Communications. ; 2015: 57-64.
13. Armknecht F, Boyd C, Carr C, et al. A Guide to Fully Homomorphic Encryption. Cryptology ePrint Archive, Report

2015/1192; 2015. https://eprint.iacr.org/2015/1192.
14. Li B, Micciancio D. On the security of homomorphic encryption on approximate numbers. In: Annual Int. Conf. on the

Theory and Applications of Cryptographic Techniques. ; 2021: 648–677.
15. Zhang C, Li S, Xia J, Wang W, Yan F, Liu Y. BatchCrypt: Efficient Homomorphic Encryption for Cross-Silo Federated

Learning. In: ; 2020: 493–506.
16. Pinkas B, Schneider T, Zohner M. Scalable private set intersection based on OT extension. ACM Trans. on Privacy and

Security (TOPS) 2018; 21(2): 1–35.
17. Chen H, Laine K, Rindal P. Fast private set intersection from homomorphic encryption. In: ACM SIGSAC Conf. on

Computer and Communications Security. ; 2017: 1243-1255.
18. Gu B, Dang Z, Li X, HuangH. Federated doubly stochastic kernel learning for vertically partitioned data. In: ACMSIGKDD

Int. Conf. on Knowledge Discovery & Data Mining. ; 2020: 2483–2493.
19. Feng S, Yu H. Multi-participant multi-class vertical federated learning. arXiv preprint arXiv:2001.11154 2020.
20. Chen T, Jin X, Sun Y, Yin W. Vafl: a method of vertical asynchronous federated learning. arXiv preprint arXiv:2007.06081

2020.

https://www.newamerica.org/cybersecurity-initiative/digichina/blog/translation-cybersecurity-law-peoples-republic-china/
https://www.newamerica.org/cybersecurity-initiative/digichina/blog/translation-cybersecurity-law-peoples-republic-china/
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://www.caprivacy.org/
https://eprint.iacr.org/2015/1192

Liu ET AL 15

21. GuoY, PolychroniadouA, Shi E, Byrd D, Balch T.MicroFedML: Privacy Preserving Federated Learning for SmallWeights.
Cryptology ePrint Archive 2022.

22. Kairouz P, McMahan HB, Avent B, et al. Advances and open problems in federated learning. Foundations and Trends in
Machine Learning 2021; 14(1-2): 1-210.

23. WeBank . Federated AI Technology Enabler (FATE). https://github.com/FederatedAI/FATE; . Online; accessed
16/02/2021.

24. Romanini D, Hall AJ, Papadopoulos P, et al. Pyvertical: A vertical federated learning framework for multi-headed splitnn.
arXiv preprint arXiv:2104.00489 2021.

25. Liu J, Mo L, Yang S, et al. Data Placement for Multi-Tenant Data Federation on the Cloud. IEEE Transactions on Cloud
Computing 2021.

26. De Oliveira DC, Liu J, Pacitti E. Data-intensive workflow management: for clouds and data-intensive and scalable
computing environments. Synthesis Lectures on Data Management 2019; 14(4): 1–179.

27. Liu J, Dong D, Wang X, et al. Large-scale knowledge distillation with elastic heterogeneous computing resources.
Concurrency and Computation: Practice and Experience 2022: e7272.

28. Ahmed U, Lin JCW, Srivastava G. Hyper-Graph Attention Based Federated Learning Method For Mental Health Detection.
IEEE Journal of Biomedical and Health Informatics 2022.

29. Ahmed U, Lin JCW, Srivastava G. 5G-Empowered Drone Networks in Federated and Deep Reinforcement Learning
Environments. IEEE Communications Standards Magazine 2021; 5(4): 55-61.

30. Ahmed U, Srivastava G, Lin JCW. A federated learning approach to frequent itemset mining in cyber-physical systems.
Journal of Network and Systems Management 2021; 29(4): 1–17.

31. Gaurav A, Psannis K, Peraković D. Security of cloud-based medical internet of things (miots): a survey. Int. Journal of
Software Science and Computational Intelligence (IJSSCI) 2022; 14(1): 1-16.

32. Rajabi E, GrellerW. Exposing social data as linked data in education. Int. Journal on SemanticWeb and Information Systems
(IJSWIS) 2019; 15(2): 92-106.

33. Ahmed U, Srivastava G, Lin JCW. Reliable customer analysis using federated learning and exploring deep-attention edge
intelligence. Future Generation Computer Systems 2022; 127: 70–79.

34. Sejdiu B, Ismaili F, Ahmedi L. Integration of semantics into sensor data for the IoT: a systematic literature review. Int.
Journal on Semantic Web and Information Systems (IJSWIS) 2020; 16(4): 1-25.

35. Wang Z, Yang Y, Liu Y, Liu X, Gupta BB, Ma J. Cloud-based federated boosting for mobile crowdsensing. arXiv preprint
arXiv:2005.05304 2020.

36. Zhou C, Liu J, Jia J, et al. Efficient Device Scheduling with Multi-Job Federated Learning. AAAI Conf. on Artificial
Intelligence 2022; 36(9): 9971-9979.

37. Liu J, Jia J, Ma B, et al. Multi-Job Intelligent Scheduling With Cross-Device Federated Learning. IEEE Transactions on
Parallel and Distributed Systems (TPDS) 2022; 34(2): 535-551.

38. Zhang H, Liu J, Jia J, Zhou Y, Dai H. FedDUAP: Federated Learning with Dynamic Update and Adaptive Pruning Using
Shared Data on the Server. In: Int. Joint Conf. on Artificial Intelligence (IJCAI). ; 2022: 1-7. To appear.

39. Che T, Zhang Z, Zhou Y, et al. Federated Fingerprint Learning with Heterogeneous Architectures. In: IEEE Int. Conf. on
Data Mining (ICDM). ; 2022: 31–40.

40. Jin J, Ren J, Zhou Y, Lyu L, Liu J, Dou D. Accelerated federated learning with decoupled adaptive optimization. In: Int.
Conf. on Machine Learning (ICML). ; 2022: 10298–10322.

https://github.com/FederatedAI/FATE

16 Liu ET AL

41. Li G, Hu Y, Zhang M, et al. FedHiSyn: A Hierarchical Synchronous Federated Learning Framework for Resource and Data
Heterogeneity. In: Int. Conf. on Parallel Processing (ICPP). ; 2022: 1-10. To appear.

42. Stergiou CL, Psannis KE, Gupta BB. InFeMo: flexible big data management through a federated cloud system. ACM
Transactions on Internet Technology (TOIT) 2021; 22(2): 1-22.

43. Zhang Q, Wang C, Wu H, Xin C, Phuong TV. GELU-Net: A Globally Encrypted, Locally Unencrypted Deep Neural
Network for Privacy-Preserved Learning.. In: Int. Joint Conf. on Artificial Intelligence (IJCAI). ; 2018: 3933–3939.

44. Dean J, Corrado GS, Monga R, et al. Large scale distributed deep networks. Advances in Neural Information Processing
Systems (NeurIPS) 2012: 1232-1240.

45. Low Y, Gonzalez JE, Kyrola A, Bickson D, Guestrin CE, Hellerstein J. Graphlab: A new framework for parallel machine
learning. arXiv preprint arXiv:1408.2041 2014.

46. Xing EP, Ho Q, Dai W, et al. Petuum: A new platform for distributed machine learning on big data. IEEE Trans. on Big
Data 2015; 1(2): 49–67.

47. Murray DG, McSherry F, Isaacs R, Isard M, Barham P, Abadi M. Naiad: a timely dataflow system. In: ACM Symposium
on Operating Systems Principles (SOSP). ; 2013: 439–455.

48. Kraska T, Talwalkar A, Duchi JC, Griffith R, Franklin MJ, Jordan MI. MLbase: A Distributed Machine-learning System.
In: . 1. Conf. on Innovative Data Systems Research (CIDR). ; 2013: 2–1.

49. Liu J, Wu Z, Yu D, et al. Heterps: Distributed deep learning with reinforcement learning based scheduling in heterogeneous
environments. arXiv preprint arXiv:2111.10635 2021.

50. Li M, Zhou L, Yang Z, et al. Parameter server for distributed machine learning. In: . 6. Advances in Neural Information
Processing Systems (NeurIPS) Workshop. ; 2013: 2.

51. Li M, Andersen DG, Smola AJ, Yu K. Communication efficient distributed machine learning with the parameter server.
Advances in Neural Information Processing Systems (NeurIPS) 2014; 27: 19–27.

52. Freedman MJ, Nissim K, Pinkas B. Efficient Private Matching and Set Intersection. In: Cachin C, Camenisch JL. , eds.
Advances in Cryptology - EUROCRYPTAdvances in Cryptology - EUROCRYPT. ; 2004: 1–19.

53. Lu L, Ding N. Multi-Party Private Set Intersection in Vertical Federated Learning. In: IEEE Int. Conf. on Trust, Security
and Privacy in Computing and Communications (TrustCom). ; 2020: 707-714.

54. Dong C, Chen L, Wen Z. When private set intersection meets big data: an efficient and scalable protocol. In: ACM SIGSAC
Conf. on Computer & communications security. ; 2013: 789–800.

55. Gentry C. Fully homomorphic encryption using ideal lattices. In: Annual ACM symposium on Theory of computing. ;
2009: 169-178.

56. Paillier P. Public-key cryptosystems based on composite degree residuosity classes. In: Int. Conf. on the theory and
applications of cryptographic techniques. ; 1999: 223–238.

57. Broder A, Mitzenmacher M. Network applications of bloom filters: A survey. Internet mathematics 2004; 1(4): 485–509.
58. Naor M, Pinkas B. Efficient oblivious transfer protocols.. In: . 1. Symposium on Discrete Algorithms (SODA). ; 2001:

448–457.
59. Ishai Y, Prabhakaran M, Sahai A. Founding cryptography on oblivious transfer-efficiently. In: Annual Int. cryptology Conf.

; 2008: 572-591.
60. Smola A, Narayanamurthy S. An architecture for parallel topic models. Very Large Data Base (VLDB) Endowment 2010;

3(1-2): 703–710.

Liu ET AL 17

61. Shasha D, Wang TL. Optimizing equijoin queries in distributed databases where relations are hash partitioned. ACM
Transactions on Database Systems (TODS) 1991; 16(2): 279-308.

62. Zhao X, Papagelis M, An A, Chen BX, Liu J, Hu Y. Elastic bulk synchronous parallel model for distributed deep learning.
In: IEEE Int. Conf. on Data Mining (ICDM). ; 2019: 1504-1509.

63. Open Source High Performance Remote Procedure Call. https://grpc.io/; . Online; accessed 7/05/2021.
64. Kalita L. Socket programming. Int. Journal of Computer Science and Information Technologies 2014; 5(3): 4802-4807.
65. Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM transactions on intelligent systems and technology

(TIST) 2011; 2(3): 1-27.
66. Li X, Xiong H, Li X, et al. Interpretable Deep Learning: Interpretation, Interpretability, Trustworthiness, and Beyond. arXiv

preprint arXiv:2103.10689 2021.
67. Liu J, Pacitti E, Valduriez P, Mattoso M. A survey of data-intensive scientific workflow management. Journal of Grid

Computing 2015; 13(4): 457–493.

https://grpc.io/

	Distributed and Deep Vertical Federated Learning with Big Data
	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Private Set Intersection
	3.2 Parameter Server
	3.3 Paillier Cryptosystem
	3.4 Deep Neural Networks

	4 DVFL Solution
	5 Experiment
	5.1 DVFL
	5.2 Comparison of DVFL and Baseline Frameworks

	6 Conclusion and Perspective
	References

