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Abstract—The upcoming exascale computing systems Frontier
and Aurora will draw much of their computing power from GPU
accelerators. The hardware for these systems will be provided
by AMD and Intel, respectively, each supporting their own GPU
programming model. The challenge for applications that harness
one of these exascale systems will be to avoid lock-in and to
preserve performance portability.

We report here on our results of using Kokkos to accelerate
a real-world application on NERSC’s Perlmutter Phase 1 (using
NVIDIA A100 accelerators) and the testbed system for OLCF’s
Frontier (using AMD MI250X). By porting to Kokkos, we
were able to successfully run the same X-ray tracing code
on both systems and achieved speed-ups between 13 % and
66 % compared to the original CUDA code. These results are a
highly encouraging demonstration of using Kokkos to accelerate
production science code.

I. INTRODUCTION

The upcoming HPC systems Frontier and Aurora will be
the first exascale computing systems. Both are capable of per-
forming more than 1018 floating point operations per second.
The majority of this computing power comes from the GPU
accelerators of these systems. Due to their massive parallelism,
GPUs are well suited for repetitive tasks.

Using GPUs requires vendor specific programming models,
such as CUDA for NVIDIA or HIP for AMD. This makes
portability between different systems challenging. As an alter-
native, programming models such as OpenMP offloading or
Kokkos provide an abstraction layer between the source code
and the GPU hardware [1]. With these abstraction layers, the
same code can be compiled for different architectures, thus
combining portability with high performance.
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II. SCIENTIFIC BACKGROUND

X-ray crystallography is an indispensable tool to study the
structure of molecules, with applications ranging from material
science [2] to understanding the function of proteins [3]. In
crystallography, small crystals of an unknown sample (e.g. a
protein whose molecular structure is to be determined) are
placed in an x-ray beam. By measuring how the x-rays are
scattered, the position of each atom in the sample can be deter-
mined. A major application of x-ray crystallography is deter-
mining molecular structures of proteins. Knowing the protein
structure is crucial to understand how a protein interacts. From
this understanding, therapeutic drugs can be designed to, e.g.,
treat infections by blocking specific interactions.

Because the molecules inside the crystals are arranged in
a long-range repeating order, the crystals scatter x-rays only
into certain directions – ie. scattering only occurs at those
angles, which allow for positive interference from the x-
rays scattered by different atoms. X-rays scattered into these
discrete directions form Bragg spots on the imaging detector
(the bottom panels in Fig. 1 illustrate one possible Bragg spot
pattern). Mathematically speaking, a molecular structure is
represented using a list of real numbers called structure factors,
where each Bragg spot is associated with one such structure
factor. Reconstructing the protein structure is therefore a two
step process: first, the structure factors are determined from the
Bragg spots. Then, the structure factors are used to reconstruct
the protein structure. If more structure factors are available
for the reconstruction, the atomic positions can be determined
more accurately. Therefore, increasing the signal of weak
Bragg spots requires larger crystals or a more intense x-
ray beam. However, many protein crystals are challenging
to crystallize and grow only to microscopic size. Scientists
therefore opt for increasing beam intensities. However, as
proteins are sensitive to radiation damage, they are quickly
destroyed by high intensity x-ray beams.

Serial femtosecond crystallography (SFX) avoids the prob-
lem of radiation damage by using ultra-short x-ray pulses from
x-ray free-electron lasers (XFELs), called “shots”. In essence,
the pulses are so short that the Bragg spots can be measured
before beam damage has hat time to degrade the sample. Each
x-ray pulse lasts only a few ten femtoseconds, fast enough to
freeze all atomic motion and capture a snapshot of the crystal
before any damage becomes visible. Still, this process will
destroy the sample, so fresh crystals must be constantly fed
in before each x-ray pulse, see Fig. 1. Measuring a complete
dataset requires thousands of crystals, each producing only a
single scattering image.

Most crystallography methods determine the structure fac-
tors by simply integrating the number of photons in each Bragg
spot. Apart from the structure factors, the intensity of a Bragg
spot is also influenced by the orientation of the crystal, how
the crystal is composed from smaller crystals and how the
energy spectrum of the photons fluctuates from shot to shot.
By averaging multiple images, each under different conditions,
these influences can be averaged out. For SFX, this requires

Fig. 1. Top: Experimental setup for SFX. The protein crystals are delivered
to the x-ray beam with a water jet. For each x-ray pulse, the imaging detector
records the scattered x-rays. Bottom: Two detector close-ups. Left: Small
scattering angles close to the beam axis. Right: Wide angle scattering at the
edge of the detector.

tens of thousands of scattering images.

Instead of simply integrating each Bragg spot, x-ray tracing
aims to simulate the photon intensity of every detector pixel
by creating a physical model of each crystal [4]. Modeling
each crystal is an iterative process, in which the current
parameter estimates are refined until the simulated scattering
image matches the measured one. By recovering the unknown
parameters from each crystal, x-ray tracing can accurately
determine the structure factors from an order of magnitude
fewer scattering images. As measurement time at XFELs is
scarce, this allows scientists to study more samples or more
experimental conditions during the same experiment.

However, while x-ray tracing may require fewer experimen-
tal resources, the computational effort to accurately model
each pixel grows considerably in comparison to conventional
methods. X-ray tracing therefore faces the challenge of per-
forming a more complex data analysis in less time. At the
same time, quick feedback on the quality of the collected
data is critical for XFEL experiments [5]. Providing these
experiments with quick-turnaround analysis of the terabytes
of data requires high performance computing (HPC) at the
Exascale.



III. GPU ACCELERATION WITH KOKKOS

To simulate scattering images from a physical model, we
have developed the program nanoBragg [6], which is part
of the CCTBX software suite [7], [8]. CCTBX consists of a
high-level workflow written in Python and accelerated kernels
written in C++ (interfacing with Python via Boost.Python).
This approach has been proven to be highly successful in
analyzing large data sets using HPC resources [5], [9]. By
designing nanoBragg as a kernel compatible with the CCTBX
workflow, we see it as the first building block of a larger pixel-
level XFEL data analysis workflow.

In x-ray tracing, each detector pixel can be simulated nearly
independently of all other pixels, making x-ray tracing ideally
suited to exploit the massive parallelism of modern graphic
processing units (GPUs). To this end, the original nanoBragg
code was previously ported to NVIDIA CUDA, resulting in
a 500× speedup on an NVIDIA V100 over a multi-threaded
CPU implementation on Intel Xeon Ivy Bridge. nanoBragg
distributes tasks (batches of images to simulate) to multiple
nodes and GPUs using MPI (using mpi4py). Each GPU then
performs work independently. Solving for an unknown molec-
ular structure therefore follows a fork-join parallelism, where
each GPU simulates a batch of parameters independently,
followed by a MPI reduction [4]. The nanoBragg benchmark
discussed here forgoes the final reduction step, instead saving
the simulated images to the file system.

The upcoming exascale systems Frontier (OLCF) and Au-
rora (ALCF) are essential to obtain rapid feedback during
XFEL experiments. However, the GPUs for these systems will
be provided by AMD, and Intel, respectively. As both vendors
supply their own alternative to CUDA, nanoBragg must be
adapted to each system. To avoid code duplication and site-
specific optimizations, we decided to use Kokkos [1].

A. Kokkos

Kokkos is a C++ programming model that allows a single
code base to target different HPC platforms [1]. To achieve
this, Kokkos implements abstract memory and execution
spaces. Only during the compilation are the abstract spaces and
commands converted to CUDA, HIP, OpenMP, etc. This way,
the same Kokkos code can be used on systems with different
GPUs or even systems with no GPU.

Each execution space is associated with a particular memory
space. While the execution space defines where the compu-
tation is done, the computation itself is defined by execution
patterns, which are the Kokkos equivalent to kernels in CUDA.
Kokkos implements three patterns:

• parallel_for: Corresponds to a for-loop where each
iteration is executed independently, for example element-
wise addition of two vectors.

• parallel_reduce: A reduction that collects and
combines the result of all iterations, for example finding
the longest word in a list.

• parallel_scan: A combination of the former two
that uses multiple reductions, for example calculating a
histogram of an image.

The typical use case for execution patterns is to work on
large data arrays. Kokkos provides its own data structure
called View. A View is a multi-dimensional array which can be
transferred between different memory spaces and layouts. The
last one is important, e.g. in matrix multiplications, the best
performance on a multi-core CPU might be achieved with a
row-major layout and on a GPU with a column-major layout.
Kokkos automatically manages the conversion between layouts
when a View is transferred between different memory spaces.
This makes it easy to first initialize a View on the CPU and
then transfer it to GPU memory.

B. Porting nanoBragg to Kokkos

The task of porting nanoBragg can be split into two parts:
The first part is converting the CUDA kernels to Kokkos’
execution patterns, the second part is replacing all CUDA
arrays with Kokkos’ Views. As there is no interaction between
the individual detector pixels, all kernels can be replaced with
the parallel_for pattern. Most of the computational work in
nanoBragg is done in three Kernels:

• nanoBraggSpots: The most complex kernel, containing
about 350 lines of code. This kernel simulates the Bragg
spots. It takes into account crystal orientation, mosaicity
and photon energy.

• addBackground: The second most complex kernel with
about 120 lines of code. This kernel simulates the back-
ground scattering from the air and water that surround
the crystal.

• addArray: A simple kernel that adds the results from the
other two kernels.

We illustrate the porting process by using a simplified
version of the addArray kernel:

1 __global__
2 void addArray(double* lhs,
3 float* rhs,
4 int total_pixels) {
5 int j = blockDim.x * blockIdx.x + threadIdx.x;
6 if (j < total_pixels) {
7 lhs[j] = lhs[j] + (double) rhs[j];
8 }
9 }

Listing 1. The addArray kernel in CUDA

For the Kokkos version, we replaced the lhs and rhs arrays
with Views and the body of the kernel with a parallel_for
pattern. As the memory management of Views is done by
Kokkos, we could remove the custom-written CUDA memory
management. The parallel_for execution pattern takes three
arguments: an individual name for debugging and profiling
purposes, an execution policy and a functor that holds the
computational work. In simple cases like this, the execution
policy is simply to iterate over all total_pixels. The functor can
be integrated into the pattern by using lambda expressions, this
way the structure mirrors how kernels are defined:



1 void addArray(Kokkos::View<double*> lhs,
2 Kokkos::View<float*> rhs,
3 int total_pixels) {
4 Kokkos::parallel_for(
5 "addArray", total_pixels,
6 KOKKOS_LAMBDA (const int& j) {
7 lhs(j) = lhs(j) + (double) rhs(j);
8 }
9 );

10 }

Listing 2. The addArray kernel in Kokkos

The other kernels where converted much in the same way,
with a few challenges. One of these is an edge case when using
lambda expressions for device code in member functions of a
class. Suppose init() is a member function that initializes the
view data with a certain value:

1 void Container::init() {
2 Kokkos::parallel_for("init", size,
3 KOKKOS_LAMBDA (const int& j) {
4 data(j) = m_value;
5 }
6 );
7 }

Listing 3. Lambda capture

Since they are class members, the compiler replaces data
and m_value during the compilation with this->data
and this->m_value. The problem arises from this being
a pointer in CPU memory. If CUDA is used, this creates
an illegal memory access when the GPU tries to access the
pointer.

There are multiple ways around this issue: One way is to
avoid lambda expressions in this situation and instead explic-
itly define the functors. Another option is to copy the specific
member variables into local variables before the execution
pattern is called. And finally, in C++17 lambda expressions
have been extended so they can explicitly capture the object,
not the pointer. Unfortunately, the CCTBX code is currently
not compatible with C++17. Therefore, we choose to use local
variables in these situations and otherwise minimize the use
of kernels in member functions.

IV. PERFORMANCE AND PORTABILITY

The goal of porting the nanoBragg code to Kokkos is to
achieve portability between the upcoming Frontier and Aurora
systems as well as Perlmutter. We test the portability on Perl-
mutter Phase 1 and Crusher, the latest Frontier testbed system.
These systems are not production resources, the performance
numbers given here were not always reproducible and will be
different from the final systems.

Increasing the portability of a code can potentially reduce
the performance. We therefore also assess on Perlmutter the
performance of the Kokkos port in comparison to the original
CUDA version. On Perlmutter, we use the CUDA backend of
Kokkos and on Crusher accordingly the HIP backend.

Each node of Perlmutter Phase 1 is equipped with an AMD
EPYC 7763 CPU and four NVIDIA A100 GPUs. On Crusher
each node is equipped with an AMD EPYC 7A53 CPU and

Fig. 2. Strong scaling of nanoBragg for the simulation of 100 000 scattering
images. The dashed line shows ideal scaling where doubling the number of
nodes halves the simulation time. On Perlmutter Phase 1, Kokkos is used with
the CUDA backend. On Crusher, Kokkos is used with the HIP backend.

four AMD MI250X GPUs. Each MI250X GPU is equipped
with two graphic compute dies (GCDs) totalling eight GCDs
per node. These eight GCDs function effectively like eight
separate GPUs per node.

As a benchmark, we used a test scenario that simulates
100 000 scattering patterns. Due to performance fluctuations
of the file system (a consequence of Perlmutter and Crusher
not being production systems), we did not include the sav-
ing of the simulated images into the benchmark. The tests
were performed using 32, 64, and 128 nodes, all results are
plotted in Fig. 2. Every test case shows almost ideal scaling
behavior, highlighting how x-ray tracing benefits from parallel
computing. On Perlmutter, the Kokkos version is about 13%
faster than the original CUDA version, indicating no loss in
performance due to the port to Kokkos. Concerning portability,
Kokkos allows nanoBragg to exploit the hardware of Crusher
for a more than 60% faster performance per node, compared
to Perlmutter Phase 1.

Next we re-enable file I/O. This introduces workflow latency
and dependence on a shared resource (the file system). We
observe that the strong scaling in shown in Fig. 2 is preserved –
albeit shifted up due to the increased time spent on I/O.
CCTBX seeks to hide workflow latency by assigning more
than one MPI rank to each GPU. We observe that this is a
largely successful strategy (as total runtime increases with
increasing number of MPI ranks per GPU). Fig. 3 shows
the total runtime to trace 100 thousand images using 64
Perlmutter nodes. We see that increasing the number of
ranks per GPU increases the total throughput. Interestingly,
the CUDA implementation achieves the highest throughput
when many (approx. 7 or greater) ranks are sharing the
same GPU, whereas the Kokkos implementation achieves the
maximum throughput when two MPI ranks share the same
GPU. Furthermore, comparing Fig. 2 and Fig. 3, we see that
the increased latency due to I/O can be hidden by sharing
GPUs accross ranks.



Fig. 3. Time to simulate 100 thousand diffraction patterns using 64 Perlmutter
nodes. In contrast to Fig. 2, this benchmark includes the time to save each
image to the file system. For comparison, the previous times without file
saving are indicated with dashed lines. As the filesystem performance on
Perlmutter can vary (due to it not being a production system) at the time of
writing, this graph shows the best performance over several repeated runs.

TABLE I
KERNEL RUN-TIMES.

nanoBraggSpots addBackground addArray

CUDA 8.28ms 1.87ms 0.13ms
Kokkos 6.98ms 1.76ms 0.12ms

Speed-up +15.7% +5.9% +7.7%

V. KERNEL PROFILING

To analyze how the Kokkos version performs better on
Perlmutter than the original CUDA version, we used Nsight
Systems and Nsight Compute to profile both versions. For
the three main kernels, the execution times on a NVIDIA
A100 GPU are given in Table I. For all three kernels,
Kokkos achieves a speed-up of more than five percent. As
the nanoBraggSpots kernel accounts for most of the GPU
computation time, the speed-up of more than 15% for this
kernel has a significant impact on the overall run time. On the
other end of the complexity spectrum is the addArray kernel.
While it is one of the smallest kernels and any improvements
will only have a small influence in the grand scheme, achieving
a speed-up of nearly eight percent even for short kernels is
remarkable.

Using Nsight Compute we studied the critical nanoBragg-

TABLE II
NANOBRAGGSPOTS DETAILS.

CUDA Kokkos

Run-time 8.28ms 6.98ms
Compute Throughput 65.05% 77.42%
Memory Throughput 21.05% 21.35%

Registers 130 116
Theoretical Occupancy 18.75% 25%

Achieved Occupancy 16.8% 24.74%

Spots kernel in detail. The results are summarized in Table II.
In the table, the compute and memory throughput give an
overview how much of the compute and memory resources
of the GPU are utilized by the nanoBraggSpots kernel. The
performance difference between CUDA and Kokkos is mostly
a result of the higher compute throughput of the Kokkos
kernel, the memory throughput is nearly identical. The in-
creased compute throughput in Kokkos is made possible by
using fewer registers. Each multiprocessor on an A100 GPU
has a total of 65 536 32 bit-registers for a maximum of 2048
simultaneous threads (64 warps per multiprocessor times 32
threads per warp). However, the GPU can only run at full
occupancy if each thread uses less then 65535/2048 = 32
registers. With 130 registers, the GPU can run at most 12
warps out of the 64 available. The Kokkos kernel uses 116
registers, which is below the critical threshold of 128 registers,
and can therefore run a maximum of 16 warps, 33% more.

The situation for the other kernels is similar. The addBack-
ground kernel goes from 96 to 80 registers and the addArray
kernel goes from 25 to 16 registers. Kokkos uses consistently
fewer registers than the original CUDA implementation, al-
lowing a higher occupancy and throughput.

VI. CONCLUSION

In this paper, we have reported on our work to port
nanoBragg to Kokkos. Starting from a CUDA code base, most
of the port was straightforward. Arising difficulties from the
port could be solved. We have demonstrated that the perfor-
mance of the code did not suffer from this port and has even
increased by 13%. We have also successfully demonstrated
performance portability between Perlmutter Phase 1 (NERSC)
and Crusher (OLCF). We are currently in the process of testing
the Aurora test system (ALCF). Until now, we have not used
advanced Kokkos features such as nested parallelism, which
should further increase the performance.

As nanoBragg is representative of many scientific codes,
our reported findings indicate that Kokkos is a powerful tool
to not only achieve performance portability in real-world ap-
plications, but also to accelerate existing codes. Moreover, we
are able to integrate Kokkos into existing scientific workflows
without needing to port an entire code base. This allows
scientists to make progress, even if staff time is limited.
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