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Summary

While data is distributed in multiple edge devices, Federated Learning (FL) is attract-
ing more and more attention to collaboratively train a machine learning model
without transferring raw data. FL generally exploits a parameter server and a large
number of edge devices during the whole process of the model training, while several
devices are selected in each round. However, straggler devices may slow down the
training process or even make the system crash during training. Meanwhile, other idle
edge devices remain unused. As the bandwidth between the devices and the server
is relatively low, the communication of intermediate data becomes a bottleneck. In
this paper, we propose Time-Efficient Asynchronous federated learning with Spar-
sification and Quantization, i.e., TEASQ-Fed. TEASQ-Fed can fully exploit edge
devices to asynchronously participate in the training process by actively applying
for tasks. We utilize control parameters to choose an appropriate number of parallel
edge devices, which simultaneously execute the training tasks. In addition, we intro-
duce a caching mechanism and weighted averaging with respect to model staleness
to further improve the accuracy. Furthermore, we propose a sparsification and quan-
titation approach to compress the intermediate data to accelerate the training. The
experimental results reveal that TEASQ-Fed improves the accuracy (up to 16.67%
higher) while accelerating the convergence of model training (up to twice faster).
KEYWORDS:
Federated learning, Distributed machine learning, Asynchronization, Sparsification, Quantization, Het-
erogeneity

1 INTRODUCTION

With more and more data generated and distributed in edge devices (devices), e.g., mobile phones and Internet of Things (IoT)
devices, a huge amount of data can be exploited to train a deep learning model for diverse artificial intelligent applications1,
e.g., image classification2, keyboard prediction3, location-based social networks4,5, and etc. Centralized training approaches
generally aggregate all the decentralized data to a server or a data center for the training process. These approaches may incur
significant huge communication overhead and bring severe privacy security risks6. As an emerging distributed machine learning
approach, Federated Learning (FL)7,8 can enable collaborative training of a machine learning model with distributed raw data
while protecting the privacy of the data.
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Within the training process of FL, models are updated with the raw data in edge devices and aggregated in a parameter server
(server)9. The aggregation of models can be carried out synchronously7,10 or asynchronously11. In each round of the whole
training process, the server sends the global model to selected devices for local updates before the aggregation of models. The
devices update the received model utilizing local data. Then, the devices send back the updated models to the server. With the
synchronous method, the server aggregates the updated models to a new global model after receiving the updated models from
all the devices. However, devices may have heterogeneous limited computing resources and communication capabilities, e.g.,
limited computing capabilities, low battery energy, and low bandwidth12. As a result, the training process may take a long time,
and the communication between devices and the server is inefficient. Furthermore, synchronous aggregation cannot fully exploit
the edge devices as the unselected devices remain idle during each global epoch. In addition, some powerful devices need to wait
for low devices, i.e., stragglers, to continue following updates. In contrast, with the asynchronous aggregation, the server can
update the global model immediately once receiving an updated model from any selected device13, which can take advantage
of all the available devices to achieve better performance.

Although asynchronous aggregation can prevent the server from waiting for slow devices, it still suffers from accuracy degra-
dation and inefficient data communication. First, the staleness of the updated models may degrade the accuracy of the global
model. For instance, at a given time, the server aggregates the latest models of powerful devices. A show device may just fin-
ish the update of a very old global model. Then, the updated model from the slow device may degrade the accuracy of the
global model after the aggregation in the server. Second, the issue of non-Independent and Identically Distributed (non-IID) data
may also degrade the accuracy of the global model. As the data is generally non-IID, the local optimal model may differ from
the global optimal model. The direct aggregation of models from devices may correspond to a global model of inferior accu-
racy. Finally, as the bandwidth between the devices and the server is limited, it takes much time to transfer the models without
sparsification14 or quantization15.

In this paper, we propose a Time-Efficient Asynchronous FL approach with Sparsification and Quantization (TEASQ-Fed) to
improve the training efficiency and the model accuracy of FL. We exploit the idle time of devices more aggressively within the
training process. While in the existing schemes devices wait for the task assignment from the server passively, in this work we
enable idle devices to apply for training tasks actively. However, in order to reduce the slow convergence brought by large num-
bers of parallel devices participating in the training process, we propose a control parameter C-fraction. In addition, we utilize a
regularization term to improve the stability of the training process with non-IID data. Moreover, to alleviate the staleness issue
of asynchronous training, we exploit a caching mechanism and aggregate models with respect to staleness. Finally, we propose
a dynamic decaying approach to choose appropriate compression parameters while exploiting sparsification and quantization to
reduce the communication cost during the training process. This paper is an extended version of a conference version16. The
main contributions of this paper are:

1. The design of an asynchronous FL approach, i.e., TEASQ-Fed, to fully exploit devices for the training process. We propose
a control parameter to limit the concurrent device participation in order to achieve fast convergence.

2. A model aggregation approach composed of a regularization method and staleness based mechanism to address the
problem of non-IID data and the impact of staleness.

3. A dynamic decaying approach to generate appropriate compression parameters while exploiting sparsification and
quantization for efficient data transfer between devices and the server (extra contribution compared with16).

4. An extensive evaluation, based on Fashion-MNIST and a convolutional neural network with 100 devices, diverse data
distributions, and multiple combinations of control parameters of TEASQ-Fed, compared with baseline approaches (with
extra extensive experimental results for the sparsification and quantization approach compared with16).

The rest of this paper is structured as follows. Section 2 reviews the related work. Section 3 formulates optimization problems
of FL. Section 4 provides the detailed explanation of TEASQ-Fed. In Section 5, we conduct extensive experiments with different
data sets and data distributions and demonstrate the impact of hyper-parameters. Finally, Section 6 concludes this paper.

2 RELATED WORK

With the wide usage of edge devices, the computation is carried out in edge devices, i.e., edge computing, to deal with the large
amounts of data generated and distributed17 in edge devices. As an emerging machine learning paradigm, FL is an effective
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solution to address the communication delay, data scalability, and privacy challenges brought by the centralized training pro-
cess18,19. FL has been widely used in multiple areas with the integration with edge computing, e.g., keyboard prediction3, edge
intelligence20, and video surveillance21. However, the training process of FL with existing approaches faces two challenges,
i.e., accuracy degradation due to non-IID data and low efficiency owing to a huge amount of heterogeneous devices of modest
computation and communication capacity.

While the convergency of FedAvg is theoretically analyzed with non-IID data22, some other methods are proposed to address
the accuracy degradation brought by non-IID data within the synchronous model aggregation mechanism. For instance, Fed-
Prox12 is proposed based on regulization on each device to address the non-IID data issue. A data sharing method23 is exploited
to improve the accuracy with non-IID data. However, these methods cannot be directly exploited in the asynchronous mechanism.

Existing FL approaches generally exploit a synchronous model aggregation mechanism, which corresponds to inefficient
training. FedAvg7 is a representative synchronous model aggregation mechanism, which randomly selects available devices for
the training. To deal with the heterogeneity of devices in terms of communication and computing capabilities, diverse device
selection methods are proposed24, e.g., greedy-based25, Bayesian optimization-based10, and reinforcement learning-based10.
PyrmidFL26 exploits data and system heterogeneity within selected clients, determines the utility-based client selection and then
optimizes utility profiling locally. Although these methods can improve the efficiency with proper device selection, the server
still needs to wait until the updated model of the slowest selected device is uploaded to the server.

Asynchronous methods13,27 are proposed to address the straggler issue and improve the utilization of devices. FedBuff28
is an asynchronous federated optimization framework using buffered asynchronous aggregation, where clients conduct local
training and communicate with the server asynchronously. The server aggregates multiple client updates in a secure buffer before
performing a server update. Based on the notion of concurrency, i.e., the number of workers that compute gradients in parallel,
theoretical analysis shows a much faster convergence rate for asynchronous FL29. However, in these existing asynchronousy FL
methods, the devices are passively triggered by the server for model training and some idle devices are not utilized, meanwhile the
advanced data compression for transmission is not incorporated. A semi-asynchronous method SAFA is proposed to improve the
efficiency of FL30, which does not consider the non-IID data within diverse devices. Similarly, a layerwise asynchronous model
update and temporally weighted aggregation are proposed to improve communication efficiency31, which still corresponds to
synchronous communication in terms of the whole model. Asynchronous federated unlearning32 is also studied in the literature,
which divides the clients into clusters (subsets), conducts independent and asynchronous model training for clusters (subsets).
The unlearning cost is limited due to the client partitioning. Federated unlearning is out of the scope of this paper.

In order to address the communication bottleneck with FL, diverse techniques33,34,35,36,37,38,39,40,41,42 can be exploited, e.g.,
sparsification, quantization, and pruning. Model sparsification transfer has been widely exploited in distributed machine learn-
ing43,15,44,14,45. A typical sparsification method is the Top-K sparsification14, where the K largest values in the tensor are selected
and retained, and the rest of the values are set to zero so that the sparse tensor will be easier to compress and transmit in practi-
cal application scenarios. Model quantization is also utilized in distributed machine learning as well as FL. Quantization is the
process of compressing the representation of values with a smaller number of bits to reduce the size of the values15. The reset
transmission error method is proposed to remend the global model by adjusting the errors brought by the quantization or spar-
sification44. However, this method incurs extra synchronizations and leads to significant communication overhead. In addition,
model pruning techniques46,47,48 can be exploited to reduce the huge overhead of computation and communication during the
whole training process. In FedCG49, the server selects a representative client subset for local training considering statistical het-
erogeneity and then these selected clients upload compressed model updates matching their capabilities for aggregation, which
alleviates the communication load and mitigates the straggler effect. FedLamp50 adaptively determines diverse and appropriate
local updating frequencies and model compression ratios in the resource-constrained edge computing systems, so as to reduce
the waiting time and enhance the training efficiency. However, these above approaches cannot choose the appropriate parame-
ters for the data compression of both sparsification and quantization with accuracy degradation constraints, which may lead to
unexpected accuracy degradation.

In this paper, we propose a new time-efficient approach to efficiently exploit devices to train a global model in FL while
addressing the problem brought by non-IID data. In addition, we exploit sparsification and quantization with proper data
compression parameters to improve communication efficiency while satisfying the accuracy degradation constraints.
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TABLE 1 Summary of Main Notations

Notation Definition
𝑁 ; 𝑘 The number of devices; the index of devices
𝑘; 𝑛𝑘 Local dataset on device 𝑘; size of samples
𝑤𝑔; 𝑆𝑤𝑔 The global weight; size of the global weight
𝑤𝑙; 𝑆𝑤𝑙 The local weight; size of the local weight
𝑝𝑠; 𝑝𝑞 Sparsification parameter; quantization parameter
𝑟𝑑𝑘 The maximum transmission rate of downloading global models for device 𝑘
𝑟𝑢𝑘 The maximum transmission rate of uploading local models for device 𝑘

𝑆𝑤𝑔 ,𝑝𝑠,𝑝𝑞 The size of compressed global model weights
𝑆𝑤𝑙 ,𝑝𝑠,𝑝𝑞 The size of compressed local model weights
𝐿𝑑𝑜𝑤𝑛

𝑘,𝑡 The latency of downloading global model weights
𝐿𝑢𝑝

𝑘,𝑡 The latency of uploading global model weights
𝐿𝑐𝑝

𝑘,𝑡 The latency of model computation
𝐿𝑟𝑜𝑢𝑛𝑑

𝑘,𝑡 The total time of round 𝑡 for device 𝑘
𝐿𝑇 The total time for 𝑇 rounds of asynchronous FL
𝑆𝑒𝑡𝑝 The set of candidate parameter 𝑝𝑠
𝑆𝑒𝑡𝑞 The set of an available number of bits in the quantization process 𝑝𝑞

3 PROBLEM FORMULATION

In this section, we formulate the problem to address in this paper. We first present the overview of an FL system. Then, we
present the latency model. Finally, we present the problem statement. The summary of the main notations is shown in Table 1.

We consider an FL system consisting of a server module (server) and N devices. We consider idle time as the time slot when
a device has no task to execute. Once receiving an updated model from a device, the server aggregates the global model with the
updated model. 𝑛𝑘 samples are stored on the 𝑘-th device where 𝑘 ∈ {1, ..., 𝑁}. The total number of samples can be calculated
as 𝑛 =

∑𝑁
𝑘=1 𝑛𝑘. The training objective is to update the global model with the weight parameters 𝑤 utilizing the local data of all

edge devices, which is formulated as follows:

min
𝑤∈ℝ𝑑

𝑓 (𝑤) =
𝑁
∑

𝑘=1

𝑛𝑘
𝑛
E𝑥𝑘∼𝑘

[𝑓𝑘(𝑤; 𝑥𝑘)] (1)
where 𝑥𝑘 is sampled from the local dataset 𝑘 on device 𝑘, and 𝑛𝑘 = |𝑘|. 𝑓𝑘(𝑤; 𝑥𝑘) = 𝑙(𝑤; 𝑥𝑘) is the loss calculated on device
𝑘 with the sample 𝑥𝑘 and the parameters 𝑤. We assume that the data distributions on devices are not Identically Independently
Distributed, i.e., non-IID.

3.1 Latency Model
In this section, we present the model to calculate the latency for the training process, including communication latency,
computation latency, and round latency.

3.1.1 Communication Latency
When the server and devices communicate with each other, either the server sends the global model to the devices or the devices
upload updated local models to the server. We denote the global model weight as 𝑤𝑔 , which consists of values in float32 without
quantization, and we denote the size of 𝑤𝑔 as 𝑆𝑤𝑔 in bits. Similarly, the size of local model weight 𝑤𝑙 is denoted as 𝑆𝑤𝑙 in
bits. When exploiting sparsification and quantization with the corresponding parameters of 𝑝𝑠 and 𝑝𝑞 , respectively, the size of
local model weight becomes 𝑆𝑤𝑙 ,𝑝𝑠,𝑝𝑞 . 𝑝𝑠 represents the ratio of the non-zero values kept in the model within the sparsification
process and 𝑝𝑞 corresponds to the number of bits, e.g., float32 or int8, to represent each value within the quantization process.
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The maximum transmission rate of the 𝑘-th device (bits/s), where 𝑘 ∈ {1, ..., 𝑁}, for the server to send global models is defined
as 𝑟𝑑𝑘 . Similarly, the maximum transmission rate of devices uploading local models (bits/s) is defined as 𝑟𝑢𝑘,∀𝑘 ∈ {1, ..., 𝑁}. We
assume that 𝑟𝑢𝑘 and 𝑟𝑑𝑘 remain constant during training. Thus, for each device 𝑘 ∈ {1, ..., 𝑁} and each round 𝑡 ∈ {1, ..., 𝑇 }, the
global model download latency is 𝐿𝑑𝑜𝑤𝑛

𝑘,𝑡 =
𝑆𝑤𝑔 ,𝑝𝑠,𝑝𝑞

𝑟𝑑𝑘
, and the local model upload latency is 𝐿𝑢𝑝

𝑘,𝑡 =
𝑆𝑤𝑙 ,𝑝𝑠,𝑝𝑞

𝑟𝑢𝑘
.

3.1.2 Computation Latency
To characterize the randomness of the computation latency of local model update, we exploit the shifted exponential
distribution51:

ℙ[𝐿𝑐𝑝
𝑘,𝑡 < 𝑙] =

{

1 − 𝑒−
𝜙𝑘
𝜏𝑏
(𝑙−𝑎𝑘𝜏𝑏), 𝑙 ≥ 𝑎𝑘𝜏𝑏,

0, otherwise,
(2)

where 𝑎𝑘 > 0 represents the maximum of computation capabilities, and 𝜙𝑘 > 0 represents the fluctuation of computation
capabilities. We assume that 𝑎𝑘 and 𝜙𝑘 remain constant during training. The computational delay of device 𝑘 in round 𝑡 is
denoted as 𝐿𝑐𝑝

𝑘,𝑡. The latency of model computation (i.e., 𝐿𝑐𝑝
𝑘,𝑡) can also be affected by the time to compress the local model and

the time to decompress the global model, but since these two components of latency are usually much smaller than the time to
update the model, they are ignored in this paper.

3.1.3 Round Latency
For a certain round 𝑡, and a certain device 𝑘, the total time of a round, i.e., the time period between the downloading of the
global model to the uploading of the trained local model, is defined as:

𝐿𝑟𝑜𝑢𝑛𝑑
𝑘,𝑡 = 𝐿𝑑𝑜𝑤𝑛

𝑘,𝑡 + 𝐿𝑐𝑝
𝑘,𝑡 + 𝐿𝑢𝑝

𝑘,𝑡, (3)
when device 𝑘 uploads its updated local mode to the server in round 𝑡.

We define the total time for 𝑇 rounds of asynchronous FL as 𝐿𝑇 . However, due to the asynchronous nature among multiple
rounds, we cannot simply sum them up to obtain the total time consumed by the 𝑇 -round asynchronous FL. In addition, because
of asynchronicity, we cannot intuitively describe the relationship between 𝐿𝑇 and 𝐿𝑟𝑜𝑢𝑛𝑑

𝑘,𝑡 ,∀𝑡 ∈ {1, ...𝑇 } in numerical terms. 𝐿𝑇
depends on 𝐿𝑟𝑜𝑢𝑛𝑑

𝑘,𝑡 ,∀𝑡 ∈ {1, ...𝑇 }, and a smaller 𝐿𝑑𝑜𝑤𝑛
𝑘,𝑡 , 𝐿𝑐𝑝

𝑘,𝑡, or 𝐿𝑢𝑝
𝑘,𝑡 can reduce 𝐿𝑇 in the asynchronous FL system. Then, we

describe the relationship by a function 𝑔(⋅):
𝐿𝑇 = 𝑔(𝐿𝑟𝑜𝑢𝑛𝑑

𝑘1,1
, 𝐿𝑟𝑜𝑢𝑛𝑑

𝑘2,2
, ..., 𝐿𝑟𝑜𝑢𝑛𝑑

𝑘𝑇 ,𝑇
), (4)

where 𝑘𝑡 ∈ {1, 2, ..., 𝑁} represents the device for round 𝑡, i.e., each round is indicated by the update of device 𝑘𝑡. 𝑔(⋅) represents
the total time of the whole asynchronous FL process.

3.2 Problem Statement
We formulate the overall optimization objective as follows:

min
𝑤

𝑓 (𝑤) =
∑𝑁

𝑘=1

𝑛𝑘
𝑛
E𝑥𝑘∼𝑘

[𝑓𝑘(𝑤, 𝑝𝑠, 𝑝𝑞; 𝑥𝑘)]

𝑠.𝑡. 𝑔(𝑝𝑠, 𝑝𝑞;𝐿𝑟𝑜𝑢𝑛𝑑
𝑘1,1

, 𝐿𝑟𝑜𝑢𝑛𝑑
𝑘2,2

, ..., 𝐿𝑟𝑜𝑢𝑛𝑑
𝑘𝑇 ,𝑇

) ≤ 𝐿,

𝑘 ∈ {1, ...𝑁},
𝑡 ∈ {1, ...𝑇 },
𝑝𝑠 ∈ 𝑆𝑒𝑡𝑝,
𝑝𝑞 ∈ 𝑆𝑒𝑡𝑞 ,
𝑤 ∈ ℝ𝑑

where 𝑥𝑘, 𝑛𝑘 = |𝑘|, 𝑓𝑘(⋅) are the same as those in Formula (1). 𝐿 is the total time budget and 𝑔(⋅) is the estimated training time.
𝑝𝑠 is the parameter for sparsification and 𝑝𝑞 is the parameter for quantization. 𝑆𝑒𝑡𝑝 represents the set of candidate parameters 𝑝𝑠,
𝑆𝑒𝑡𝑞 represents the set of an available number of bits in the quantization process.
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FIGURE 1 The overview of TEASQ-Fed protocol.

4 TEASQ-FED PROTOCOL

We propose a new asynchronous FL approach, i.e., TEASQ-Fed, to collaboratively train a model. TEASQ-Fed consists of four
parts. First, we asynchronously exploit the edge devices in the training process of FL. Second, we utilize a regularization method
to address the problem of non-IID data and the impact of staleness. Third, we generate appropriate compression parameters
while exploiting sparsification and quantization. In this section, we present the details of TEASQ-Fed, including the protocol
overview, task management, model aggregation, sparsification, and quantization.

4.1 Asynchronous Protocol Overview
Diverse devices are exploited based on their private local data in the training process of FL, while the data distribution is generally
heterogeneous, i.e., non-IID. Moreover, in the synchronous training method (e.g., FedAvg7), the selected devices may be busy or
crash while performing training tasks, which may prolong the training process. On the contrary, in our proposed asynchronous
protocol edge devices initiate training task requests proactively when they are idle, which can alleviate the device unavailability
issue during training. Besides, we propose a cache mechanism and a weighted averaging method with regularization for the
server to increase the convergence speed of the model training.

The overview of TEASQ-Fed protocol is shown in Figure 1. At the beginning, the server initializes a global model randomly.
The idle edge device sends a request to the server to obtain a training task (Step 1⃝ in Figure 1). After receiving the task request
from the device, the server checks whether the number of devices currently participating in the latest model training is less
than a limit. If the limit is not reached, the latest global model is delivered to the device and change the record of the number
of devices participating in training the latest global model, otherwise it is not delivered (Step 2⃝). The idle devices receiving
the global model update the global model asynchronously using their local data and upload the updated model parameters to
the server (Step 3⃝). The server puts the updated model and time stamp received from devices into the cache, and change the
record of the number of these devices participating in training in the same stamp (Step 4⃝). The server uses weighted averaging
according to staleness to update the global model after it receives updates from a certain number of devices, and then enters the
next round of global training (Step 5⃝). All steps 1⃝ - 5⃝ are iterated until the global model achieves the desired performance.

The detailed design of TEASQ-Fed protocol is explained in the following subsections. In Subsection 4.2 and 4.3, we describe
the training task request and local model update (Algorithm 1). Idle devices request training tasks from the server proactively.
When the number of parallel devices participating in the training process is significant, the final convergence may degrade due to
the diverse version of the original model. Thus, we set a limit on the number of parallel training devices when distributing training
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Algorithm 1 Training task request and local model training.
Input:
𝑁 : the quantity of edge devices
𝑇 : the quantity of rounds
𝐸: the quantity of local updates per round
𝐵: minibatch size of local updates
𝜂: learning rate
𝜇: the weight of regularization
𝑃 : the quantity of edge devices taking part in training during the 𝑡-th training round
𝐶 ∈ (0, 1): the proportion of edge devices

Server process: // on the server
Initialize 𝑤0, 𝑡 ← 0, 𝑃 ← 0
Distributor:

1: Receive request from the inactive edge device
2: if 𝑃 ≤ [𝑁 ⋅ 𝐶] then //𝑃 represents the number of selected devices
3: Compress the latest model 𝑤𝑡

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 = (𝑤𝑡, 𝑝𝑠, 𝑝𝑞)
4: Transfer the latest compressed model 𝑤𝑡

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 to the requested device
5: Update 𝑃 ← 𝑃 + 1
6: end if

Device process: // on inactive device 𝑘
1: if device 𝑘 ∈ [𝑁] is idle then
2: Send training task request to the server
3: if receive

(

𝑤𝑡
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠, 𝑡

)

from the server then
4: Decompress 𝑤𝑡 = −1(𝑤𝑡

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠)
5: 𝜒𝑘 ← (split 𝑘 into batches of size 𝐵)
6: 𝑤ℎ𝑘

𝑘 ← 𝑤𝑡

7: for each local epoch 𝑖 from 1 to 𝐸 do
8: for batch 𝑥𝑘 ∈ 𝜒𝑘 do
9: 𝑤ℎ

𝑘 = 𝑤ℎ
𝑘 − 𝜂

(

∇𝑓𝑘(𝑤ℎ
𝑘; 𝑥𝑘) + 𝜇(𝑤ℎ

𝑘 −𝑤𝑡)
)

10: end for
11: end for
12: Compress the updated local model 𝑤ℎ

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠,𝑘 = (𝑤ℎ
𝑘, 𝑝𝑠, 𝑝𝑞)

13: Transfer the updated local model and time stamp (𝑤ℎ
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠,𝑘, ℎ) to the server

14: end if
15: end if

tasks. In Subsection 4.4, we describe the global model update on the server (Algorithm 2). We adopt a caching mechanism with a
weighted average mechanism for model aggregation to further improve the accuracy. In Subsection 4.5, we describe the dynamic
weight compression method with sparsification and quantization as well as compression parameter selection (Algorithm 3, 4
and 5).

4.2 Task Management
With existing FL systems7,25, the devices are generally randomly selected by the server in each round. Insufficient battery power,
unstable network conditions, and device crashes may affect the training of some devices, making them unreliable. Moreover,
after completing the training task, the selected device may remain idle. The device will not be selected again until the next round
of training. Furthermore, idle devices other than the selected one are not fully utilized. As a strategy for improving the utilization
of devices, we exploit asynchronous communication to enable idle devices to actively participate in training tasks. Thus, if the
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Algorithm 2 Model aggregation.
Input:
𝑁 : the quantity of edge devices
𝑇 : the quantity of rounds
𝛾 ∈ (0, 1): cache fraction
𝛼 ∈ (0, 1]: the hyper-parameter for aggregation

Server process: // performing on the server
Receiver:

1: Get an update 𝑤ℎ𝑐
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠,𝑘𝑐

and the time stamp ℎ𝑐 from any inactive device
2: Push

(

𝑤ℎ𝑐
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠,𝑘𝑐

)

into the cache queue 𝑄
3: Update 𝑃 ← 𝑃 − 1

Updater:
1: for round 𝑡 = 0, 1, ..., 𝑇 − 1 do
2: for 𝑐 = 1 to [𝑁 ⋅ 𝛾] do
3: Pop

(

𝑤ℎ𝑐
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠,𝑘𝑐

)

from the cache queue 𝑄

4: Decompress 𝑤ℎ𝑐
𝑘𝑐

= −1(𝑤ℎ𝑐
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠,𝑘𝑐

)
5: end for
6: Calculate the aggregated model weight according to Formula (7) and (8)
7: Calculate the global model 𝑤𝑡+1 according to Formula (9) and (10)
8: end for

device is assigned a training task, it sends a task request to the server once it becomes idle, and the server sends the latest model
to it.

As large amounts of device participation within the FL training process may incur slow convergence, The hyper-parameter 𝐶
controls how many devices participate in the parallel training from the same global model. By implementing the 𝐶-fraction, the
model22 can be guaranteed to have a speedy convergence and prevent server overload due to excessive participants. Algorithm 1
indicates that when a task request comes from a device that is idle, the server determines whether to immediately serve the latest
model (Line 2). Devices taking part in the latest model training will receive the latest model only if the number is less than
[𝑁 ⋅ 𝐶]; otherwise, it will not. A model received from the server will then be updated by the idle device with local data once it
receives a model from the server. The TEASQ-Fed suffers from a slow convergence speed, if 𝐶 is set too small. A large 𝐶 will
increase the risk of congestion and also slow down the convergence speed. It is true that the idle devices may introduce biases;
however, we believe that these biases are negligible since our approach provides a much higher degree of accuracy than FedAvg
(see details in Section 5.2).

As shown in Algorightm 3, (𝑤, 𝑝𝑠, 𝑝𝑞) compresses all the tensors in model 𝑤 to get compressed model weights 𝑤𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 ,
i.e.,𝑤𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 = (𝑤, 𝑝𝑠, 𝑝𝑞). The sparsification14 operation is explained in Lines 2-3. The quantization52 operation is explained
in Line 4. We remove these zero elements in Line 5.

4.3 Local Update
Since diverse devices store data in non-IID manners12, the local updates of some devices may slow down the global model
convergence speed. We exploit a penalty term based on12,13 to reduce adverse impacts of the non-IID data. The loss function in
an idle device 𝑘 contains a regularization term with the global model 𝑤 received from the server as defined:

min
𝑤∈ℝ𝑑

E𝑥𝑘∼𝑘
[𝑓𝑘(𝑤; 𝑥𝑘)] +

𝜇
2
∥ 𝑤 −𝑤𝑡 ∥2 (5)

Regularization weights are parameterized as 𝜇. Using the penalty term can reduce data heterogeneity and make the model more
stable.
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Algorithm 3 Compress the model weight tensor.
Input: 𝑝𝑠, 𝑝𝑞 , Uncompressed model weight 𝑤
Output: Compressed model weight 𝑤𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑

1: for 𝑡𝑒𝑛𝑠𝑜𝑟 ∈ 𝑤 do
2: 𝑣𝑎𝑙𝑢𝑒𝑠 ← Top 𝑝𝑠% elements of 𝑡𝑒𝑛𝑠𝑜𝑟
3: Elements of 𝑡𝑒𝑛𝑠𝑜𝑟 not in 𝑣𝑎𝑙𝑢𝑒𝑠 are set to 0
4: Quantize 𝑡𝑒𝑛𝑠𝑜𝑟 to 𝑝𝑞 bits
5: 𝑣𝑎𝑙𝑢𝑒𝑠, 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ← non-zero elements in 𝑡𝑒𝑛𝑠𝑜𝑟
6: 𝑡𝑒𝑛𝑠𝑜𝑟 ← 𝑐𝑜𝑛𝑐𝑎𝑡(𝑣𝑎𝑙𝑢𝑒𝑠, 𝑖𝑛𝑑𝑖𝑐𝑒𝑠)
7: end for
8: Combine 𝑡𝑒𝑛𝑠𝑜𝑟 to 𝑤𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 and return

Algorithm 4 Decompress the model weight tensor.
Input: Compressed model weight 𝑤𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑
Output: Decompressed model weight 𝑤𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑

1: for 𝑡𝑒𝑛𝑠𝑜𝑟𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 ∈ 𝑤𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 do
2: 𝑣𝑎𝑙𝑢𝑒𝑠, 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 = 𝑡𝑒𝑛𝑠𝑜𝑟𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑
3: Restore 𝑡𝑒𝑛𝑠𝑜𝑟 with 𝑣𝑎𝑙𝑢𝑒𝑠 and 𝑖𝑛𝑑𝑖𝑐𝑒𝑠
4: Cast 𝑡𝑒𝑛𝑠𝑜𝑟 to 32-bits (float32)
5: end for
6: Combine 𝑡𝑒𝑛𝑠𝑜𝑟 to 𝑤𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 and return

4.4 Model Aggregation
The server and idle devices are updated asynchronously during model training, as shown in Algorithm 2. The server puts the
received updates into the cache and utilizes them for aggregation later. With the help of the hyper-parameter 𝛾 , we limit the
size of the cache or the total number of uploaded updates in the cache. We first execute elastic averaging between the most
recent local averaging update and the current global model, which not only utilizes the knowledge of new updates but also does
weighted averaging on the cached updates. The global model can converge quickly and smoothly in this way.

4.4.1 Update Caching Mechanism
In the existing asynchronous methods13, the server immediately updates the global model upon receiving a local update from
any device and then moves on to the subsequent training phase. Although this mechanism results in a significant throughput, a
single poor local update could lead to a divergence in the global model. We exploit a caching mechanism to reduce the negative
effects of model staleness and increase the stableness of the global model. We set the cache capacity to the size of 𝐾 = [𝑁 ⋅ 𝛾]
local updates, where 𝛾 ∈ (0, 1). We denote the cached updates as  =

{(

𝑘𝑐 , 𝑤
ℎ𝑐
𝑘𝑐

)}

𝑐∈[0,𝐾]
, where 𝑤ℎ𝑐

𝑘𝑐
is the 𝑐-th update in the

cache from device 𝑘𝑐 with time stamp of global model ℎ𝑐 . After receiving 𝐾 local updates, the server changes the global model
through weighted averaging depending on the staleness of each update. In the paper, we set the value of 𝛾 to 0.1.

4.4.2 Staleness-Based Weighted Averaging
The staleness of local updates in the cache may differ as the models in devices and the server are updated asynchronously. We
denote the latest global model in round 𝑡 on server as 𝑤𝑡. Then the staleness of the 𝑐-th update in the cache 𝑤ℎ𝑐

𝑘𝑐
is 𝑡 − ℎ𝑐 . We

define a function 𝑆(⋅) with respect to the staleness as follows:
𝑆
(

𝑡 − ℎ𝑐
)

=
(

𝑡 − ℎ𝑐 + 1
)−𝑎 , 𝑎 > 0, (6)
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Algorithm 5 Dynamic data compression.
Input:
𝑤: pre-trained model weight
𝜃: the predefined threshold
𝑆𝑒𝑡𝑠: the set of sparsification parameters
𝑆𝑒𝑡𝑞: the set of quantization parameters
𝑇 : the maximum number of rounds

Output:
𝑝𝑠,𝑡 and 𝑝𝑞,𝑡 ∀𝑡 ∈ {1, 2, ..., 𝑇 }

1: 𝑎𝑐𝑐 ← 𝑡𝑒𝑠𝑡(𝑤)
2: 𝑝𝑠 ← 𝑝′𝑠 ∈ 𝑆𝑒𝑡𝑠 with the smallest compression rate
3: 𝑝𝑞 ← 0 ⊳ No quantization
4: while 𝑡𝑒𝑠𝑡(−1((𝑤, 𝑝𝑠, 𝑝𝑞))) ≥ 𝑎𝑐𝑐 - 𝜃 and the compression rate can be reduced do
5: while 𝑡𝑒𝑠𝑡(−1((𝑤, 𝑝𝑠))) ≥ 𝑎𝑐𝑐 - 𝜃 do
6: 𝑝𝑠 ← 𝑝′𝑠 ∈ 𝑆𝑒𝑡𝑠 with a bigger compression rate
7: end while
8: 𝑝𝑞 ← 𝑝′𝑞 ∈ 𝑆𝑒𝑡𝑞 with a bigger compression rate
9: while 𝑡𝑒𝑠𝑡(−1((𝑤, 𝑝𝑠, 𝑝𝑞))) ≤ 𝑎𝑐𝑐 - 𝜃 do

10: 𝑝𝑠 ← 𝑝′𝑠 ∈ 𝑆𝑒𝑡𝑠 with a smaller compression rate
11: end while
12: end while
13: 𝑝𝑠,0 ← the element in 𝑆𝑒𝑡𝑠 corresponding to a bigger compression rate than that of 𝑝𝑠
14: 𝑝𝑞,0 ← the element in 𝑆𝑒𝑡𝑞 corresponding to a bigger compression rate than that of 𝑝𝑞
15: for 𝑡 ∈ [𝑇 ] do
16: 𝑝𝑠,𝑡 ← 𝑝𝑠,0 decay ⌊

𝑡
𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒⌋ steps

17: 𝑝𝑞,𝑡 ← 𝑝𝑞,0 decay ⌊

𝑡
𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒⌋ steps

18: end for
19: Return 𝑝𝑠,𝑡 and 𝑝𝑞,𝑡 ∀𝑡 ∈ [𝑇 ]

where 𝑎 is a hyper-parameter. After the server caches 𝐾 = [𝑁 ⋅ 𝛾] updates, the average update 𝑢 can be calculated as follows:

𝑢 =

∑𝐾
𝑐=1 𝑆

(

𝑡 − ℎ𝑐
) 𝑛𝑘𝑐

𝑛
𝑤ℎ𝑐

𝑘𝑐
∑𝐾

𝑐=1 𝑆
(

𝑡 − ℎ𝑐
) 𝑛𝑘𝑐

𝑛

=

∑𝐾
𝑐=1 𝑆

(

𝑡 − ℎ𝑐
)

𝑛𝑐𝑤
ℎ𝑐
𝑘𝑐

∑𝐾
𝑐=1 𝑆

(

𝑡 − ℎ𝑐
)

𝑛𝑘𝑐
, (7)

We use 𝛿 to represent the average staleness of all local weights in the cache,
𝛿 = 1

𝐾
∑𝐾

𝑐=1
(𝑡 − ℎ𝑐). (8)

With Formulas (6) and (7), the value of mixing weight 𝛼𝑡 in the 𝑡-th round is calculate by
𝛼𝑡 = 𝛼 ⋅ 𝑆 (𝛿) , (9)

where 𝛼 ∈ (0, 1] is the mixing hyper-parameter. Finally, the server updates the global model 𝑤𝑡 with weighted averaging to
calculate a new global model 𝑤𝑡+1 according to

𝑤𝑡+1 = 𝛼𝑡𝑢 +
(

1 − 𝛼𝑡)𝑤𝑡. (10)

4.5 Dynamic Weight Compression
In order to improve the communication efficiency within the FL training process, we exploit sparsification15 and quantization52
to compress the model. Sparsification compresses a model taking a subset of the original model parameters to represent the
original model, e.g., Random-K14 and Top-K15. Quantization reduces the number of bits in each element of the model parameters
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FIGURE 2 Impacts of 𝜇 in terms of accuracy vs. training time with non-IID dataset.

from the original 32-bit floating point number to a smaller number of bits, e.g., 8-bit. We can exploit existing sparsification14,15
and quantization52,45 compression mechanisms to compress the model.

In Algorithm 1, (𝑤, 𝑝𝑠, 𝑝𝑞) represents the data compression with two steps, i.e., sparsification with parameter 𝑝𝑠, and quan-
tization with parameter 𝑝𝑞 . The decompression operation (i.e., −1(𝑤)) is the inverse process of the above two steps. The
compression method (𝑤, 𝑝𝑠, 𝑝𝑞) adapts the Top-K method15 and the QSGD method45 as shown in Algorithm 3. The decom-
pression of weights (i.e., −1(𝑤)) is presented in Algorithm 4. First, the values and indices are retrieved from the tensor in Line 2.
Then, the original shape of the tensor is restored in Line 3. Finally, the type of the tensor is converted back to float32 in Line 4.

With inappropriate values of 𝑝𝑠 or 𝑝𝑞 , the accuracy may be significantly reduced and the data communication efficiency
remains low. As shown in Algorithm 5, we propose a heuristic method, i.e., dynamic data compression, to generate proper values
as 𝑝𝑠 and 𝑝𝑞 with a decay mechanism. We propose a greedy method to calculate appropriate values for 𝑝𝑠 and 𝑝𝑞 . In order to
analyze the impact of the values of 𝑝𝑠 and 𝑝𝑞 on the accuracy, we take a trained model 𝑤 to profile the accuracy with diverse
values of 𝑝𝑠 and 𝑝𝑞 . First, in Lines 5-7, we choose the highest compression rate of 𝑝𝑠 without quantization. Then, we take a value
of 𝑝𝑞 that corresponds to a higher compression rate of quantization in Line 8 and decrease the compression rate of 𝑝𝑠 in Lines 5-
7 until the accuracy degradation satisfies a predefined threshold. Afterward, we repeat the aforementioned step of adjustment of
𝑝𝑠 in Lines 4-12. If the compression can be further reduced, we continue. Otherwise, we finish the search process. In addition, in
order to achieve high accuracy with sparsification and quantization, we propose a dynamic method by decaying the compression
ratio during the training process in Lines 13-18. (𝑤, 𝑝𝑠) in Line 5 represents compressing𝑤with only the sparsification method,
and (𝑤, 𝑝𝑠, 𝑝𝑞) in Line 9 represents compressing 𝑤 with both sparsifaication and quantization methods. Lines 13-18 represent
compression parameter decay process. Based on the 𝑝𝑠 and 𝑝𝑞 searched, we start with a relatively low compression rate (i.e., 𝑝𝑠,0
and 𝑝𝑞,0) and increase the compression rate using a constant step size. After determining the compression parameters for each
round, the server and each device will compress and decompress model weights in round 𝑡 using 𝑝𝑠,𝑡 and 𝑝𝑞,𝑡.

5 EXPERIMENTAL EVALUATION

We carry out extensive experimentation to evaluate TEASQ-Fed. To demonstrate the efficacy of TEASQ-Fed, we measure the
convergence with various machine learning tasks and data distributions.

5.1 Experiment Setup
To evaluate the performance of TEASQ-Fed, we carry out extensive experimentation on the Fashion-MNIST dataset53. As
shown in Table 2, this dataset includes 70,000 grayscale photos in total, with 60,000 training images and 10,000 testing images,
of diverse products from 10 categories. We exploit the dataset to conduct picture categorization with a convolutional neural
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TABLE 2 The summary of the Fashion-MNIST dataset.
Image scale 28 × 28
Image type grayscale

# training samples 60,000
# testing samples 10,000

# categories 10
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FIGURE 3 Impacts of 𝐶 in terms of accuracy vs. training time with non-IID and IID dataset.

network (CNN). The CNN consists of two 2 × 2 convolutional layers, a fully connected layer, and a softmax output. We assume
that the resource-constrained edge devices are capable of training this lightweight CNN network.

We uniformly distribute the training data among 100 edge devices. We employ an experimental set-up that is similar to the
existing work23 in order to evaluate the performance of TEASQ-Fed under various data distributions. Each device randomly
selects a predetermined number of photos from each training batch for the IID setting. The training data is sorted into classes
based on categories for non-IID settings. Then, a subset of 2 classes is chosen at random from a total of 10 classes, and each
device randomly samples images from this subset. We set 𝑎 = 0.5 in Formula (6)13 and 𝛾 = 0.1 in each cycle of the TEASQ-Fed
protocol.

We take FedAvg7 and FedASync13 as synchronous and asynchronous FL baselines. In the experiment, the maximum model
staleness is maintained at 4 for FedASync, and 10 devices are randomly chosen for FedAvg in each cycle to carry out the
local update. Additionally, we used the TEAStatic-Fed approach, in which the compression parameters are maintained constant
during the training phase, to confirm the impact of dynamic parameter decay. We refer to TEASQ-Fed without sparsification or
quantization by TEA-Fed in this part.

To verify the improvement of TEASQ-Fed in the wireless network environment relative to the baselines, we simulate a wireless
IoT FL system with a Base Station (BS), i.e., server, and 𝑀 devices distributed in a circular area. The radius of the circular
area is 𝑅 = 600 m or 1000 m. The server is located at the center of the circular area. All devices are uniformly distributed in
the circular area whose locations stay unchanged during the whole training process. The wireless bandwidth is 𝐵 = 20 MHz.
The path loss exponent is 𝛼 = 3.76. The transmission power of the BS, i.e., server, is 𝑃0 = 20 dBm, and the transmit power
of all devices is 𝑃𝑘 = 10 dBm. The power spectrum density of the additive Gaussian noise is 𝑁0 = -114 dBm/MHz. Thus the
maximum achievable transmission rate (bits/s) of BS sending global models can be written as 𝑟𝑑𝑘 = 𝐵 log2(1 +

𝑃0ℎ2
0,𝑘

𝐵𝑁0
) and the

maximum achievable transmission rate (bits/s) of devices uploading local models can be written as 𝑟𝑢𝑘 = 𝐵 log2(1 +
𝑃𝑘ℎ2

𝑘,0

𝐵𝑁0
),

where ℎ𝑖,𝑗 represents the corresponding channel gain and “0” represents the BS51.
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FIGURE 4 Impacts of 𝐶 and time required to reach the target test accuracy with non-IID and IID dataset. In (b), FedAvg fails
to reach the target accuracy.

5.2 Evaluation Results
We carry out tests on a variety of hyper-parameters, such as 𝐶 , 𝛼, and 𝜇, and we examine how these hyper-parameters affect the
convergence of the global model. In the meantime, we evaluate the model precision and convergence rates of several optimization
strategies for various data distributions.

5.2.1 Effects of 𝝁
We demonstrate the impact of various 𝜇 values on TEASQ-Fed without data compression (i.e., TEA-Fed) using non-IID data
in Figure 2. The regularization weight parameter in the local optimization is non-negative, i.e., 𝜇 ≥ 0. The weights of local
updates with the same number of local epochs vary significantly because of the imbalanced data distribution23. By exploiting
a regularization penalty term, the local update limits the local update to be closer to the global model and allows the global
model to converge more rapidly and smoothly12. We provide a finite set of values for 𝜇, which are {0, 0.001, 0.005, 0.01, 0.1}.
The experimental findings demonstrate that the convergence efficiency of the proposed algorithm with heterogeneous data can
be significantly increased when 𝜇 > 0. The corresponding accuracy, stability with non-IID data, and convergence speed of the
global model can all be improved with appropriate 𝜇.

5.2.2 Effects of 𝑪
We demonstrate how TEASQ-Fed without data compression (i.e., TEA-Fed) converges with various 𝐶 values over time under
non-IID and IID data distributions in Figures 3(a) and 3(b). The results show that the model accuracy and convergence speed
of TEA-Fed are not directly proportional to the value of 𝐶 . Although increasing 𝐶 enhances the parallelism, too many devices
are involved in the training process of the same epoch simultaneously, which could result in a significant delay. As a result, the
performance rate is the highest when 𝐶 is 0.1, and TEA-Fed has a higher convergence efficiency than FedAvg and FedAsync.
In addition, as depicted in Figures 4(a) and 4(b), TEA-Fed corresponds to a shorter time to obtain the desired precision. The
training time required for each round is shorter than the baselines because it effectively decreases the waiting time. We show
the convergence of TEA-Fed in terms of training rounds in Figure 5. Evidently, the accuracy of TEA-Fed is significantly higher
than that of baselines, further demonstrating its effectiveness under non-IID and IID data distributions.

5.2.3 Effects of 𝜶
The old global model and the new updated local models are aggregated with the hyper-parameter 𝛼. The influence of the new
update on the updated global model increases with the larger value of 𝛼. Figure 6 illustrates how TEA-Fed varies with various
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FIGURE 5 Impacts of 𝐶 in terms of accuracy vs. training rounds with non-IID and IID dataset.
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FIGURE 6 Impacts of 𝛼 in terms of accuracy vs. training time with non-IID and IID dataset.

TABLE 3 The highest test accuracy within a given time budget using IID data.

Method
Accuracy Time budget 50s 60s 70s 80s 90s 100s 200s 300s

FedAvg (IID) 81.11% 81.29% 81.46% 81.81% 81.98% 82.33% 85.12% 86.34%
TEA-Fed (IID) 80.79% 81.34% 82.16% 82.99% 83.81% 85.23% 87.64% 88.32%

TEAStatic-Fed (IID) 75.79% 77.84% 79.88% 83.45% 84.29% 84.73% 86.82% 86.96%
TEASQ-Fed (IID) 77.37% 80.75% 83.96% 84.65% 84.96% 85.08% 86.47% 87.09%

𝛼. As the influence of 𝛼 between 0.4 and 0.9 on the convergence has little difference, the convergence of TEA-Fed does not
depend on 𝛼. Thus, 𝛼 has limited influence on the convergence of TEA-Fed, which means TEA-Fed is robust to the change of 𝛼.
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FIGURE 7 Impacts of compression in terms of accuracy vs. training time with non-IID and IID dataset.

5.2.4 Effects of Compression
TEASQ-Fed exploits the compression parameters generated from the dynamic decay of 𝑝𝑠 and 𝑝𝑞 as shown in Algorithm 5.
TEAStatic-Fed represents utilizing the parameters generated from Lines 4-12 in Algorithm 5, where 𝑝𝑠 and 𝑝𝑞 are constant
during the training process. In Figure 7(a) and Figure 7(b), we compare the accuracy corresponding to TEAStatic-Fed, TEASQ-
Fed, and FedAvg with IID (Tables 3, 4) and non-IID (Tables 5, 6) data, respectively. We can see that both TEAStatic-Fed and
TEASQ-Fed have a faster convergence speed than FedAvg. TEA-Fed achieves a higher accuracy (up to 16.67% as shown in
Figure 5(a)) than FedAvg and converges faster (up to twice faster as shown in Figure 4(a) when target accuracy at 70%) than
FedAvg. However, compared to TEA-Fed, due to the lossy data compression of data compression, the training of TEAStatic-
Fed and TEASQ-Fed is more efficient at the early stage, while TEAStatic-Fed and TEASQ-Fed cannot converge to the same
accuracy as TEA-Fed. When we can have a tight training time for a modest accuracy requirement, dynamic data compression
(TEASQ-Fed) can achieve a higher accuracy (up to 10.08% compared with TEA-Fed and up to 32.40% compared with FedAvg
as shown in Table 5) within a short training time (100s) or a shorter training time (up to 45.73% compared with TEA-Fed and
twice faster compared with FedAvg as shown in Table 6) with a modest target accuracy (68%). In addition, the required storage
space corresponding to the dynamic data compression with sparsification and quantization is 44.07% (when uploading local
models) smaller than that of FedAvg, as shown in Table 7.

We further conduct ablation experiments on the used compression methods. In addition to the TEA-Fed (i.e., TEASQ-Fed
without data compression), we evaluate the performance of our algorithm with only one single compression method, which is
referred to as TEAS-Fed (i.e., TEA-Fed with sparsification) and TEAQ-Fed (i.e., TEA-Fed with quantization). In Figure 8, we
show the accuracy of TEA-Fed, TEAS-Fed, TEAQ-Fed and TEASQ-Fed during the training progresses. According to the result,
both TEAS-Fed and TEAQ-Fed with a single compression method can achieve faster training than TEA-Fed, and TEASQ-Fed
which combines them can accelerate the training process more significantly. However, the performance of all methods with
compression suffer from some degree of degradation, which is the cost of using compression.

5.2.5 Comparison with SOTAs
We compare our TEASQ-Fed with state-of-the-art baselines: asynchronous methods PORT54 and ASO-Fed55 as well as a
synchronous method MOON56. As shown in Figure 9, TEASQ-Fed outperforms the other baselines in terms of the model
accuracy, while it also has quicker convergence speed than most baselines except for PORT. Therefore, TEASQ-Fed has both
advantages of accuracy and speed.
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FIGURE 8 Ablation experiments of compression methods.

TABLE 4 Time consumed to reach the target accuracy with IID data. “-” represents that the target is not achieved.

Method
Time Target Accuracy 81% 82% 83% 84% 85% 86% 87% 88%

FedAvg (IID) 45.26s 97.16s 134.01s 176.51s 205.15s 262.94s - -
TEA-Fed (IID) 55.73s 70.63s 84.82s 94.98s 102.58 116.37s 154.63s 233.47s

TEAStatic-Fed (IID) 75.63s 77.61s 82.59s 88.26s 104.32s 138.76s - -
TEASQ-Fed (IID) 63.48s 65.17s 67.5s 74.29s 95.3s 147.71s 290.28s -

TABLE 5 The highest test accuracy within a given time budget using non-IID data.

Method
Accuracy Time budget 50s 100s 125s 150s 175s 200s 400s 600s

FedAvg (non-IID) 42.99% 47.84% 49.92% 52.69% 54.77% 58.22% 67.67% 71.66%
TEA-Fed (non-IID) 44.69% 57.54% 62.43% 65.91% 67.95% 70.01% 76.90% 79.52%

TEAStatic-Fed (non-IID) 37.33% 54.44% 60.45% 64.84% 67.03% 68.31% 73.73% 74.07%
TEASQ-Fed (non-IID) 47.94% 63.34% 66.85% 68.61% 70.26% 71.67% 75.04% 77.12%

TABLE 6 Time consumed to reach the target accuracy with non-IID data.

Method
Time Target Accuracy 68% 69% 70% 71% 72% 73% 75% 79%

FedAvg (non-IID) 402.71s 441.44s 483.52s 548.49s - - - -
TEA-Fed (non-IID) 193.47s 203.23s 224.49s 204.86s 220.72s 238.23s 307.11s 507.74s

TEAStatic-Fed (non-IID) 198.93s 208.6s 229.83s 238.23s 263.83s 288.92s - -
TEASQ-Fed (non-IID) 132.76s 150.10s 166.58s 202.43s 206.56s 306.27s 370.56s -
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FIGURE 9 Comparison with asynchronous methods ASO-Fed, PORT and synchronous method MOON.

TABLE 7 The maximum storage space required during training.

Method

Size Type
Global model Local models

FedAvg (IID) 794.66KB 794.66KB
TEA-Fed (IID) 878.41KB 878.41KB

TEAStatic-Fed (IID) 575.70KB 496.53KB
TEASQ-Fed (IID) 529.77KB 498.92KB
FedAvg (non-IID) 794.66KB 794.66KB

TEA-Fed (non-IID) 878.41KB 878.41KB
TEAStatic-Fed (non-IID) 519.78KB 437.09KB
TEASQ-Fed (non-IID) 470.93KB 444.43KB

5.3 Discussion
Extensive experiments with diverse data distributions demonstrate that TEASQ-Fed has excellent performance for FL tasks and
has significantly superior overall convergence than FedAvg and FedAsync. We summarize the improvements of TEASQ-Fed in
the following three aspects:

• Faster convergence during model training. The asynchronous training mechanism makes it possible for more idle devices
to participate in the training process, hastening the convergence of the model. The convergence speed of TEASQ-Fed is
faster than the baseline methods, even if the 𝐶 value is larger.

• Higher convergence accuracy. We assign diverse importance based on the staleness of the updated local models during the
model aggregation process. The rebalance of models improves the convergence rate and improves accuracy by reducing
the impact of the staleness of local updates on the global model.

• Robust with heterogeneous data. TEASQ-Fed can achieve high convergence accuracy with highly heterogeneous data.
With the regular penalty term within the local optimization on unbalanced data, we prevent divergence and increase the
stability of the convergence of the global model. When dealing with non-IID data, the adjustment of the regularization
value 𝜇 can lead to excellent performance in terms of both accuracy and convergence rate.
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6 CONCLUSION

In this paper, we propose TEASQ-Fed, an innovative asynchronous federated technique with sparsification and quantization
that intends to efficiently carry out FL training in edge computing. Through asynchronous training, TEASQ-Fed fully utilizes
the downtime of edge devices, allowing more devices than with conventional methods to participate in the training process. In
the meantime, TEASQ-Fed can significantly reduce the training time for the training process of FL and successfully minimize
synchronization overhead. The extensive experimentation demonstrates that our approach has significant advantages with het-
erogeneous data in terms of accuracy (up to 16.67%) and training time (up to twice faster). The future scope of this work includes:
(1) The investigation of the potential parallel training and transmission of different versions of models to further improve the
efficiency of asynchronous FL; (2) The testbed experiment of the proposed algorithms to justify the performance in the real
world.
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