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SUMMARY

Leveraged by the success of applications aiming at the ‘free’ sharing of data in the Internet, the paradigm of
peer-to-peer (P2P) computing has had substantial consideration devoted to it recently. This paper presents
a high-level abstraction for remote object interaction in a P2P environment, called borrow/lend (BL).
We present the principles underlying our BL abstraction, and illustrate how this abstraction can be used to
program P2P applications in Java. We contrast our abstraction with established abstractions for distributed
programming such as the remote method invocation or the tuple space, illustrating how the BL abstraction,
obviously influenced by such previous abstractions, unifies flavors of these, but also how it captures the
constraints specific to P2P environments. Copyright c© 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Through the overnight success stories of many non-profit programs enabling the collaboration of users
in the goal of distributing data throughout the Internet (e.g. Gnutella [1], Freenet [2]), the paradigm
of peer-to-peer (P2P) [3] computing has become extremely popular. Under the name of P2P, most
authors in the field agree upon a completely decentralized distributed setting in which basically any of
the potentially many hosts has resources to share with others.

When this data ‘freely’ shared among hosts is commercial multimedia, such as music in MP3 format,
the moral promoted by some of the above-mentioned programs is rather dubious, and has become the
source of much polemics. Nevertheless, the practical value of the P2P paradigm in a broader sense
is unquestionable. This observation has led to many important efforts in the field, and is emphasized
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by the very fact that the striving for decentralized applications, with the avoidance of bottlenecks and
single points of failure in mind, has been a major concern in the distributed and dependable systems
community for a long time.

Ever since, P2P computing has been the subject of more profound studies, also benefitting from
previous research in the above-mentioned community. For instance, many previous application-level
protocols for data routing or membership management, especially those with a focus on scalability,
have been adapted to P2P environments. However, the P2P paradigm has some characteristics of its
own, leading to new challenges. The addressing of these challenges by the research community has also
led to novel protocols (e.g. [4–6]), which capture precisely the characteristics of P2P environments.

Similarly to the underlying protocols, abstractions established in distributed object programming,
such as the remote method invocation (RMI, typical for client/server interaction [7]), the tuple space [8]
(emerged from parallel computing based on distributed shared memory) or the publish/subscribe [9]
(for mass dissemination of events) abstractions, also indeed make sense in P2P settings, and have
already been used successfully in those contexts. In particular, the publish/subscribe abstraction
captures many characteristics of P2P environments, and has been widely employed to model and
implement remote interaction in P2P settings (e.g. [10]).

In this paper we present a high-level abstraction called borrow/lend (BL) we have implemented in
the Distributed Asynchronous Computing Environment (DACE) [11] together with protocols [12,13]
specifically for P2P object programming. Our BL abstraction has been initially implemented in Java,
while more recently efforts have also been invested in the implementation of a prototype for Microsoft’s
.NET platform [14]. In this paper, we present the concepts of the BL abstraction in Java, since generic-
ity‡ is currently in a more advanced state in Java [15] than comparable efforts in the .NET platform [16].
As we illustrate in this paper through the BL abstraction, the combination of genericity with reflection
is very useful for the implementation of abstractions for distributed programming in statically typed
object-oriented programming languages. We present measurements obtained with our .NET prototype
focusing on the overhead of our use of reflection (including features also present in Java).

Emerging from DACE, a general framework for distributed object programming, it is not surprising
that our BL abstraction combines, and unifies, flavors of many other previous abstractions, its
main contributor being a variant of the publish/subscribe abstraction implemented in the DACE
framework [17]. Nevertheless, we believe that our BL abstraction, which can be pictured as
representing a general service for interchanging resource objects (or simply resources), has some
considerable differences to previous abstractions, which we introduce by pointing out the drawbacks
of ‘classic’ abstractions in dynamic P2P settings. In short, BL: (1) makes transmission protocols and
parameters governing qualities of service (QoS) explicit, yet provides high-level guarantees such
as type safety and encapsulation; (2) embraces a form of (asynchronous) RMI, but at the same
time incorporates the functionality of a distributed lookup service; (3) supports application-defined
concurrency policies; and (4) provides fine-grained control of resource sharing (e.g. cancelling or
replacing resources), aiding garbage collection and hence improving scalability. These characteristics
make our BL abstraction an ideal paradigm for P2P programming, without however limiting its
applicability to such contexts.

‡Genericity is foreseen for Java 1.5 [15]. Our implementation relies on the compiler prototype available from Sun.
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The remainder of this paper is structured as follows. Section 2 introduces the distinctive features of
our BL abstraction by discussing ‘classic’ abstractions and specifications for distributed programming,
focusing on P2P computing, and Java. Section 3 illustrates the notions of resource borrowing and
lending. Section 4 characterizes the nature of resources. Section 5 presents advanced features, such as
more sophisticated resource types and concurrency control. In Section 6 we discuss implementation
issues, and present simple prototype measurements. Section 7 concludes this paper.

2. RELATED WORK

In this section, we first present an overview of four prominent abstractions for distributed programming,
namely the message passing, remote method invocation (RMI), tuple space, and publish/subscribe
abstractions. We focus on what we believe to be the core§ abstractions, pointing out which properties
and concepts of these respective abstractions are interesting for P2P settings, and which are less
adequate for such environments. Thereafter, we discuss two prominent specifications for remote
interaction (in Java) often mentioned in the context of P2P computing, namely the Java Message
Service (JMS), and JXTA.

2.1. Message passing

Message passing is probably the abstraction providing the most explicit form of distributed interaction.
Operating system-level concepts for network communication such as sockets are usually reflected up to
‘higher’ levels, as also exemplified by Java (java.net.Socket). The explicit use of these low-level
abstractions is often bypassed by using specific libraries, for instance based on variants of the message
passing interface (MPI).

As a rather general and low-level abstraction, message passing can be used to implement other
abstractions, including our BL abstraction. The fact that message passing is, however, too low-level
for many (P2P) applications is also illustrated by recent trends observed in work around the MPI in
Java, consisting of emphasizing multi-party interaction more than strict pairwise object interaction
(e.g. [22]), and viewing conveyed data as objects (e.g. [23]) rather than as simple bytes.

2.2. RMI

Originally introduced as the remote procedure call (RPC) abstraction for procedural programming
models (e.g. Sun RPC [24], DCE RPC [25]), remote invocations have been quickly applied to
object settings. Most respective approaches promote some form of entities remotely invoked through
proxies [26]. Such an object mimics the remote object, i.e. it offers an interface which derives from that
of the object it represents, and its methods are invoked locally as if the invocations were made on the
original remote object. This approach blends well into a global model of objects interacting through

§Comparing abstractions is in fact not trivial, since the borders between them are not exactly clear. For instance, many
recent tuple space variants (e.g. [18]) provide a publish/subscribe-like call-back scheme (e.g. [18,19]), and publish/subscribe
is sometimes implemented with a variant of the proxy abstraction (e.g. [20,21]) known from asynchronous RMIs.
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method invocations, as remote invocations hide the underlying message passing (although inversely
message passing can very well be built on top of remote invocations [22]).

Early representatives of this model are given by the guardians in Argus [27] (with its follow-up
CLU [28]) or network objects in Modula-3 [29] (followed by Obliq [30]). In the same philosophy,
Java introduces the RMI [31] paradigm. Several variations of the RPC/RMI paradigm have appeared
reducing the strict binding of an invoking object with an invoked object, by adding an asynchronous
flavor (e.g. [32]), or by offering the possibility to atomically invoke several objects (e.g. [33]).

RMIs are not a priori harmful for dynamic settings such as P2P environments. Especially ‘large’,
location-bound resources are best used via RMIs. As we will elucidate shortly, the BL abstraction
actually embraces RMI by offering the possibility of lending asynchronous proxies. What is usually
provided as a separate ‘lookup service’, i.e. a name service (cf. white pages) or a trade service
(cf. yellow pages) with RPC, is even an inherent part of the BL abstraction. In a true P2P environment,
one can namely not presuppose the knowledge of which peer is hosting what resources. This contradicts
models such as that proposed by Java RMI, where objects are registered with their respective local
lookup services (registries), and finding a remote object requires the identity of the host in order to
connect to the corresponding registry. By integrating the lookup service with the BL abstraction, it is
inherently distributed to suit the nature of P2P applications (cf. [5]).

2.3. Tuple space

The tuple space underlying the generative communication style originally advocated by Linda [8]
provides a simple, yet powerful, distributed shared memory abstraction. A tuple space is composed of
a collection of ordered tuples, equally accessible to all hosts of a distributed system.

The principle of tuple spaces has since undergone considerable evolution. There have been a series
of attempts to transform the structured form of tuples into an object form, mainly by moving from the
type equivalence for tuple elements of primitive types in Linda to a more general type conformance of
object types. In contrast to early approaches to integrating the tuple space with objects (e.g. Smalltalk
[34]), which promoted tuples as sets of objects, later approaches, such as [35] (C++), [36] (Objective
Linda) or [18,37,38] (Java), consider tuples as single objects, however often ‘degrading’ their fields to
tuple elements.

The indirect interaction between components obtained with the tuple space abstraction is a first step
towards programming in dynamic distributed settings. However, the (original) tuple space paradigm
has several drawbacks when being used for large-scale peer-based settings. First, the use of a blocking
primitive for obtaining a copy of a tuple (non-exclusive consumption, read()) hampers decoupling
of components. This is nicely illustrated by a recent trend observed in tuple spaces, consisting of
supplementing the original blocking primitives used by consumers with asynchronous notification
of these consumers upon appearance of new matching tuples (e.g. [18,37,38]). Second, the notion
of tuple is very limited. Tuples invariably represent pass-by-value semantics. Furthermore, and as
already mentioned above, virtually all tuple space implementations (including object-oriented ones),
lack encapsulation of tuples by viewing these as sets of public fields and supporting the expression of
consumer interests based on these fields only. Also, concurrency control is provided with respect to an
entire tuple, through a specific primitive (exclusive consumption, in()). This does not match general,
object-oriented and dynamic distributed settings. There, concurrency control involving an object of
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interest depends on the semantics of that resource object (which would be the tuple) and cannot simply
be dealt with outside the object, but will most likely affect the implementation of that object.

As we will illustrate, the BL abstraction offers more flexibility, by generalizing the notion of tuple
to objects, which can be passed with various semantics.

2.4. Publish/subscribe

With the publish/subscribe [9] abstraction underlying anonymous communication, producers publish
data and subscribers subscribe to data. This indirect form of interaction between remote components,
inherited from its ancestor, the tuple space abstraction, is passed along to our BL abstraction. Indeed,
the BL abstraction has been strongly influenced by our own work on type-based publish/subscribe
(TPS) [17], a recent application of publish/subscribe to object settings emphasizing static type safety
and encapsulation. In order to compare things at the same level of abstraction, we discuss here TPS as
representative of publish/subscribe interaction.

TPS, like any publish/subscribe (i.e. multicast) abstraction, focuses on one-to-many interaction by
exchanging objects between components with pass-by-value semantics. Hence, TPS is communication-
centric, and concurrency control has to be built on top. In addition, objects shared with TPS have
to be rather fine-grained, as conveying large objects can quickly lead to network congestion. This is
particularly true, as once a subscriber has expressed interest in a type of objects, any published instance
matching the subscriber’s criteria is immediately sent to that subscriber.

This can become prohibitively expensive in a large-scale (typically, tens of thousands of users)
P2P setting. As we will show, the BL abstraction can be viewed as a variant of the TPS abstraction
generalized in order to remedy the above-mentioned drawbacks. The BL abstraction namely abstracts
from the nature of conveyed objects (TPS focuses on pass-by-value semantics), and separates these
objects from the QoS parameters (in the implementation of TPS with a specific compiler described
in [17], QoS are specified on a per-type base). Furthermore, the BL abstraction supports borrower
activation and deactivation (similarly to subscriptions in publish/subscribe), and symmetrically
provides lender activation and deactivation (while a published object can neither be recalled nor
replaced [39]).

2.5. JMS

As already mentioned, the publish/subscribe abstraction has often been used to model interaction in
P2P environments. In particular Sun’s own Java API for publish/subscribe interaction, the JMS [40],
has received much attention (e.g. Narada Brokering [10]).

The BL abstraction and the JMS API are not fundamentally opposed. We believe that the JMS
could even be extended to achieve BL-like interaction, however without providing the same high-level
guarantees regarding type safety and encapsulation. These are namely distinctive features of the BL
abstraction, which, by emerging from research efforts, builds on ‘recent’ concepts of Java to implement
those features.

2.6. JXTA

Sun also provides a P2P-specific API, called JXTA [41], along with an implementation. JXTA
represents the most popular attempt of rigorously specifying a set of constituents for a P2P service, and
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its coexistence with JMS confirms the existence of a gap between the publish/subscribe abstraction and
the P2P paradigm.

With respect to the BL abstraction, which represents a simplified and higher-level abstraction
exploiting recent features of the Java language to enforce static type safety, JXTA can be viewed as
far more complex and low-level, which, like most P2P specifications/systems, deals primarily with
data as XML structures. In short, the BL abstraction is to the JXTA specification what the RPC/RMI
abstraction is to the MPI specification.

3. BORROWERS AND LENDERS

With the BL abstraction, peers, which are in the following also viewed as remote components¶,
communicate anonymously and indirectly by making objects available to each other.

3.1. Model

An indirect interaction of two peers through such resource objects, or simply resources (see the next
section) can be seen as a contract with distinct roles and actions for the respective peers. (1) A source
peer (playing the role of lender) exports a resource by indicating that it is willing to lend that resource
to other peers, and (2) a peer willing to import such resources (acting as borrower) must express the
desire to borrow that ‘kind’ of resource.

Any participation in an interaction, whether lending or borrowing, is limited in time. Both lenders
and borrowers can hence be activated and deactivated. This is conveyed by corresponding methods
in the Participant interface, an abstract supertype for both borrowers and lenders, in Figure 1.
The constrain() method offers the possibility of expressing constraints on resources, and will
hence be discussed in the next section focusing on resources.

3.2. Lenders

In order to lend a resource, the Lender class is instantiated, by passing it the corresponding resource
and a key. Although this key could easily be put inside the resources themselves (e.g. as a field with
access methods involved in predicates), we have preferred to make it first class for several reasons.
First of all, programmers of distributed applications are used to making use of explicit ‘names’, and
such names can be represented by keys. Second, the resulting string matching can be performed
extremely quickly when matching lent resources with borrowers. A third advantage of explicitly
associating keys with resources lies in the enforcing of access control through these keys, an important
aspect in P2P computing.

To enforce type safety, the Lender class (just like the Borrower class) makes use of genericity
(Section 6.2). An instance of the Lender class has a fixed type value for the R parameter.

¶For presentation simplicity we view one peer as corresponding to exactly one application component. This, however, is not a
necessity.
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public interface Participant<R extends Resource> {
public void activate()

throws ActiveException, RemoteException;
public void deactivate()

throws InactiveException, RemoteException;
public R constrain()

throws InvalidConstraintException;
...

}

public final class Lender<R> implements Participant<R> {
public Lender(R lent, byte[] key) {...}
...

}

public final class Borrower<R> implements Participant<R> {
public Borrower(Inbox<R> in, byte[] key) {...}
...

}

public interface Inbox<R> {
public void deliver(R r);

}

Figure 1. Borrowers and lenders (excerpt).

To ensure that borrowers and lenders are only instantiated with objects which are resources, the type
parameter of the class Participant is bound by Resource (this bound is inherited by subclasses).

Note that lenders are not resources themselves, meaning that they cannot be lent to others.
The identity of a lender depends on the hosting peer and a unique lender identifier for that very peer.

3.3. Borrowers

Through the desire to borrow resources, one expresses interest in particular objects. Borrowers express
which objects they are precisely interested in through the following criteria.

• Type: the type of a resource, in the sense of its static description as a set of public members,
can be used to express what resources are of interest. The criteria for type conformance
can range from explicit type conformance to less strict structural (implicit) conformance
(see Section 4.1.3).

• Predicates: borrowers can also describe predicates expressed in a statically type-safe manner
based on the public members of the type of the resources of interest. The best example in
Java, in which methods have a single return value, and the equals() method is used to
verify value equality of objects, are nested method invocations ending by a call to that method,
e.g. resource.m1().m2().equals(expectedValue).
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• Key: as outlined above, one can explicitly attach a key in the form of an array of bytes to a
resource when lending that resource. This key plays the role of access control mechanism, and a
corresponding argument is hence present on the borrower side as well.

The class Borrower, which is instantiated to express interest in certain resources, is outlined in
Figure 1. Examples of its use are given in the next section.

A resource qualifies for becoming accessible to a borrower if all above-mentioned criteria are
fulfilled, i.e. the resource’s type matches the queried type, the predicate is satisfied by the resource,
and the key specified by the borrower justifies access to the resource.

While the type of resource to borrow is indicated by a type parameter provided upon creation of
an instance of Borrower (just as with the Lender class), the predicate is expressed in a type-safe
manner through a dynamic proxy acting as formal argument, obtained through the constrain()
method. Examples illustrating this follow in the next section.

A matching resource lent to a borrower is passed asynchronously to that borrower. To that end, the
corresponding resource is passed as a parameter upon invocation of the deliver() method on the
call-back object of type Inbox associated with that borrower. Just as in the case of the Borrower
and Lender types, the type parameter of the Inbox type does not have to be explicitly bound to the
Resource type. Through the use of objects implementing Inboxwith instances of type Borrower,
the bound introduced for the type parameter of Participant is inferred.

3.4. Synchronization

A strong synchronization between components with respect to concurrent insertions/extractions of
tuples in a tuple space, such as obtained when considering (1) the real time order of the invocation
of primitives by consumers (strict consistency), or even only (2) the respective local orders (sequential
consistency [42]), cannot be implemented in the presence of peer and transmission failures [43],
in particular when striving for scalability. This observation is backed by a number of fundamental
impossibility results in asynchronous distributed systems (e.g. [44]), which make it impossible to solve
problems such as membership and mutual exclusion in the presence of peer failures, even at a small
scale.

Hence, no ‘inherent’ synchronization is built into the basic BL abstraction. When a previously
unavailable resource is made available (or vice versa) through a corresponding instance of Lender,
there is no direct synchronization with other peers. For instance the execution of activate()
through a lender returns ‘immediately’, and the unavailability of a borrowing peer at that very moment
does not necessarily result in an exception. An exception might however be thrown if the exporting
peer experiences communication problems of a more general nature (indicated through an instance of
a subclass of the Java RMI RemoteException), e.g. when trying to communicate with immediate
neighbor peers.

The lack of specific synchronization primitives in the basic BL abstraction might seem
surprising to users acquainted with the tuple space abstraction and its synchronized in() primitive
(see Section 2.3), which is often used to implement a form of mutual exclusion (prone to node failures
and with limited scalability). However, as we illustrate in Section 5.3, the BL abstraction indeed
supports the implementation of concurrency control. As resources are a generalization of tuples, these
can be used to synchronize components, with even more flexibility than tuples, since these resources
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interface Resource {
void setConformance(int depth) throws NotSupportedException;
void setProtocol(Protocol p) throws NotSupportedException;
void setQoS(QoS qos) throws NotSupportedException;
void setReplacement(boolean transparent) throws NotSupportedException;
...

}

interface ValueResource extends Resource, Serializable {}

interface ReferenceResource extends Resource, Remote {
void setSynchronization(boolean lazy) throws NotSupportedException;

}

interface LazyResource<R extends ValueResource> extends RemoteResource {
void setDownload(boolean automatic) throws NotSupportedException;
R download(Protocol p) throws NotSupportedException;

}

Figure 2. Basic resource types.

involve methods whose implementations are provided by the application. By replicating such resources,
partial failures can be tolerated.

4. RESOURCES: BASIC CONCEPTS

Borrowers and lenders are created with respect to resources, which are instances of application-defined
types. We present an overview of the guidelines for the design of such types, before presenting the
basic resource types and illustrating these through concrete examples.

4.1. Common traits of resource types

Resource types are subtypes of the Resource interface presented in Figure 2, and are further divided
into different kinds of resources (see also the next section).

4.1.1. Abstract versus concrete types

All resource types, including subtypes defined by P2P applications, have in common that they have to
be defined as abstract types, i.e. interfaces. Similarly, return types of methods should be abstract types,
etc. In particular, the examples introduced later on make use of our own ‘primitive object types’, all
defined with corresponding interfaces (e.g. String and StringImpl).
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This restriction is not a consequence of our abstraction, but rather of its implementation in Java.
The dynamic proxies used to ‘access’ resources from remote peers, whether these resources are passed
by value or by reference, are not available for classes. In short, a dynamic proxy class CP for a class C
would be implemented as a subclass of C, making the overriding (in the goal of intercepting) of final
or private methods, and any fields, impossible (see Section 6.1). Interfaces, whose declaration
cannot contain any of the above, but are mainly public methods, are easily supported.

Note that for the same reason Java RMI is also restricted to interfaces. The associated rmic pre-
compiler namely also generates proxies (and skeletons) as classes for the respective interfaces.

Our abstraction hence complies with Java’s specification for pass-by-reference remote object
interaction, i.e. Java RMI. Furthermore, by making remotely invocable resource types implement
the very java.rmi.Remote interface (Figure 2), our abstraction seemlessly integrates with Java
RMI, although not using it underneath. Similarly, our abstraction complies with Java’s specification
for pass-by-value remote interaction (serialization), by making resources passed by value subtype
java.io.Serializable (see Figure 2).

4.1.2. Contract methods

The basic resource types have predefined methods, somewhat reflecting the ‘contracts’ introduced
by the use of such resources. These methods, called contract methods in the following, hence differ
between resource types, and sometimes can be implemented by a resource class, but do not have to be.
Depending on its return type, such a method can have an empty body, or return specific values.

As an example, the basic resource type Resource declares methods giving borrowing peers the
possibility of setting preferences, such as QoS parameters, transmission protocols to be used, or the
policy of replacement of resources (transparent replacement versus re-delivering, see Section 5.5).
These methods are used when expressing borrower criteria through the constrain() method of an
instance of Borrower, and have been put into the resource types rather than into the Borrower
type itself since every resource type potentially defines its own methods. Note, however, that, although
one would expect many of these parameters to be expressed on a per-type base, they are set through
instance methods. This is a consequence of the fact that static methods cannot be declared in Java
interfaces and cannot be intercepted with dynamic proxies.

4.1.3. Type conformance

A contract method of primary importance is the setConformance()method. Through this method,
the conformance strictness between the types of resources queried by a peer and the effectively
corresponding, and hence assigned, resources can be set.

In fact, in our context of resource lending, we are mostly concerned with the static type safety
of individual components. The goal is to be able to add/remove new components at runtime,
each of these components being able of incarnating multiple resource importers (borrowers) and/or
exporters (lenders), and to provide developers with static type safety with respect to the resources
lent and borrowed by individual components as a tool to safely devise those components. Providing
a form of global or distributed static typing would require an a priori agreement on types, i.e. an
explicit global type hierarchy, offering only little flexibility. The BL abstraction aims at providing
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support for static type safety of individual components, yet avoids an explicit global type hierarchy.
To that end, it promotes a novel, flexible, notion of conformance ‘levels’ for the type conformance
between these components, which in our .NET prototype is paired with language interoperability [45].
This is achieved through the setConformance() contract method. When invoked by a component
describing a borrower, that component provides an integer value representing the minimum depth of
conformance expected. A depth of 0 represents explicit type conformance, meaning that a resource
which is an instance of a class C is only accessible through a borrower parameterized by an interface I
if C explicitly (in the sense of Java; directly or recursively) implements I.

What could be called structural type conformance is further divided. With a depth of 1, class C
above would not have to implement I, but would only have to provide a method for each method of I,
with a corresponding signature. A depth of 2 would further relax restrictions on the parameter types of
methods in C, such that those parameter types would themselves only have to implicitly conform, i.e.
with a depth of 1, to those of the respective methods in I, etc.

4.1.4. Exceptions

When defining methods for custom resource types, application developers are encouraged to follow
the Java RMI ‘philosophy’ for exceptions, consisting of reflecting possible failures occasioned by the
distributed nature of interaction through the RemoteException type (which we borrow from Java
RMI) in corresponding method signatures.

Java’s strong support for exceptions in fact allows two ways of dealing with such distribution-related
issues, namely explicitly, such as explained above for RMI, or by ‘hiding’ resulting exceptions: the
possible throwing of exceptions of the type java.lang.RuntimeException (or any subtypes)
does not have to be reflected by a method’s signature, and hence the invocation of such a method
does not require an enclosing try...catch statement. This approach has been chosen by many
authors of libraries for distributed programming in Java, including the authors of the Java mapping for
CORBA [46], who used such exceptions to improve transparency.

We provide the programmer with the choice between the two ways of handling exceptions.
A failure occurring upon invocation of a resource method declaring the possible throwing of a
RemoteException is signalled as an instance of that type, otherwise as a RuntimeException.
The examples given in the following illustrate the use of both kinds of exceptions.

Note that when forcing resources to make use of RemoteException, which would definitely be a
better practice, violations could only be detected at runtime, since, unlike Java RMI, the BL abstraction
is not implemented with a pre-compiler.

4.2. Value resources

ValueResources in Figure 2 represent generally fine-grained, statefull objects, which, as their name
suggests, are passed by value to components with corresponding borrowers.

A simple example for such resources is information concerning upcoming talks (presentations or
also meetings), shared between researchers working in an industrial research laboratory or a university.
In both contexts, researchers can be invited and asked to give talks. A typical type in Java whose
instances would be used to incarnate the talk advertisement could look as follows:
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interface VTalk extends ValueResource {
String getTitle();
String getSpeaker();
String[] getAbstract();
Long getStartTime();
Long getExpectedDuration();
void prettyPrint(OutputStream os);

}

While the first five methods give access to various attributes of talk advertisements, the
prettyPrint()method offers the possibility of printing the entire talk advertisement in a formatted
style. OutputStream refers to the class defined in java.io, and the corresponding parameter
hence makes it possible to print the advertisement to a terminal, or a text box in an arbitrary window.
Alternatively, one could imagine a method for taking a graphical window as a parameter, which, when
invoked, would output the talk to that window.

Advertising such a talk requires the implementation of a corresponding class and its instantiation
(the catching of exceptions is omitted in the following for simplicity):

class VTalkImpl implements VTalk {
public VTalkImpl(String title, String speaker, ...) {...}
...

}

byte[] key =
new StringImpl("Swiss Federal Institute of Technology").getBytes();

VTalk t = new VTalkImpl("Borrow/Lend", ...);
Lender<VTalk> tLender = new Lender<VTalk>(t, key);
tLender.activate();

Interest in any talks given by a particular speaker could then be expressed as follows‖:

class VTalkInbox implements Inbox<VTalk> {
public void deliver(VTalk t)
{ t.prettyPrint(System.out); }

}

byte[] key =
new StringImpl("Swiss Federal Institute of Technology").getBytes();

Borrower<VTalk> talks =
new Borrower<VTalk>(new VTalkInbox(), key);

VTalk t = talks.constrain();
t.setConformance(0);
t.getSpeaker().equals("Patrick Eugster");
talks.activate();

‖The example illustrates a logical and two constraints expressed through t. Constraints expressed through different proxies
obtained by several calls to constrain() are logically or-ed.
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The third-last line nicely illustrates the use of contract methods. In this case, the borrowing
peer indicates that it is only interested in receiving instances of classes that explicitly implement the
VTalk interface. This invocation, just like the previous one, is ‘registered’ by a proxy referenced by t
(see Section 6.1), and not performed immediately on any resource.

4.3. Remote resources

In certain cases it might be better to leave such a talk resource on the exporting peer, and instead
advertise it as a remote reference, through which desired information can be obtained through remote
invocations. Typical motivations are overly long abstracts that might not even be read by most users
receiving the advertisement, or even attached articles written by the speaker and corresponding to the
contents of that talk.

In general, as resources gain in size, and maybe become location-bound, it might be more appropriate
to view them as services and access them from a distance. In that case, a peer offering such a service
would rather lend it as a RemoteResource, providing interested peers access to it through a proxy:

interface RTalk extends RemoteResource {
String getTitle() throws RemoteException;
String getSpeaker() throws RemoteException;
String[] getAbstract() throws RemoteException;
Long getStartTime() throws RemoteException;
Long getExpectedDuration() throws RemoteException;
void prettyPrint(OutputStream os)
throws RemoteException;

}

Instances of the RemoteException type declared in the throws clause of all methods of the
RTalk type are used here to indicate problems occurring at runtime in remote interactions.

4.4. Lazy resources

When implementing the above talk example with remote resources, however, one problem becomes
apparent. The prettyPrint() method does not make any sense anymore, since its input argument
of type OutputStream represents an object local to the borrower and is neither serializable nor
remotely accessible.

A better solution than implementing a remotely accessible output stream consists of making talk
advertisements downloadable on demand. Indeed, the prettyPrint() method will most probably
print all the information related to a talk, i.e. all fields of such an instance. Transferring a copy of a
talk advertisement to be printed from the exporting peer to a borrowing peer will be more efficient than
having the exporting peer make several remote calls back to an output stream on a borrowing peer to
pass the individual fields.

To support lazy pass-by-value semantics for resources, we introduce the LazyResource
type, which combines flavors of both pass-by-value and pass-by-reference semantics. Resources
implementing that type usually represent larger objects than pure value resources and are hence only
downloaded when really required (lazy pass-by-value semantics).
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interface LTalk extends LazyResource<LTalk>,
ValueResource

{
String getTitle() throws RemoteException;
String getSpeaker() throws RemoteException;
String[] getAbstract() throws RemoteException;
Long getStartTime() throws RemoteException;
Long getExpectedDuration()
throws RemoteException;

void prettyPrint(OutputStream os);
}

The type parameter representing the resource that can be downloaded through the download()
method of type LazyResource is not necessarily the same as the type of the resource itself. Although
this applies in general, as in the case of the LTalk type shown above, one could indeed imagine a
resource acting as a service through which other, possibly smaller, resources could be downloaded on
demand.

A similar effect could be achieved without explicitly introducing such a resource type. For instance,
one could equip the RTalk with a method returning an array of strings, which, invoked from a remote
peer on a proxy to such a talk resource, would automatically transfer a formatted representation of the
talk by value. The advantage of introducing a type for lazy resources appears when the instances of a
resource type are both serializable and remotely accessible. One could, as in Java RMI, give priority
to the remote nature of objects, which we also advocate if a resource type explicitly subtypes both
RemoteResource and ValueResource. However, much more flexibility is provided if the user
is given the possibility of specifying if and when to download a remotely accessible resource, and how,
i.e. which protocol to exploit for the transfer (e.g. ftp, http or their own), which in fact reflects the
ad hoc and self-organizing character of P2P computing. Also, in the case where the resource type is
parameterized by itself, such as the LTalk type above, a borrowing peer can decide that resources are
to be automatically downloaded upon their first invocation.

5. RESOURCES: ADVANCED FEATURES

In this section, we discuss features we regard as advanced with respect to the basic model underlying
our BL abstraction presented so far. These features include, for instance, two additional resource types
(dynamic resources and replicated resources) and how to achieve concurrency control with the BL
abstraction.

5.1. Dynamic resources

In certain cases, more late binding is required than provided by structural type conformance, in the
sense that even at the compilation of a component, the types of imported and/or exported resources are
not known. A dynamic form of interaction, even exceeding that of Java introspection, is then advisable.
Similar forms of dynamic interaction have already proven useful in distributed contexts, in combination
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with both pass-by-value (e.g. self-describing messages [9]) but also pass-by-reference (e.g. dynamic
invocation interface (DII) and dynamic skeleton interface (DSI) [46]) semantics.

To that end, we introduce the DynamicResource type. Lending such a resource means mainly
implementing a general method invoke() through which the resource can be invoked. A method
getDescription() returns a description of the functionalities implemented by a such resource
at runtime and is required for the communication infrastructure to be able to match these resources
against the criteria of borrowers. Similarly, that method can be used for borrowers to express interest in
resources, without compile-time knowledge of the interfaces of those resources. Single constraints on
the interfaces offered at runtime by resources are also intrinsically specified by expressing predicates
through the invoke() method of a proxy obtained via the constrain() method.

Consider for example a borrower relying on such a dynamic interaction for the talks presented above
(again omitting exceptions):

class DynInbox implements Inbox<DynamicResource> {
public void deliver(DynamicResource d) {
d.invoke("prettyPrint",

new Object[]{System.out});
}

}

byte[] key =
new StringImpl("Swiss Federal Institute of Technology").getBytes();

VTalkInbox<DynamicInbox> inbox = new DynamicInbox();
Borrower<DynamicResource> talks =

new Borrower<DynamicResource>(inbox, key);
DynamicResource d = talks.constrain();
Object[] args = new Object[]{"Patrick Eugster"};
d.invoke("getSpeaker", null).invoke("equals", args);
talks.activate();

Note that the invoke() and getDescription() methods, although seeming somewhat
redundant to the methods defined by Java’s introspection classes, are necessary. Latter methods would
only reflect methods that are defined ‘statically’ by a resource class, while DynamicResources will
in the general case only implement the invoke() method (through which further dispatching is done
explicitly).

Any kind of resource, i.e. value resource, reference resource or lazy resource, can be a dynamic
resource.

5.2. Replicated resources

As already outlined, we have kept peer and transmission failures in mind when designing the BL
abstraction. In order to tolerate a certain number of such failures, the BL abstraction provides a
means of replicating resources. When lending a resource, a lender can define a default value create
for the number of replicas required for that resource. Depending on the protocols used underneath,
which reflect both consistency and fault-tolerance requirements for (replicas of) a resource and
are chosen by the application, typically create−1 (stateless objects, peer crashes), �create−1

2 �
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(stateful objects with consistent states, peer crashes [47]), �create−1
3 � (stateful objects, Byzantine

failures [48]) peer failures can be tolerated. A value of 1 for create means that no replicas are to be
created automatically. This value is used if several components explicitly start a replica representing
the same resource (with identical keys). (A value of 0 indicates that the BL engine is free to decide on
a replication scheme and degree.)

Methods getRelevantState() and setRelevantState() are used, respectively, for
obtaining the state of a resource and to make sure an automatically created replica of that resource
has the same state.

Note that in the case of a value resource, automatically created replicas are clearly separated from
copies created for borrowers with matching interests. Former copies represent the resource at its initial
state, i.e. with identical immutable states, and are sealed from borrowers. Latter copies are those
used by borrowers and as a consequence of the value semantics are allowed to manifest diverging
states.

Replicas of reference resources, however, always present the same resource, and their states have
to remain consistent according to certain criteria with respect to actions performed by borrowers with
these resources (e.g. invocations of resource methods). For such resources, the getSemantics()
method must return a description of the semantics associated with the individual methods in order to
trigger the appropriate replication protocols.

5.3. Concurrency

Reference resources represent a powerful means for implementing concurrency control. The form of
mutual exclusion obtained with the in() primitive of the tuple space (see Section 2.3) can be easily
emulated by implementing a class as follows:

class Token implements ReferenceResource {
private boolean taken = false;
synchronized public void take() {
if(taken) wait();
taken = true;

}
public void cede() {
taken = false;
notify();

}
}

Any borrower expressing an interest in such a resource then obtains a proxy to it, and all concurrent
invocations of the take()method of the lent resource finally go through Java’s ownsynchronized
primitive. This built-in mechanism guarantees mutual exclusion between all accesses to members of
an object marked with that key word, and can hence also be used directly to implement any form of
concurrency control as required by the semantics of the resource, i.e. as defined by the application.

Note, however, that a remote resource (just like any remote object in the sense of Java RMI) cannot
be locked from the outside, meaning that the following example will not work:

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1053–1078



OBJECT-ORIENTED PROGRAMMING IN PEER-TO-PEER SYSTEMS 1069

class RTalkInbox implements Inbox<RTalk> {
public void deliver(Rtalk t)
{

synchronized(t) {... action requiring mutual access to t ...}
}

}

The object t namely represents a local object, i.e. a proxy. Exclusive access to the proxy is
guaranteed, but not to the original, remote resource.

To avoid hampering liveness in the case of a crash failure of a peer hosting a critical resource,
such resources can be replicated (just like tuple spaces implementations should replicate tuples,
especially those acting as tokens for mutual exclusion, on several hosts to tolerate crash failures),
by following simple guidelines. In order to achieve consistency between replicas (and hence safety),
all replicas must let peers enter into the critical section in the same order. This requires concurrent
invocations to synchronized methods to be made in a total order (ensured by choosing the appropriate
MembersSemantics()), and synchronized to be replaced by a primitive with FIFO guarantees
(e.g. a common FIFO mutex).

5.4. QoS and protocols

While different levels of consistency are imaginable for resources (and for their members), different
levels of reliability are advisable for any interaction through the BL abstraction.

These different degrees can be seen as QoS, which are intrinsically tied to the protocols used
underneath for communication. In P2P environments, which manifest a flavor of self-organization,
it has proven interesting to provide different protocols for the underlying remote communication, and
to make their choice explicit to the application. Since sometimes the choice is restrained by the nature
of a single interaction, it is necessary to handle protocols and QoS expressions in isolation from the
resource types.

Protocols and QoS are hence reflected as first-class constructs, as shown in Figures 1 and 2.
These will not, however, be further discussed in this paper.

5.5. Replacing resources

Lent resources can also be replaced by new resources. This is expressed in the Lender type in
Figure 3 through a corresponding method, and assists the underlying protocols in performing efficient
distributed garbage collection (see Section 6.3).

With the talk example introduced in Section 4, the practical benefit of the replace() method for
‘overriding’ lent resources can also be demonstrated. Indeed, who has never had one of their talks pre-
or postponed? By calling the replace() method with a new VTalk instance, a previously issued
talk notification can be replaced. This does not mean that a previously issued talk cannot be delivered
first to a borrower’sInbox anymore. However, if the order of the two talks is permuted during routing,
the previous one is dropped.

In other terms, when objects, i.e. resources, correspond to the criteria expressed through a
borrower, they can become accessible on that corresponding peer in two ways. In the most common
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interface DynamicResource extends Resource {
DynamicResource invoke(String methodName, Object args[])

throws InvalidMethodException;
ResourceDescription getDescription();

}

interface ReplicatedResource extends Resource {
void setReplication(int create) throws NotSupportedException;
byte[] getRelevantState();
void setRelevantState(byte[] state);
MemberSemantics getSemantics();

}

public final class Lender<R> implements Participant<R> {
...
public void replace(R by) throws RemoteException {...}
...

}

Figure 3. Advanced resource types.

case, they are delivered by a call-back to an object of type Inbox registered by that peer upon
description of the borrower. If the new resource was made available by the exporting peer through the
replace()method, that resource can also become (somewhat invisibly) accessible through variables
pointing to the replaced resource on peers which have already received the now obsolete resources
(see Section 6.3.2).

6. IMPLEMENTATION ISSUES

This section first elucidates two ‘recent’ mechanisms of the Java language to which the BL abstraction
owes its type safety and, then, of P2P protocols. Finally, we discuss the impact of the overhead of the
above-mentioned mechanisms.

6.1. Dynamic proxies

With version 1.3 of Java, dynamic proxies [49] have been added as part of the Java core reflection
API [50].

6.1.1. Overview

Dynamic proxies provide a limited form of behavioral reflection [51] (also known as computational
reflection [52]) in combination with static type safety as a ‘library’; that is, without specific support
from the Java compiler or virtual machine. A dynamic proxy object created for an interface I can be
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Figure 4. Dynamic proxies in the BL abstraction: (a) borrower criteria; (b) replacing a resource; (c) lazy remote
synchronization; (d) structural conformance.

used in a consistent manner wherever an object of that type I or any supertype is expected, except
that a method invocation performed on such a dynamic proxy object is in a first step reified, somehow
enabling the passing from a typed context to an untyped context where any action can be performed in
the confines of such a method invocation.

The implementation of our BL abstraction relies heavily on this concept of dynamic proxies
(see Figure 4), on both the borrower and lender sides.

6.1.2. Borrower criteria

Through the constrain() method of the Participant class, a dynamic proxy object can be
obtained for a queried type. Such an object acts as a formal argument for expressing queries, such as
that expressed in the first example in Section 4, where t.getSpeaker().equals("Patrick
Eugster") delimited the talks of interest for a given component. Figure 4(a) outlines how such
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a query (think of m1() and m2() as the two nested method invocations above) expressed by a
borrower is ‘registered’ and then replayed on a lent resource to verify whether that resource is indeed of
interest to the borrower. The interception of contract methods is similarly performed by these proxies.
The thereby implemented decorator pattern, in contrast to the regrouping of implementations of such
contract methods in abstract resource classes to be subclassed by application-defined resource classes,
has the advantage of not polluting the single inheritance resource class hierarchy.

6.1.3. Lent resources

When a resource is ‘delivered’ to a borrower, i.e. a borrower gains access to a resource through an
invocation of deliver on a callback object of type Inbox, the passed object is a dynamic proxy.
A ‘real’ resource is accessed indirectly through such a proxy, which seems normal in the case of a
remote resource, and which also hides the effective collocated resource in the case of a value resource.
The benefit of such a scheme is threefold:

• Lazy synchronization. A form of lazy synchronization can be implemented when invoking
resources through proxies. This is outlined in Figure 4(c), where an invocation of a delivered
resource by a borrower takes place through a (first) proxy, allowing the invocation to return
a ‘result’, i.e. a second proxy, while the effective invocation has not yet been completed.
An invocation of the returned proxy hence blocks, until the invocation result of the initial
invocation of the first proxy is finally obtained (cf. wait-by-necessity [53]). A special case of
this are automatically downloaded resources.

• Resource replacement. When replacing a lent resource by a new one, the reference to a
borrower’s local copy of such a resource can be kept valid if it is accessed through a proxy.
This is illustrated by Figure 4(b), where a first resource is transparently to the invoker swapped
against a new resource, which then performs the invocation. Without the addition of hooks into
the virtual machine, this is in fact the only way of transparently ‘changing’ the instance of a user
type pointed to by a variable.

• Structural conformance. Third, the wrapper pattern implemented by dynamic proxies can be
used to implement the structural conformance provided as part of borrowers. Indeed, a class
C can be instantiated in the virtual machine of a consumer, possibly after transferring it from
its exporting peer, with a dynamic proxy of a non-explicitly related type I (see Section 4.1.3)
pointing to it and giving access to it. This is illustrated by Figure 4(d), where a borrower can
access a resource of a type distinct from what they had queried, by interposing a proxy which
‘adapts’ the invocations made on it by the borrower in order to perform them on the resource.

As mentioned in Section 4.1.1, however, dynamic proxies are only available for interfaces, which
restricts the use of the BL abstraction in Java.

6.2. Genericity

In addition to dynamic proxies, genericity has been heavily used in the BL abstraction to provide
static type safety without pre-compilation. In fact, the addition of genericity to the Java language
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has represented a very vivid research field for several years, leading to a wide variety of approaches
(e.g. [54,55]). Sun’s own efforts to finally integrate genericity into the Java language [15] for version
1.5 are based on the solution described in [55], which provides F-bound polymorphism, enabling
the parameterization of a type by itself (e.g. LTalk in Section 5.1). Its implementation originally
relies on a homogeneous translation [55], meaning that type parameters are ‘erased’ at compilation,
variables of such types are changed to the corresponding bounds (possibly the very root type
java.lang.Object), and type casts are inserted wherever necessary. The drawback of such an
approach is, however, that runtime type information is usually lost, meaning that an instance of a
parameterized type does not know the value(s) of its type parameter(s) (unlike for instance with
virtual types [54]). This fortunately by now recognized and addressed lack [15] at first represented
an important drawback in the implementation of the BL implementation, as queries are expressed
through dynamic proxies, which are created for specific, reified, types at runtime. An instance of the
class Borrower parameterized by type VTalk, in order to create a dynamic proxy for that type
VTalk, must pass a reification of that type in the form of an instance of java.lang.Class to the
java.lang.reflect.Proxy class.

6.3. Protocols

One of the basic building blocks of a P2P communication infrastructure is made up of multicast
protocols. Basically, an event such as the activation or deactivation of a borrower or a lender has to
be disseminated among those peers for which that event is of importance.

6.3.1. Wanted: reliability and scalability

To offer a compromise between reliability and scalability, such protocols must ensure that relevant
knowledge is received and stored by sufficient peers, but not by unnecessarily many. There are several
faces of this tradeoff as follows.

• Peer knowledge: not every peer should know every other peer; however, a peer should be known
by at least a minimum number of other peers.

• Borrower knowledge: the action and deactivation of borrowers should be notified to those peers
concerned, but should not flood the network. They should be stored at a reasonable number of
peers.

• Resource knowledge: similarly, the activation, deactivation and modification of a resource should
be notified to, and stored by, a subset of peers only.

A seminal protocol we have implemented which addressed these issues was based on a broadcast
protocol [12] offering probabilistic guarantees, meaning that with very high probability a peer would
acquire some of the above-mentioned knowledge, although every peer would only know a subset of the
other peers. To further limit the amount of acquired knowledge for a given peer, a second probabilistic
protocol for multicasting knowledge has been proposed [13]. With that second protocol, interaction
between peers increases as they become ‘closer’, in terms of both physical but also interest distance,
i.e. overlappings between their borrower criteria.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1053–1078



1074 P. TH. EUGSTER AND S. BAEHNI

6.3.2. Replacing and deactivating resources

The latter protocol is furthermore inspired by the intuitive concept of message obsolescence first
studied and formalized in detail in [56]. The idea is that in most applications certain events, or in
our case resources, make previously created ones obsolete. With some, even limited, support from
an application in indicating such relationships (e.g. the replace() method in the Lender class),
scalability of protocols can be significantly improved.

As pointed out in [57], efficient garbage collection of remotely accessed objects is not
straightforward, and the original implementation found in Java RMI is an illustration of this
observation. In a highly dynamic P2P setting, where resources are available in general only temporarily,
it is particularly important for a resource creator to indicate the termination of a lender, rather than
inversely keeping such an object alive waiting for the last remote peer to release its references to it.

6.4. Measurements

We focus here on illustrating the overhead of the BL abstraction with respect to its use of reflection
mechanisms. More precisely, we measure the costs of testing structural type conformance at runtime,
and the overhead of using dynamic proxies to invoke local resources as instances of such implicitly
conformant types.

6.4.1. Setting

These measurements were obtained with a HP Omnibook XT6050, with the following configuration:
Pentium III 1 GHz, 256 MB RAM, 30 GB HDD, Windows 2000 SP2. Note that these tests were
performed with our .NET prototype version, i.e. Visual Studio .NET Enterprise Architect 2002
version 7.0.9466. The results obtained are comparable with our Java prototype, although genericity
is not included, since the current solution for genericity in Java deals with genericity at compilation,
and thus does not incur runtime overhead.

6.4.2. Type conformance verification

Figure 5(a) reflects the cost of testing conformance between a type VTalk (Section 4.1.3) and a
type VTalk2 which contains the exact same methods as VTalk, yet is not explicitly related to
that type (i.e. a conformance depth of 1). One-thousand consecutive conformance tests have been
run 100 times. In Figure 5(a), one can see that the average time measured is 12.66 ms. This seems
relatively expensive, but only has to be performed seldom: since our underlying P2P multicast protocols
constructs global type conformance tables, such a test only has to be performed once every time a
lender or a borrower is expressed for a completely new type, i.e. whenever a completely new resource
(sub)type is introduced.

Inside the entire update procedure of the global type conformance and routing tables in the multicast
protocols, along with the dissemination of the code pertaining to the new type, this operation is
negligible. Moreover, routing table updating and class dissemination would have to take place with
any abstraction implemented on top of a P2P overlay network, and do not depend on the implicit
conformance promoted by our BL abstraction.
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Figure 5. Overhead of structural conformance: (a) conformance verification; (b) dynamic proxy invocations.

6.4.3. Dynamic proxy invocations

In Figure 5(b) we represent the time for invoking method getSpeaker() of class VTalkImpl
outlined in Section 4.2. The scenario consisted in performing 100 × 106 invocations (1) directly, and
(2) indirectly using a dynamic proxy. The average direct invocation time is around 0.000 142 ms, while
the average indirect time is of the order of 0.03 ms. This difference might be sensible ‘locally’, but
its impact on global performance is negligible, given the strong asynchrony introduced with the BL
abstraction. This is, however, difficult to illustrate, as it depends strongly on the target application
(mainly on the proportion between remote interaction and local computation with value resources),
and because of the absence of a ‘reference’: the indirect interaction with resources through dynamic
proxies is a core concept of the BL abstraction, which cannot be separated from it. We believe that
the overhead is in any case negligible (without even considering the unquantifiable gains in type safety
achieved in return), given that applications benefitting from our BL abstraction are strongly distributed,
and are hence strongly subject to delays incurred by network communication [45].

7. CONCLUSIONS AND FUTURE WORK

As illustrated in this paper, the BL abstraction abides well to P2P object environments, which can be
described as completely decentralized and potentially large-scale dynamic distributed object settings.
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The BL abstraction achieves its scalability by providing peers with the possibility of asynchronously
lending and borrowing resource objects, reducing the coupling between these peers. This notion of
resources, on the one hand, provides the BL abstraction with flavors of a ‘high-level’ abstraction in
the sense that distribution-related issues such as serialization and location of resources are concealed,
and encapsulation and static type safety are ensured. On the other hand, this model allows the BL
abstraction to make ‘low-level’, yet in the context of P2P computing crucial, aspects related to
distribution such as protocols and QoS explicit.

Let us summarize the characteristics of our BL abstraction with respect to those of other abstractions.

• BL combines an awareness of the underlying system and protocols (as with message passing)
with a unified abstraction and higher-level guarantees.

• Pass-by-reference semantics (as with RMI) are provided for dealing with ‘large’, location-
bound resources, yet are provided with an inherent and distributed lookup service. To support
asynchrony which is crucial in large-scale settings, reference resources can be invoked in a lazy-
reply manner.

• Concurrency control (as with the tuple space) takes into account application-defined policies and
fault tolerance.

• Pass-by-value semantics (as with publish/subscribe) are provided for ‘small’ resources. A lazy
flavor of pass-by-value semantics is provided for ‘larger’ resources, as well as support for
garbage collection.

We are currently investigating the application of our BL abstraction to the design and implementation
of a scalable general communication substrate for collaborative virtual environments (CVEs) [58]. In
such environments, distributed users interact through a virtual shared world, and resources such as the
constituents of the world have to be shared among those peers hosting ‘interested’ users (e.g. users to
whom these constituents are visible), in a way which ensures scalability (by avoiding unnecessarily
many replicas of data structures), but also reliability (by ensuring that there are sufficiently many
replicas).

ACKNOWLEDGEMENTS

We would like to thank the anonymous referees for many valuable suggestions which helped improve this
paper. This research was financially supported by the Swiss National Science Foundation NCCR-MICS project
under grant 5005-76322 (Terminodes; http://www.terminodes.com), as well as the European IST FET research
project on Global Computing under grant IST-2001-33234 (PEer-to-Peer Implementation and TheOry, PEPITO;
http://www.sics.se/pepito).

REFERENCES

1. Wego.com Inc. What is Gnutella? http://gnutella.wego.com/ [2000].
2. Freenet: A distributed anonymous information storage and retrieval system. http://www.freenetproject.org/ [2000].
3. Oram A. Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly, 2001.
4. Rowstron A, Druschel P. Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems.

Proceedings of the 4th IFIP/ACM International Conference on Distributed Systems Platforms and Open Distributed
Processing (Middleware 2001), November 2001; 329–350.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1053–1078



OBJECT-ORIENTED PROGRAMMING IN PEER-TO-PEER SYSTEMS 1077

5. Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan H. Chord: A scalable peer-to-peer lookup service for Internet
applications, August 2001; 149–160.
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