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Abstract- This document is both a synthesis of current 
notions  about  complex  systems,  and  a  practical 
approach description.  A disambiguation is  proposed 
and exposes possible reasons for controversies related 
to  causation  and  emergence.  Theoretical 
considerations  about  simulations  are  presented.  A 
justification  is  then  given  for  the  development  of 
practical tools and techniques for the investigation of 
complex  systems.  A  methodology  for  the  usage  of 
these  tools  is  finally  suggested,  illustrated  by 
application examples.
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1 Introduction
What  is  a  complex  system,  its  main  features  and 
properties?  What  does  it  mean  that  something  is 
emergent? 

Since the advent of modern calculus in the 17th century 
with Newton and Leibnitz, the dominant philosophy has 
been  that  of  integration:  from  the  reasoning  on  an 
elementary  scale  we  could  sum  up  and  obtain  global 
results  about  a  system  (for  example,  movements  of 
planets).  Of course some equations describing a system 
behaviour  cannot  be  integrated,  so  one  cannot  find  a 
shortcut that allows a direct computation for a prediction 
at the higher scale. Even when such a shortcut exists it is 
not always applicable: Exponential relations for example 
were  sensitive  to  initial  conditions  even  before  the 
discovery (reviewed by James Gleick [GLEI87]) of Chaos 
theory,  which  brought  the  notion  of  being  locally 
exponentially divergent and globally bounded at the same 
time1.  Yet,  and especially  with  computers,  approximate 
methods and numerical integrations were developed that 
can produce reasonable results,  and they still  form the 
majority of industrial simulations to date.

Another  approach  is  the  study  of  the  high-level 
properties of the system, considering entities defined at a 
global  scale  scale,  as  discussed  by  Russ  Abbott  in 
[ABBO06]. Then one could try modelling these entities 
and their interactions directly rather than by applying the 
more  traditional  integration  approach.  Some  other 
systems are  self-similar  at  different  scales  and may be 
better analysed by yet another method as explained by 
Benoit Mandelbrot [MAND82]. There are also universal 

1 See also http://cscs.umich.edu/~crshalizi/notebooks 
/chaos.html (checked on 2008/16/01)

phenomena and global properties that may be observed 
whatever the underlying equations. So if we now look at 
the problem top-down any phenomenon that we observe 
at the system macro-scale but that we cannot somehow 
relate to micro-states poses a similar problem as before 
but the other way around.

The  reasons  why a  phenomenon defined  at  a  high 
level  cannot  be related  to  low-level  properties  may be 
multiple,  from simple  ignorance  of  hidden relations  to 
theoretical uncomputability. But whatever these reasons 
the same practical issue remains between the high-level 
scale  and  the  underlying  micro-scale  elements:  the 
phenomenon  is  then  often  labelled  “emergent”.  The 
notion of  emergence has  progressed over  time,  and its 
history is  reviewed by Peter A. Corning in [CORN02]. 
Refinements  about  possible  reasons  for  the  failure  to 
relate  micro  and  macro  properties  were  proposed,  but 
overall the same idea remains in one form or another.

These  main  ideas  may  depict  a  legitimate  field  of 
study, but the wide range of application domains they’re 
supposedly applicable to makes it difficult to synthesize 
results into a consistent framework. Attempts at creating 
a theory of emergent phenomena often end up having to 
define  concepts  that  are  specific  to  that  attempt. 
Consequently,  there  are  as  many  definitions  as 
frameworks,  and  no  real  common  theory.  And  this 
document is  thus  not  a  proposal  to  create  yet  another 
framework.

Yet if any progress is to be made on complex systems a 
formalization is necessary at some point. See for example 
the proposals by Cosma R. Shalizi [SHAL01] and by Aleš 
Kubík [KUBI03]. As mentioned above, these mathematical 
frameworks do not encompass (to date) all  aspects that 
were  proposed  by  other  definitions.  What  is  called 
emergent by some is outside the definition of others. Too 
broad  definitions  are  rejected  because  they  are  either 
inapplicable or they would include a range of phenomena 
that we intuitively do not label as “emergent”; while too 
restricted  definitions  miss  one  or  another  of  such 
phenomena. It  is likely that no definition of emergence 
may satisfyingly correspond to our intuition (this point is 
explained  in  Section  2.4.1),  and  conversely  that  any 
successful  hypothetical  theory  on  emergence  would 
include counter-intuitive effects.

However there is no reason to think that Complexity 
Science cannot  be handled  by the  traditional  approach 
exemplified  by  Thomas  S.  Kuhn  [KUHN62]:  by  using 
incremental steps, with predictive testing, refinement of 
the main concepts, that allow to validate or not the main 
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theories,  etc.  This  is  what  Kuhn calls  normal  science, 
posed  as  a  necessary  condition  for  further  ground-
breaking  discoveries.  Jochen  Fromm  also  suggests  in 
[FROM06]  that  the  difficulty  to  study emergence  in  a 
system is equivalent to the difficulty to create a higher-
level theory for that system, which is a direct application 
of normal science in the context of complex systems.

At this point what is thus essentially missing is the 
availability of adequate investigation tools:  if  a generic 
theory of complex systems is still out of reach, at least can 
we build the means to facilitate their  analysis  and the 
better characterization of the different processes involved 
in what we call emergent phenomena. In turn, we might 
then hope to achieve the desired global formalization step 
thanks  to  the  result  of  our  better  understanding  of 
complex  systems.  Fortunately  we  now  also  have 
computers  and  their  associated  formidable  processing 
power. Some of the best investigation tools will thus take 
the  form  of  practical  algorithms  and  computer 
simulations.

The next section proposes a review of the domain and 
what are possibly the main sources of the controversies 
associated to emergence and complex systems. The goal is 
not to engage in a philosophical debate about the merits 
of such or such framework and take position. The goal is 
to  identify  what  are  the  main  notions  and what  they 
entail.  This  helps  avoid  controversies,  and  some  well-
defined basis  is  necessary  for  a  sound future  work.  A 
contribution  concerning  computer  simulations  is  also 
proposed at the end of section 2,  concerning how such 
simulations  are  adequate  for  the  study  of  complex 
systems.

Section  3  then  presents  an  illustration  of  different 
possible approaches. The choice was made to concentrate 
on practical problems: prediction and control in complex 
systems.  In  particular,  attention  is  given  to  top-down 
global  control  and  bottom-up  micro  control.  It  is  also 
explained  why  formalizing  higher-levels  as  their  own 
independent  frameworks  can  help  in  increasing  this 
control,  as  well  as  why  it  allows  to  make  reasonable 
predictions about a system.

Finally, it is discussed how to extend these ideas, and a 
synthesis  and  generalization  is  done  in  section  4  for 
further work.

2 Review  of  emergence  related 
concepts
This  section  reviews  different  concepts  related  to 
emergence. The main goal is to clarify these notions and 
to  pose  a  framework  for  the  further  sections  of  this 
document,  but  this  section  is  also  the  occasion  to 
synthesize  previous  work  and  present  an  original 
comprehensive digest. The intent is to remain factual and 
not  to  engage  in  the  many  controversies  surrounding 
these  emergence  related  concepts.  A  more  engaged 
theoretical discussion and contribution will be presented 
at  the  end  of  this  section,  concerning  computer 

simulations. Justification will then be given for the choice 
of a practical approach for the investigation of emergent 
phenomena.

2.1 Review of common notions
Emergence does not mean anything in itself, so long as 
the  concept  is  not  clarified.  “Deaf  dialogues”  may  be 
engaged over whether a phenomenon is emergent or not, 
if both sides do not consider the same definition. This part 
is divided into three subsections: The basic constituents 
are  presented  in  Section  2.1.1,  they  form the  building 
blocks  for  the  definitions  of  Section  2.1.2.  These 
definitions  are  descriptive  only:  they  may  be  used  to 
clarify  the  domain  by  classifying  and  qualifying  the 
properties of complexity and emergence, but they have no 
predictive  value  (so  far).  Quantifiable  aspects  of 
complexity are described in Section 2.1.3. These quantities 
are necessarily dependent on some formalization, hence 
become “reductionist” compared to the holistic concepts 
presented in the Sections 2.1.1 and 2.1.2. However, they do 
have  a  predictive  value,  and may thus  form the  most 
promising approach for a formalized theory of emergence.

2.1.1 Ingredients for a complex recipe

The notions presented in this subsection form a common 
basis for complex systems frameworks. These ideas are 
generic and applicable to many systems.

The idea there are Levels of investigation correspond 
to the intuitive notion that was presented in introduction: 
That a system can be studied at different scales, or at least 
at a micro-level and at a global level. When the process 
can  be  repeated  for  yet  another  level  this  defines  a 
hierarchy.  This  notion  is  not  new:  Philip  E.  Agre 
[AGRE03] reviews and explains  the static  vs.  dynamic 
hierarchies issue that was presented by Herb A. Simon in 
[SIMO69],  related  to  how the  levels  are  defined.  Russ 
Abbott  [ABBO06]  also  considers  hierarchies  and  static 
and dynamic emergence, and these notions are presented 
in Section 2.1.2. Peter A. Corning [CORN02] proposes an 
historical perspective where older articles also convey the 
ideas of hierarchies, especially in the life sciences.

In  either  case  there  are  observed  entities  made  of 
smaller constituents, and some features of the entities are 
not easily linked (or reduced) to the constituents. See also 
the  “whole  and  the  sum  of  parts”  next  entry.  The 
hierarchical  organization  of  levels  occurs  when  such 
entities  form  themselves  the  basic  constituents  of  yet 
another larger entity, and so on. For example, a cell, an 
organ,  an  organism,  a  social  organization,  etc.  In  the 
particular  context of  life  sciences  John Maynard Smith 
and  Eörs  Szathmáry  [SS95]  explore  explicitly  the 
transitions from one level to the other.

Yet the boundary between levels is not always very 
clear,  and  some  constituents  may  interact  at  different 
scales. Alternatively, scope, together with resolution and 
the states of a system were proposed by Alex J. Ryan in 
[RYAN06] as better notions: study should then be done on 
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entities  defined at  their  proper  resolution in space and 
time,  and whether  there  are  other  such entities  at  the 
same scale to form a “level” is irrelevant. In this view, the 
levels themselves could possibly be emergent properties.

While  attractive,  the scope/resolution approach does 
not  solve  the  main  issue  of  the  relations  between the 
components, irrespectively of how they are defined. Yet, 
Russ Abbott [ABBO06] in particular shows that reasoning 
on entities directly rather than on global levels solves a 
number  of  definition  issues  and  thus  clarifies  the 
situation.

The notion that there are “levels” of investigation is a 
handy  conceptual  tool,  but  it  is  unfortunately  defined 
precisely  because  it  allows  to  pose  the  question  of 
emergence (higher-level entities are said to emerge from a 
lower-level), thus forming a circular definition. Jaegwon 
Kim [KIM99] states that a layered model [..] provides an 
essential  framework  needed  to  formulate  the 
emergentist/reductionist debate. The problem is also that 
the “layer”  defined implicitly by one “emergent”  entity 
may not correspond to the one of another. Hence there is 
no global layer but rather a continuum of scales with their 
own properties and entities, defined with respect to other 
entities at a lower or equal scale.

The  whole  and  the  sum  of  parts refer  to  the 
statement  by  Aristotle  [CORN02]  that  both  are  not 
identical. By extension, this is the same idea as the one of 
synergy  between  components:  a  higher-level  entity 
comprising lower-level elements is a “whole” that is not 
just  the  mere  juxtaposition  of  these  elements.  A 
reductionist approach is that the “sum” in “sum of parts” 
is more complicated than a simple linear combination and 
thus explains our apparent inability to relate the whole 
with the parts. Then, since linear relations form only a 
small fraction of all possible relations2,  this explains the 
apparent universality of the “whole vs part” issue, though 
there is nothing special going on and the notion is better 
investigated on a case by case basis. On the holistic side 
[KAUF93], the parts are said to self-organise due to their 
relations, but there is also irreducibility of some higher-
level  function  of  the  whole  (consequently  this 
functionalist  view  is  not  just  a  matter  of  non-linear 
relations). In any case, “this parts and whole” approach to 
emergence  is  perhaps  historically  [CORN02]  the  first 
approach, and it is still a topic of controversy. There are 
also complications with the notion of causality, which are 
detailed in Section 2.2.

Interactions between the elements must be taken into 
account, and they must be sufficiently complex so there 
can be a “whole” which is not just elements side by side. 
Interaction graphs and networks then define as much of 
the  global  “whole”  as  the  elements  own  nature.  Such 
networks then offer a connection with dynamical systems 
and  graph  theory.  They  can  be  simulated  and  their 
properties can be studied on a large scale (see Andrew 
Wuensche [WUEN02] and Réka Albert and Albert-László 

2 Stanislaw Ulam compared non-linear mathematics 
to non-elephant zoology...

Barabási [AB02]). John Holland in [HOLL98] models the 
relations  between  the  elements  as  constrained 
generating procedures.  Similarly,  when  the  parts  can 
learn and adapt to their environment the system is called 
a Complex Adaptive System [HOLL98].

Open dissipative structures were initially defined in a 
thermodynamical   framework  by  Grégoire  Nicolis  and 
Ilya Prigogine [NP77]. The idea may be extended: so long 
as the underlying assumptions allow for a definition of a 
generic  notion  of  energy,  and  the  system  under 
consideration allows that energy to flow, then entities in 
that system may “use” this energy [ABBO06]. Extensions 
to this framework are when the entities can store energy 
and then use that reserve later in  time [KAUF00], and 
when the entities  simply use  the  energy to  perpetuate 
themselves,  which  then  leads  to  the  notion  of 
autonomous  structures [ABBO06].  Other  extensions 
consider  how  an  autonomous  structure  may  use  the 
output flow in relation to its environment as a mean of 
action  (with  the  corresponding  form  of  causal 
relationship,  see  Section  2.2).  The  notion  of 
empowerment by  Klyubin  et  al. [KPN05]  represents 
precisely this ability to act on the environment, but also 
relates it to the feedback the autonomous agent may get 
from its actions.

The  notion  of  energy may  be  abstracted  in  a 
functionalist  point  of  view.  For  example,  in  social 
contexts, energy may be related to available skills, money, 
or  time;  In  artificial  life  contexts  energy may be CPU 
execution slots; In discrete dynamical systems energy may 
be related to a system state change (and its dissipation 
would be the fusion of trajectories). Generally speaking, 
energy  is  functionally  defined  by  the  capacity  of  the 
entities in the system to use it. Of course this leads to a 
circular  argument.  Howard  Pattee’s  semantic  closure 
concept [PATT95] can also be used as a justification for a 
separation of the emergent level, when the usage of the 
energy has an intrinsic signification for the entities in the 
system (see also the semantic vs syntactic entry in Section 
2.1.2). The notion of energy may then be used formally in 
the higher level.

Self-organisation is  concerned  with  the  internal 
structure  of  a  system,  and how that  structure  evolves 
without  external  intervention.  [KAUF93]  proposes  that 
self-organisation is the result of positive feedback loops 
(see  above).  The  term  self-organisation  is  credited  to 
William Ross  Ashby [ASHB56]  in  a  pioneer  work  on 
cybernetics, but the notion has now extended to a point 
where it is ubiquitous. Cosma Rohilla Shalizi presents an 
extensive  effort  [SHAL01]  to  clarify  the  notion  in  the 
context of time series, and equates self-organisation to a 
rise in statistical complexity (with a working data-based 
algorithm for computing this value, see the corresponding 
entry in 2.1.3). Another definition for self-organisation is 
the state-space description proposed by Francis Heylighen 
[HEYL01]:  self-organisation  as  the  appearance  of 
coherence  or  correlation  between  the  system’s 
components  is  equivalent  to  the  reduction  of  entropy, 
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which is in some cases contradictory with the statistical 
complexity interpretation. There are other definitions, like 
the  positive  feedback  loop  approach  previously 
mentioned. A generally applicable and consensual notion 
of self-organisation has thus yet to be defined.

Hypercycles [ES70]  are  another  name for  positive 
feedback loops, applied in a pre-biotic biological context. 
Proto-cells in the form of compartments allow different 
chemicals  to  concentrate  and then react.  The  feedback 
loop is when the resultant of one reaction enhances the 
next, in this case RNA strings are translated to enzymes 
which catalyse the next  reaction.  This  mechanism is  a 
natural principle  of  self-organisation and an important 
hypothesis  for  the  appearance  of  life  [SS95].  Stuart  A. 
Kauffman [KAUF93] makes an argument for autocatalytic 
cycles and extends the notion to other domains, deriving 
the  notion  of  an  order  for  free [KAUF95]  that  would 
counter the second thermodynamic law and entropy in 
dynamic systems [KAUF00].

Autopoiesis, defined by Varela  et al. [VMU74] is the 
idea of a structure that is: 1. Defined in space, it has a 
boundary  with  the  external  environment.  2.  Able  to 
reproduce  itself.  This  is  a  variation  on  the  theme  of 
autonomous structures and self-organisation applied in a 
biological  setup.  The  notion  has  attracted  much 
controversy (related by Barry McMullin in [MULL04]) as 
to whether it is a suitable model for living entities, and 
the  application  of  the  definition  has  itself  rooted  out 
numerous problems (such as how to define the structure 
boundary,  and  what  permeability  is  allowed  so  it  can 
interact with its environment [BEER04]). However, when 
viewed in a larger framework of autocatalytic cycles and 
autonomous  structures,  the  concept  rejoins  the  view 
[KAUF00] that self-organisation is anterior to evolution 
and adaptation (See also Arantza Etxeberria [ETXE04]).

Synergetics is  the  name  of  an  inter-disciplinary 
approach founded by Herman Haken [HW73]. The best 
definition  is  perhaps  the  one  given  by  the  Center  of 
Synergetics, headed by Haken himself:  Synergetics deals 
with  complex  systems  that  are  composed  of  many 
individual  parts  (components,  elements)  that  interact 
with each other and are able to produce spatial, temporal 
or functional structures by self-organisation3. The initial 
topics of investigation were focused on physics, but the 
field has enlarged and the current domains of research of 
the  institute  are  brain  theory  and  psychology.  As  the 
etymology “science  of  synergy”  suggests,  “synergetics” 
calls preferentially for a holistic approach of emergence. 
Carlos  Gershenson  also  proposes  in  [GERS07]  a 
methodology for controlling complex systems that is well 
suited to this approach.

2.1.2 Descriptive qualifiers of emergence

The  definitions  presented  in  this  section  are  used  to 
classify the different kinds of complexity, emergence, or 
properties  the  entities  under  investigation  should  or 

3 From  http://itp1.uni-stuttgart.de/en/arbeitsgruppen 
/?W=5&T=1, 2008/01/15

should not have. However they generally do not bring 
any predictive power.

Nominal emergence refers to a global property that 
cannot be a micro-property, like the total volume, colour, 
or temperature of an object. As the etymology suggests no 
additional assumption is imposed on the emergent notion. 
Nominal emergence does not refine what are the expected 
properties for the different levels of investigation. Thus, a 
nominally  emergent  phenomenon  in  a  given  context 
might not be considered emergent in another, depending 
on these contexts particular assumptions. To illustrate the 
problem let’s consider the example of the colour “green”, 
which might be associated to a range of wavelengths. But 
one might be interested in why the object emits  these 
particular wavelengths (at the atomic excitation level for 
a LED, or through diffraction for a rainbow, etc.); or why 
“green”  was  associated  to  that  particular  range  of 
wavelengths (which is related to the presence of receptors 
in  human  eyes,  is  green  still  green  for  colour-blind 
people?); or why we semantically associated various hues 
together  in  the  same “green”  concept  (there  might  be 
cultural variants, so “green” is not a universally defined 
notion in terms of wavelengths). Nominal emergence just 
states  the  micro-macro  relationship  problem  without 
hinting at the solution.

Basic emergence is defined by Aleš Kubík [KUBI03] 
as  a  behavior  reducible  to  agent-to-agent  interactions 
without  any  evolutionary  process  involved.  [...]  The 
environment  has  no rules  of  behavior  and is  changed 
only by the actions of the agents. [...]  Basic emergence 
then  refers  to  a  property  of  the  system  that  can  be 
produced by interactions of its agents (components) with 
each  other  and  with  the  environment  and  cannot  be 
produced by summing behaviors of individual agents in 
the  environment.  This  definition  is  applicable  only  in 
contexts  where  “agent”  and  “environment”  have  a 
signification, and requires that we can somehow measure 
the behaviour of the agents as well as define the lack of 
evolution. In the context of [KUBI03] grammars are used 
for  representing the agents and their  interactions.  It  is 
certainly useful to compare explicitly what are the sum 
and the  whole,  but  the  definition  would  require  some 
adaptation to be applicable to other contexts.

Dynamic and static emergence as introduced by Russ 
Abbott [ABBO06] refer to whether a temporal aspect is 
respectively  necessary  or  not  for  the  definition  of 
emergence.  For  example,  diamond and graphite  exhibit 
different statically emergent properties of carbon, like the 
hardness property.  Dynamic emergence is  stigmergetic 
when  it  involves  autonomous  entities,  with  an 
autonomous entity defined  as a self-perpetuating region 
of  reduced  entropy  that  is  implementing  a  dissipative 
structure’s  abstract  design [ABBO06]  (see  also  the 
corresponding  entries  in  Section  2.1.1).  In  addition,  a 
requirement is introduced that the emergent phenomenon 
may  be  understood  in  its  own  terms and  that  its 
understanding does  not  depend on knowing how it  is 
implemented.  This  further  restricts  emergence  to 
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functionally irreducible cases with a formal higher-level 
system on these functions so they can be understood. But 
then, semantic closure (see below) have to be considered 
for how these functions and formal system relate together.

Syntactic  and  semantic  emergence proposed  by 
Howard Pattee [PATT95] are respectively concerned with 
the formal and functional aspects of an entity. Given a 
formal lower-level system, like a grammar, the syntactic 
emergence refers to how an entity defined at a higher-
level  of  investigation  appears  in  the  lower  level.  The 
semantic emergence claim is  that some function of  the 
entity may not be described within the formal lower-level 
system. So as to illustrate the notion let’s  consider the 
dictionary example: It may be seen as a directed graph of 
words,  each word pointing to  some other words in  its 
definition,  with  locally  ordered  graph  edges.  Yet,  the 
precise  meaning  of  a  word  is  not  contained  in  the 
dictionary  itself,  but  found  only  with  respect  to  prior 
knowledge  at  the  higher  level,  obtained  by  how  the 
language is used in practice: If each word is replaced by a 
sequence number corresponding to the first occurrence of 
that  word  in  the  dictionary  the  formal  directed  graph 
remains the same, but the dictionary becomes completely 
useless to a human.

This leads to the notion of  semantic closure,  that a 
higher-level of investigation is only completely defined by 
considering not only how the entities involved interact, 
but also by what meaning is associated to the interactions 
by an external observer or by the entities themselves. The 
controversy arises in both cases regarding the source of 
the  attribution  of  the  meaning.  If  it  is  given  by  the 
observer then it is a subjective property, not inherent to 
the system. Unless the observer is also part of the system, 
but this is equivalent to the second case that the meaning 
is given by some of the entities. But then, this introduces 
another philosophical debate as this assumes that a part of 
the  system has  the ability  to  attribute  a  “meaning” to 
another part of the system. Engaging in either debate is 
out of the scope of this document.

More generally,  a  functionalist  approach would use 
semantic  closure  to  justify  the  irreducibility  of  some 
higher-level function. So, being semantically emergent is 
possibly  simply  the  bottom-up  equivalent  of  being 
functionally irreducible in a top-down context. Section 2.2 
details the notions of reductionism in relation to causality, 
and gives possible reasons for the controversies.

Weak, medium and strong emergence refer to what 
form of irreducibility and causal powers are attributed to 
the  emergent  entities  over  the  lower-level  from which 
they emerge. This is detailed in Section 2.2.

Emergence  relative  to  a  model does  not  consider 
emergence  to  be  an  intrinsic  absolute  property  of  a 
phenomenon,  but  that  it  can  only  be  defined  by 
considering this phenomenon with respect to an observer 
(which  could  be  a  formal  model  for  example).  Peter 
Cariani defines it as a functional theory of emergence by 
giving  an  account  of  how new basic  functions  of  the 
observer – measurements, computations, and controls – 

can  come  into  being [CARI89].  The  observer  has 
predictive capabilities, a formalisation of the entities and 
their  functions  at  the  level  with  which  it  interacts. 
Emergence  is  associated  to  a  divergence  between  the 
model formal predictions and what really happens. The 
case where new observables are necessary to represent 
new functions in the observer model is called  creative 
emergence, otherwise this is combinatorial emergence4. 
Note that in this context an observer is really embedded 
in the system under investigation, as are humans making 
observations  about  the  world.  Which  in  turn  gives 
another  view  on  the  notion  of  subjectivity,  with  the 
associated philosophical controversies.

Surprise of the observer has been proposed by Ronald 
et al. as a condition for emergence [RSC99]. The subject is 
highly controversial  (see  [KUBI03]),  mainly  because of 
different definitions of what “surprise” means. Arguments 
on  the  subject  may  be  classified  as  to  whether  the 
observer is part of the system (surprise = difference from 
expectation = emergence relative to the observer internal 
model of the rest of the system) or whether the observer is 
independent of  the system (in which case surprise and 
emergence are not properly defined within the system).

Computational emergence is an attribute applicable 
to other emergence concepts. It implies the existence of a 
formal system, that usually allows computation theory. 
Any emergence definition in this context will  have the 
“computational  emergence”  attribute.  This  tells  nothing 
about  what  properties  the  computations  and  formal 
aspects should have to be entitled “emergent” in the first 
place, and what other requirements the framework must 
respect. In particular, this attribute alone does not specify 
what  forms of  reducibility  are  considered,  if  any.  The 
“computational” attribute for emergence is used by people 
who  propose  that  the  universe  is  non-computable 
[CARI89], or that complexity is what cannot be simulated 
[ROSE98],  so  as  to  make  the  distinction  with  a 
thermodynamic emergence that could then be exhibited 
only by natural  phenomena5.  On the other  side of  the 
argument Digital  Physics  as  proposed by Konrad Zuse 
[ZUSE69]  and  Edward  Fredkin  [FRED90]  makes  the 
distinction meaningless.

2.1.3 Quantifiable aspects of Complexity

Unlike the previous definitions and concepts, the notions 
in this section are not only descriptive, but do have some 
kind of predictive power. Hence they may form the basis 
for  a  quantitative theory of  complex systems,  however 
limited in scope this “reductionist” theory might look in a 
first time compared to the more elusive holistic concepts.

4 This short summary is far from fully rendering the 
works  by  Robert  Rosen  [ROSE98],  Peter  Cariani 
[CARI89],  and others.  I  think I  have captured the 
essence of the “emergence from a model” notion, 
but  invite  interested  readers  to  refer  to  the 
material in [CARI89].

5 Which is a separate issue from the observer/model 
topic aforementioned.
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Entropy,  whether  the  thermodynamics  or  the 
information-theoretic version of it (Cosma R. Shalizi gives 
a  comparative  argument  in  [SHAL04]),  has  been  the 
subject of much attention. Since entropy is associated to 
disorder,  the  idea  is  that  organisation  (and  the  self- 
version) opposes entropy and therefore we shall be able to 
detect it when entropy reduces. See also the entry about 
self-organisation  in  2.1.1  and the  citation  from Francis 
Heylighen [HEYL01] in that entry. When the probabilistic 
definition  of  entropy  is  used,  then  we  can  actually 
compute  it.  Prokopenko  et  al. [PBR06]  present  an 
information-theoretic approach of entropy and its relation 
with  statistical complexity. In addition,  excess entropy is 
defined by James P.  Crutchfield and David P.  Feldman 
[CF03] as  the intrinsic redundancy of the system under 
investigation.  Together  with  the  statistical  complexity 
measure C (see the next entry below), the excess entropy 
E can be used to define Shalizi’s  efficiency of prediction 
indicator  e  =  E/C  [SHAL01].  In  turn,  this  leads  to  a 
characterization  of  emergence:  when  the  predictive 
efficiency is increased as a result of a transformation (the 
transformed entity can be predicted more efficiently than 
the original one). [SHAL01] gives an example on an ideal 
gas where thermodynamics emerges from the statistical 
mechanics.

Statistical  Complexity measures  the  amount  of 
information that is present in the past of a system, which 
is relevant to predicting its future. See the aforementioned 
[PBR06]  and  [SHAL06]  for  an  introduction,  [CRUT94] 
where James P. Crutchfield gives a link to the emergence 
issue,  [SHAL01]  for  mathematics,  and Frank B.  Knight 
pioneer  article  on  the  topic  [KNIG75]  for  the  general 
notion on continuous systems. Statistical Complexity is 
the amount of information needed for optimal statistical 
prediction. The idea is that both well-ordered systems and 
highly random ones have a low complexity: The ordered 
systems state space usually comprises only a few states, 
and knowledge about these states is enough to predict the 
future. Random systems also require little knowledge of 
the  past:  for  example,  if  the  observed  statistical 
distribution of events takes the form of a fixed repartition 
of future values, whatever the past value, then knowledge 
about the past is useless for predicting the future with 
maximal  accuracy  on  average.  Statistical  complexity  is 
thus a measure of how difficult it is to predict the future 
by monitoring the system past. It is defined as the amount 
of information present in the “causal states” of the system: 
the equivalence classes of system pasts that produce the 
same distribution of  futures.  Statistical  complexity was 
proposed as a measure of self-organisation [SHAL01]: A 
system  is  said  to  self-organise  when  its  statistical 
complexity  increases  over  time.  The  measure  is  an 
intrinsic  property  of  the  system that  can  be computed 
from data [SS04]. The algorithm proposed in Shalizi et al. 
[SHRKM05] was further extended by the author of the 
present  discussion  in  [BROD07]  so  data  can  now  be 
provided  on-line  and  the  statistical  complexity  can  be 

computed  incrementally  including  for  non-stationary 
systems.

Algorithmic  complexity has  been  defined 
independently by Solomonoff,  Kolmogorov and Chaitin 
(see  [CHAI05]  for  an  intuitive  presentation  of  the 
concept). The idea is to use a universal Turing machine 
[TURI36] to describe an entity: this description then takes 
the form of a program. The algorithmic complexity of the 
entity is defined as the length of the shortest program that 
can produce the entity description. The problem is that 
this value is uncomputable and can only be approximated 
from  above  [CHAI74].  [CHAI74]  also  proves  that  the 
great majority of the strings of length n are of complexity 
approximately n. These are the random strings of length  
n.  In  other  words,  the string  itself  is  then its  shortest 
description, and these form the vast majority of all strings. 
Unfortunately, this also includes descriptions of higher-
level  entities,  and  offers  no  discrimination  between 
“emergent” or “trivial” ones. In practice we may be more 
interested in approximate versions of a given entity and 
discard small variations as “noise” (see Section 2.4): When 
observing a phenomenon, we’d like to characterize not 
only the particular instances we’re monitoring but also to 
generalise  to  all  similar  phenomena.  Algorithmic 
complexity has a kind of continuity property, with bounds 
put on the complexity of entities that differ by a small 
variation. However Algorithmic complexity is concerned 
with the difficulty to describe, without a temporal aspect; 
Statistical complexity with the difficulty to predict, based 
on  past  instances.  Algorithmic  complexity  gives  a 
maximal value for completely random sequences (it seeks 
an exact reconstruction), Statistical complexity a minimal 
one (it seeks only to reconstruct a series with the same 
statistical  properties).  Depending  on  how  we  want  to 
generalise,  a  definition  of  complexity  might  be  better 
suited than the other.

The  Edge  of  Chaos is  an  hypothetical  region  in 
parameter space between “order” on one side, and “chaos” 
on  the  other.  The  initial  term comes  from [LANG90], 
where  Christopher  G.  Langton’s  λ  parameter  is 
hypothesised  to  reach  a  high  value  when  a  cellular 
automaton has a potential for complex computations. This 
particular λ parameter interpretation was later refuted by 
Mitchell  et al. [MHC93], but nevertheless, the idea that 
some  indicators  are  low  for  both  highly  ordered  and 
highly disordered systems,  while high in-between,  is  a 
very useful one: It helps characterize systems that are in a 
way the most “complex”, these where there is the most 
diversity in significantly different global behaviours.

Indeed,  both  totally  ordered  and  totally  random 
systems lack diversity, in the sense that it is not possible 
to distinguish statistically the states that are produced by 
the system: There are only a few distinct configurations 
possible in ordered systems, and totally random systems 
exhibit  the  same  statistical  distribution  of  behaviours 
whatever  the  initial  conditions.  Therefore,  the Edge of 
Chaos hypothesis is also that systems need to exhibit a 
sufficient diversity so they can support advanced features 
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like being able to compute. This argument was proposed 
by [LANG90] for cellular automata, and Stephen Wolfram 
wrote a controversial book [WOLF02] on the notion of 
cellular automata exhibiting complex behaviours. Though 
as aforementioned the indicator proposed by [LANG90] 
for detecting the edge of chaos was refuted by [MHC93], 
the idea remains and it is possible that other indicators 
could work better (including for cellular automata).

Andrew Wuensche [WUEN02] extends the notions of 
order and chaos to random boolean networks, which are 
automata on a graph structure instead of a regular lattice. 
The  large-scale  dynamical  properties  of  both  cellular 
automata  and  such  networks  are  then  studied  and 
analysed,  especially  under  perturbation.  A  balance 
between order and chaos is then specified as a condition 
for  the  network  to  exhibit  a  form  of  memory.  The 
memory capacity defined by Natschläger et al. in [NBL04] 
precisely  quantifies  with  an  explicit  measurement  the 
“edge” region where the system has maximum memory. 
[NBL04] also uses the idea that both random and ordered 
systems produce few indistinguishable final states, so in 
the context of neural networks6 the system could be also 
described by its ability to separate initial configurations. 
This  leads  to  the  NM-separation  property,  which  was 
presented as indicative of high processing capabilities by 
Robert Legenstein and Wolfgang Maass [LM07A] with an 
explicit mention of the edge of chaos hypothesis (see also 
[LM07B]).

The  problem with  these  indicators  is  that  they  all 
define what [SHAL01] calls a One-Humped Curve, where 
the  maximum  of  the  curve  does  not  necessarily 
corresponds to  a  maximum in complexity.  The general 
Edge of  Chaos  claim is  that  some indicator  related  to 
complexity reaches a maximum between states that can 
be related to order and chaos, but one has yet to define 
what is meant by order, chaos, and complexity.

Scale-free relations are functionally defined by the 
presence  of  a  few important  elements  with  many less 
important  ones,  with  a  negative  exponential  relation 
between number and importance. The trade-off between 
importance (functional role) and number allows to scale 
the system by making it  manageable as its  size grows. 
Réka Albert and Albert-László  Barabási  [AB02] exhibit 
such scale-free relations in the domain of network graphs 
where a few nodes (ex: internet routers) allow efficient 
network traversal,  by aggregating the many local  sub-
networks hierarchically.

A functional presentation was deliberately used here 
because  there  is  a  controversy  as  to  the  exact 
mathematical relation and the meaning associated to the 
exponential decrease. The historical perspective provided 
by Michael Mitzenmacher [MITZ04] and Edoardo Milotti 
[MILO01]  shows  that  power-laws  and  exponential 
relations are widely applied and ancient concepts7. A scale 
free  relation  is  when  the  probability  of  finding  the 

6 The  “neural”  networks  are  in  the  [NBL04]  case 
actually  networks  of  transfer  functions,  so  they 
generalise  the  boolean  networks  for  which  the 
functions act on and produce boolean values.

property of interest decreases according to some power-
law or log-normal distribution as the scale increases. Such 
relations  may  be  found  for  network  graphs  as 
aforementioned in [AB02] and in  [WUEN02],  but they 
also  appear  in  finance,  biology,  chemistry,  ecology, 
astronomy, and information theory (see [MITZ04]). When 
taken in the frequency domain, the 1/f noise equivalent of 
the  power-law  appears  in  particular  in  electronics, 
sandpile models,  and more inter-disciplinary fields (see 
[MILO01]). Such a wide range of applications makes them 
a good candidate for detecting cross-disciplinary universal 
phenomena,  hence  makes  them  a  primary  target  for 
Complexity  Theory.  The  risk  is  of  course  over-
generalisation with no predictive power, and [MILO01] 
concludes  by:  Do  we  understand  1/f  noise?  My 
impression is  that  there  is  no real  mystery  behind 1/f  
noise, that there is no real universality and that in most  
cases  the  observed  1/f  noises  have  been  explained  by 
beautiful and mostly ad hoc models.

Yet this is precisely what a functionalist point of view 
of  emergence  would  appreciate:  Irrespectively  of  the 
underlying  elements,  the  functional  property  of  being 
(relatively) insensitive to scaling remains, at least over the 
range of scales that matters for a specific problem, and 
whatever the mathematical model that is best suited for 
the description (power-law or log-normal). For example, 
efficient traversal through hubs in a network is a property 
that  is  interesting  both locally  (with  a  small  group of 
nodes connected to a local hub) or globally (for reaching 
distant  sites).  Whether  the  distribution  of  connections 
below each  node follows  a  specific  mathematical  form 
matters in this case much less than the property itself.

On the other hand, in the contexts where the power 
law  is  used  to  make  predictions  in  the  range 
corresponding to the tail of the distribution, an error in 
the  formula  can  have  drastic  consequences.  So  the 
reductionist/functionalist  debate  strikes  again,  and 
[MITZ04] warns: From a more pragmatic point of view, it  
might be reasonable to use whichever distribution makes 
it  easier to  obtain results.  This runs the  risk of  being 
inaccurate; perhaps in some cases, the fact that power law 
distributions can have infinite mean and variance are 
salient features, and therefore substituting a log-normal 
distribution loses this  important characteristic.  Also,  if  
one  is  attempting to  predict  future  behavior  based on 
current data, misrepresenting the tail of the distribution 
could have severe consequences. More generally the study 
of the tails of probability distributions and their decrease 
rate  is  the  topic  of  the  theory  of  large deviations,  for 
which Srinivasa Varadhan received the Abel prize in 2007. 
This  is  an  important  mathematical  topic  with 
consequences  anywhere  a  predictive  methodology  is 
sought  in  the  aforementioned  disciplines  exhibiting 
“power laws” (or related).

7 And  so  is  the  mathematical  controversy,  ex: 
between  Simon  and  Mandelbrot  as  explained  in 
[MITZ04]
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Finally, even a functionalist might be interested in the 
analysis  of  the  differences  between  the  mathematical 
forms. [AB02] proposes for example a generative model 
for  the  power-laws observed in  networks,  but  perhaps 
other models are more statistically significant. The reason 
why a property is observed with a negative exponential-
like relation in a given system, what led to this relation, 
might  be  interesting  in  order  to  better  understand the 
function  the  property  occupies  in  the  system  and  its 
limitations.  In  particular  [MITZ04]  concludes  The  fact 
that  power  law  distributions  arise  for  multiplicative 
models once the observation time is random or a lower 
boundary is put into effect,  however, may suggest that 
power laws  are  more  robust  models.  Thus,  conversely, 
analysing  the  form  best  suited  to  model  a  functional 
property  behaviour  might  actually  be indicative  of  the 
reasons why this property occurs. And as is explained in 
the next section “the reason why” something happens is a 
causality  issue,  which  is  precisely  indicative  of  the 
functionalist/reductionist debate.

2.2 The tricky concept of causality
The concepts presented in the previous sections give an 
image of a fragmented field, where controversies abound. 
This is precisely the case, and current attempts at creating 
a theory of emergent phenomena often end up having to 
define concepts that are specific to that attempt. Jaegwon 
Kim [KIM06] notes that Emergence is very much a term 
of philosophical trade; it can pretty much mean whatever  
you want it to mean, the only condition being that you 
had better be reasonably clear about what you mean, and 
that your concept turns out to be something interesting 
and theoretically useful. Consequently, there are as many 
definitions as frameworks, and no real common theory. 

Yet, many if not all emergence-related concepts in the 
previous  section  refer  to  some  form  of  (or  lack  of) 
causation. As mentioned in introduction this is expected 
since “emergence” is precisely a term which is invoked 
when  other  explanations  fail.  Hence  causation  is  the 
subject  of  controversies:  If  no reason can be given for 
“emergent” behaviours, why do they appear? The debate 
between  reductionists  and  functionalists  related  by 
Jaegwon Kim [KIM99] revolves  around the  same idea. 
Jochen Fromm [FROM05] notes: the cause is normally the 
unclear point in emergence and proposes a taxonomy of 
emergence concepts  based according to  how they treat 
causality. Causality is also analysed as a major source for 
historical debate by Peter A. Corning [CORN02], where 
finality (functional causality) is explained in detail in the 
section about synergism.

Hence,  solving  the  problem  of  “why”  certain 
phenomena appear in some context may thus very well 
put  these  phenomena  outside  the  category  of 
“emergence”. Of course this definition of “emergence”is 
circular, hence not really a definition: emergence would 
be  when micro-macro  relations  are  too  complex to  be 
understood,  and  complex systems  science  the  study of 

emergence. Unfortunately many of the concepts presented 
in  the  previous  section  also  rely  on  such  circular 
definitions. For example, self-organisation is often given a 
causal power, while not even defined unambiguously. By 
examining  the  notion  of  causality  with  respect  to  its 
relations with the emergence issue,  this  section goal is 
thus  to  analyse  what  are  possible  reasons  for  usual 
controversies and to propose a disambiguation.

2.2.1 Causality as a source of debate

In  his  review about  the  history  and  re-discovering  of 
emergence,  Peter  A.  Corning  [CORN02]  traces  back  a 
major source of controversy to the notion of causality. 
The  two  sides  of  the  argument  are  presented  as  the 
“holists” on one side, and the “reductionists” on the other, 
with radically different perspectives on causality which 
are detailed below.

Mark  Bedau  in  [BEDA03]  states  that  emergent 
properties  without  causal  powers  would  be  mere 
epiphenomena. Russ Abbott in [ABBO06] states: In short, 
we define epiphenomenal and emergent to be synonyms, 
but then he puts the debate between “reductionists” and 
“functionalists”,  the  later  ones  being  equivalent  to  the 
aforementioned “holists”.

In order to clarify the concept, this document reuses 
the classification that Emmeche  et  al. have outlined in 
[EKS00] by applying to  the question of  emergence the 
four Aristotelian concepts of causation:

– Efficient causality is the notion that something 
implies, entails, or brings about something else.
– Material causality is the notion that something is 
made of  something  else.  Note  that  “matter”,  as  in 
material, has the broader sense of “composition” here.
– Formal causality is the structure or the form of 
something, like a house is defined by its architecture.
– Functional causality,  which replaces finality in 
Aristotelian terms: the role played by something (in 
relation to something else).

For example, discussions about an alarm clock may refer 
to the formal causality (the clock internal plan, why it 
works), functional causality (what the clock is used for, 
why  it  was  built),  material  causality  (the  clock 
composition, why it exists at all), and efficient causality 
(the clock is the cause of the sound that is itself the cause 
of the observer waking up).

So,  what  are  the  two  sides  or  the  argument? 
Holists/functionalists  are  more  concerned  with  the 
functional  causality,  whereas  reductionists  are  more 
concerned with the  material  and formal causality.  The 
clash  often  comes  when  the  two  camps refer  to  their 
favourite  concept  to  explain  something,  thus  bringing 
efficient  causality in the balance.  On the one side,  the 
function  of  something  is  the  ultimate  source  of  why 
things happen, and on the other the explication comes 
from material and formal laws of operation.

Many  apparent  controversies  end  as  soon  as  the 
notions  of  causality  are  refined.  For  example:  “The 
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whirlpool  causes  the  water  molecules  to  move  in  a 
restricted  way”  versus  “Water  molecules  and  heat 
processes amongst other things, are the cause of what we 
perceive and define as a whirlpool”. In this case, the first 
statement would be an efficient causality (the restriction) 
between objects  defined functionally  and formally (the 
whirlpool  and  the  water  molecule  movements).  The 
second statement is  about an object  defined materially 
(the whirlpool). Natural language only is the source for a 
possible confusion: Applying the efficient causality of the 
first statement to the whirlpool of the second statement is 
meaningless and should be discarded as such (from the 
second  point  of  view,  the  restrictions  are  part  of  the 
definition, not a consequence).

Is  that  all?  Can  causality  and  all  controversies  be 
solved by referring to this simple classification? Of course 
not, but it makes a good start. Further refinements could 
be  made  using  notions  like  time  dependency,  what  is 
required for objects to be comparable, probabilities, and 
more. Howard Pattee [PATT97] proposes that causation is 
a  useful  concept  only  when  it  identifies  controllable 
events  or  actions.  This  is  further  extended  by  Fabio 
Boschetti  and Randall  Gray  in  [FG07],  who propose a 
form  of  causation  intermediate  to  the  above  four,  as 
exemplified by: The flock will circumvent the obstacle. It  
thus appears that we were able to exert control on the  
behaviour of the flock; the flock appears to have causal  
power. The causation question then becomes identifying 
what “controllable” means, with the related philosophical 
issues that are out of scope of this document.

Modern physics must deal with the quantum principle 
of  no  local  reality  and  Bell’s  inequality  violation, 
combined to  the  no  communication  principle,  so  as  to 
avoid a time travel paradox in general relativity. The no 
local  reality  is  in  apparent  contradiction  with  material 
causality,  the  no  communication  principle  restricts 
efficient causality. Measurements may become important, 
since they can provide an objective source of investigation 
for material causality. But unfortunately, as mentioned by 
Howard  Pattee  in  [PATT95],  a  measurement  is  only 
defined  by  the  function  of  the  measuring  device:  to 
provide a  number,  that  is  interpreted in the light of  a 
theory. The theory then itself provides formal causality 
between the measurements, by way of its laws. As we see, 
the  problem of  causality  is  intrinsically  linked  to  the 
problem of material objectivity.

2.2.2 Supervenience and identity

Supervenience  is  typically  used  to  assume  material 
causality while avoiding the issues related to other forms 
of  causality.  For  example,  saying  that  the  mind 
supervenes on the body means that ultimately the body is 
the  material  source  of  the  mind,  without  assuming 
anything as  to  how the  mind may “emerge”  from the 
body.

More  precisely  supervenience is  concerned  with  a 
logical  dependence  between  properties.  Assuming 

properties A and B are defined, A supervenes on B means 
that each time entities differ with respect to property A, 
they also differ in property B. This means that no two 
entities may have the same B without having the same A. 
The difference is purely theoretical: whether we have the 
means of investigating this difference or not is out of topic 
for supervenience. The supervenience concept is also not 
concerned with “levels”, just properties. These properties 
may be defined, or not, at different levels of investigation. 
A stronger version has also been proposed8: A property A 
strongly supervenes on a property B whenever each time 
it is possible to define properties A and B in a framework, 
no entity could differ in property A without also differing 
in property B, whatever the framework.

Supervenience  represents  a  weak  form of  micro-to-
macro  relationship  that  still  has  useful  consequences. 
Assuming supervenience allows to reason at a high level 
(for example on the movements of billiard balls) and then 
to apply the result of this reasoning on the micro level 
through  material  causality  (for  example  deducing  that 
atoms have moved, even though the collision laws that 
apply to billiard balls do not apply directly to the atoms). 
This is what Russ Abbott calls  downward entailment in 
[ABBO06],  and which is  outlined with more details  in 
Section 2.2.4.

But as mentioned in the previous section, controversies 
occur when mixing different notions of causality. As an 
example let’s consider a diamond made of carbon atoms. 
One could say that the diamond supervenes on the carbon 
atoms:  when  considering  a  particular,  unique,  set  of 
atoms,  one  must  also  consider  a  particular,  unique, 
diamond. No two diamonds may be made of the same 
atoms: this is  material causality.  On the other hand, if 
talking about formal causality, a diamond is generically 
“made of” a pattern of carbon atoms, and the atoms are all 
alike  so  we don’t  really  care  which specific  atoms are 
used.  A  diamond is  a  specific  pattern  in  carbon atom 
organisation, which distinguishes it  from graphite: both 
could be defined with the exact same atoms, but their 
organisation is what matters. Therefore, the diamond also 
supervenes  on  the  carbon  atom  organisation:  two 
measurably  different  diamonds  will  have  a  different 
pattern, two exactly similar diamond, down to the atomic 
level, will have the same pattern.

But what does it mean to be “the same”? Equivalently, 
for the purpose of the supervenience definition, what does 
it mean to be “different”? Is a reproduction “the same” as 
the original? The philosophical controversy arises when 
one chooses a different form of causality for the notion of 
identity,  like  the  material  and formal  examples  above. 
Digital objects are more concerned with the formal aspect, 
famous paintings with the material one, but what about 
the  material  reprint  of  an  original  digital  artwork 
uniquely displayed for a specific exhibit? Then, there is 

8 For  a  more  complete  discussion  on  the  various 
forms  of  supervenience  see  for  example  the 
Stanford  Encyclopedia  of  Philosophy  at 
http://plato.stanford.edu/entries/supervenience 
(2008/01/15)
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also a functional (social) dimension to take into account. 
In some cases the material  or formal identity does not 
matter as much as the functional identity. For example, 
when using a  boat to  escape a  flood it  doesn’t  matter 
whether the boat is made of wood or tin, or what form it 
has, so long as it floats. In this example “boat” has the 
functional identity “something that floats”, irrespectively 
of the material or formal identity.

Compared to the weaker version that has just been 
explained,  the  stronger  version  of  supervenience 
implicitly assumes we can define “the same” properties A 
and B across different frameworks. Of course, depending 
on  the  chosen  perspectives  for  defining  sameness  in 
entities and sameness in properties, this stronger version 
may range from a tautology to a puzzling issue.

Without engaging in the controversy, that is assuming 
a particular definition for “sameness” has been given for a 
context,  supervenience  can  then  be  used.  However,  in 
order  to  prove (or  disprove)  supervenience,  one would 
need to  derive an investigation tool  that  can precisely 
identify differences in the chosen properties. In the case of 
emergence between two levels of investigation, proving 
supervenience in practice  would require  measuring the 
exact state of the lower-level system. This is  assuming 
such measurements do not themselves modify the lower-
level state, as is  the case in quantum physics. Without 
such a tool, the only remaining possibilities are to accept 
or reject supervenience as an axiomatic property of the 
system, or to build explicitly a system in which it holds. 
That last explicit system building scenario includes the 
case  for  deterministic  computer  simulations,  so 
supervenience  holds  by  definition  for  the  examples  in 
Section 2.4.

In  any  case  supervenience  does  not  help  much for 
understanding  the  micro-macro  relationship.  The 
Wikipedia  entry  about  supervenience9 notes: 
Supervenience  has  traditionally  been  used  to  describe 
relationships  between  sets  of  properties  in  a  manner 
which does not imply a strong reductive relationship. [...]  
Supervenience  allows  one  to  hold  that  “high-level  
phenonema”  (like  those  of  economics,  psychology,  or 
aesthetics)  depend,  ultimately,  on  physics,  without 
assuming that one can study those high-level phenomena 
using  means  appropriate  to  physics.  The  next  section 
deals with the micro-macro relationship, the problem of 
finding  what  is  the  cause  of  a  given  high  level 
phenomenon. Section 2.2.4 deals with the strength of the 
reductive relationship that is mentioned in the Wikipedia 
citation.

2.2.3 Causal reductionism

This section deals with one of the major controversies: 
whether  and  perhaps  more  importantly  how  an 
“emergent” phenomenon is reducible or not to the lower-
level  elements and interactions from which it  emerges. 
The different notions of  causality that were previously 

9 http://en.wikipedia.org/wiki/Supervenience,  version 
07:11, 17 November 2007

introduced are analysed with respect to their relation to 
reductionism. This section thus deals with the bottom-up 
causal link. The next section deals with the other major 
controversy, related to the top-down causation.

Causal  reductionism  is  the  assumption  that  every 
phenomenon,  whatever  its  level  of  investigation, 
ultimately  have  a  cause,  except  possibly  axiomatic 
properties which are postulated. If additionally a unique 
cause  is  assumed  to  have  a  unique  effect  then 
supervenience holds.

Depending of the causality perspective chosen, causal 
reductionism has different consequences. Material causal 
reductionism states  in  essence  that  whatever  observed 
complex phenomena, they are always made of matter (in 
the broad compositional sense), be it an electron stream 
inside a computer or a magnetic field around the galaxy. 
Of course, material reductionists do not reject phenomena 
like consciousness or social constructs like flash mobs. It’s 
just that stating that a brain and a crowd are made of 
atoms  does  not  help  much  in  understanding  these 
phenomena, hence material reductionism may not be the 
best notion to use in these cases.

Formal causality gets around the problem by stating 
that  brains  and  crowds  additionally  have  an  internal 
structure  and governing laws that  must  be considered. 
Formal  reductionism is  then  the  assumption  that  such 
laws can always be found, that any higher-level effect is 
logically  connected  to  the  lower-level  formal  system. 
Unfortunately,  most  formal  systems  are  known  to  be 
incomplete:  No  amount  of  formal  causality  may 
satisfyingly encompass all higher-level constructs. If,  by 
analogy  with  [CHAI05],  such  intrinsically  logically 
undecidable higher-level phenomena are the vast majority 
of all higher-level statements10, then the question becomes 
whether these statements are really observable or not. Of 
course, it is still possible to postulate (whether this is true 
or not) that reality and all higher-level measurements are 
logically reducible. Therefore by definition any observer, 
part of that system, whatever its  level of  investigation, 
can only observe logically reducible statements. But even 
then, the observer may not be able to take advantage of 
the reduction in any efficient way: this would assume the 
observer  has  total  knowledge  of  the  underlying  rules 
(which does not generally hold) and that it seeks perfect 
reconstruction,  even for  computationally  incompressible 
statements (which is usually not what we want to do, see 
Section 2.4).  Assuming formal reductionism or not is  a 
matter of principles, and doesn’t help much for practical 
investigations11.

10 Gregory Chaitin [CHAI05] gives a special attention 
to the case for real numbers in particular and to the 
limits of formal systems in general. The statement 
in  the  main  text  is  not  a  citation,  just  a 
reformulation  of  what  I  think  is  a  main  idea  in 
[CHAI05].

11 Unless one already has a working formula, in which 
case,  of  course,  this  paragraph  doesn’t  apply. 
However  taking advantage of  a formula to relate 
the lower formal level to an observed higher level 
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Functional  causality  offers  another  relation  to 
reductionism. In this setup, higher-level phenomena are 
defined  by  their  relation  (function)  with  other  higher-
level  phenomena  and  the  environment  at  that  level. 
Functional  reductionism  is  a  contradiction,  since  the 
function  is  by definition  only  a  higher-level  construct. 
This  is  also  the  main  holist  approach:  assume  the 
irreducibility of the function to lower levels and consider 
only functional causes at the higher level. In that case, 
reductionism  would  take  the  form  of  assuming  every 
phenomena  has  a  function.  But  how  is  this  function 
defined? It is not possible to isolate one part of the system 
and assign it a function independently of the rest of the 
system:  Dependency  loops  are  inherent  to  functional 
causality.  An elaborated view on self-reference and an 
introduction to Howard Pattee’s semantic closure concept 
can  be found in  [PATT95].  There  may be dependency 
chains,  which  can be  given some degree  of  functional 
causal  power,  but  as  soon  as  a  loop  is  reached,  the 
reduction  argument  breaks  apart.  For  that  reason, 
functional  causality  alone  cannot  meaningfully  be 
associated with reductionism: there may be reductionism 
in a system, but then functional causality will not be the 
only  causal  relationship  in  that  system.  Functional 
irreducibility is thus only meaningful as a definition, that 
a function is only defined at a high level.

The fourth form of causality mentioned in Section 2.2.1 
is the efficient one. Unfortunately, pure efficient causality 
also  suffers  from  infinite  regression.  When  given  an 
efficient causality chain, one can always backtrack to the 
proximal cause, without end, so long as one stays purely 
in efficient  causality.  To break the chain,  one requires 
another form of causality (such as material of formal). But 
then,  the  argument  falls  back  to  one  of  the  previous 
points. Aristotle broke the argument at the other end of 
the chain, by stating the entities act according to their 
finality or purpose, which was relabelled the functional 
cause in Section 2.2.1. Once again, we’re back to another 
form  of  causality.  Reductionism  is  not  a  meaningful 
concept in pure efficient causality terms.

Are there  other  forms of  causality  one  could  apply 
reductionism to?  Perhaps,  but  as  previously  discussed, 
these would certainly also come with their own lot  of 
limitations.  For  example  reductionism  applied  to  the 
aforementioned notion of control also suffers from infinite 
regression (controlling the way to control the way...  to 
control an effect). Amongst the four forms of causation 
presented in Section 2.2.1 the only one that is consistent 
with reductionism is the material one, and possibly the 
formal  one  too  by  construction  or  postulate.  But  as 
noticed,  neither  one  helps  much  in  understanding  the 
emergence issue in general: emergent concepts are usually 
associated with a high-level functional definition.

phenomenon would put that phenomenon outside 
the scope of some emergence definitions presented 
in Section 2.1.

2.2.4 Downward causation and the strength of 
emergence

Downward causation is the statement that some higher-
level construct may exert causal power on the lower-level. 
This  is  the inverse problem as the one detailed in the 
previous  section.  The  controversies  are  once  again 
associated  to  what  exactly  one  means  by  a  causality 
relationship, as reviewed by Jaegwon Kim [KIM99]. An 
illustration  of  downward  causation  with  efficient 
consequences would be the placebo effect,  if  this effect 
really exists12: when a patient is given sugar pills instead 
of active drugs and still reacts as if she/he would have 
received a real medicine. In this case the mind would have 
a downward effect on the body.

Emmeche  et  al. [EKS00]  distinguish  between  three 
types of downward causation: strong, medium, and weak. 
Strong downward causation is the mix of constitutive 
irreducibility and substantial realism of the higher level. 
The medium version is  the combination of constitutive 
irreducibility,  formal realism, and a refinement detailed 
below.  The  weak  version  is  constitutive  reductionism, 
formal realism, and a stronger version of the refinement.

Constitutive  irreducibility  is  another  way of  saying 
that  material  reductionism  alone  is  not  enough:  The 
building blocks that make up the higher level are assumed 
to  involve  a  materially  irreducible  part.  Substantial 
realism additionally claims that these new building blocks 
are matter as such, in the broad sense of a part of reality, 
that  is  “matter”  at  the  higher  levels  is  as  valid  as  as 
“matter” at the lower levels. This amounts to the creation 
of new fundamental matter (broad sense)  ex nihilo, and 
two identical low-level states could lead to distinct high-
level ones thanks to the presence of new compositional 
matter at the high level. This contradicts supervenience of 
the  emergent  property  on  the  low levels,  as  noted  by 
Jaegwon  Kim  [KIM06].  When  considering  downward 
causation,  the  strong  emergence  requirements 
additionally state that new entities have material causal 
powers  downward.  Emmeche  et  al.  [EKS00]  give  the 
example that strong emergence is  like  considering that 
the emergence of the cell as a living substance efficiently  
causes changes in the molecules, making them somehow 
specifically “biological”. This form of emergence is usually 
only  defined  so  as  to  be  rejected,  and  Jaegwon  Kim 
[KIM06] asks whether it is a form of emergence at all.

Medium  downward  causation replaces  the  strong 
substantial realism requirement by a formal realism one, 
and  adds  another  requirement  detailed  below.  Formal 

12 The  placebo  effect  is  quite  controversial,  as 
exemplified  by  the  heated  argument  between 
Asbjørn Hróbjartsson and Peter C. Gøtzsche [HG07] 
on one side, and Wampold  et al. [WIM07] on the 
other. Pain treatment seems to be the domain with 
the least controversy, though even in this case the 
existence of a placebo effect is statistically hard to 
assert.  In  general  the  placebo  effect,  if  any, 
strongly  depends on the experimental  conditions, 
as well as on what symptoms are treated.
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realism does not mean formal reducibility, it means that 
unlike the previous case, the material component of the 
higher level may be formal elements of the lower one as 
opposed to material ones. Both requirements are generally 
accepted so long as these new entities are only considered 
from that level up, and so long as one defines “reality” 
from the higher-level entities point of view. For example, 
a  simulation  could  be  “real”  for  the  agents  in  it,  the 
“matter” the agents manipulate is real for them but only 
formally defined for the lower-level. The problem comes 
with the downward causation argument. At this point, no 
restriction  has  yet  been  put  on  what  the  agents  are 
allowed  to  do  on  the  lower  level.  The  ’biological 
molecules’ example given above for the strong version of 
downward  causation  could  still  have  its  formal 
counterpart with laws that are specific to the agents. For 
the medium version of the downward causation concept 
to be viable there must be some limitation that prevents 
the higher-level irreducible entities to modify, restrict, or 
more generally change in any way, the lower-level formal 
rules that lead to their existence. To use another example, 
so far, the mind could alter physical laws.

The term strong emergence usually13 refers either to 
(or both):
– The first creation of new compositional matter out of 

nothing.

– The lesser form of creation or modification of lower-
level laws or effects.

Emmeche  et al. [EKS00] refine the concept for medium 
downward causation  by adding the  requirement  of  an 
efficient causality restriction, which includes a temporal 
restriction.  This  requirement  excludes  from  medium 
downward  causation  any  change  in  the  formal  laws, 
together  with  any  back-in-time  change  in  initial 
conditions. The agents can no longer modify lower system 
laws in any efficient way, and the mind can no longer 
change the physical laws. In other words, the higher level 
entities  can  only  constrain  the  domain  of  future 
possibilities of the system compared to past history, which 
is reminiscent of  the cognitive domain notion as defined 
by Randall  D.  Beer  [BEER04].  However,  this  does  not 
preclude a unique lower-level state to coexist with several 
different  higher-level  entities,  what  Emmeche  et  al. 
[EKS00] call inverse supervenience.

13 But not always clearly.  Mark Bedau [BEDA03] for 
example defines strong emergence when emergent 
properties are supervenient with irreducible causal 
powers. This formulation is confusing as it does not 
specify  which  causal  powers  and  which  forms  of 
supervenience to consider. Some combinations are 
contradictory,  but  some others  are valid,  like the 
downward entailment definition given further on in 
the main text.  Jaegwon Kim precisely  states  that 
supervenience and irreducibility are two necessary 
but  not  sufficient  conditions  for  emergence 
[KIM06],  and notes  that  how reducibility  is  to be 
understood  in  this  context  will  require  some 
discussion.

One  could  argue  that  according  to  formal 
irreducibility, some phenomena are not logically reducible 
to lower-level  rules and may thus be accepted,  or not, 
with the same lower-level state. In the same way, it is 
possible to subscribe to the axiom of choice, or not, in 
ensemble theory. But then, such a phenomena cannot by 
definition  have  any  downward  causal  power,  which 
contradicts the downward causation concept.

Another  interpretation  is  given  by  Emmeche  et  al. 
[EKS00]. By analogy with dynamical systems, the concept 
of boundary conditions is introduced. Medium downward 
causation  would  take  the  form of  an  influence  of  the 
higher-level concepts on the shape of the phase space, by 
changing some parameters, or by restricting the boundary 
to some region. Nevertheless, Emmeche et al. [EKS00] still 
do not fully clarify this  inverse supervenience concept: 
their conclusion ends up with applying dynamical system 
rules only in a somewhat metaphorical sense.

An additional potential issue with the insertion of that 
restriction  for  medium downward  causation,  is  that  it 
excludes some phenomena like the placebo effect14. This 
effect can be seen as a downward efficient causation from 
the mind on the body. Of course, the downward aspect 
depends on the perspective chosen for what is the mind, 
especially what kind of reductionism is assumed or not. In 
any case, Emmeche et al. [EKS00] do not pretend to solve 
all the controversies associated to downward causation; 
they propose an interpretation framework that admittedly 
does not cover all cases.

Jaegwon Kim [KIM99] proposes  that  the downward 
causation  concept  should  be replaced  by a  downward 
causal explanation one: whether the explanation is given 
in terms of higher or lower level concepts. Jaegwon Kim 
[KIM99] concludes that while this may not be enough to 
save  real  downward  causation,  perhaps  that  is  all  we 
need or should care about.

The  weak  downward  causation version  is  not 
affected by the inverse supervenience problem. As in the 
previous examples, there are new irreducible higher-level 
constituents due to formal realism (the question of what 
form of irreducibility is explained below). Formal realism 
also precludes new material effects to appear from these 
entities  at  lower-level,  as  was  the  case  in  the  strong 
version.  But  unlike  the  previous  examples,  the 
constitution  or  composition  of  these  new  higher  level 
entities is assumed fully materially reducible: the matter 
of the higher level is  made of lower-level  matter.  This 
eludes the problem of the inverse supervenience of the 
medium  downward  causation  case:  material 
supervenience holds for  weak downward causation. As 
for the medium case, an additional requirement states that 
weak downward causation cannot be interpreted as any 
kind of efficient causation.

So,  what  can be the non-efficient  downward causal 
power of a fully materially reducible effect on the lower-

14 Though  that  may  not  be  a  problem  for  this 
particular  example  if  the  placebo  effect  is  non-
existent.
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level? Emmeche et al. [EKS00] give an example in terms 
of attractors of a dynamical system. If some higher-level 
concept  is  identified  with  being  in  an  attractor  basin, 
arguably  functionally  irreducible,  then  the  downward 
causation  is  associated  to  the  fact  that  the  lower-level 
variables can only take some values in that basin and not 
others. The higher-level notion has “restricted” the lower-
level capacities, though in this case Jaegwon Kim [KIM99] 
would  rather  say  this  is  just  a  downward  causal 
explanation, as the restriction is inherent to the system. 
What’s  not  clear  in  the  argument  by  Emmeche  et  al. 
[EKS00] with respect to weak downward causation is the 
type  of  irreducibility  it  allows.  Given  that  material 
reducibility  is  assumed  by  definition,  and  given  the 
remarks  of  Section  2.2.3,  we  may assume that  only  a 
computational  incompressibility  and  functional 
irreducibility is possible with weak downward causation 
as defined by Emmeche et al. [EKS00] (not a formal one). 
Then, downward causation takes the form of a restriction 
on the lower-level possibilities. The question is then the 
extent of this restrictive power.

Weak  emergence is  defined  by  Mark  Bedau 
[BEDA03] when a  higher-level  property is  underivable 
except by a full simulation (no shortcut can be found). 
This  framework  assumes  material  and  local  formal 
reducibility:  The  higher-level  phenomenon  under 
consideration for weak emergence must be fully reducible 
to a set of micro-effects that is “local”. Nothing is said or 
even implied for other macro-effects using micro-effects 
outside this local set (the system is perhaps not globally 
formally reducible). Weak emergence is then equivalent to 
computational  incompressibility  (see  Gregory  Chaitin 
[CHAI74]) over that local set. Weak emergence rules out 
the medium and strong versions of downward causation.

Russ  Abbott  defines  in  [ABBO06]  another  concept 
related to downward causation:  Downward entailment. 
Downward entailment is  an effect  that  is  defined in a 
framework  “functionally  irreducible”  together  with 
“materially  and  formally  supervenient”.  Unlike  the 
previous weak downward causation concept by Emmeche 
et al. [EKS00] the introduction of a requirement about no 
efficient  downward causality is  not  needed  any more 
thanks to supervenience, as is detailed below.

The  combination  functionally  irreducible  /  formally 
supervenient is the one that makes the explanations in 
[ABBO06]  confusing  at  times.  However,  there  is  no 
contradiction. Russ Abbott takes as an example the Turing 
machine  implementation  using  the  Game  of  Life.  The 
function performed by a Turing machine is not logically 
deducible from the game of life rules alone: this requires 
higher-level concepts, the program and the machine itself. 
When considered solely as a precise arrangement of game 
of life cells these concepts make no sense. In other words, 
the  function  is  irreducible,  but  the  formal  aspect  is 
supervenient (different Turing machine states necessarily 
imply different cell configurations). The formal aspect of 
Turing  machines  and  all  computability  theory  is  not 
reducible to the formal rules of the Game of Life. But the 

reason  is  the  functional  irreducibility  that  comes  in 
between, otherwise there would be no reason why formal 
higher-level  abstractions  should  be  considered 
independently of the formal lower-level ones.

Once  this  issue  is  clarified,  downward  entailment 
amounts to reasoning formally on the higher-level to infer 
lower-level  properties,  using  negative  logic  and 
supervenience.  In  other  words,  thanks  to  the 
supervenience  part  of  the  definition,  it  is  possible  to 
reason on the functional part. What this means  is that 
billiard  balls,  gliders,  Turing  Machines,  and  their 
interactions  can  be  defined  in  the  abstract.  We  can 
reason  about  them as  abstractions,  and  then  through 
downward entailment we can apply the results of that  
reasoning to  any  implementation of  those  abstractions 
(Russ Abbott, [ABBO06]). The first  part is  a functional 
interpretation  (billiard  ball),  with  its  associated  formal 
system (reasoning about). Then, thanks to supervenience 
(any  implementation),  the  results  of  the  higher-level 
formalism may be propagated to the lower-level.

In  this  example,  using  Newtonian  physics  on  the 
billiard ball will put constraints on its lower-level material 
and formal implementation. This is saying that since no 
two  higher-level  balls  may have  the  same  lower-level 
implementation (the same atoms), results about a higher-
level  ball  must  necessarily  involve  its  unique 
implementation.  As  in  the  game  of  life  example 
aforementioned,  the  higher  and  lower  levels  formal 
systems are disconnected: The Newtonian laws alone do 
not apply to individual atoms directly, other effects must 
be considered (the ball internal cohesion, etc.). Downward 
entailment,  by  assuming  supervenience,  is  a  way  to 
reconnect  the  formal  systems  after  they  were 
disconnected by the functional irreducibility.

There are undoubtedly many other possible variations 
on  the  subject  of  downward  causation,  and  some  are 
given  by  Emmeche  et  al. in  [EKS00].  So  long  as  the 
hypothesis are well-defined, the academic issue is then: 
Can we test, validate or refute these variations distinctive 
properties, or are they purely theoretical?

2.3 Formally irreducible emergence
Both Mark Bedeau [BEDA03] and Russ Abbott [ABBO06] 
insist on the fact there is no intermediate concept between 
strong  emergence  and  causal  reductionism.  As  was 
explained  by  the  previous  sections  such  a  statement 
requires clarification as to what form of reductionism is 
considered.  In  these  [BEDA03]  and  [ABBO06]  cases, 
material and formal reductionisms are assumed (deriving 
from a simulation assumes formal reductionism, even if 
only locally), but not a functional one (that’s the whole 
point of weak emergence). This section presents the case 
for “functionally and formally irreducible” together with 
“materially  reducible”.  This  precisely  forms  an 
intermediate concept, though as we’ll see further on, not a 
particularly useful one in practice. However, by analogy 
with the presentation by Gregory Chaitin [CHAI05] such 
concept should in fact be the predominant possibility.
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The problem is related in part to the incompleteness of 
formal systems, which is discussed in this section, and in 
part  to  what  we  really  want  to  do  with  these  formal 
systems,  which  is  detailed  in  Section  2.4.  Given  a 
sufficiently complex underlying micro-level system, there 
exist  macro-level  statements  which  are  not  provable15 
(whether positively or negatively) using only this system 
micro-level framework. The question of why and when 
such  formally  unprovable  statements  are  observed  in 
practice is addressed in the next section.

These  statements  are  stronger  than  Mark  Bedeau’s 
weak  emergence  [BEDA03],  in  the  sense  that  any 
simulation of the macro-level effects  would represent a 
logical “proof”, hence these macro-level properties are not 
weakly  emergent.  Of  course,  material  reducibility  may 
very well still hold, depending on the physical definition 
chosen for “material”.  But our formal equations cannot 
explain all  higher-level  observations.  This irreducibility 
problem is generic, fundamental, and cannot be ignored.

The above irreducible statements could at first glance 
seem to be related to strong emergence. However, they 
have some crucial properties:

1.  Their  only  consequences  are  necessarily 
expressed in “higher-level” terms, whatever that means in 
a particular context. By definition, if such an irreducible 
phenomenon could  have  consequences  on  the  level  at 
which the corresponding statement is defined, then this 
would negate the unprovability. For example the halting 
problem does not have consequences on the automaton 
rules themselves. The only consequences in that case are 
on the higher-level of the “program” and its execution in 
time.  Of  course  the  boundary  between  levels  may 
sometimes be unclear as commented in Section 2.1.1, and 
occasionally the original formal system may be expanded 
to new axioms. But then we’re really considering another, 
different,  system with it’s  own higher-level  unprovable 
effects.  As  Russ  Abbott  points  out  [ABBO06],  at  the 
lower-level  the  fundamental  forces  and  particles  of 
physics  are  already  irreducible  phenomena  we  use  as 
axioms for the lower level realism and formalism.

2. There is no practical way to distinguish between 
a  logically  irreducible  effect  at  a  higher  level,  and  a 
logically  reducible  but  computationally  incompressible 
one.  By  analogy  with  the  demonstration  by  Gregory 
Chaitin  [CHAI74]  or  with  the  seminal  article  by Alan 
Turing [TURI36], the problem of identifying a particular 
phenomenon  as  logically  reducible  or  not  is  itself 
undecidable.  As a  proof  sketch,  let’s  consider that  one 
could define an order for the different possible simulations 
by size, for example using the same binary coding as in 
[CHAI74], or the  enumeration of computable sequences 

15 In this section we’re concerned with the limitations 
on  weak  emergence  as  defined  by  algorithmic 
incompressibility, which is precisely the framework 
in  which  Alan  M.  Turing  [TURI36]  notion  of 
uncomputability  has  consequent  implications  as 
was  demonstrated  by  Gregory  Chaitin  [CHAI74]. 
The  relation  with  Gödel’s  theorem is  provided  in 
Section 11 of [TURI36].

from [TURI36]. Then let’s try all simulations one by one 
in  order.  If  we  find  a  simulation  that  produces16 the 
phenomenon,  fine,  we’ve  proved  it  is  both  logically 
reducible and computationally incompressible (we found 
the shorter version). Otherwise, there is no way to decide 
when to stop, there is the possibility a larger simulation 
produces the desired phenomenon:  We can’t  decide on 
logical reducibility.  Consequently,  given a functionally 
defined higher-level phenomenon, there is no general 
way to distinguish whether it is formally reducible but 
incompressible or formally irreducible.

3.  Given  the  difficulty  to  “revert”  even  simple 
deterministic  chaotic  dynamical  systems to  their  initial 
conditions  and  evolution  rules,  exhibiting  a  logical 
reducibility  for  a  given  practical  problem  (and  not  a 
suitably designed scenario) may be computationally very 
complex. Not only is it impossible to distinguish between 
a  theoretically  logically  reducible  or  not  higher-level 
phenomena in general because this would be undecidable, 
but  proving  reducibility  for  the  systems  that  are 
theoretically reducible is probably intractable on any real-
sized problem.

What about strong emergence? Either a phenomenon is 
logically reducible to micro-effects, in which case it is a 
case  of  formal  reductionism,  not  a  case  of  strong 
emergence. Or it is logically irreducible, but then, the first 
point  above  is  in  essence  a  rejection  of  the  strong 
downward causation hypothesis in that case. Therefore, 
the combination of both logical irreducibility and strong 
downward  causation  is  a  contradiction:  this  rules  out 
strong emergence.

What remains are logically irreducible phenomena that 
do not have any effect at micro-level, though they may 
still  be  reconnected  to  the  lower-level  by  using 
supervenience as previously mentioned, which provides a 
form of downward causal explanation or entailment as 
Russ  Abbott  [ABBO06]  puts  it.  But  according  to  the 
second  property  above,  these  logically  irreducible 
phenomena  are  not  distinguishable  in  practice  from 
weakly emergent ones: The problem of deciding whether 
a particular statement is logically irreducible, or logically 
reducible  but  computationally  incompressible,  is  both 
theoretically undecidable in the general case and probably 
practically intractable for the exceptions anyway. So, this 
explains why previous works using the weak emergence 
concept still remain valid: Even if irreducible phenomena 
(logical or incompressible) would be much more frequent 
than reducible  ones  by analogy with  [CHAI05]  so  we 
probably  have  already  met  some,  we  can’t  make  the 
distinction in practice. And in particular for what Russ 

16 The  difference  between  the  present  case  and 
[CHAI74]  and  [TURI36]  is  that  the  phenomenon 
under  investigation  is  defined  functionally  at  the 
higher-level,  not  formally  from  within  the  lower-
level  system.  Provided  we  have  a  way  to  test 
whether  the  phenomenon  is  equal  or  not  to  a 
simulation  result,  then  the  suggested  proof  is 
essentially the same as in [CHAI74] and [TURI36].
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Abbott calls a  very complex autonomous, self-sustained 
entity, whose functional definition is linked to other such 
autonomous higher-level entities and their environment 
[ABBO06].

Pure formal reductionism for all higher-level entities is 
insufficient  in  the  general  case  due  to  incompleteness. 
Strong  emergence  was  rejected.  As  mentioned  in  the 
introduction to this section, the only remaining possibility 
is the one that was dismissed by both Russ Abbott and 
Mark  Bedau:  an  intermediate  level  between  formal 
reductionism  and  strong  emergence.  Since  it  is 
undecidable  whether  an  observed  functionally  defined 
entity  could  be  formally  reducible  or  not,  that 
intermediate  level  both  complements  and  is 
indistinguishable  from  weak  emergence.  Let’s  call  it 
formally  irreducible  emergence,  for  lack  of  a  better 
term.

One  may  then  legitimately  ask  whether  formally 
irreducible emergence is at all observable in a computer 
simulation. The next section investigates why it is in fact 
observable, and why the formally reducible or not aspect 
of an observed entity is actually unimportant.

2.4 Implications for formal systems

2.4.1 Analysing the results of simulations

Weak  emergence  is  not  a  very  useful  concept  for 
“understanding” an emergent phenomenon in practice. Of 
course, assuming we could obtain a simulation equivalent 
to running the system itself, then possibly we could make 
predictions if that simulation can be made to run faster 
than real-time. This is certainly useful, and to a certain 
extent this is how we already use numerical simulations, 
especially in industrial contexts.

However,  the  full  simulation  tells  nothing  about 
understanding  the  higher-level  phenomenon  as  such. 
Understanding involves abstracting notions and entities 
that  we  can  relate  together  by  reasonably  concise 
statements (compared to the simulation) that still produce 
good approximations. Consider as an analogy saying that 
as  long  as  one  sticks  to  the  exact  wave  functions  of 
quantum physics  then quantum physics  apply  and  the 
object is reducible to waves. But in the case of considering 
a macro-level object (like a stone, a flower...)  what we 
want is usually not to consider it as an intractable bunch 
of waves, but rather to find how it relates to other objects 
at its own level.

The  task  is  thus  to  find  simple  relationships  that 
describe  entities  and  their  interactions  with  good 
accuracy, so our limited human minds may comprehend 
them.  Steven Weinberg  [WEIN02]  says  that  Science  is 
concerned with simple things. A corollary is the negation 
of the possibility for an objective definition of emergence 
that corresponds to our intuition. An advanced futuristic 
artificial intelligence or an hypothetical alien entity could 
very well label as trivial phenomena our brain structures 
have no chance to comprehend.

Let’s now consider a computer simulation which can 
be made fully deterministic and reproducible. If one sticks 
to the exact observations obtained from that simulation 
they  are  surely  formally  reducible  (though  perhaps 
incompressible). But what we want is to find reasonably 
concise  and  precise  approximations  of  the  higher-level 
entities  and their  behaviours that  are  produced by the 
simulation.  Does  formal  reducibility  still  holds  in  this 
case?  Can  the  simulation  produce  observable  and 
reproducible phenomena, functionally defined such that 
they are irreducible to the simulation program laws?

2.4.2 Examples

Let’s consider for the purpose of this argument that the 
observer  has  total  knowledge  of  the  underlying  rules, 
which does not generally hold if the observer is part of 
the  system,  but  which  is  reasonable  in  the  case  of  a 
programmer  examining  a  computer  simulation.  Each 
observed statement is  then perfectly logically reducible, 
though  some  statements  are  computationally 
incompressible (no shorter simulation can be found). If 
what we want to do is finding a shortcut, a concise and 
reasonably precise law that can describe the observation, 
then there is no guarantee that the approximation is itself 
formally reducible.

Example  1:  Generalisation  across  simulation 
runs

Let’s  write  a  program  that  plots  the  Riemann  Zeta 
function  on  the  complex  plane  strip  with  real  part 
between 0  and 1.  We then observe  that  zeroes  appear 
exactly on a straight line for all the simulation runs, and 
for as precise a result as we wish by setting the floating-
point resolution. Can we generalise to all future runs?

Example  2:  Generalisation  by  formalising 
higher-level laws

We are given a complex simulation in which some results 
always  appear  nearby  a  simple  curve  (parabola,  line, 
exponential...), but there are small variations. As is usual 
in physics, let’s consider these variations are noise and 
then derive a law with the curve to predict the coming up 
of  new points  with  good accuracy17.  The curve cannot 
then be  directly  related  to  the  lower-level  system:  the 
formal  reduction  applies  only  to  the  exact  points  that 
were produced, including what was considered noise. And 
even without noise what was really obtained is only just 
a mathematical conjecture, as in Example 1, and there is 
no  guarantee  one  could  formally  generalise  to  other 
simulation  runs.  But  the  higher-level  shortcut  is 

17 Many  physical  laws  work  this  way:  we  build 
descriptive laws of motion, heat propagation, etc... 
that  give  a  reasonable  approximation  of  the 
corresponding high-level effects. Then part of what 
we  call  “noise”  includes  the  variations  against 
these imperfect approximations.
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potentially useful, an “emergent” law from the simulation. 
We may consider the emergent law on its own level as an 
entity in itself, and use it there as we would for “physical” 
laws. One could then try to apply the scientific method on 
the  higher-level  as  suggested  by  Jochen  Fromm 
[FROM06], by defining experiments to get the limits of 
that law, check conditions whether it applies or not, etc. 
Without caring one way or another for the reducible to 
the lower-level or not aspect of the higher-level entities.

Example 3: Further types of generalisations

Let’s assume that the result of executing a program with 
many individual parts (cellular automata, simulated ants, 
etc.) is that some of them agglomerate into entities with 
definite shapes (gliders, a hatchery in an ant colony, etc). 
The formal reduction argument applies only to the exact 
state and position of each individual part.  As before it 
may be that  the  higher  level  shapes  suggested by the 
individual points are mathematical conjectures, possibly 
unprovable. Moreover, and especially in the case of an ant 
colony, the shapes are possibly not exact, or with fuzzy 
boundaries (see also the controversies about autopoiesis in 
Section 2.1.1). Yet these would be considered emergent by 
many definitions, and once again, worth considering in 
themselves at a higher-level. But as before, they may very 
well  then  be  formally  irreducible.  This  is  now  a 
generalisation in space, not time. When combining both 
time and space, i.e. when deriving laws for the evolution 
of  the  above  higher-level  entities,  then  formally 
irreducible emergence may hold on both aspects. When 
additionally  the  simulation  is  non-deterministic  (for 
example in some cases when using threads or network 
links,  or  physical  random  number  generators)  the 
“emergent”  entities  may very well  still  be observed.  If 
they do, we’d have an even harder time trying to reduce 
them to the program formal rules.

Example 4: Methodological consequences

We are now given an artificial life simulation, in which 
we note  that  on  average agents  have  a  preference  for 
doing  one  kind  of  action  rather  than  another.  Is  this 
statement formally  reducible? If  we consider  the  exact 
runs that were observed and the exact tendency of the 
agents that was noted, and assuming the simulation is 
deterministic, yes. But if we want to generalise to other 
runs, we don’t know. Perhaps there are some regions in 
parameter space where the simulation does not produce 
this tendency, for example. Reducibility doesn’t matter in 
this case, it’s much more fruitful to consider the higher-
level in itself (the agents tendency) and apply it a practical 
approach. By using that “tendency law” and applying it 
the scientific method as suggested by Jochen Fromm in 
[FROM06], one may perhaps refine that “tendency law” 
and find the regions of parameter space where it does not 
work (if any), or just be satisfied with the law holding for 
all usual runs. By analogy the Newtonian laws hold for 

most everyday life situations, though relativistic effects 
are necessary to explain some observations (and actually 
may  be  useful  in  practice  too,  for  computing  GPS 
positions accurately for example), and neither of them has 
yet  been formally related to  the lower-level  of  particle 
physics.

2.4.3 In practice

The task for understanding a phenomenon, simulated or 
real, amounts to finding a reasonably precise and concise 
approximation for  that  phenomenon and its  behaviour. 
Whether that phenomenon is  formally reducible or not 
cannot be decided generally (see Section 2.3) and does not 
matter  for  practical  purposes  anyway (see  above).  The 
difference  between  formal  irreducibility  vs  formal 
reducibility is that in the former case the simple shortcut 
description is necessarily approximative, rather that very 
often approximative for the formally reducible case (due 
to  the  predominance  of  incompressible  statements,  see 
Gregory Chaitin [CHAI74]).

More generally  speaking,  by considering  the  higher 
level entities in themselves (functionalist approach) and 
trying to formalise their relations directly at the higher 
level (reductionist approach), one does not need to care 
whether  these  relations  and  entities  are  “emergent”, 
reducible,  or  in  any way logically  connected  with  the 
lower-level system, in order to produce satisfying results 
at the higher level.

Once again,  this  is  reminiscent  of  what  happens  in 
physics:  higher  level  prediction  laws  (like  Newtonian 
physics)  are convenient but imperfect  shortcuts for  the 
formal system of equations describing interactions at the 
nanoscale. The normal procedure is then to try to refine 
the observations so as to validate or invalidate these laws, 
potentially  leading  to  the  creation  of  new  measuring 
devices, and so on, until we either improve the higher-
level  theory  or  find  a  better  one  for  explaining  the 
observations.  This what  Thomas S.  Kuhn calls  normal 
science [KUHN62]. At this point, downward entailment 
(see  Section  2.2.4  and  Russ  Abbott’s  [ABBO06] 
presentation) may be a way to reconnect the higher-level 
formal laws with the lower-level system.

The  main  implication  for  formal  systems  and  for 
simulations in particular is that even on a computer, it is 
possible  to  observe  logically  irreducible  functionally 
defined phenomena, thus formally irreducible emergence 
as previously defined. This is a counter-argument to the 
formal (logical, causal) reducibility objection to computer 
simulations:  Depending on its  setup,  a  simulation may 
still  be  adapted for  the  study of  complex systems and 
emergence, even the formally irreducible one.

The next section extends on this argument to consider 
what  can  actually  been  done  in  practice  for  complex 
systems.
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3 Practical investigations
The task  of  finding  a  useful  approximation usually 

involves model building and testing. What we can do is 
collect evidence for micro to macro relationships, and then 
from these observations try to build a “theory” specific to 
the  system  under  investigation.  The  phenomena  of 
interest may not need to be fully and perfectly described 
by  these  models.  So  long  as  these  models  and  their 
associated formal systems reasonably explain and allow 
predictions with quantifiable errors, then we have hope 
for some degree of control on these emergent phenomena. 

Jochen Fromm proposed in [FROM06] that the problem 
of  model  building  for  emergence  is  equivalent  to  and 
should be addressed by the general scientific methodology 
of theory building, for each phenomena. In other words, 
each system should be considered as its own little world, 
with its peculiar rules, and we should try to build theories 
about higher-level effects in that little world.

Since this is a daunting task, what is proposed here is 
to concentrate on providing tools and methods that may 
help  in  these  investigations.  There  are  at  least  two 
approaches:

• Consider  the  new  level  from  scratch.  Identify 
sufficiently stable patterns in system state. In the 
case  where  a  formal  system  is  present,  the 
identification may rely in part on the dynamical 
system  tools  and  techniques  for  detecting 
attractors. But this is not enough, we also need 
global  tools  to  identify  computationally  or 
formally  irreducible  effects.  A  qualitative 
approach  may  rely  simply  on  observation 
(subjective tool). A quantitative one may rely on 
the premises of a formal system for that new level 
if such system is available, or more realistically 
on the  detection of  repeated  patterns  (machine 
learning) in the hope of building such a formal 
system embryo. In that last case, the goal is to 
identify the major entities that have a significant 
role and apply automated tools to build candidate 
hypothesis of their behaviour. For example, one 
could start with a crude formal system consisting 
of  the  spacial  and  temporal  concentrations  of 
lower-level  entities,  like  agents.  This  could  in 
turn lead to the identification of groups of agents 
seemingly “moving” together. This is a first crude 
concept of a higher-level functional definition for 
a “group” and an operation “move” on that entity. 
Then, refinements would consist in defining what 
exactly  that  group  is,  perhaps  using  pattern 
matching, what are the laws of motion of that 
group, group interactions, and so on. Ultimately, 
a motion theory with formal laws would allow 
prediction in that system.

• Re-use  the  observables  that  already  exist  to 
investigate  what  happens  globally,  at  both  the 
lower and higher levels, and try to relate both. 
For example, in a recurrent network, a high-level 

measure could be the learning performance. For 
an  evolutionary  experiment  a  global  low-level 
measure could be the gene diversity. This does 
not require a formalization of either the lower-
level (but it might already exist) and the higher-
level  (we  might  have  measurements  available 
already).  Then,  control  may be achieved either 
top-down or bottom-up, by using respectively the 
global  or  local  measurements  to  define  an 
objective. In each case, the other measurements 
provide a way to reach that objective.

Of course, both are complementary and their combination 
is probably necessary for understanding micro-to-macro 
relationships. Once a formalism, or at least entities, can be 
defined at a level of investigation, global measurements 
may  be  made  on  them.  For  example,  the  number  of 
prey/predator cycles in an artificial life system relies on 
the identification of what is a population cycle. We could 
then monitor and hopefully relate global measurements 
on the population cycle with global measurements on the 
agents themselves. 

As  for  the  downward  entailment  example  (Section 
2.2.4), functional irreducibility splits the micro and macro 
level  formal  systems.  The  aforementioned  population 
cycle measurement refers to the change in time (formal 
aspect) of a quantity (the population) that is not defined at 
the level of the agents and their interaction rules (lower-
level  formal  system).  It’s  important  to  always refer  to 
these precise effects, and not put the “population cycle” 
concept is the “emergence” bag. The goal is to define the 
investigation tools  that may help refine the emergence 
concept, not to presuppose what it means beforehand.

Both quantitative and qualitative investigation tools 
are necessary to understand what happens in a system. 
The qualitative tools  provide a basis for the definition, 
and further refinements, of concepts and entities acting at 
a  given  level.  The  quantitative  tools  may  help  in 
formalizing a system of “laws” acting on these entities, 
which in turn is the basis for a “theory”. The goal is to be 
able  to  perform  some  prediction  and  control  on  the 
higher-level entities, if  only so as to be able to further 
improve/refute the candidate theory in progress for the 
system considered.

The next section reviews what could be done for the 
first  point:  trying  to  build  and formalize  entities  from 
scratch,  by investigating  data  and relations  at  a  given 
level.  Sections 3.2  and 3.3  investigate  the second point 
with the two different approaches: what can be done by 
the measurement of a global observables to derive micro-
macro  relationships  (global  control),  and  what  can  be 
done at the lower-level to relate it to a global property 
(local control).
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3.1 Data-based  investigation  techni-
ques, starting from scratch

3.1.1 Presentation

This subsection deals with trying to identify entities 
and their  relations  with  the  following  assumption:  we 
only  have  access  to  some  data.  The  data  is  collected 
beforehand.  No  mention  is  done  about  the  formal  or 
functional  definitions  that  lead  to  the  observables that 
were  measured  (and  which  provided  the  data).  The 
approach  is  pragmatic:  from  an  unknown  lower-lever, 
data was captured. The goal is in this section to formalize 
a  system at  the  higher-level  consisting  of  entities  and 
their relations, ultimately forming the basis for a theory at 
that level.

The term dynamical regime is used to refer to some 
sufficiently  stable  pattern  in  system  state.  The 
terminology of  an attractor  would imply some idea  of 
finitude as well as a reference to dynamical systems. A 
dynamical  regime  may  be  transient,  or  even  not 
associated to particular underlying equations. In an open 
and  dissipative  system,  this  would  describe well  some 
sustained pattern, that is not stable in itself, but which is 
sufficiently  persistent  so  it  can  be  identified,  like  a 
whirlpool.

How to identify a dynamical regime? What aspects of 
the  data  can  be  used  in  the  definition  of  the  regime 
identifier?  The  approach  proposed in  this  section  is  to 
identify dynamical regimes from data only. This is not to 
say theoretical values can’t be used; actually a theory is 
needed to  compile  data  in  a  significant  way.  What  is 
meant is that the regime identifiers are data-driven, in the 
sense  they  don’t  require  extra  information  about  an 
internal  or  lower-level  model.  If  such  information  is 
available for a particular system, then an extension to this 
method would be to include it, using Baysian statistics for 
example.

All we have at this point are observed variables (time 
series)  that  can  be  measured.  These  series  should  be 
modified on-line as new data is observed, and older data 
should be discarded in the case of transient non-stationary 
systems.  Some  form  of  statistics  is  necessary:  By 
definition, a dynamical regime is observed through time, 
individual observations are just the limit case. Thus data 
should  be  compiled  over  a  time  range  if  a  dynamical 
regime is  to  be identified correctly.  Too short  a  range 
implies  the  risk  of  not  having  enough  information  to 
identify the regime. Too long a range implies the risk of 
compiling  data  from  different  regimes  with  non-
stationary effects.

In  addition,  a  choice  should  be  made  on  which 
observable to apply the analysis on. This choice will also 
influence the possibility for local control: the result of a 
control is described in terms of the chosen observable.

Statistics should be interpreted here in the broad sense 
of  the term:  a  technique to  extract  some characteristic 
value  from  the  data,  supposedly  depending  on  the 

dynamical  regime.  Thus,  contrary  to  basic  mean  and 
variance statistics, the data sequence order is important. 
Actually, when referring to computational irreducibility, 
what we’re looking for may be related to an approximate 
algorithmic compression of the data: condensing in a few 
values  the  information  contained  in  the  sequence  of 
values  taken  by  the  observables.  The  argument  about 
formal  reducibility  or  not  was  treated  in  the  previous 
theoretical discussion: For all practical purpose, we don’t 
know whether the data is perfectly compressible or not, 
but  this  doesn’t  matter.  The  goal  is  to  seek  for 
approximate and simpler to comprehend laws and entities. 
The compression needs not, and should not, be perfect in 
our case.

Moreover,  due  to  measurement  errors,  natural 
variability in the initial conditions, or simply the sampling 
mechanism, it is expected that a single dynamical regime 
leads to different time series anyway. Each of these series 
only have in common the fact they are generated by the 
same  dynamical  regime.  But  each  of  these  series  also 
contains  additional  information  related  to  the 
measurement  process,  sampling  mechanism,  etc.  This 
additional  information should be discarded as  it  is  not 
related  to  the  dynamical  regime  itself.  Consequently, 
what  we’re  seeking  here  is  a  way  to  extract  some 
signature,  some  relevant  information,  inherent  to  this 
particular  dynamical  regime,  and  that  distinguishes  it 
from other regimes. This identifier should be robust to the 
aforementioned  effects  introducing  spurious  extra 
information.

All these potential problems call for an intensive but 
careful use of machine learning techniques. All there is to 
do18 is to shift the perspective of machine learning from 
useful  function  approximation  and  optimisation  for 
solving practical problems, to useful tools for the practical 
investigation of complex systems. 

3.1.2 Applicability of data-driven techniques

The goal of this document is not to propose a complete 
overview of the literature about modelling and time series 
analysis techniques. This was for example proposed by 
Cosma  R.  Shalizi  in  [SHAL06]  and  Hegger  et  al. in 
[HKS99].  However,  recognizing  the  issues  related  to 
dynamic regime identification is a first step if we intend 
to solve these problems. In particular, attention should be 
given to:

– Capturing  sequence  information.  This  means 
finding a way to summarize changes in time of the 
data,  a  precondition  for  identifying  time  patterns. 
These patterns relations could then perhaps be used 
for prediction. For example, times series from an EEG 
may perhaps lead to the early detection of epilepsy 
crisis.
– Identifying  global  trends.  This  is  similar  to  the 
seasonal component in weather forecasting. The same 
measure, like a temperature value of 30°C, will not 
have  the  same  meaning  and  predictive  impact, 

18 And without assuming this is an easy task...
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according to whether it’s in the global trend (ex: in 
summer, or at the equator) or whether it is anomalous 
(ex: in winter, or at the poles).
– Resistance to noise. As aforementioned the goal is 
not to obtain a perfect compression of the data but to 
get robust and simple indicators of what’s going on. 
Noise  is  expected,  the  dynamic  regime  should  be 
robust to small perturbations.
– On-line  incremental  updating.  The  goal  is  to 
identify dynamical regimes, which must be updated 
as  new data  arrives  and expired data is  discarded. 
Since dynamic regime identification is only one task 
that may help in defining observables or formalizing 
higher-level  entities,  it  is  only one step in  the full 
system  analysis  and  must  be  computationally 
efficient.
– Maintaining  statistical  significance,  especially 
when  replicating  the  experiment  with  different 
measuring process.
– Finding good observables to apply the techniques 
to. It’s often better to process a synthetic and reliable 
observable  than  a  thousand  noisy  data  streams. 
Unfortunately, this  is  once again a case of circular 
argument: chances are, supposing there exists an ideal 
regime identifier, that this identifier would itself be 
the best observable for other techniques.

Combining  different  techniques  may  help  capturing 
different  information,  like  a  multifractal  analysis  (See 
Muzy et al. [MBA93] and Abry et al. [AJL04]) provides a 
different  information  than  a  principal  component 
projection  (ex:  incremental  version  by  Hall  et  al. 
[HMM98]), a Lyapunov exponent estimation (Hegger  et 
al. propose a useful package [HKS99], Rosenstein et al. a 
practical  algorithm  [RCL93]),  etc.  Then,  an  identifier 
could perhaps be built on top of the various perspectives 
obtained by different techniques. Global indicators, like 
the Grassberger-Crutchfield-Young statistical complexity 
(see  Section  2.1.3  and Shalizi  [SSH04,  SHAL06]),  could 
also be used when they are applicable. In a given context, 
some combinations may work better than others. Thus it 
would be interesting to try different regime identifiers in 
a local to global problem, by checking the influence on the 
global  patterns.  Alternatively,  the  combination  of 
different  indicators  may  simply  help  in  extending  the 
coverage  of  the  identifier.  Some  techniques  fail  in 
particular  cases:  a  time-lag  embedding  (Sauer  et  al. 
[SYC91]) may give spurious values due to noise or cycles 
(Rosenstein et al. [RCL94]) , a data series may not exhibit 
a power or an exponential law [HKS99], etc. Combining 
different techniques could allow an identifier estimation 
even if one technique fails. The problem with this idea is 
to ensure the significance of the identifier in the partial 
failure case. For example, the information “cycle length” is 
hard  to  significantly  combine  with  the  information 
“Lyapunov exponent value”. In all  subsequent usage of 
these identifiers the distinction remains. Hence, this is not 
a combination of  techniques at  all,  but rather a list  of 

cases. In turn, this introduces computational artefacts on 
the observation of  higher-level  effects  based such lists: 
The different cases may not be significant at higher-level, 
but  they introduce spurious observations.  For  example, 
just because a Lyapunov exponent estimation failed due 
to noise or lack of data doesn’t mean there is no attractor 
at all.

An  on-going  field  of  research  concerns  the 
development of new data-based mathematical techniques 
for time series analysis. Combining the existing ones in a 
computationally efficient, incremental, and easy to apply 
way  is  another  challenging  task.  The  dynamic  regime 
identifier could be a first step to search for and define 
higher-level  entities.  These  techniques  could  also  be 
introduced  in  machine  learning  algorithms  so  as  to 
automate  the  definition  of  global  observables.  These 
observables and entities could then be used in a second 
step for the formalization of higher level governing laws, 
supposing these laws exist for a given system.

3.2 Global control: measuring micro-to-
macro relationships
This  section  relies  on  the  assumption  a  significant 
observable can be defined globally for a given level of 
investigation.  In  the  case  when  a  formal  system  is 
available for a lower-level, the observable may be defined 
in that formal system, possibly using techniques from the 
previous  section.  In  the  case  some  entity  can  be 
functionally defined at a higher-level, then measurements 
may  be  made  on  this  entity.  For  example,  the  global 
observable could be a pressure, a population count, etc. 
The working hypothesis is that global measurements are 
made  at  a  given  level.  Whether  and  how  the 
corresponding observable  is  reducible  or  not  to  lower-
levels is of no concern for this section.

Global control  is  necessarily related to  one form or 
another of downward causation, the most effective one 
being downward entailment, as will be detailed below. A 
target  objective  is  described  using  the  higher-level 
observable. The goal of global control is to find the extent 
of the lower-level states that can produce this higher-level 
observable.

For example, let’s consider autonomous entities in a 
complex simulation, like prey and predator agents. The 
previous section has dealt with the possibility to create a 
higher-level formal system from scratch. For example, we 
could define a global entity like the agent populations. 
Let’s assume we observe prey-predator cycles. We could 
then try to derive laws for the evolution in time of the 
populations, that approximate these cycles. Then, given a 
current observation, we could perhaps predict according 
to  these laws the future global state of  the system, or 
refine the “population theory” that we’re building on that 
system. 

This section deals with the other possibility: creating 
measurements at  global  and local  levels,  and trying to 
relate both. The population observable does not need a 
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complete higher level formal system to be applicable. It 
can  be  used  as  part  of  the  target  objective  for  global 
control. Other global measurements may be made: on the 
population diversity, on the agent’s lifespan, etc. A target 
high-level  objective  is  then  defined,  for  example 
maintaining a diverse population for as long as possible.

At the lower-level, other observables are defined. For 
example, the amount of energy that flows in the system, 
some physical limits for the agents, some possibilities for 
their  interactions,  and  more  generally  anything  that 
globally influences the lower-level simulation.

Conceptually, each higher-level observable can take a 
range  of  values  that  depends  on  the  lower-level 
parameters.  In  the  simplest  case,  it  can  take  only  one 
value, and this defines a landscape. In the usual case, each 
higher-level observable, and their combination, may take 
a restricted range of values depending in a complex way 
on the lower-level parameter values.

What’s missing now is a set of tools that would help 
relate both worlds. For example, statistics on aggregation 
values  frequently  taken  by  higher-level  observables, 
bifurcation  analysis,  and  more  generally  anything  that 
may  help  understanding  the  higher-level  target 
behaviour, and the shape of the landscape it defines on 
the lower-level variables in the simplest case.

By  analogy  with  the  weak  downward  causation 
hypothesis  (see  section 2.2.4),  the  global  control  would 
then take the form of a restriction of the domain of the 
lower-level observables. The allowed range would be the 
one that maximizes the probability for the higher-level 
target to be reached (ideally with probability 1 for full 
control).  Given  a  higher-level  objective,  the  range  of 
lower-level  possibilities  is  limited in a way that  is  not 
defined at that lower-level (like a population cycle). The 
only way to  understand why these limitations  and no 
other  is  to  consider  the  higher-level  concepts:  this  is 
downward explanation as Jaegwon Kim puts it.

The more advanced version of  this  control  is  using 
downward  entailment  instead  of  weak  downward 
causation. In this setup, some form of higher-level law has 
been found that can adequately describe what happens 
independently  of  the  lower-level,  like  the  hypothetical 
“population  theory”  aforementioned,  a  straight  line 
recurrent  pattern,  or  Newtonian  physics  to  re-use 
examples  from section  2.4.2.  Applying  this  law would 
produce  some  constraints  at  higher  level.  The  second 
assumption necessary to apply the downward entailment 
concept  is  supervenience.  This  allows  to  translate  the 
newly found higher-level constraints in lower-level terms. 
But once again, the range of lower-level possibilities is 
limited  in  a  way  that  can  only  be  understood  using 
higher-level considerations.

To summarize:
– Global  control  is  possible  without  higher  level 
formalization, but such a formalization would help. 
Reproducible global measurements need only be well-
defined, the “reason” for these measurements and the 

existence  of  the  entities  they  involve  need  not  be 
specified.
– Predictions  for  the  higher-level  target  is  made 
either by restricting the lower-level parameters range 
directly, or by using a formal high-level “law” acting 
on the target. In each case, maximizing the prediction 
reliability is the goal of global control.
– The  result  is  a  limitation  of  the  lower-level 
parameters and rules that may only be understood in 
terms of a higher-level concept.
– Tools and techniques that help relating both levels 
play the same role here as tools and techniques for 
time series analysis and machine learning played in 
the  previous  section.  Therefore,  as  before,  this 
document is  a  call  for  the creation of  a  battery of 
ready-to-use investigations tools.

A simple application of this method in a multi-agent setup 
was done by the author in [BROD05] with more details in 
[BROD07A]. That study relied on the gross simplification 
consisting  in  averaging  the  values  of  the  higher-level 
observables over multiple runs, so as to define a landscape 
over lower-level parameters. This is a coarse way to study 
the micro-macro relationships, but nonetheless allows to 
apply the first global control technique described in this 
section, and it has provided concluding results.

3.3 Local  control:  engineering  lower-
levels
Engineering local control rules and running the system is 
the most conventional way to proceed. Most experiments 
concerning emergence try to update the local rules and 
monitor what happens. Usually they then argue whether 
the  global  phenomena  is  expected  or  not  given  the 
assumptions  that  were  made,  or  whether  it  can  be 
considered “emergent” or not, which we’ll refrain to do 
given  the  discussions  in  section  2.  This  subsection  is 
therefore not  a new approach to the study of complex 
systems.  However,  it  is  the  occasion  to  highlight  the 
change in the way to study them that occurred in the past 
years.

The dynamical systems point of view is that a higher-
level  phenomena  could  possibly  be  related  to  internal 
state attractors. This idea was previously expressed in the 
discussion  about  weak  downward  causation  (section 
2.2.4). In a recent study Robert Legenstein and Wolfgang 
Maass [LM07A] show that the “attractor = higher level 
state”  concept  is  no  longer  enough.  Studies  like  for 
example the one by Stefan Bornholdt and Torsten Röhl 
[BR03] place attractors and their length as just another 
parameter that changes, and attractor shifts due to noise 
are an essential part of the investigation. In the context of 
the  previous  section,  this  could  even  provide  an 
observable for the global state of the system.

In  the  “large  noisy  networks  with  ever-changing 
attractors  view”,  a  dynamical  regime  would  not  be 
associated to one attractor (or sustained cycle), but rather 
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to some global property, with attractors just a component 
of  that  global  property.  It’s  still  possible  to  use  the 
dynamical  regime  concept,  but  it  has  become  less 
grounded in the attractor or sustained state terminology. 
More  attention  is  given  to  the  higher-level  functional 
aspect at the expense of the lower-level formal aspect.

The complex systems are still the same, but the way to 
investigate  them  has  changed.  Instead  of  trying  to 
characterize  attractors,  Lyapunov  exponents,  and  other 
dynamical system notions, the attention is now on global 
statistical  properties  and  measurements.  Consequently, 
the attention shifts from the “far from equilibrium” part to 
the “thermodynamics” part, to reuse the notions presented 
in section 2.

An  example  of  this  shift  of  attention  is  Wolfgang 
Maass  Liquid  State  Machine (LSM)  random  recurrent 
spiking neurons network as defined by [MNM03], which 
has been shown to be able to compute without stable state 
[MNM02].  A  similar  approach  using  sigmoid  transfer 
functions was introduced by Herbert Jaeger as Echo State 
Networks (ESN)  [JAEG01].  Both  contrast  with  the 
previous  generation  of  neural  networks,  for  example 
multi-layer  perceptrons  (MLP),  where  the  goal  was 
precisely to make the network converge to a stable state. 
The  LSM and  ESN comprise  hundred  or  thousands of 
nodes, and their recurrent feedback loops are an essential 
part of the system. The MLP were generally limited to a 
few tens of nodes, and the feed-forward without recurrent 
loop  aspect  was  important  to  prove  the  convergence 
analytically.  In  the  LSM  setup,  the  fading  memory 
property [LM07A] assumes the role of the dissipative part 
of the system. The openness comes from the assumption 
external  energy  is  available  to  emit  spikes,  which  by 
definition are short impulses of energy higher than the 
rest state. The LSM is then continuously in a sustained 
state. The MLP were equivalent to a dissipative discrete 
dynamical system.

Another reason for recent advances seems to be simply 
the  increase  of  available  computing  power.  When  we 
could only study simple dynamical systems, the precise 
equation  properties,  attractors,  bifurcations  and  so  on 
were  the  main  objects  of  study.  Now,  all  these  are 
acquired parts, not the centre of attention. For example, 
being able to simulate ten thousand times more nodes in a 
neural  network  drastically  changes  the  view  of  what 
“dynamic”  and  “large”  means.  Some  effects  are  only 
visible at large scales, like the error rate dropping below a 
few percents only when the network size is above several 
hundred  nodes  [MNM03].  The  same  way  some 
mathematical  properties  only  appear  in  higher 
dimensions, it seems that some properties of the system 
states only appear in high dimensions. Except for specific 
particular  cases,  it’s  then  not  practically  possible  to 
proceed to a formal analysis.

Local control is still possible, but once again new tools 
and techniques  should be invented or  at  least  existing 
ones should be adapted. As for the time series and the 
micro-macro analysis tools aforementioned, this section is 

a call for qualitative and quantitative tools to statistically 
describe large scale behaviours. This could be a synthetic 
parameter,  an  order/chaos  boundary  indicator  (for 
example  as  in  Natschläger  et  al. [NBL04],  see  Section 
2.1.3),  an  average  attractor  length  [BR03],  a  degree  of 
synchronization, etc.

An example of local control is provided by the author 
in [BROD07B], with more details given in [BROD07A]: 
Each node dynamical regime in a LSM is monitored, and 
then a  learning  algorithm is  derived  using  these  local 
regime synchronization, in a way reminiscent of Hebbian 
learning  (Song  et  al. [SMA00]  version  for  spiking 
neurons).  Statistical  complexity  is  then  computed 
incrementally in order to quantify the global effect of the 
local control.

4 Conclusion
There is currently no consensus about what the notion of 
“emergence”  entails.  The  most  plausible  explanation  is 
that  no  objective  notion  of  “emergence”  matching  our 
intuition  can  be  found,  as  explained  in  Section  2.4. 
Conversely, any comprehensive theory of emergence will 
have counter-intuitive results.

Thinking in terms of causality and irreducibility helps 
to  clarify  the  main  concepts,  as  well  as  to  avoid 
controversies between supporters of different definitions, 
assumptions  and  hypothesis  that  lead  to  different 
interpretations. It doesn’t seem at this point reasonable or 
even possible to build a theory of complex systems based 
only on theoretical arguments.

The conclusion for this analysis is a clear call for the 
creation of practical investigation tools. It’s been proposed 
that  in  general  the  problem of  emergence  in  a  given 
system is equivalent to the problem of building a theory 
for that system. That is, considering the system as its own 
little world with its own rules, and trying to formalize 
laws and entities in this world. Then, using these laws 
and entities, one could hope to achieve some degree of 
prediction,  if  only  so  as  to  refine  the  system-specific 
theory, and some degree of control, for example through 
downward entailment.

Such  an  approach  certainly  seems  to  be  successful 
already for some systems like the Game of Life, where a 
vast community of enthusiasts has created a bestiary of 
existing entities,  what’s known about interaction rules, 
and  more19.  In  a  sense,  the  discovery  of  Turing 
equivalence  for  the  game of  life  could  not  have  been 
possible without first thinking in terms of entities like the 
gliders and their interactions. The question is, could this 
be  generalized  to  other  frameworks?  Could  we  try  to 
formalize  and  build  a  higher-level  theory  for  each 
complex system? If so, could some common investigation 
tools and techniques help in this daunting task?

19 A good starting point for further investigations is: 
http://entropymine.com/jason/life/.  Example  cited 
from [ABBO06].
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In this perspective, the following guideline is proposed:
• Monitor  micro-level  and  macro-level 
behaviours.  Define  observables  that  globally 
describe each level.
• Using the quantifiers, try to find relations, for 
example but not only with the help of machine 
learning techniques. As aforementioned this step 
is equivalent to theory building for a particular 
system: there is no magic recipe. This is where 
reliable  investigation  tools  are  an  invaluable 
resource.
• If such micro-to-macro level relationships are 
found,  then there  is  hope  to  derive  “laws”,  or 
shortcuts,  that  may  reasonably  provide  some 
degree of prediction and control over emergence. 
These laws need not be perfect, and in fact in the 
case of weak and formally irreducible emergence 
they  cannot  be  so.  They  need  only  provide  a 
satisfyingly  good  approximation  for  a  given 
problem. In that case, as for any sound scientific 
theory, refutable predictions should be made with 
that theory so as to direct further refinements: 
What Kuhn [KUHN62] calls normal science.
• Using either  the  higher-level  formal  system 
embryo or  the  quantifiers  directly,  apply  some 
control on the system. If control is sought at the 
lower level,  use the higher-level observables to 
monitor its effect. This is the most common case. 
But  it’s  also  possible  to  define  functionally  a 
higher-level  objective  function,  and  restrict, 
search,  manipulate,  or  optimize the lower-level 
parameters so as to reach that objective.

In turn, this raises the question as to how to monitor a 
system. At this point, it seems reasonable to apply a data-
driven  approach  for  the  measurements,  possibly 
complemented by the lower-level  formal system or the 
higher-level on-going formalization. One goal is obtaining 
a direct control, another is to further refine the entities 
and  higher-level  formal  system,  if  only  to  be  able  to 
improve the measurements quality, which in turn could 
lead to more control and predictive ability.

Historically,  the  development  of  instruments  for 
measuring  the  world  has  been  a  driving  force  behind 
theoretical  refinements.  There  is  no  reason  to  think 
complexity science is different, and better practical tools 
will  lead  to  better  understanding.  Although  the 
mathematical  development  of  new  tools  would  be 
welcome,  improving  the  implementation  of  these  tools 
and the currently existing ones is a necessity. If ninety 
percent  of  the  computation  time  is  spent  on  the 
measurement process,  then there  is  little  room left  for 
applying these instruments to anything in practice. What 
we  need  is  an  efficient  and  ready-to-use  toolbox  for 
making measures, investigating what happens, and help 
building theories.  This  can be seen as  an help for  the 
scientific formalization of laws and theories about a given 
system.

This  document  is  therefore  a  call  for  a  pragmatic, 
practical approach to complex systems, as well as a call to 
create generic tools of investigation.
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