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Abstract

Allostatic load (AL) is a complex clinical construct, providing a unique window into the 

cumulative impact of stress. However, due to its inherent complexity, AL presents two major 

measurement challenges to conventional statistical modeling (the field’s dominant methodology): 

it is comprised of a complex causal network of bioallostatic systems, represented by an even larger 

set of dynamic biomarkers; and, it is situated within a web of antecedent socioecological systems, 

linking AL to differences in health outcomes and disparities. To address these challenges, we 

employed case-based computational modeling (CBM), which allowed us to make four advances: 

(1) we developed a multisystem, 7-factor (20 biomarker) model of AL’s network of allostatic 

systems; (2) used it to create a catalog of nine different clinical AL profiles (causal pathways); (3) 

linked each clinical profile to a typology of 23 health outcomes; and (4) explored our results (post 

hoc) as a function of gender, a key socioecological factor. In terms of highlights, (a) the Healthy 

clinical profile had few health risks; (b) the pro-inflammatory profile linked to high blood pressure 

and diabetes; (c) Low Stress Hormones linked to heart disease, TIA/Stroke, diabetes, and 

circulation problems; and (d) high stress hormones linked to heart disease and high blood pressure. 

Post hoc analyses also found that males were overrepresented on the High Blood Pressure 

(61.2%), Metabolic Syndrome (63.2%), High Stress Hormones (66.4%), and High Blood Sugar 

(57.1%); while females were overrepresented on the Healthy (81.9%), Low Stress Hormones 

(66.3%), and Low Stress Antagonists (stress buffers) (95.4%) profiles.
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INTRODUCTION

Allostatic Load as a Complex System

Allostatic load (AL) is a highly useful framework—introduced by McEwen and colleagues 

[1–7]—for understanding the cumulative health costs (“wear and tear”) associated with 

stress, particularly short-term-intense or chronic distress.

The theoretical framework for AL follows a complex, multidimensional and multilevel 

trajectory: situated within a wider set of intersecting socioecological systems (i.e., poverty 

traps, high-stress workplaces, combat, etc), an individual’s perceived distress (i.e., stress 

overload, lack of control, etc) causes many of the body’s key allostatic systems—a complex, 

nonlinear network of interactive and adaptive mediators (e.g., blood pressure, cardiovascular, 

metabolic, etc)—to shift into a state of relative disequilibrium to maintain wellbeing [6]. 

Often times, particularly when distress is short-term-intense or chronic, this sustained 

disequilibrium can lead to dysregulation, which can cause significant dysfunction/damage to 

these allostatic systems; which, in turn, can lead to significant, negative health outcomes 

(e.g., heart disease, cancer, depression, alcoholism, PTSD) [1–7].

Given its theoretical complexity, AL has shown great potential as an interdisciplinary tool 

for assessing cumulative health risk [7–11]. For example, as Gallo et al. state, “In contrast to 

the common practice of examining risk factors within a single physiological system, the 

allostatic load framework provides an integrative approach that may better characterize the 

cumulative impact of dynamic and nonlinear influences across major biological regulatory 

systems.” [12] In this way, AL links to a variety of fields (from medical sociology and 

medicine to human biology and public health) focused on the negative impact that stress 

events have on health and wellbeing; particularly across the life-course and across different 

antecedent socioecological factors such as gender, age, ethnicity, mental status, 

psychological trauma, residence, occupation and—a current major focus—health disparities 

[8–11,13–19]. For example, regarding health disparities, Beckie [19] states, “The theoretical 

constructs of allostasis and allostatic load (AL) have contributed to our understanding of 

how constantly changing social and environmental factors impact physiological functioning 

and shape health and aging disparities, particularly along socioeconomic, gendered, racial, 

and ethnic lines” (p. 311).

The Challenge of Measuring AL

Given its potential as an interdisciplinary index of personal and public health, researchers 

have developed a variety of ways to measure AL [7,17–19]. The challenge, however, is built 

into the very nature of what makes AL unique: it is a complex, dynamic, evolving network 

of intersecting allostatic systems, which are situated within a wider web of intersecting 

socioecological systems [7,17–21]. In other words, the study of AL is a complex systems 

problem.

When complexity scientists say AL is a complex system problem, they mean that, like many 

personal and public health issue, AL displays the key characteristics associated with a 

complex system—that is, it is nonlinear, emergent, self-organizing, multidimensional, 

multilevel, multisystems, network-based, etc [14,22–30]. From a measurement perspective, 
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these challenges strains the limitations of conventional statistics. In the case of AL, such 

challenges amount to four key issues:

First, given its multisystem network of complexity, there is the issue of what biomarker 
panel best operationalizes AL; and, related, how this panel is best theoretically combined to 

represent the underlying factor analytic structure of AL [6,7,10,18–21]. As Gallo et al. [12] 

point out, while AL “is typically operationalized as a composite of biological markers 

representing multiple systems, especially the neuroendocrine, cardiovascular, metabolic, and 

immune systems,” existing methods struggle to model such a level of causal complexity (p. 

479).

Second, per the conventions of a biomedical approach to statistics, AL is typically measured 

as a composite index [7,18–21]. In addition to the restricted predictive value of this approach 

[7,18–21], dichotomizing biomarkers to achieve a composite score (as is often done) dilutes 

personal and group differences and variability. Also, any sort of “summing” of the 

biomarkers in a study potentially gives equal weight to all markers. And, finally, reducing 

AL to a single composite score negates the ability to evaluate complex causal patterns 

among the biomarkers [7,9–11,18–21]—which takes us back to the first challenge and also 

leads to the next challenge.

Third, there is the issue of how AL is differentially expressed in groups. As Gruenewald et 

al. [20] have shown empirically, there are multiple causal pathways for AL; expressed in the 

form of multiple AL profiles. Furthermore, these profile differences will vary as a function 

of (1) differences in antecedent socioecological factors and (2) differences in antecedent 

bioallostatic makeup. These insights [12], which we seek to advance, have significant 

implication for clinical care, allowing for the development of multiple treatment approaches

—at the personal and public health levels—based on differences in AL profiles and their 

corresponding differential health outcomes.

Fourth, there is the issue of time. The majority of studies, to date, are cross–sectional. More 

longitudinal research is therefore necessary, examining AL for different subpopulations and 

cohorts as they evolve across time/space [7,18–21].

Purpose of Current Study

Hence we come to the purpose of the current study: we seek to advance the measurement of 

AL by modeling it as a complex system, situated within a network of larger socioecological 

systems, based on the methodological tools of case-based computational modeling (CBM). 

More specifically, we seek to answer the following three questions: Is AL, as a complex 

system, comprised of multiple causal pathways, such that different types of AL clinical 

profiles exist? Second, do these profiles link to subsequent health risk typologies? And, 

third, do these profiles/outcomes manifest themselves differently within the larger 

socioecological systems in which AL is situated? These are the three research foci of the 

current study. To address them, we turned to the tools of CBM.
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Case-Based Computational Modeling

As already alluded to above, the complexity sciences constitute an across-the-academy field 

of study, focused on rethinking scientific inquiry from a complex systems perspective [22–

24]. Much of this rethinking is focused on method, particularly computational modeling, 

which uses high-powered computers and brute-force algorithms to arrive at “approximate” 

models for highly complex data [22–25]. Examples include genetic algorithms, agent-based 

modeling, networks, and more recently, CBM [23,25–30].

For those new to CBM, several quick comments are necessary. CBM combines case-

comparative method with the various theoretical and methodological tools of the 

computational and complexity sciences to advance the modeling of complex (social and 

health) systems; which it does by treating complex systems as sets of cases (i.e., k-

dimensional vectors/profiles) [27–30]. Such an approach is a useful addition to current 

method, as it helps health and medical researchers ask different types of questions, based on 

cases [23,25–28]. In terms of the current study, for example, it allowed us to ask our three 

research question—which brings us to the CBM platform used for the current study, the 

SACS Toolkit [27–30].

The SACS Toolkit—which the second author of the current study and colleagues have 

developed [27–30]—focuses on cases, specifically how they aggregate and cluster into 

similar groups in highly complex, multidimensional big data. (For a complete overview, see 

Refs. 27–30.) In terms of the current study and our three research foci, the strength of the 

SACS Toolkit is its ability to: (1) identify subgroup differences (profiles) among highly 

complex data; (2) examine how these profiles link to different typologies or health risk 

outcomes; and (3) explore how these AL clinical profiles/health risk outcomes emerge 

within the larger socioecological systems in which they are situated. Our study proceeded as 

follows:

Step 1—First, we used the SACS Toolkit to develop a multisystem factor-analytic measure 

of AL; which, we argue, makes the following advances. It allows researchers to: (a) bypass 

simplistic indices of AL; (b) suggest a preferred approach to constructing a biomarker panel; 

(c) engage in a theoretical exploration of different causal pathways among key AL 

subsystems; and (d) preserve the multisystem complexity of AL while (simultaneously) 

decomposing it onto a meaningful set of factors. In terms of establishing a preferred 

approach to constructing a biomarker panel, we followed the theoretical framework of 

McEwen et al. [1–5,7] and Seeman et al. [8–11] focusing on twenty key components of 

major allostatic systems (see METHODS).

As a final point, our approach, while novel, builds on previous research [7,21,31], 

specifically a preliminary factor analysis conducted by the first author of this paper [21]; 

which Seeman et al. [8] have already successfully used to examine health disparities based 

on social status, suggesting our measure’s utility. In terms of the current study, we advance 

the first authors preliminary factor analysis by (a) studying a larger sample, (b) situating our 

results within a complex multisystems framework; and (c) using our results to construct 

complex AL clinical profiles—which takes us to the next step.
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Step 2—Second, we used the SACS Toolkit to construct a catalog of AL clinical profiles 

(see Table 3 and METHODS for details), based on subject scores from our factor analytic 

solution (See Table 1). In terms of advancement, this clinical catalog allows for a more 

complex and nuanced understanding of AL, based on the idea that AL is comprised of 

multiple clinical profiles, each demonstrating a unique set of causal pathways among the 

underlying latent seven-factor structure of AL. Such a view can not only advance how AL 

manifests itself among different populations, but it also can advance AL as a form of 

personalized medicine, based on subgroup variations in antecedent bioallostatic makeup and 

socioecological factors.

Step 3—Third, we used CBM to create a health risk outcomes typology for each AL 

profile. For our study, we hypothesize that our AL profiles, once identified, would reflect 

group differences in overall biological health or conversely dysregulation. In terms of 

advancement, such a health risk typology can be used to assess and potentially predict future 

health risk outcomes based on the current AL of a patient or group of people, allowing for 

improved personalized and more focused prevention and treatment.

Step 4—Finally, we examined how the complexities of AL link to its larger web of 

antecedent socioecological systems—which we did by exploring (post hoc) how gender 

correlates with our results. In terms of advancement, our post hoc analysis is potentially 

useful, as it allows researchers and clinicians to see how the complexities of AL link to 

differences in the short-or long-term health of different groups.

Three Caveats

Before we proceed, however, three caveats are needed. First, the exploratory nature of our 

study needs to be acknowledged: it seeks to push the current methodological paradigm. 

Second, given the limitations of any one study, we did not address all five “measurement” 

issues above. For example, while more longitudinal research is necessary, our study is based 

on a cross-sectional, middle-aged sample (Mean Age = 55.0; SD = 11.8; see METHODS). 

Third, while there may be merit in exploring the factor analytic structure of AL based on sex 

or ethnicity, current research suggests otherwise. As Seeman et al. [10] concluded: “We 

sought to test a hypothesized metafactor model of AL composed of a number of biological 

system factors, and to investigate model invariance across sex and ethnicity…. A 

“metafactor” model of AL as an aggregate measure of six underlying latent biological 

subfactors was found to fit the data…. There was little evidence of model variance across 

sex and/or ethnicity” (p. 463).

METHOD

Subjects

For this study, we utilized archival data from the Midlife Development in the United States 
(MIDUS) study, a national survey by the MacArthur Midlife Research Network in 

1994/1995, which included data from over 7000 Americans aged 25–74 [32,33]. The 

purpose of the survey was broad, investigating the role of behavioral, psychological, and 

social variables on a variety of health outcome measures. In 2002, the University of 
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Wisconsin-Madison carried out a longitudinal follow-up of the original MIDUS respondents. 

This second initiative (MIDUS II) had five research foci, one of which included 

comprehensive biomarker assessments obtained from a subsample of MIDUS respondents 

[32,33].

For the current study, the number of subjects with valid biomarker data used was N = 1151. 

Missing data from this total were removed pairwise rather than using a substitution. A total 

of 4.8% of data were missing when calculating the final clusters for our AL catalog. In terms 

of overall demographics, our sample was 57% female (N = 656) with a mean age of 55.0 

(SD = 11.8). Also, our sample was representative of the original MIDUS sample. As a final 

point, because we did not construct an index, we did not explore medication data. However, 

for those interested in how medication data was used to augment our initial factor solution, 

see the study Seeman et al. [8].

AL Biomarker Panel

We used 20 MIDUS II biomarkers—nearly double the average used in 58 studies reviewed 

by Juster et al. [6]. We also made sure that all 20 biomarkers were utilized in at least two 

published studies reviewed by Juster et al. [6]. In terms of theory, we organized our 

biomarkers into five physiological systems. (1) Biomarkers from the neuroendocrine system 

included (a) three catecholamines (norepinephrine, epinephrine, and dopamine); (b) the 

androgen dehydroepiandrosterone sulfate (DHEA-S); and (c) the glucocorticoid cortisol—all 

of which are involved in the body’s stress reaction. (2) The cardiovascular/respiratory 
system biomarkers were systolic and diastolic blood pressure and peak expiratory flow 

(which is the maximum speed of expiration and an indicator of airflow through the bronchi). 

(3) The metabolic system biomarkers are well-known indicators of cardiovascular health. 

This study included total cholesterol, high-density lipoprotein cholesterol, low-density 

lipoprotein cholesterol, triglycerides, hemoglobin Alc (HbAlc), glucose, and insulin. (4) We 

also included biomarkers from the immune system, including (a) C-reactive protein (CRP), 

an acute phase reaction protein that promotes inflammation; (b) interleukin-6 (IL-6), a 

mediator of the acute phase response that acts as a pro-inflammatory element; (c) the anti-

inflammatory cytokine, fibrinogen, which functions as a blood clotting factor that promotes 

coagulation but increases risk of thrombosis when excessive, and (d) the insulin-like growth 

factor (IGF-1), a protein that mediates the effects of growth hormone and inhibits cellular 

apoptosis. (5) Finally, a biomarker of anthropometric status, which measures body habitus, 

waist-to-hip ratio was used.

Health Risk Outcomes Measures

For our study, we used a total of 23 MIDUS-II self-report health outcomes: heart disease, 

high blood pressure, circulation problems, blood clots, heart murmur, TIA/stroke, anemia, 

cholesterol problems, diabetes, asthma, emphysema/COPD, tuberculosis, positive TB skin 

test, thyroid disease, peptic ulcers, cancer, colon polyps, arthritis, glaucoma, liver cirrhosis, 

alcoholism, depression, and blood transfusion before 1993. (For details, see Refs. 32, 33).
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Statistical/Computational Analyses

As discussed in the introduction, to model AL as a complex system, we employed a CBM 

approach [23,25–30] specifically, the SACS Toolkit [27–30]. We did so, given the case-

based focus this approach takes, as it allowed us to address our three research question: (1) 

the possibility of multiple AL clinical profiles, (2) the possibility of concurrent and different 

AL health risk typologies, and (3) the subsequent possible differences in how these multiple 

profiles/health risks are manifested in the larger socioecological systems in which AL is 

situated.

While the SACS Toolkit draws upon a wide variety of computational and statistical 

techniques, for the current study, we used four: the Kohonen self-organizing map (SOM), k-

means cluster analysis, principle components analysis (PCA), and logistic regression. A 

brief overview of how we employed PCA, k-means and the SOM is provided here:

Step 1: Factor Analytic Solution—We began with PCA [34] in order to: (1) identify the 

major and multiple pathways/relationships among our twenty biomarkers, based on their 

factor loadings; and (2) name the factors in the PCA solution. (For those unfamiliar with 

PCA, see Table 1 for the factors, their names, and the loadings for each of the 20 biomarkers 

on each factor.) Also, prior to PCA, we used a parallel analysis to identify the appropriate 

number of factors to be extracted [35]. Also, given that our factors constitute highly complex 

and interdependent AL biological systems, we did not assume that they would be 

independent. Instead, given our complex systems approach, we treated their causal pathways 

as complex, multiple, self-organizing, emergent, and nonlinear. As such, we used a promax 

(oblique) rotation.

The resulting factor structure was interpreted by requiring a loading of .60 to retain each 

biomarker for each factor identified. All biomarkers were retained on the factor for which 

they loaded the highest. No item loaded over 0.60 on more than one factor and all items 

loaded on at least one factor. Factors were named based on the allostatic systems the 

biomarkers represented—note, an allostatic system could be represented by more than one 

factor; or, conversely, a factor could represent more than one system.

Finally, after the PCA was completed, all biomarkers that loaded saliently on a factor were 

used to form standardized scores. This n-dimensional vector profile for each case in the 

database was then used, in turn, to complete Step 2.

Step 2: Constructing our AL Catalog—With our factors identified, we sought to 

assemble a catalog of AL profiles. To do so, we employed the SOM and k-means cluster 

analysis [36–39] In terms of our usage of these techniques, we provide the following details:

K-means was used first because it requires that the number of clusters be identified ahead of 

time, based largely on some rationale (usually theoretical or previous empirical research), 

even if tentative or conjectural. Following convention, we ran our k-means with normalized 

data (as mentioned at the end of Step 1), using a Euclidian measure of distance, with the 

convergence criterion set to zero. After several runs, all outliers and cases with only partial 

data were removed. An ANOVA table with unstandardized F statistics was also generated to 
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determine the relative impact each component in the AL profile had on the final cluster 

solution.

To construct our AL profiles, we evaluated the centroids (clusters) shown in Table 2. Also, to 

help determine the crispness of the clusters, box plots were examined for outliers. The 

distance measures for all cases relative to their clusters were also normalized as z-scores and 

the standard deviation for each cluster computed.

Next, the SOM was run. Because the SOM is unsupervised, if it arrives at a solution similar 

to the k-means it provides effective corroboration. Analyses were conducted using the SOM 

Toolbox, a freeware package for MATLAB [37] The SOM graphs its cluster solution onto a 

variety of three-dimensional maps. For the current study, as shown in Figure 1, we used the 

u-matrix and components map. On the u-matrix, cases most like one another are graphically 

positioned as nearby neighbors, with the most unlike cases placed furthest apart. The u-

matrix and components map are also topographical: valleys (darker colored) areas are more 

similar in AL profile; while hilly, brighter colored areas are more distinct. The component 

maps visualize how each of the factors from our factor solution contributed to the making of 

a profile and to the positioning of cases on the u-matrix.

RESULTS AND DISCUSSION

To advance the measurement of AL and, in turn, its theoretical understanding as a complex 

system, we did the following: (1) used PCA to determine the underlying factor analytic 

structure of AL; (2) used the SOM and k-means to construct a catalog of AL clinical 

profiles; (3) regressed the resulting AL clinical profiles on a series of 23 health outcomes to 

construct a health-risk typology for AL; and (4) situated our results in the wider network of 

socioecological systems by exploring, post hoc, differences among our results as a function 

of gender. Our results and discussion are as follows:

Factor Solution

As shown in Table 1, our PCA arrived at a seven-factor solution, accounting for 72.3% of 

the total variance. Furthermore, despite the complex causal pathways among the 20 

biomarkers, the factor loadings were, overall, very clear. The only exceptions were: (a) 

Waist-to-Hip on Blood Pressure, Blood Sugar and Stress Antagonists (key stress buffers); 

(b) Insulin on Pro-Inflammatory Elements and Blood Sugar; (c) Triglycerides on Blood 

Pressure; (d) Glucose on Metabolic Syndrome; and (e) Peak Flow on Metabolic Syndrome. 

Still, these additional loading were only 0.411 or lower. Based on the factor loadings, the 

seven factors were named as follows: (1) Blood Pressure, (2) Metabolic Syndrome, (3) 

Cholesterol, (4) Pro-Inflammatory Elements, (5) Stress Hormones, (6) Blood Sugar, and (7) 

Stress Antagonists—by this last term we mean a set of biomarkers which, when low, 

indicate a person’s struggle to buffer herself/himself against stress.

Overall, then, our results support the usage of factor analysis as a robust empirical and 

biologically plausible solution for the complex latent structure of AL. More specifically, our 

results suggest that our 20 biomarker panel—given its theoretical grounding—may, indeed, 

serve as a preferred approach to constructing a biomarker panel. Finally, our PCA solution 
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provides initial support for measuring AL a complex multi-system biological construct, 

rather than as a simple composite index.

AL Clinical Profiles

As shown in Table 2 and Figure 1, the SOM and k-means settled on a catalog of nine AL 

clinical profiles, which we named as follows.

1. Low Cholesterol: The key feature of this clinical profile is its very low centroid 

score on Cholesterol (−1.12); and, in turn, Stress Hormones (−0.79). The SOM 

supported these results. However, looking at Map B, the SOM grouped the Low 
Cholesterol (forest green) cases (Profile 2) into three possible subgroups. 

Looking at Map C and Map B together, the top left subgroup has the lowest 

Cholesterol scores, while the other two subgroups have the lowest Stress 

Hormones scores (Map C).

2. Healthy: The centroid scores for this profile were very low on Metabolic 

Syndrome (−1.08), Pro-Inflammatory Elements (−1.19), and Blood Pressure 

(−1.10). The SOM supported these results: looking at Map B, the SOM 

positioned the Healthy cases (Profile 2) at the top, colored in light yellow. 

Looking at this same area for each of the seven factors in Map C (components 

map), one finds low to very low scores (dark blue) on Blood Pressure, Metabolic 

Syndrome, Pro-Inflammatory Elements, and Blood Sugar.

3. High Blood Pressure: The key feature of this profile is a high score on Blood 

Pressure (0.94); but, conversely, a low score on Pro-Inflammatory Elements 

(−0.71). In addition, looking at Map B, the SOM grouped High Blood Pressure 
(light blue) into two possible subgroups (one large, one small) with cases on the 

left having both higher Cholesterol (Map C) and Stress Antagonists (stress 

buffers) (Map C).

4. Low Stress Hormones: This profile (the largest, N = 169) had the lowest score on 

Stress Hormones (−0.92) and a High Cholesterol Score (0.73). Looking at Map 

B, the SOM supported these results, placing the majority of cases in Profile 4 

toward the lower center (purple), where some of the highest Cholesterol and 

lowest Stress Hormones scores are found (Map C). But, the SOM also identified 

a possible (albeit small) subset of cases toward the upper right of Map B, which 

is lower on Stress Antagonists (stress buffers).

5. Metabolic Syndrome: This profile has the highest score on Metabolic Syndrome 

(1.22) and high scores on Cholesterol (0.73) and Pro-Inflammatory Elements 

(0.99). The SOM supported these results (Map C), placing Metabolic Syndrome 
cases (Profile 5) at the bottom center-left (melon) of Map B. The SOM also 

identified a possible small subset of cases in the lower right, very high on 

Metabolic Syndrome and Pro-Inflammatory Elements, but not as high on 

Cholesterol.

6. High Blood Sugar: This profile—the smallest (N = 35)—has a high Metabolic 

Syndrome score and the Highest Blood Sugar Score (3.71); placing the centroid 
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scores for Profile 6 three standard deviations above the mean. The SOM strongly 

supports these results (Map C), placing Profile 6 (purple) in the lower right 

corner on Map B.

7. Low Stress Antagonists (low stress buffers): This profile has the lowest score on 

key stress buffers (Stress Antagonists = −1.70); and also low scores on Metabolic 

Syndrome (−0.74) and Stress Hormones (0.99). Scoring low on the biomarkers 

for Stress Antagonists is associated with poor health outcomes. For more, see our 

discussion of this profile in the Health Risk Outcomes section below. The SOM 

supported these results (See Map C), placing these cases (Profile 7) along the 

upper right (pink) of Map B. However, the SOM spreads this profile out a bit, 

overlapping it with Low Stress Hormones, possibly due to their mutual low 

scores on Metabolic Syndrome and mild scores on Stress Antagonists (stress 

buffers).

8. High Stress Hormones: Directly opposite of the Low Stress Hormones type, this 

profile (the second largest, N = 146) has the highest score on Stress Hormones 

(1.03) and one of the lowest scores on Cholesterol (−0.69). Looking at Map B, 

however, the SOM did not entirely support these results, breaking Profile 8 

(mocha) into two possible groups. The upper-left profile is similar to Table 2; 

however, the bottom-left profile differs, with high scores on Pro-Inflammatory 

Elements, Metabolic, and Blood Pressure.

9. High Pro-Inflammatory Elements: This profile had the highest centroid score on 

Pro-Inflammatory Elements (1.08); a high score on Metabolic Syndrome (.73); 

and, it is important to note, a low score on Stress Antagonists (stress buffers) 

(−0.73) and also cholesterol (−0.82). The SOM supports these results (grey), 

although Pro-Inflammatory Elements, Metabolic, and Cholesterol do go down 

toward the upper-right.

As these results suggest, a case-based modeling approach further supports researching AL as 

a complex system. Furthermore, these results support the idea that AL is comprised of 

multiple clinical profiles, each demonstrating a relatively unique set of causal pathways 

among the underlying latent seven-factor structure of AL. Finally, if such a diversity of AL 

clinical profiles and their respective differences in causal structure exist, our results suggest 

that a more personalized medicine approach may be warranted where AL is treated as a form 

of differential diagnosis—both for individuals and groups.

Typology of Health Risk Outcomes

As shown in Table 3, using logistic regression, we arrived at a typology of health risk 
outcomes for each of our AL clinical profiles. To help readers make sense of these results, 

we created Figure 2, which visually displays the differences between observed and expected 

frequencies for each self-reported medical condition. In Figure 2, the radii represent all 23 

medical conditions used in our study. The profiles are circumscribed around these 23 radii 

based on the results from Table 3. The resulting health risk outcomes profile is shown in red. 

Scores higher than 0 (the green circle) indicate a greater observed value than expected, 
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whereas scores below 0 indicate a smaller observed value than expected. The most 

noteworthy scores for each profile are also labeled in red. Our results are as follows:

1. Healthy Outcomes—To begin, there were three profiles with healthy to moderately 

healthy outcomes. Of the three, the most obvious was Healthy; which, in contrast to the 

other eight profiles, reported, overall, lower health risk outcomes, including exceptionally 

lower rates of circulation problems, cholesterol and arthritis; as well as low rates of heart 

disease, diabetes, TIA/stroke, heart murmur and blood clots. Still, this profile reported 

slightly greater than expected (or equivalent) rates of cancer, anemia, emphysema, 

tuberculosis, thyroid disease, and glaucoma. Perhaps most important, when viewed as an 

emergent complex system, the Healthy profile and its associated risk typology illustrated 

something new: while many of its biomarkers have long been documented to be risk factors 

for cardiovascular dysfunction, this is the first time, to our knowledge, they have been shown 

to group together when evaluating the AL outcomes of stress—illustrating, in this case, a 

positive outcome. For example, less than 1% of the N = 138 cases in this profile reported 

heart disease.

The second healthy profile is Low Cholesterol; which, overall, had a health risk typology 

close to expected values on most markers. It did, however, have slightly higher rates on a 

few outcomes, such as heart disease and alcoholism. And, it certainly did not have the 

markedly low rates found in the Healthy profile.

The least obvious healthy profile was High Blood Pressure; which underreported on key 

stress-related disorders, including high blood pressure (49/56) and cholesterol (38/66). 

These findings suggest that blood pressure, alone, may not initiate the cascade of disorders 

associated with more pivotal profiles, like Pro-Inflammatory Elements. More likely, 

however, these results suggest that patients in this profile are, by the time of self-report, 

receiving treatment for their high blood pressure.

2. Unhealthy Outcomes—In contrast to the health profiles are the other six; which were, 

to varying degrees, associated with different patterns of poor health outcomes. As a first 

example, when analyzing Metabolic Syndrome, we found expected high rates for high 

cholesterol (83/62) and high blood pressure (61/52). But, we also found lower than expected 

rate for heart disease (7/17).

Another example is High Pro-Inflammatory Elements, which reported a high rate of heart 

disease (27/12), high blood pressure (61/38), circulation problems (20/10), diabetes (37/12), 

cholesterol (68/45), cancer (23/15), and arthritis (56/42). This profile also appears to be the 

most impacted by AL, with consistent higher-than-expected reporting of cardiovascular and 

metabolic disorders. It may be relevant that this profile is also low on cholesterol and Stress 

Antagonists (those key stress buffers). The strong association between high levels of Pro-

Inflammatory Elements (IL-6, fibrinogen, CRP) and cardiovascular problems is, however, 

expected [40–42]. Also expected is this profile’s association with diabetes [43–45].

Given that Low Stress Antagonists (stress buffers) indicate a person’s struggle to defend 

against stress, this AL clinical profile showed a consistent pattern of higher-than-expected 
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reporting on many stress-related health outcomes. A significant number of cases in this 

profile also reported high rates of heart disease (24/13), high blood pressure (51/39), thyroid 

(22/14), blood transfusions (19/11), and arthritis (65/45) – which, when viewed in total, 

raises suspicion about the role that Stress Antagonists (stress buffers) play in this profile.

The typology for this profile is also significant because (like the Healthy profile) it points to 

the utility of a case-based approach: our exploratory results suggest etiological clues for 

patterns not entirely expected. As a restatement of what we found, the key biomarkers 

loading on this profile were IGF-1, DHEA-S, and peak flow. In turn, rates for heart disease, 

high blood pressure, thyroid disease, blood transfusions, and arthritis were well-above 

expected outcomes; however, diabetes was less than expected. In terms of interpreting these 

results, DHEAS (the most common adrenal steroid in the body) declines dramatically with 

age. However, while the exact progression of DHEAS during stress is poorly documented, it 

is elevated by stress in the short-term. Furthermore, higher levels of DHEAS during stress 

are associated with less stress at a later time; although a more common explanation is that 

the ratio of DHEAS to cortisol is crucial in controlling stress and may provide beneficial 

behavioral and neurotrophic effects [7]. Its effect may be similar in the long-term. Bremner 

et al. [46] reported adult women with a childhood history of sexual abuse and current PTSD 

had higher levels of DHEAS recorded across a 24-h period than control women and women 

with abuse but no PTSD.

The findings for Low Stress Hormones and its counterpart High Stress Hormones also 

support the current literature, which can be summarized as follows: while the short term 

effects of stress hormones—which, in the current study, includes catecholamine and the HPA 

steroid cortisol—are positive, it appears that long-term circulating effects are negative in 

heart disease [45]. The fact that Low Stress Hormone also reported less-than-expected heart 

disease, while High Stress Hormones reported higher-than-expected heart disease and high 

blood pressure is also consistent with the literature [45]. However, while Low Stress 
Hormone reported high rates of anemia (36/25), peptic ulcers (16/9), and depression (50/39), 

it also reported less-than-expected TIA/Stroke, diabetes, and circulation problems—which 

may suggest broader effects.

Finally, there was High Blood Sugar. The most important outcome for this profile, which 

was expected, was its very high rates of diabetes (28/4). Everything else, otherwise, was 

within the normal, expected range.

Post Hoc Results: AL and Gender

Ultimately, if one is to understand the full complexity of AL, it is necessary to explore (in-

depth) how our catalog of clinical profiles/health risk typologies link to the larger 

socioecological systems in which AL is situated across time/space. While such a focus is the 

goal of subsequent research, we decided to initially explore this issue by examining, post 

hoc, the influence of gender on our results.

Overall, we found that women were overrepresented on Low Stress Antagonists (95.4%), 

Healthy (81.9%), and Low Stress Hormones (66.3%). In contrast, men were overrepresented 

on High Blood Pressure (61.2%), Metabolic Syndrome (63.2%), High Stress Hormones 
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(66.4%), and High Blood Sugar (57.1%). In contrast, however, the “percentage female” for 

Low Cholesterol (56.3%) and High Pro-Inflammatory Elements (57.7%) was similar to our 

overall sample (57% female).

The fact that men were overrepresented on High Stress Hormones, as well as the profiles 

characterized by the downstream effects of these hormones, namely High Blood Pressure 
and Metabolic Syndrome, leads us to question if men are more susceptible to the negative 

effects of SAM and HPA hormones. Furthermore, women are overrepresented on the 

profiles comprising factors consistent with allostasis, namely Healthy and Low Stress 
Hormone, and yet overrepresent the Low Stress Antagonists (stress buffers) profile.

The post hoc results for Low Stress Antagonists (stress buffers) suggest a possible unique 

gender-based stress response. The key biomarkers on this profile are peak flow, DHEAS, 

and IGF-1. While DHEAS is the most common steroid in both men and women, not only 

having a mild androgenicity effect, it is also the precursor from which all other steroids are 

metabolized. It drops in a strictly linear fashion with age in both men and women, with 

women having lower levels than men throughout the lifespan [47–51]. However, this pattern 

of decline is complicated in old age by the emergence of subgroups that show an increase in 

levels (after correcting for regression to the mean) for 15% of women and 5% of men [52]. 

The cause of this unexpected finding is unknown and has led previous studies to conclude 

that “unknown fundamental gender differences” in adrenal androgen production and 

excretion might be the cause [53].

In terms of the current study, however, while we cannot directly tie our post hoc results to 

the gender differences described in the current literature, our results suggest that very low 

levels of DHEAS may likewise reflect some “unknown fundamental gender differences” in 

androgen production, which is seemingly associated with the emergence of stress-related 

disorders. IGF-1 is secreted by the liver and is important for both the regulation of normal 

physiology and a number of pathological conditions, most notably cancer. While its role in 

stress is poorly understood, it is reported to be lower in patients suffering multiple traumas 

[54]; and few would argue that it does not play a relevant role in stress. Reviews of the 

studies on DHEA supplementation during the 1990s (and even more recently) find reports of 

a rise in IGF-1 subsequent to DHEA administration [55]. Interestingly, IGF-1 is also 

reported to rise in association with cortisol. In apparent contradiction, however, several 

epidemiological studies have found that low IGF-1 is a risk factor for metabolic syndrome. It 

is difficult to know what biological stress-related functions are driving the high level of self-

reported medical difficulties. Also, it is not clear how knowing they are almost exclusively 

women is informative, yet this profile may well wave a red flag for further research into this 

dimension of AL, a reasonable outcome for this third part of our study.

Limitations of Current Study

Given the exploratory nature of the current study, several limitations (which we also 

discussed in the introduction and methods) are important to highlight. First, the health risk 

outcomes for our study were self-report. Second, we did not use medication data. Third, our 

study was cross-sectional. Finally, while we examined gender post hoc, future research 

needs to explore in-depth how the catalog of AL clinical profiles and their corresponding 

BUCKWALTER et al. Page 13

Complexity. Author manuscript; available in PMC 2017 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



health risk typology link to the larger socioecological systems in which AL is situated across 

time/space. It is therefore necessary for future research to confirm our results with non-self-

report and medication data, as well as employ a longitudinal or cohort design, particularly in 

order to examine how our factor structure, AL clinical profiles, and health risk outcomes 

typology change as a function of time or key antecedent socioecological factors, including 

medical treatment, health behaviors, change in residence, and so forth.

CONCLUSIONS

Over the last several decades, the complexity sciences have sought to demonstrate the utility 

of thinking about health problems (particularly health disparities) in holistic, complex 

systems terms [22–24]. AL constitutes one such advance [1–7,18,19]. However, the 

measurement of this concept, as a complex system, has yet to be fully developed, given the 

limitations of the statistical methods currently used in the field, which are largely 

conventional in nature, relying on a reductionist linear model approach [7,19].

In response, the current study sought to make several key advances, in order to demonstrate, 

in exploratory fashion, the utility of modeling and measuring AL as a complex system. More 

specifically, we sought to demonstrate that a CBM approach could be used to: (1) determine 

the underlying factor analytic structure of AL and construct a catalog of corresponding 

clinical profiles; (2) regress these AL clinical profiles on a series of health outcomes to 

construct a health-risk typology for AL; and (3) situate these results in the wider network of 

socioecological systems by exploring, post hoc, differences among our results as a function 

of gender. While exploratory and tentative, our results, overall, supported our efforts, 

suggesting that the complexities of AL can be more effectively modeled and measured.

Acknowledgments

Grants: Stress Resilience In Virtual Environments Involving Loss and Grief (STRIVE-Loss) W911NF-04-D-0005. 
The STRIVE-ONR Project: Stress Resistance in Virtual Environments for ONR N00014-12-1-0163. The authors 
would like to acknowledge following grants National Institutes of Health grants P01-AG-020166, UL1TR000124, 
UL1TR001881.

References

1. McEwen BS. Allostasis and allostatic load: implications for neuropsycho-pharmacology. 
Neuropsychopharmacology. 2000; 22:108–124. [PubMed: 10649824] 

2. McEwen BS. Interacting mediators of allostasis and allostatic load: towards an understanding of 
resilience in aging. Metabolism. 2003; 52:10–16. [PubMed: 14577057] 

3. McEwen BS. Protective and damaging effects of stress mediators: central role of the brain. 
Dialogues Clin Neurosci. 2006; 8:367–381. [PubMed: 17290796] 

4. McEwen BS, Seeman T. Protective and damaging effects of mediators of stress: Elaborating and 
testing the concepts of allostasis and allostatic load. Ann N Y Acad Sci. 1999; 896:30–47. 
[PubMed: 10681886] 

5. McEwen BS, Stellar E. Stress and the individual: mechanisms leading to disease. Arch Intern Med. 
1993; 153:2093. [PubMed: 8379800] 

6. Juster RP, McEwen BS, Lupien SJ. Allostatic load biomarkers of chronic stress and impact on health 
and cognition. Neurosci Biobehav Rev. 2010; 35:2–16. [PubMed: 19822172] 

7. McEwen, B., Nasveld, P., Palmer, M., Anderson, R. Allostatic Load: A review of the literature. 
Canberra: Department of Veterans’ Affairs; 2012. 

BUCKWALTER et al. Page 14

Complexity. Author manuscript; available in PMC 2017 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8. Seeman M, Merkin SS, Karlamanga A, Koretz B, Seeman T. Social status and biological 
dysregulation: The “status syndrome” and allostatic load. Soc Sci Med. 2014; 118:143–151. 
[PubMed: 25112569] 

9. Seeman T, Epel E, Gruenewald T, Karlamangla A, McEwen BS. Socio-economic differentials in 
peripheral biology: Cumulative allostatic load. Ann N Y Acad Sci. 2010a; 1186:223–239. [PubMed: 
20201875] 

10. Seeman T, Gruenewald T, Karlamangla A, Sidney S, Liu K, McEwen B, Schwartz J. Modeling 
multisystem biological risk in young adults: The Coronary Artery Risk Development in Young 
Adults Study. Am J Hum Biol. 2010b; 22:463–472. [PubMed: 20039257] 

11. Seeman TE, Crimmins E, Huang MH, Singer B, Bucur A, Gruenewald T, Berkman LF, Reuben 
DB. Cumulative biological risk and socio-economic differences in mortality: MacArthur studies of 
successful aging. Soc Sci Med. 2004; 58:1985–1997. [PubMed: 15020014] 

12. Gallo LC, Fortmann AL, Mattei J. Allostatic load and the assessment of cumulative biological risk 
in biobehavioral medicine: Challenges and opportunities. Psychosom Med. 2014; 76:478–480. 
[PubMed: 25141272] 

13. Mair CA, Cutchin MP, Peek MK. Allostatic load in an environmental risk scape: The role of 
stressors and gender. Health Place. 2011; 17:978–987. [PubMed: 21543249] 

14. Castellani, B., Rajaram, R., Buckwalter, JG., Ball, M., Hafferty, F. Place and Health as Complex 
Systems: A Case Study and Empirical Test. Springer; Germany: 2014. SpringerBriefs in Public 
Health

15. Merkin SS, Karlamangla A, Diez Roux AV, Shrager S, Seeman TE. Life course, socioeconomic 
status and longitudinal accumulation of allostatic load in adulthood: Multi-Ethnic Study of 
Atherosclerosis. Am J Publ Health. 2014; 104:e48–e55.

16. Geronimus AT, Pearson JA, Linnenbringer E, Schulz AJ, Reyes AG, Epel ES, Lin J, Blackburn EH. 
Race-ethnicity, poverty, urban stressors, and telomere length in a detroit community-based sample. 
J Health Soc Behav. 2015; 56:199–224. [PubMed: 25930147] 

17. Loucks EB, Juster RP, Pruessner JC. Neuroendocrine biomarkers, allostatic load, and the challenge 
of measurement: A commentary on Gersten. Soc Sci Med. 2008; 66:525–530.

18. Carlson ED, Chamberlain RM. Allostatic load and health disparities: A theoretical orientation. Res 
Nurs Health. 2005; 28:306–315. [PubMed: 16028266] 

19. Beckie TM. A systematic review of allostatic load, health, and health disparities. Biol Res Nurs. 
2012; 14:311–346. [PubMed: 23007870] 

20. Gruenewald TL, Seeman TE, Ryff CD, Karlamangla AS, Singer BH. Combinations of biomarkers 
predictive of later life mortality. Proc Natl Acad Sci USA. 2006; 103:14158–11416. [PubMed: 
16983099] 

21. Buckwalter JG, Rizzo A, John BS, Finlay L, Wong A, Chin E, Seeman TE. Analyzing the Impact 
of Stress: A comparison between a factor analytic and a composite measurement of allostatic load. 
The Interservice/Industry Training, Simulation & Education Conference I/ITSEC. 2011; 1

22. Capra, F., Pier Luigi, L. The Systems View of Life: A Unifying Vision. Cambridge University 
Press; Cambridge, UK: 2014. 

23. Byrne, D., Gillian, C. Complexity Theory and the Social Sciences: The State of the Art. Routledge; 
London, UK: 2013. 

24. Mitchell, M. Complexity: A guided tour. Oxford University Press; Oxford, UK: 2009. 

25. Byrne, D., Ragin, C. The Sage Handbook of Case-Based Methods. SAGE; California, USA: 2009. 

26. Byrne D, Uprichard E. Useful Complex Causality. The Oxford Handbook of Philosophy of Social 
Science. 2012; 109

27. Castellani B, Rajaram R. Case-based modeling and the SACS Toolkit: a mathematical outline. 
Comput Math Organ Theory. 2012; 18:153–174.

28. Castellani, B., Rajaram, R., Gunn, J., Griffiths, F. Cases, clusters, densities: Modeling the nonlinear 
dynamics of complex health trajectories. Complexity. in press, Available at http://
onlinelibrary.wiley.com/doi/10.1002/cplx.21728/abstract?
userIsAuthenticated=false&deniedAccessCustomisedMessage

29. Rajaram R, Castellani B. Modeling complex systems macroscopically: Case/agent-based modeling, 
synergetics, and the continuity equation. Complexity. 2012; 18:8–17.

BUCKWALTER et al. Page 15

Complexity. Author manuscript; available in PMC 2017 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://onlinelibrary.wiley.com/doi/10.1002/cplx.21728/abstract?userIsAuthenticated=false&deniedAccessCustomisedMessage
http://onlinelibrary.wiley.com/doi/10.1002/cplx.21728/abstract?userIsAuthenticated=false&deniedAccessCustomisedMessage
http://onlinelibrary.wiley.com/doi/10.1002/cplx.21728/abstract?userIsAuthenticated=false&deniedAccessCustomisedMessage


30. Rajaram R, Castellani B. The utility of nonequilibrium statistical mechanics, specifically transport 
theory, for modeling cohort data. Complexity. 2015; 20:45–57.

31. Hawkley LC, Lavelle LA, Berntson GG, Cacioppo JT. Mediators of the relationship between 
socioeconomic status and allostatic load in the Chicago Health, Aging, and Social Relations Study 
CHASRS. Psychophysiology. 2011; 48:1134–1145. [PubMed: 21342206] 

32. Love GD, Seeman TE, Weinstein M, Ryff CD. Bioindicators in the MIDUS national study: 
Protocol, measures, sample, and comparative context. J Aging Health. 2010; 22:1059–1080. 
[PubMed: 20876364] 

33. Friedman EM, Williams DR, Singer BH, Ryff CD. Chronic discrimination predicts higher 
circulating levels of E-selectin in a national sample: The MIDUS study. Brain Behav Immun. 
2009; 23:684–692. [PubMed: 19171188] 

34. Grimm, LG., Yarnold, PR. Reading and understanding multivariate statistics. American 
Psychological Association; Washington, DC, US: 1995. p. 99-136.

35. Lautenschlager GJ. A comparison of alternatives to conducting Monte Carlo analyses for 
determining parallel analysis criteria. Multivariate Behav Res. 1989; 24:365–395. [PubMed: 
26750503] 

36. Jain AK. Data clustering: 50 years beyond K-means. Pattern Recogn Lett. 2010; 31(8):651–666.

37. Kohonen T, Kaski S, Lagus K, Salojarvi J, Honkela J, Paatero V, Saarela A. Self-organization of a 
massive document collection. IEEE Trans Neural Netw. 2000; 11:574–585. [PubMed: 18249786] 

38. Kuo RJ, Ho LM, Hu CM. Integration of self-organizing feature map and K-means algorithm for 
market segmentation. Comput Oper Res. 2002a; 29:1475–1493.

39. Kuo RJ, Ho LM, Hu CM. Cluster analysis in industrial market segmentation through artificial 
neural network. Comput Ind Eng. 2002b; 42:391–399.

40. Hedayat M, Mahmoudi MJ, Rose NR, Rezaei N. Proinflammatory cytokines in heart failure: 
Double-edged swords. Heart Fail Rev. 2010; 15:543–562. [PubMed: 20405319] 

41. Koenig W, Löwel H, Baumert J, Meisinger C. Creactive protein modulates risk prediction based on 
the Framingham Score implications for future risk assessment: Results from a large cohort study in 
Southern Germany. Circulation. 2004; 109:1349–1353. [PubMed: 15023871] 

42. Stec JJ, Silbershatz H, Tofler GH, Matheney TH, Sutherland P, Lipinska I, Massaro JM, Wilson 
PFW, Muller JE, D’Agostino RB. Association of fibrinogen with cardiovascular risk factors and 
cardiovascular disease in the Framingham offspring population. Circulation. 2000; 102:1634–
1638. [PubMed: 11015340] 

43. Guest CB, Park MJ, Johnson DR, Freund GG. The implication of proinflammatory cytokines in 
type 2 diabetes. Front Biosci. 2007; 13:5187–5194.

44. Schmidt MI, Duncan BB, Sharrett AR, Lindberg G, Savage PJ, Offenbacher S, Azambuja MI, 
Tracy RP, Heiss G. Markers of inflammation and prediction of diabetes mellitus in adults 
Atherosclerosis Risk in Communities study: A cohort study. Lancet. 1999; 353:1649–1652. 
[PubMed: 10335783] 

45. Adameova A, Abdellatif Y, Dhalla NS. Role of the excessive amounts of circulating 
catecholamines and glucocorticoids in stress-induced heart disease. Can J Physiol Pharmacol. 
2009; 87:493–514. [PubMed: 19767873] 

46. Bremner D, Vermetten E, Kelley ME. Cortisol, dehydroepiandrosterone, and estradiol measured 
over 24 hours in women with childhood sexual abuse-related posttraumatic stress disorder. J Nerv 
Ment Dis. 2007; 195:919–927. [PubMed: 18000454] 

47. Ellis BJ, Del Giudice M. Beyond allostatic load: Rethinking the role of stress in regulating human 
development. Dev Psychopathol. 2014; 26:1–20. [PubMed: 24280315] 

48. Berr C, Lafont S, Debuire B, Dartigues JF, Baulieu EE. Relationships of dehydroepiandrosterone 
sulfate in the elderly with functional, psychological, and mental status, and short-term mortality: A 
French community-based study. Proc Natl Acad Sci USA. 1996; 93:13410–13415. [PubMed: 
8917605] 

49. Böttner A, Kratzsch J, Müller G, Kapellen TM, Blüher S, Keller E, Blüher M, Kiess W. Gender 
differences of adiponectin levels develop during the progression of puberty and are related to 
serum androgen levels. J Clin Endocrinol Metab. 2004; 89:4053–4061. [PubMed: 15292348] 

BUCKWALTER et al. Page 16

Complexity. Author manuscript; available in PMC 2017 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



50. Fukai S, Akishita M, Yamada S, Hama T, Ogawa S, Iijima K, Eto M, Kozaki K, Toba K, Ouchi Y. 
Association of plasma sex hormone levels with functional decline in elderly men and women. 
Geriatr Gerontol Int. 2009; 9:282–289. [PubMed: 19702939] 

51. Hernández-Morante JJ, Pérez-de-Heredia F, Luján JA, Zamora S, Garaulet M. Role of DHEA-S on 
body fat distribution: gender-and depot-specific stimulation of adipose tissue lipolysis. Steroids. 
2008; 73:209–215. [PubMed: 18063002] 

52. Morsink LF, Vogelzangs N, Nicklas BJ, Beekman AT, Satterfield S, Rubin SM, Yaffe K, Simonsick 
E, Newman AB, Kritchevsky SB, Penninx BW. Associations between sex steroid hormone levels 
and depressive symptoms in elderly men and women: Results from the Health ABC study. 
Psychoneuroendocrinology. 2007; 32:874–883. [PubMed: 17651906] 

53. Tannenbaum C, Barrett-Connor E, Laughlin GA, Platt RW. A longitudinal study of 
dehydroepiandrosterone sulphate DHEAS change in older men and women: the Rancho Bernardo 
Study. European Journal of Endocrinology. 2004; 151:717–725. [PubMed: 15588238] 

54. Jeevanandam M, Holaday NJ, Shamos RF, Petersen SR. Acute IGF-1 deficiency in multiple trauma 
victims. Clin Nutr. 1992; 11:352–357. [PubMed: 16840020] 

55. Papierska L, Rabijewski M, Kasperlik-Załuska A, Zgliczyński W. Effect of DHEA 
supplementation on serum IGF-1, osteocalcin, and bone mineral density in postmenopausal, 
glucocorticoid-treated women. Adv Med Sci. 2012; 57:51–57. [PubMed: 22430044] 

BUCKWALTER et al. Page 17

Complexity. Author manuscript; available in PMC 2017 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1. 
U-Matrix and Components Maps for Nine Allostatic Load Profiles: Map A and Map B are 

graphic representations of the cluster solution arrived at by the Self-Organizing Map (SOM) 

Neural Net, referred to as the U-Matrix. In terms of the information, they provide, Map A is 

a three-dimensional (topographical) u-matrix: for it, the SOM adds hexagons to the original 

15×11 map to allow for visual inspection of the degree of similarity among neighboring map 

units; the dark blue areas indicate neighborhoods of cases that are highly similar; in turn, 

bright yellow and red areas, as in the lower right comer of the map, indicate highly defined 

cluster boundaries. Map B is a two-dimensional version of Map A that allows for visual 

inspection of how the SOM clustered the individual cases. Cases on this version of the u-

matrix (as well as Map A) were labeled according to their k-means cluster membership (The 

nine cluster solution shown in Table 2) to see if the SOM would arrive at a similar solution. 

Map C is a graphic representation of the relative influence that the seven factors (shown in 

Table 1) had on the SOM cluster solution. The SOM generates a mini-map for the seven 

factors, each of which can be overlaid across maps A and B. Each of these mini-maps can 

then be inspected visually to examine what its rates are across the different neighborhoods 

(clusters of cases). Dark blue areas indicate the lowest rates for a factor; and the bright red 

areas indicate the highest rates for a factor. For example, looking at the mini-map for Factor 

6 (Blood Sugar), its rates are extremely low across most of the map, except for the lower 

right comer, which is where (looking at Map A and Map B) the SOM placed Cluster 6.
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FIGURE 2. 
Clinical health risk outcomes for nine allostatic load profiles. This figure displays the 

differences between observed and expected frequencies for each self-reported medical 

condition. Each of the radii represents a self-reported medical condition, labeled at the top of 

their respective radius. The case clusters are circumscribed around the 23 points of each 

circle based on the average frequency on a particular self-reported medical condition. The 

resulting profile (which constitutes each Cluster’s health risk profile) is in red. Score higher 

than 0 (the green circle) indicate a greater observed value than expected, whereas scores 

below 0 indicate a smaller than observed value than expected. For those scores higher than 

20, the corresponding medical condition is labeled in red. The three healthy to marginally 

healthy profiles are at the top, outlined in orange.
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