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In this work, we are motivated by the observation that previous considerations of appropriate complexity measures

have not directly addressed the fundamental issue that the complexity of any particular matter or thing has a sig-

nificant subjective component in which the degree of complexity depends on available frames of reference. Any

attempt to remove subjectivity from a suitable measure therefore fails to address a very significant aspect of com-

plexity. Conversely, there has been justifiable apprehension toward purely subjective complexity measures, simply

because they are not verifiable if the frame of reference being applied is in itself both complex and subjective. We

address this issue by introducing the concept of subjective simplicity—although a justifiable and verifiable value of

subjective complexity may be difficult to assign directly, it is possible to identify in a given context what is ‘‘simple’’

and, from that reference, determine subjective complexity as distance from simple. We then propose a generalized

complexity measure that is applicable to any domain, and provide some examples of how the framework can be

applied to engineered systems. VC 2016 Wiley Periodicals, Inc. Complexity 000: 00–00, 2016
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1. INTRODUCTION

T
he lessons to be drawn from complexity theory are of

interest to systems engineers to assist in managing

the growth of complexity in modern systems [1–3]. A

predominant preoccupation in systems engineering, as

well as in product engineering, has been the development

of justifiable complexity measures that can be of assis-

tance in all aspects of the system lifecycle but particularly

in system design. In product engineering limited efforts

have been focused on developing complexity measures

that are helpful in estimating the amount of resources

required to complete a design task, and to estimate design

difficulty [4]. A recent research project (META) sponsored

by DARPA (Defence Advanced Research Project Agency)

focused on identifying complexity metrics for engineered

systems that correlate with as well as predict project cost,

schedule or reliability, which can also be used to compare

designs/system concepts alternatives [5–7]. However, there

is no consensus about how to measure complexity in the

context of systems engineering, which is further exacer-

bated by the fact that the applicability of such complexity

measures to predict project success remains fundamen-

tally dubious [8]. The search for statistically significant
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correlation between different complexity measures (e.g.,

the size of project or engineering problem) and project

outcomes has shown no promise at all [3].

In this article, we briefly review the concept of com-

plexity and the implications associated with measuring it.

We propose a generalized complexity measure that explic-

itly accounts for both subjective and objective complexity.

We identify a mechanism for determining subjective com-

plexity based on the use of subjective simplicity as a refer-

ence. We show how some well-known measures of

complexity implicitly follow this framework. We conclude

with examples of how to apply the framework for meas-

uring complexity in engineered systems.

1.1. What Is Complexity?
From an etymological perspective ‘‘complexity’’ is an

English noun, which comes from the Latin noun com-

plexus meaning: (1) an aggregate of parts, (2) embraced,

and surrounded (3) an embrace. Thus, complexity is the

quality of a thing, which consists of an aggregate of parts,

and/or of a situation in which a part is embraced or sur-

rounded by other parts. Complexsus itself comes from

‘‘complecto’’ a compound of ‘‘com- ‘‘(together) and

‘‘plecto’’ (I weave, I twist).

However, ‘‘The term complexity has been used without

qualification by so many authors, both scientific and non-

scientific, that the term has been almost stripped of its

meaning’’ [9]. Heylighen [10] maintains that, ‘‘Complexity

has turned out to be a very difficult notion even to define.

Dozens of definitions that have been offered tend to have

a structure specific to the problem being addressed, classi-

fying something as complex, which we intuitively would

see as simple, or denying an obviously complex phenom-

enon the label of complexity. Moreover, these definitions

are either only applicable to a very restricted domain,

such as computer algorithms or genomes, or so vague as

to be almost meaningless.’’

The first time the term ‘‘complexity’’ appeared in a sci-

entific paper was in 1948, in an article titled ‘‘Science and

Complexity’’ [11] in which Weaver [11] stated that ‘‘physi-

cal science before 1900 . . . was largely concerned with

two-variable problems of simplicity; whereas the life sci-

ences, in which these problems of simplicity are not so

often significant, had not yet become highly quantitative

or analytical in character.’’

Edmonds [12] and Sussman [13] presented lists of dif-

ferent accounts of complexity. Edmonds [12] noted that

complexity has unjustifiably been equated with ignorance,

variety, midpoint between order and chaos, improbability,

ability to surprise, irreducibility, amongst other more com-

mon descriptions such as size and minimum size. Both

authors however made close connections between com-

plexity and unpredictability. According to Edmonds [12],

‘‘Complexity is that property of a model which makes it

difficult to formulate its overall behavior in a given lan-

guage, even when given reasonably complete information

about its atomic components and their inter-relations.’’ A

similar view was presented by Sussman [13,14] who stated

that ‘‘a system is complex when it is composed of a group

of related units (subsystems), for which the degree and

nature of the relationships is imperfectly known. Its over-

all emergent behavior is difficult to predict, even when

subsystem behavior is readily predictable.’’

The descriptions of both Edmonds [12] and Sussman

[13] imply that complexity is a subjective notion as much

as it is objective, although that observation is not

acknowledged directly. The characteristics of an agent

observing a system, or the agent’s internal model of an

external system, have much to do with the perception of

complexity. The behaviour of a complex system may

appear to be unpredictable, because even a complete

description of an object does not lead to an adequate

understanding of its behaviour due to a lack of compre-

hension or experience of the observing agent, or due to

incompleteness in the agent’s internal model relative to

the external observations. Explicitly accounting for the

subjective dimension of complexity is therefore important

in a useful measure of complexity in a given context.

1.2. Context Dependency and Viewer Dependency
of Complexity

Gell-Mann [15] states that: ‘‘As measures of something

like complexity for an entity in the real world, all such

quantities are to some extent context-dependent or even

subjective. They depend on the coarse graining (level of

detail) of the description of the entity, on the previous

knowledge and understanding of the world that is

assumed on the language employed, on the coding

method used for conversion from that language into a

string of bits, and on the particular idealized computer

chosen as a standard.’’

In the case of an engineered system, the context can

be defined as a sufficiently defined domain of knowledge

to which a system has relevance. An engineered system

has life cycle stages that are also system contexts. For

example, a computer system can be viewed, inter alia, in

its design context, manufacturing context, operational use

context, and repair context. So a system can be meaning-

fully viewed from the perspective of a given context and

may consequently be assessed as having different com-

plexity in each of those contexts. Further, each context

may have different stakeholders who may well have differ-

ent perspectives [16–19].

For example consider Kolmogorov complexity and

Effective complexity [15]. Kolmogorov complexity roughly

speaking is the size of the shortest program that can

regenerate an object or a set of strings. Kolmogorov com-

plexity is clearly language dependent, in other words it
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has different values in the context of different languages.

Effective complexity conversely is the length of a concise

description of an object’s regularities, or the amount of

nonrandom information [15]. Regularity might have differ-

ent meanings from the perspective of different agents.

Both Kolmogorov complexity, and effective complexity,

have been criticised for being respectively context depend-

ent and viewer dependent [12]. We believe that the context

dependency and subjectivity criticisms for complexity

measures is primarily due to the fact that the literature

does not contain any formal method to capture the rela-

tivity of a measure of complexity to the context and sub-

jective viewpoints. Here, we present a general framework

that explicitly captures both context dependency, and sub-

jectivity respectively in an objective complexity, and sub-

jective components of complexity.

2. TO KNOW THE COMPLEX KNOW THE SIMPLE
Although theories of complexity are relatively recent,

principles of parsimony date back two millennia as the

core of rational thinking. ‘‘We may assume the superiority

ceteris paribus of the demonstration which derives from

fewer postulates or hypotheses’’ is attributed to Aristotle

and ‘‘truth is ever to be found in simplicity, and not in the

multiplicity and confusion of things’’ is attributed to New-

ton. Yet the principle of parsimony, also known as Ock-

ham’s razor—‘‘entities should not be multiplied

unnecessarily’’—does not mean to imply that ‘‘whatever is

simple is true.’’ Rather, science (to know) is focused on

developing explanations for that which can be ‘‘knowable.’’

Here, we demonstrate that a rather important part of

complexity, subjective complexity, can be made knowable

by measuring the departure from simplicity when the

observer can be confident of what is ‘‘simple’’ in a given

circumstance.

Yet, although ‘‘complexity is necessarily in the eye of

beholder’’ [20] and therefore has subjective components, it

clearly has objective components as well. The need for a

dual perspective to characterize the complexity of systems

is therefore deeper than highlighted by previous research-

ers: here, we propose that a useful complexity measure

should have an objective and a subjective component.

2.1. A Framework for Measuring Complexity
We propose a general framework for a measure of sys-

tem complexity, which is a function of objective and sub-

jective complexity, which we define as follows:

� Objective complexity is a measure of system size, or

the size of the minimum description of the system.

Objective complexity is independent of any observer

viewpoint; however, it may be domain/context, and

object/goal dependent.

� Subjective complexity is a measure of the departure

from a reference simplicity. Subjective complexity

therefore depends on the observer’s selection of a

suitable reference model.

Figure 1 shows the proposed framework to measure

system complexity based on the above principles. Subjec-

tive complexity is reference-dependent, which implies rel-

ativity to a context, subject, or viewpoint. For example,

system engineers may deem system requirements that

resemble a perfect tree structure as simple [21]. If there is

link between leaves, or between requirements of different

branches of the tree-like requirements breakdown struc-

ture then the design might be very complex, because the

allocation of functional requirements to physical compo-

nents is not able to be conducted as a one-to-one map-

ping. Therefore, a set of requirements resembling a perfect

tree is simple to allocate—that is, the allocation problem

could not be any simpler. As shown in Figure 1, every sub-

jective viewpoint has an idea of what is simple in a given

context, which we call subjective simplicity. The subjective

simplicity in the context of a system forms a pattern that

is reference simplicity. In the above example a one-to-one

allocation is subjective simplicity from a systems engi-

neering point of view and the reference simplicity is a

tree-like pattern in systems requirements. The reference

simplicity drives the subjective complexity, and in the

remainder of the article we look at ways that subjective

complexity can be measured.

With the above introduction we are in a position to for-

mulate the framework for a general complexity measure

that has both subjective and objective components for the

observed complexity of an object:

K Sð Þ5F l Sð Þ;D SRð Þð Þ (1)

S is the object under study (such as a binary string, a

random variable, a set of elements, or a system). K is sys-

tem complexity,1 and F : Z2 ! Z is a monotonically

increasing function with respect to both of its inputs. l •ð Þ
denotes the size of the minimal description in a given

context. D(•) is a distance function and D SkRð Þ is the dis-

tance of S from R, which is the reference model of sim-

plicity from the viewpoint of observer and for a given

context of object S. All three functions F •ð Þ, D(•), and l •ð Þ
are context- and/or goal-dependent.

Obviously, function F in the form of multiplication of

two inputs provides a very simple instantiation of (1). In

our demonstrative examples we use multiplication as the

1Here, we can use other terms such as general complexity,

effective complexity, observed complexity, total complexity,

combination complexity, and mixture complexity to refer to

the intended concept.
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complexity function, nonetheless, with different size

measures and distance metrics. For completeness, simple

algebraic definitions of size and distance functions are

provided next.

Consider X, as a set of subsets of another set M. We

define a size function as a monotonic function l on X

such that:

1. l xð Þ � 0; 8x 2 X (positivity)

2. l 1ð Þ50 (null for empty set)

3. l xið Þ � l xj

� �
() xi � xjxi; xj 2 X (monotonicity)

The main properties of distance functions are dis-

cussed in set theory and general topology theory [22,23].

The distance is defined for two sets, as a positive-definite

real number that satisfies the following conditions 22]:

1. D x; yð Þ50()x5y

2. D x; yð Þ5D y; xð Þ (symmetric)

3. D x; zð Þ � D x; yð Þ1D y; zð ÞÞx; z 6¼ y (triangle inequality).

A distance function that meets all three criteria is

known to be a metric [22]. The distance function is known

as pseudo-metric, quasi-metric, and semi-metric, if it

respectively does not meet the first, second, and third cri-

terion [22].

In summary, complexity is a monotonic function of

size and distance from the reference simplicity. An inter-

esting complexity measure is the self-dissimilarity com-

plexity measure in Ref. 24, which assumes the pattern of

data at one scale as a reference for another scale (higher

or lower) of the same system [24]. The self-dissimilarity

measure is low when there is uniform pattern in all scales.

This complexity measure simply has a variable reference

simplicity that is derived from views of the system at dif-

ferent chosen scales. The next section shows that existing

statistical measures of complexity fit into our general

framework of measuring complexity.

2.2. Relation to Statistical Complexity Measures
According to Feldman and Crutchfield [9], statistical

complexity captures structure, organization, patterns, reg-

ularities and symmetries in systems. Consider a random

variable X that can take on N values each with a probabil-

ity Pr(X 5 xi)5pi, 1� i �N. piis the probability of each of

the N system states described by X. The Shannon entropy

of X is defined as:

H X½ �52
XN

1

pi log pi (2)

Shannon Entropy is a valid measure of size according to

the conditions for a measure as stated in previous section.

The amount of internal structure of a system can be cap-

tured by measuring its distance from, or difference to, ran-

domness [25]. L�opez-Ruiz, Mancini, and Calbet [25] and

Feldman and Crutchfield [9] proposed two statistical com-

plexity measures by multiplying disorder and a distance

FIGURE 1

A framework for measuring system complexity. Subjective complexity is relative to the observer; objective complexity is independent of the observer.
All elements in the figure are context-dependent.
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function of the current state of the system from complete

disorder. These measures followed the general template of:

C X½ �5H X½ �D X½ � (3)

where D[X] can be described as distance from complete

disorder. Given that Shannon entropy is a measure of size

of a random variable in bits, the measure template in (4)

is clearly consistent with our definition in (1). L�opez-Ruiz,

Mancini and Calbet [25] used disequilibrium as the dis-

tance term, which for any random variable X of size N (X

can take on N values x) with probability pi is defined as:

D X½ �5
XN

i51

pi2
1

N

� �2

(4)

Feldman and Crutchfield [9] proposed that the departure

from uniformity captured by the Kullback–Leibler distance

from a uniform distribution was more representative of the

distance component, which is also known as departure

from uniformity. Note that the uniform distribution has

maximum entropy and can create a maximally disordered

series of numbers. In general, the Kullback–Leibler distance

of any two probability distributions Pr1(X) and Pr2(X) is 9]:

D Pr1 Xð Þ k Pr2 Xð Þð Þ5
X

x

Pr1 Xð Þlog2

Pr1 Xð Þ
Pr2 Xð Þ

� �
(5)

For measuring distance from uniformity we have

Pr(X 5 xi) 5 1/N. Disequilibrium (4) is a metric, but Kull-

back–Leibler distance (5) is a quasi-metric (not symmetric).

In both cases the authors assumed that the reference for

simplicity is always a uniform distribution, which is not an

invalid assumption for natural physical systems, where uni-

formity has no useful information for any observer for the

purpose of hypothesis building. Shiner et al. [26] also intro-

duced a statistical measure of complexity as:

Ca;b5Da 12Dð Þb (6)

where D is disorder:

D5
H X½ �

Hmax X½ � (7)

Hmax X½ �5log N (8)

H[X] is Boltzman–Gibbs–Shannon entropy and Hmax is

its maximum possible entropy. D is clearly a measure of

size, and we can show that 12D is a very simple distance

measure from uniformity. After some simple manipula-

tions we can see that:

12D5

PN
i51 pilog pið Þ2 1

N log 1
N

� �� �
log Nð Þ (9)

The term in the numerator is a nonsymmetric distance

function of X from uniformity (quasi-metric), thus Shiner

et al. [26] assume uniformity as a reference simplicity.

Therefore (6), apart from using a quasi-metric as a dis-

tance measure, is a valid complexity measure so long as a,

b> 0. The latter condition is necessary for complexity to

be a monotonic function of size and distance from

simplicity.

We now turn our attention to graph complexity that is

widely used to characterize engineered systems. Several

graph complexity measures and distance functions for

graphs are introduced. We show that cyclomatic complex-

ity measure (which is extensively used in software engi-

neering) is an implicit instantiation of the general

framework proposed in (1).

3. COMPLEXITY IN ENGINEERED SYSTEMS
The objects of study in Refs. 9,25–28 were string of

symbols, or a series of numbers reducible to binary

strings. The object of interest in this article, however, is a

human-made or engineered system. In the next section,

we show that, because of the very definition of an engi-

neered system, graph theory is the most appropriate tool

for modeling engineered systems in general and for pro-

viding a rigorous mathematical basis for measuring engi-

neered system complexity.

‘‘A system is a combination of interacting elements

organized to achieve one or more stated purposes’’ [29]. A

system necessarily has a boundary through which its ele-

ments interact with elements or systems outside the

boundary [30]. The notion of boundary is important, since

by virtue of a finite boundary, the objective complexity of

any engineered system is finite. Further, within the bound-

ary, systems have a limited number of elements at any

chosen level of description or abstraction. Since the defi-

nition of a system considers systems as networks of con-

stituent elements (Figure 2), a complexity measure for

engineered systems can therefore be obtained from the

product of a graph complexity measure as an objective

FIGURE 2

A system as a set of interconnected elements. [30].
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measure of complexity and the distance of the graph from

a baseline graph that represents subjective simplicity.

The general complexity measure in Eq. (1), can provide

a general complexity measure for engineered systems with

two components:

� An objective component: For engineered systems this

is an increasing function of number of system ele-

ments/objects and their relations. This component

can be thought of as objective complexity, context-

independent complexity, or absolute complexity. The

absolute complexity may be thought of as being syn-

onymous with the system size.

� A subjective component: Which is the distance of the

system from a selected reference model. It might

also be thought of as context-dependent complexity

or relative complexity.

As noted earlier, an engineered system exists in a num-

ber of life cycle stages [31] such as design, manufacturing/

implementation, utilization/operation, replacement/main-

tenance, and retirement. Each of these stages is a context

for an engineered system, but it is not necessary for us to

pursue that complication here. In the next two subsec-

tions, we look at some graph theory and graph theoretic

complexity measures than can have objective, subjective,

and combined components.

3.1. Aspects of Graphs
An undirected graph G(n,m) with n nodes and m links

can be formally defined with its adjacency matrix

A(G)5[ai,j]n3n. For simplicity of explanation, we only con-

sider undirected graphs here for which ai,j 5 1 if there is

link between nodes i and j, otherwise ai,j 5 0. A subgrpah

of G, is any graph that is contained in G, or in other words

its nodes and edges are subsets of those of G.

Previously we briefly described the Kullback–Leibler

distance as a measure of the distance between two proba-

bility distributions. Now we briefly explain what distance

for graphs could mean. Consider a graph G, with A(G) as

its adjacency matrix. The graph distance is usually referred

to as graph edit distance, or topological difference [32–36].

The topological distance of this graph from any reference

graph (R with A(R) as its adjacency matrix) is related to

the size of the Maximum Common Subgraph (MCS)

between G and R [33,34] and for example can be calcu-

lated as:

D G;Rð Þ512
jMCS G;Rð Þj

jGj1jRj2jMCS G;Rð Þj (10)

where |.| denotes cardinality or the number of nodes, or

any other objective measure of graph complexity.

For illustration of the MCS concept, Figure 3 shows a

simple example of the MCS of two graphs. The nodes and

links shown in red to highlight the MCS, which is the

intersection of the two graphs. It is not always straightfor-

ward to extract the MCS of two graphs. Finding MCS is

computationally an NP hard problem [34]. A systemic way

of extracting the MCS of two graphs is to determine the

maximum clique (maximum complete subgraph) of the

modular product of the two [37,38].

There are numerous graph distance measures, however

all measures are based on the concept of MCS. Two exam-

ples from Burke [39] and Wallis et al. [32] are:

D G;Rð Þ512
jMCS G;Rð Þj

max jGj; jRjð Þ (11)

D G;Rð Þ512
jMCS G;Rð Þj
jMinCS G;Rð Þj512

jG \ Rj
jG [ Rj (12)

where MinCS is the Minimum Common Supergraph which

represents the union of the two graphs. Interestingly,

when MCS(G,R) 5 R or MCS(G,R) 5 G, all three distance

measures are equal. It should also be noted that all three

distance measures are metrics (satisfy the triangle inequal-

ity) [32,39].

3.2. Complexity Measures for Graphs
Comprehensive reviews for graph complexity measures

are presented elsewhere [40,41]. Here, we provide a brief

overview for the purpose of identifying the utility of such

measures as part of a system measure of complexity for

systems that can be modeled as a graph. Broadly, graph

complexity measures can be classified into entropy-based

[42–44], and non-entropic classes [42,45–48].

In general the term entropy describes the diversity and

variety. Graph entropy measures state the diversity or

spread of a specific graph property (or a property of its

nodes or links) [40,41]. For example, one of the properties

of a node in a graph is its degree, which is the number of

links related to that node:

di5
Xn

j51

ai;j (13)

FIGURE 3

Illustration of the MCS concept.
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di is the degree of node i. Assume that graph G has nd

nodes with distinct degrees. Then the degree distribution

p(ki) is the number of nodes with their degree as k and

i 5 f1. . . ndg divided by total number of nodes (n). An

entropy-based graph complexity measure is the entropy of

node degree distribution:

Cge Gð Þ52
Xnd

i51

p kið Þ log p kið Þð Þ (14)

Cge provides information about diversity of degree dis-

tribution across all nodes of G. As shown in an experiment

in the next section, Cge does not necessarily increase with

an increase in the number of nodes and the number of

links. With regards to the entropy of degree distribution,

graphs such as a star, circular, and complete graph are not

complex because they have peaked degree distributions

respectively around k 5 1, k52, and k 5 n 2 1 (n 5 number

of nodes). This means very low entropy for star graph, and

zero entropy for circular and complete graphs. Other

entropy measures can be proposed based on the in-

between-ness of nodes, in-between-ness of links or any

other graph property [42–44].

Simple nonentropic measures include measures of the

numbers of graph elements (nodes and links), or the sum

or product of those elements. Spectral examples of nonen-

tropic graph measure are maximum eigenvalue of adja-

cency matrix [49], sum of eigenvalues of adjacency matrix

(also known as graph energy [6]), and determinant of

adjacency matrix (which is the product of eigenvalues).

Kolmogorov graph complexity measures such as linear

graph complexity [50] are based on size of the minimal

code that reconstructs the graph. For example, the size of

a binary representation of adjacency matrix (which is a

minimal representation of graph because it excludes the

edges weights) is deemed as Kolmogorov graph complex-

ity by Mowshowitz and Dehmer [40].

Other nonentropic graph complexity measures include

[40, 41, 48]:

� The number of spanning trees [41] which is the

number of distinct subgraphs with tree structures

that also have same number of nodes as the graph

they span.

� Off-diagonal complexity measures the diversity of

node-node correlation matrix, is maximum for

graphs with power law degree distribution (small

world property). The underlying assumed reference

is a regular graph (all nodes with constant degree)

[41].

� Graph efficiency is the arithmetic mean of all inverse

shortest path lengths. The underlying assumed refer-

ence is scale-free (power-law degree distribution)

[41].

� Cyclomatic complexity [51] (the number of inde-

pendent loops in a graph) is based on a preference

for a tree-like structure as the reference simplicity.

The measure was shown to be statistically correlated

to the number of programing errors, and has been

used to reduce the number of loops in structured

software because cyclic operational dependence in

system software (such as feedback loops) is also

described as the primary source of emergent

response or unintended consequences in a system

[52].

3.3. Objectivity and Subjectivity of Graph Complexity
For use in the system complexity proposed in Eq. (1),

we seek an objective measure for graph complexity. For a

graph, the objective complexity measure must be a strictly

increasing function of the number of nodes and the num-

ber of links. To be more precise, the measure must satisfy

the following criterion of a connected graph (a graph that

has no isolated components):

� The objective complexity of a connected graph must

be strictly greater than the objective complexity of

any its subgraphs [53,54].

An equivalent form of expressing this criterion is:

� The objective complexity must strictly decrease by

removing a link or a node of a connected graph.

If a complexity measure meets the above criterion it is

called objective. If it meets the criterion, except for the

strictness part (i.e., e.g., the complexity measure remains

unchanged by removing a link, or a node) then we can

term the measure as weakly objective. Figure 4 shows the

behavior of different complexity measures in a simple

experiment, in which a node and a link were randomly

added to a graph in steps up to a maximum of 100 nodes.

After that point, only a link was randomly added at each

step until a clique/fully connected graph was reached

(with a maximum of 4950 links). As shown in Figure 4

from eight common graph measures (number of links plus

number of nodes, number of links times number of nodes,

cyclomatic number, entropy of degree distribution, maxi-

mum eigenvalue, graph energy, determinant, and number

of spanning trees), only three measures are objective (sum

and product of n and m and maximum eigenvalue), two

(cyclomatic complexity and number of spanning trees) are

weakly objective and three (degree distribution entropy,

graph energy and determinant) are not objective.

3.4 Objective and Subjective Assumptions of Cyclomatic
Complexity

Some measures described in the previous section have

explicit assumptions about a reference model. Complexity

C O M P L E X I T Y 7Q 2016 Wiley Periodicals, Inc.
DOI 10.1002/cplx



measures such as off-diagonal complexity and graph effi-

ciency are designed to have a preference for a particular

form (i.e., they have low/high values for scale-free graphs).

However, most measures do not make explicit their

assumptions about a subjective simplicity or reference

such as the determinant of the adjacency matrix. The

problem with such measures is that they are focused on a

specific use, or might prove useful in a specific context

FIGURE 4

Eight complexity measures and their relationship with the number of links. These measures from top to bottom are number of links plus number of
nodes, number of links times number of nodes, cyclomatic number (cyc), entropy of degree distribution (ent), maximum eigenvalue (max eig), graph
energy, determinant (det), and number of spanning trees (s trees).
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without a clear understanding of how the measure might

be applied in a different context. Without a reference for

simplicity, the measurement of subjective complexity is

itself subjective and therefore unreliable which has led to

justifiable criticism of such measures in the past. When

the assumptions of an underlying reference model are sur-

faced, the utility of combination measures can be made

more explicit.

For example, although it does not expressly separately

identify subjective complexity, we can show that cyclo-

matic complexity (the number of loops as a measure of

graph complexity) conforms to the general measure of Eq.

(1) when it is recognized that the measure is based on a

preference for tree-like structure as reference simplicity.

For a connected graph, G(n,m), cyclomatic complexity is

calculated as [51]:

Cyc Gð Þ5m2n11 (15)

We can reproduce the cyclomatic complexity measure

using Eq. (1), if we assume any spanning tree of graph

G(n,m) as the reference model for objective simplicity,

with an objective complexity calculated as the sum of n

nodes and m links. The proof is simple. Assume an objec-

tive complexity measure as follows:

jGj5n1m (16)

Since every spanning tree has n21 links:

jSTj52n21 (17)

where ST is a spanning tree of G. Since the intersection of

G and ST is ST itself:

MCS G; STð Þ5ST) DðGkjSTÞ512
jSTj
jGj 5

m2n11

m1n
(18)

and finally, using Eq. (1):

K Gð Þ5jGj3D GjjSTÞ5m2n11ð (19)

which is the same as the cyclomatic complexity in Eq. (15).

So, without being explicit within the measure, cyclomatic

complexity is generated by a subjective desire for tree-like

graphs (i.e., graphs with no loops), and also by regarding

the addition of links and nodes as objective complexity.

4. SOME ILLUSTRATIVE EXAMPLES
This section provides several examples to illustrate the

utility of the general measure of system complexity. Unless

otherwise stated, by way of example and without loss of

generality, we use the following simple measure of the

objective complexity a graph:

jG n;mð Þj5n3m (21)

where n is the number of nodes and m is the number of

links. It should be noted that, since we have MCS(G,R) 5 R

or MCS(G,R) 5 G for all examples, all distance measures

(10), (11), and (12) yield the same results.

4.1. Complete Graph as Reference
A complete graph can be considered to be as simple as

a graph with no edges, because its description is very

short and only knowledge of the number nodes is needed

to reconstruct the complete graph in both cases. In graph

theory, there has also been interest in creating complexity

measures that vanish at the extremes [26,41] by multiply-

ing an objective normalized graph complexity measure by

one minus itself. Here, we show that by assuming a com-

plete graph as reference simplicity, we arrive at the same

result.

To illustrate this we conducted a small experiment to

determine the behavior of the complexity of a graph as

the number of links increases objectively and where the

reference simplicity is a complete graph. In the experi-

ment a random link was added to graph of maximum 10

nodes and at each step objective and subjective complex-

ity was measured. Figure 5 shows that objective complex-

ity increases monotonically as more links and nodes are

added, because the amount of information needed to

describe the new graph increases.

Conversely, subjective complexity decreases as the sub-

ject graph builds in size to be closer to the reference

graph (to the reference simplicity). When there is a small

number of nodes and links there is a maximum distance

from the complete graph with 10 nodes. The distance

decreases as the subject graph becomes more similar to

FIGURE 5

Objective, subjective and system complexity for a graph is created
by regarding a complete 10-node graph as reference simplicity.
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the complete reference graph. By the time all possible

links are made, the distance is zero. The subjective com-

plexity in Figure 5 is scaled by a factor of 450 to display

with the other values.

4.2. Complexity of Repeating Patterns
Suppose that we have perfect knowledge about a refer-

ence system R (see Figure 6) from a single perspective such

as design, manufacturing/assembly, integration, mainte-

nance, or operation, or from the perspective of any individ-

uals or groups involved in those processes. We want to

know complexity of the system, S, from the same perspec-

tive as the reference system. Since in this case the structural

intersection (MCS) of the reference and the system is also

equivalent to the entire reference system, we have:

jSj520; jRj516; D SjjRð Þ50:2; K54 (22)

Now consider a system, Sn, that is composed of n mod-

ules, and each module is identical to the system S above,

and integrated by a single link between two adjacent

blocks, as shown in Figure 7 for n 5 3. Figure 8 shows the

objective complexity of Sn as a function of the number of

modules (n). The objective complexity increases monot-

onically with the size of Sn.

Now, we can consider two different reference types for

simplicity: static and dynamic. Assume nref as the size of

the reference model. If nref is independent of system size

(n), the reference model is static. Figure 9 shows the sub-

jective complexity and system complexity of a modular

repeating system with reference to a range of static refer-

ence models (characterized by nref).

Figure 9(a) shows the variation in subjective complexity

with the number of modules. Consider, for example, the

case of a static reference simplicity nref 560. The subjec-

tive complexity for a small number of modules is high

because the difference from the reference system is large.

As the number of modules increases the distance, and the

consequent subjective complexity, decreases to a mini-

mum when the number of modules equals nref. At that

point (n 5 60, in this case) the subjective complexity is at

minimum—it would be zero if the two graphs were identi-

cal, but a small difference between G and R mean that

there is a small subjective complexity. After that point, the

subjective complexity again begins to rise because, as n

increases, the static reference model becomes less repre-

sentative and the distance between G and R grows.

For any given nref, under the influence of objective

complexity, the system complexity in Figure 9(b) increases

up to a maximum as the system size (n) increases, and

then, because of the influence of subjective complexity

reduces toward a local minimum at n 5 nref, before both

subjective and objective components combine to create a

steadily increasing complexity rate for n>nref. An

FIGURE 6

The structures of a selected reference system, R, and a system
under study, S.

FIGURE 7

A reference system, Rn, with n 5 3 and a system, Sn, under con-
sideration with n 5 3.

FIGURE 8

Objective complexity of a modular system, Sn, where n 5 1100.
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interesting observation here is that the local minimum

and maximum complexity values increase with nref, which

is a result of a larger distance between the reference

model and the system at these points as nref increases.

Since this distance is relatively small for (nref 5 1), the

minimum complexity is very close to zero, however the

minimum complexity increases slowly as nref increases.

With a dynamic reference, the size of the reference

model is allowed to change so that it always remains com-

mensurate in size with that of the system (or nref 5 n), as

is the case for cyclomatic complexity. We can also cap this

changeability of nref up to a maximum number of mod-

ules after which the reference remains static. Figure 10

shows the complexity profiles for subjective complexity:

Figure 10(a), and system complexity, Figure 10(b). It is evi-

dent that observed complexity can only increase with

respect to dynamic references. Consequently, for n>nref

the reference model stays constant at nref in size, as

occurred in the static case. Figure 10(a) shows the subjec-

tive complexity remains low since the difference between

the n-module subject and the nref -module reference

remains small until n>nref after which nref remains con-

stant and the subjective complexity rises sharply. An inter-

esting observation here is that for nref 5 100 the subjective

complexity is lower than in the static case, and if we could

plot the subjective complexity for a very large number of

modules with a dynamic reference with no cap, the rela-

tive distance would be very small. Figure 10(b) shows the

resultant observed complexity which for any size subject

remains low until n>nref at which time the system com-

plexity rises exponentially.

5. CONCLUSION
Although there are numerous complexity measures,

each tends to be context-dependent and there have been

FIGURE 9

Complexity as a function of number of modules, n, with reference
to different static references with nref modules (a) for subjective
complexity and (b) for the system complexity.

FIGURE 10

The effect on observed complexity of the use of dynamic reference
models (a) for subjective complexity and (b) for system complexity.
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few attempts to provide a generic structure that might

provide a useful framework for such measures. Here, we

show that a useful complexity measure for engineered sys-

tems has two components. The first is an objective com-

ponent, which is an increasing function of the number of

system elements/objects and their relations. This compo-

nent can be thought of as objective complexity, context-

independent complexity, or absolute complexity. The sec-

ond component of complexity measure is the subjective

component, which is the distance of the system from a

reference model for simplicity. The subject component

can be thought of as subjective complexity, context-

dependent complexity, or relative complexity. For systems

design, the objective component must be graph theoretic

and conform to a number of other criteria set out in the

article. The subjective component of the measure is a dis-

tance function expressing the topological distance from a

reference model (structure) which is subjectively simple

for the purpose for which the complexity measure is being

applied.

Previous considerations of appropriate measures have

not directly addressed the fundamental issue that the

complexity of any particular matter or thing has a signifi-

cant subjective component in which the degree of diffi-

culty depends on available frames of reference. Any

attempt to remove subjectivity from a measure of com-

plexity therefore fails to address a very significant aspect

of complexity. Conversely, there has been justifiable appre-

hension toward purely subjective complexity measures,

simply because they are not verifiable if the frame of ref-

erence being applied is in itself both complex and subjec-

tive. We address this issue by introducing the concept of

subjective simplicity—although a justifiable and verifiable

value of subjective complexity may be difficult to assign

directly, it is possible to identify in a given context what is

‘‘simple’’ to the observer and, from that reference, deter-

mine subjective complexity.

The system complexity measure proposed here allows

the study of system complexity from the perspectives of

multiple stakeholders who naturally have a diverse set of

reference simplicities. In each case, a candidate solution

has a constant objective complexity and a number of sub-

jective ones depending on the points of view of stakehold-

ers. Solutions can then be compared based on:

� That with the lowest objective complexity.

� That with the lowest subjective complexity for cer-

tain stakeholders.

� That with the smallest deviation in subjective com-

plexity over all stakeholders.

The proposed system complexity measure has the

additional advantage of being adaptable in terms of sub-

jective complexity with reference to dynamic models that

evolve with the learning of observers.
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