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1. Introduction

Algorithmic information theory may be viewed as the result of adding
the idea of program-size complexity to recursive function theory. The
main application of algorithmic information theory is its information-
theoretic incompleteness theorems. This theory is concerned with the
size of programs, but up to now these have never been programs that
one could actually program out and run on interesting examples.

I have now figured out how to actually program the algorithms
in the proofs of the all the key information-theoretic incomplete-
ness theorems in algorithmic information theory. I have published
this material electronically in a series of detailed reports [1,2,3,4]

1This material was presented in a series of lectures at the Santa Fe Institute,

the Los Alamos National Laboratory, and the University of New Mexico, during a

one-month visit to the Santa Fe Institute, April 1995.
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that include a lot of software. These reports are available on the
Web at http://xyz.lanl.gov or by sending e-mail to chao-dyn @

xyz.lanl.gov with Subject: get 9506003, where yy is the year, mm
is the month, and nnn is the number of each report.

Here I shall give an overview of this material. I’ll present the main
ideas, which are a mixture of abstract mathematics and practical com-
puter software technology.

In order to program out the algorithms in the proofs of the main
information-theoretic incompleteness theorems, I use a stripped-down
version of pure LISP designed especially for this purpose. The inter-
preter for this LISP was originally written in Mathematica [1]. A faster
version of this interpreter was then written in C [2]. [3] uses a slightly
different LISP with an interpreter that is also written in C. In addition,
[1] gives the Mathematica code for producing a monster diophantine
equation that exhibits randomness in arithmetic. This equation is ba-
sically just an interpreter for the LISP used in [1] and [2], dressed up
as a diophantine equation. I haven’t taken the trouble yet to produce
a diophantine equation for the LISP used in [3].

The main idea is this:
In algorithmic information theory, given a self-delimiting universal

Turing machine, one defines a program-size complexity measure from
it. If one picks a different universal Turing machine, one gets a slightly
different complexity measure.

Now I pick a specific machine to base my whole theory on.
My universal Turing machine U produces output in the form of

LISP S-expressions, and U ’s input is a program in the form of a binary
string. The machine U starts by reading a LISP S-expression π from
the start of its program tape. U reads this S-expression π from the
tape a character at a time in 7-bit ASCII chunks, until parentheses
balance and U knows that it has read the complete S-expression π.
Then U starts to evaluate the prefix π that it has read, with the rest of
the program tape β available as binary data to the S-expression π in a
highly controlled manner. The S-expression π can use a READ-NEXT-
BIT pseudo-function to read individual bits from U ’s program tape. π
cannot look at β, the rest of U ’s program tape, directly. The READ-
NEXT-BIT function always returns the value 0 or 1, but it cannot
return an end-of-data indication. If the S-expression π attempts to

http://xyz.lanl.gov
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read beyond the end of the binary data β, the computation aborts. This
forces U ’s program πβ to be self-delimiting. (There is no punishment
for failing to read all of β.)

The main difference between the pure LISP that I use and ordinary
pure LISP is that there is a mechanism for giving binary data to LISP
S-expressions. There is also a mechanism that makes it possible for an
S-expression whose evaluation never ends to output an infinite set of S-
expressions (which is all that a formal axiomatic system is). The heart
of an interpreter for ordinary LISP is the recursive expression evaluator
EVAL. The heart of my interpreter is not EVAL, it is a mechanism for
doing a time-limited evaluation called TRY.

2. LISP

The above hints are intended for people who already know LISP. Now
let me present my LISP from the ground up, using lots of examples.
Then I’ll use it to get some incompleteness theorems.

In set theory one constructs the entire universe from the empty set
using the set forming operation. In LISP, one constructs the entire
universe by making lists starting with atoms. Lists are ordered, sets
are not.

In this LISP the atoms are the 128 7-bit ASCII characters. The
empty list, which is also an atom, is (); (abcd) is a list of four atoms;
and ((aa)(bb)(cc)) is a nested list with three elements, each of which
is in turn a list with a repeated atom. The union of the set of atoms
and the set of lists yields the set of S-expressions. S-expressions are the
universal LISP substance: both programs and data are S-expressions.

True and false are 1 and 0.
My LISP is so simple that numbers are not provided. But it is easy

to program unary or base-two arithmetic using lists of 0’s and 1’s.
Normally, the result of applying the function f to the arguments x,

y and z is written f(x, y, z). In LISP this is written (fxyz).
Pure LISP is not an imperative language with side-effects. Rather

one defines functions and evaluates expressions. One starts with a
number of primitive functions.
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In this LISP all the primitive functions have a fixed number of argu-
ments. This makes it possible for there to be a parenthesis-free meta-
notation called M-expressions in addition to the “official” S-expression
notation.

Now I present the primitive functions using examples.
The primitive function QUOTE yields its unevaluated argument,

which is how one distinguishes data from programs. For example, the
M-expression ’(abc) denotes the S-expression (’(abc)) whose value
is the S-expression (abc). Without the QUOTE, this would indicate
that the function a has to be applied to the arguments b and c.

The function HEAD gives the first element of a list. The M-
expression +’(abc) yields a.

The function TAIL gives the rest of a list. The M-expression
-’(abc) yields (bc).

JOIN is the inverse of HEAD and TAIL: *’a’(bc) yields (abc).
The predicate ATOM tells whether its argument is an atom or not:

.’a yields 1 and .’(abc) yields 0.
The predicate EQUAL compares two S-expressions: =’a’b yields 0

and =’(ab)’(ab) yields 1.
The pseudo-function IF-THEN-ELSE has three arguments, and

evaluates its second or third argument depending on its first argument.
/1’x’y yields x and /0’x’y yields y.

A function definition is a triple consisting of an ampersand fol-
lowed by the list of parameters followed by the function body. For
example, the M-expression (’&(xy)y ’a ’b) denotes the S-expression
((’(&(xy)y)) (’a) (’b)) whose value is b. In other words, this is an
unnamed function of two parameters whose value is the second param-
eter.

Here are two additional pieces of notation, which are extremely
convenient.

The M-expression :xv e is an abbreviation for the M-expression
(’&(x)e v). In other words, let x have value v in expression e.

The M-expression :(fxyz)b e is an abbreviation for the M-
expression (’&(f)e ’&(xyz)b). In other words, let the function
(fxyz) be defined to be b in expression e.

We can now present a complete LISP program. Let’s define
list concatenation recursively and use it to concatenate two lists.
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:(Cxy)/.xy*+x(C-xy) (C’(abc)’(def)) yields (abcdef). Let’s say
this in words. Here is how we define the concatenation of two lists. If
the first list is empty, then the concatenation is the second list. Oth-
erwise take the first element of the first list and join it to the result of
concatenating the rest of the first list to the second list.

Actually, for efficiency’s sake concatenation is provided as a prim-
itive function ^. Also, in another concession to practicality, there are
mechanisms for making function definitions permanent, so that it is not
really necessary to give all function definitions locally.

There is a mechanism for displaying intermediate results. This is
the pseudo-function DISPLAY which considered as a pure function is
just the identity function, but which has the side-effect of displaying
its argument. DISPLAY is written as a comma. Let’s change the defi-
nition of concatenation to see how this works. :(Cxy)/.,xy*+x(C-xy)
(C’(abc)’(def)) finally yields (abcdef) just as before, but first it
displays the intermediate results (abc), (bc), (c), and ().

The primitive function EVAL allows one to construct an S-
expression and then evaluate it. EVAL is written as an exclamation
mark. For example, !’+’(abc) yields a.

The major difference between this LISP and traditional pure LISP
is the primitive function TRY. TRY, which is written as a question
mark, has three arguments, α, β and γ. The first, α, is a time bound,
given in unary notation, that is, as a list of 1’s. The second argument
β is the expression to be evaluated. And the third argument γ is a list
of 0’s and 1’s which are made available in a highly controlled manner
to the expression β that is being evaluated. To access the binary data
γ, the S-expression β must use two primitive functions READ-NEXT-
BIT (@) and READ-NEXT-S-EXPRESSION (%), both of which are
pseudo-functions with no argument.

The value of a TRY is a list whose first element is an error indi-
cation if the TRY failed, or the value of the expression β wrapped in
parentheses if the TRY succeeded. The first element is ? if the TRY
failed because the time α ran out. The first element is ! if the TRY
failed because the binary data γ ran out. And the rest of the value of
a TRY consists of captured intermediate results that were produced by
the expression β using DISPLAY.

My LISP has permissive semantics, so that a TRY can only fail by
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running out of time or binary data, not by giving bad arguments to a
primitive function.

Note that one is punished if one runs out of binary data, but not if
one fails to read all the binary data.

EVAL and TRY always start with a fresh environment in which each
atom is bound to itself. EVAL has no time limit, TRY does. EVAL
inherits the binary data, if any, in its context, while TRY switches to
new binary data. EVAL is dangerous; it may run forever or may abort
its user. TRY is safe; it can only run for a fixed amount of time and it
cannot abort its user. Using EVAL can eat up one’s binary data; using
TRY doesn’t touch one’s binary data. DISPLAY’s from within EVAL
take place normally; DISPLAY’s within TRY are suppressed.

What if one TRY’s the concatenation example given above, with the
first arguments () (1) (11) (111) (1111) and (11111) and the third
argument ()? In other words, let’s TRY running the concatenation
example with longer and longer time bounds and no binary data. Here
are the values of TRY that one gets: (?) (?) (?(abc)) (?(bc)(abc))

(?(c)(bc)(abc)) and (((abcdef))()(c)(bc)(abc)).
The extra pair of parentheses around the result of the concatenation

makes it possible to distinguish the errors ? and ! from the valid values
(?) and (!).

If the first argument of TRY is not a list, then there is no time
limit. Then one immediately gets (((abcdef))()(c)(bc)(abc)) as
the value of the TRY.

We actually use a machine-independent time limit α that is a limit
on the maximum interpreter stack depth. The body of a function defi-
nition and expressions that are EVAL’ed or TRY’ed are evaluated using
a time limit α′ = α − 1 that is one unit less than the time limit α for
the containing expression.

The most delicate thing in the interpreter is getting nested TRY’s to
work properly. First of all, within nested TRY’s the most constraining
time limit must apply. Secondly, if time runs out one must unwind the
interpreter stack back up to the correct TRY, which is the one that
imposed the strongest constraint.

A final primitive function CONVERT-TO-BITS (#) converts its ar-
gument from an S-expression into the list of the consecutive bits in the
ASCII for its character string representation. CONVERT-TO-BITS
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and READ-NEXT-S-EXPRESSION are in effect inverse functions.

3. Complexity

That concludes the presentation of my LISP. That’s all there is to it!
It’s very simple! It has to be, if we are going to make it into a dio-
phantine equation. But this simple programming language is powerful
enough to code all the proofs of my information-theoretic incomplete-
ness theorems. This LISP is powerful enough to program an interpreter
for my universal Turing machine U in a single line of LISP code. This
LISP can also be used as a very high-level assembler to produce com-
plicated binary programs for U .

In fact, here is how we program U . (Up), the result of running
the universal machine U on the binary program p, is defined to be a
TRY with no time limit of EVAL of READ-NEXT-S-EXPRESSION
using p as the associated binary data. More precisely, (Up) is de-
fined to be the M-expression ++?0’!%p which is just the S-expression
(+(+(?0(’(!(%)))p))) which says, read a complete S-expression from
the program tape, then TRY to evaluate it with no time limit using the
rest of the program tape as binary data.

Now that we have U , let’s use it to measure program-size complexity.
Let’s define the complexity H(x) of an arbitrary S-expression x to be
the size in bits of the smallest program for U to compute x. In other
words, H(x) is the size in bits of the smallest p such that U(p) = x.

What properties does this complexity measure H have?
Let’s start by considering two arbitrary S-expressions x and y.

Consider the M-expression *!% *!% (), which is the S-expression
(*(!(%)) (*(!(%)) ())), which is 20 characters and 7 × 20 = 140
bits. This expression says to read two S-expressions from the binary
data, and then evaluate them and put the results together into a list.
If we concatenate this 140-bit prefix with a minimum-size program for
U to calculate x and a minimum-size program for U to calculate y,
we get a program for U to calculate the pair (xy) that is precisely
140 + H(x) + H(y) bits long. Thus we see in a very concrete man-
ner that the joint complexity H(x, y) is bounded by the sum of the
individual complexities H(x) and H(y) plus the constant c = 140:
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H(x, y) ≤ H(x) +H(y) + 140.
Now consider a binary string x that is |x| bits long. It’s easy to see

that H(x) ≤ 2|x|+ 471 and H(x) ≤ |x|+H(|x|) + 1148.
Why?
To prove that H(x) ≤ 2|x| + 471 one programs a 469-bit prefix π

so that U(π 00 11 00 11 01) = 0101. In other words, the prefix π makes
U read two bits at a time from its program tape as long as they are
equal. U stops as soon as two unequal bits are found.

And to prove that H(x) ≤ |x|+H(|x|)+1148 one programs a 1148-
bit prefix π so that U(πβx) = x if β is a minimum-size program for U
to compute the base-two notation for the size of the bit string x. Here
is how this works: first the prefix π makes U run the program that
follows π on the program tape to determine how many bits there are,
then π makes U read that many bits from the program tape and stop.

For more details, see the program univ.lisp in [2].
Next we show how to compute the halting probability Ω of U in the

limit from below. TRY running U for time N on each N -bit program.
This gives a monotone increasing sequence WN of lower bounds on Ω:
WN is (the number of N -bit programs that halt on U within time N)
divided by 2N .

Here is a simple way to calculate WN . Given N , first generate the
list of all N -bit strings. Then use TRY to select the subset of this
list of programs that halt within time N when run on U . Then count
the size of the list of programs that halt, and develop this count in
base-two notation. Finally pad the base-two count on the left with
enough 0’s to make an N -bit string, and prepend “0.”. By using a
slightly more sophisticated counting technique, one can avoid having
to generate these two enormous lists of programs. That’s a good idea,
because my fast C interpreter does not have garbage collection. In this
manner I was able to compute W22 in about an hour on a 512-megabyte
IBM RS/6000 workstation.

For more details, see the program omega.lisp in [1] and [2].
Now we show that the bits of the halting probability Ω are irre-

ducibly complex. More precisely, let ΩN be the first N bits of the
base-two representation of the real number Ω. We shall show that
H(ΩN) > N − 4431.

Why?
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The reason is that knowing ΩN enables one to solve the halting
problem for all N -bit programs. More precisely, there is a prefix π that
is 4431 bits long that when concatenated to a minimum-size program ω

for U to compute ΩN does the following. First π runs ω to compute ΩN .
Then π calculates WT for larger and larger values of T until the first N
bits of WT are okay, that is, agree with ΩN . At this point π knows that
any N -bit program for U that halts must halt within time T . So π can
give as its final result the list BN of the values of all N -bit programs
for U that halt. BN includes every S-expression with program-size
complexity ≤ N . Hence this big list BN must itself have program-size
complexity greater than N . Thus N < H(BN) ≤ |πω| = 4431+H(ΩN),
which was to be proved.

For more details, see the program omega2.lisp in [2].
Now let’s get an incompleteness result. We show that a formal

axiomatic system of complexity N cannot enable us to determine more
than N + 4431 + 3150 bits of the binary representation of the halting
probability Ω.

Why? It’s just a version of the Berry paradox discussed in [5], which
deals with “the first positive integer that cannot be named in less than
a billion words.”

This time we employ a prefix π that is 3150 bits long and contains
within itself the binary constant for the sum of 3150 and 4431. We
concatenate this prefix π to the formal axiomatic system α, which is an
unending minimum-size program for U to DISPLAY S-expressions of
the form (110X0XXX10) standing for partial determinations of the bits
of Ω. At any given time the prefix π has read ρ bits of α as it TRY’s to
DISPLAY more and more theorems of the formal axiomatic system α.
This continues until π is able to determine more than 4431 + 3150 + ρ

bits of Ω using ρ bits of α. At that point the missing X bits of Ω are
read by π from the program tape at a cost of exactly one bit added
for each missing bit. The result is a program for U that is exactly
3150 + ρ + (the number of missing bits) bits long that calculates a
complete initial segment of the binary expansion of Ω that is more
than 4431 bits longer than it is. But this contradicts the previously
established fact that H(ΩN ) > N − 4431.

For more details, see the program godel3.lisp in [2].
There is also a more sophisticated M-expression version of our uni-
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versal Turing machine U . It is used in [3]. This new and improved
version of U reads an M-expression prefix from the beginning of the
program tape, not an S-expression prefix. Then, as before, U runs
this M-expression with the rest of the program tape as binary data.
To change U to work this way only requires that two primitive func-
tions, READ-NEXT-S-EXPRESSION and CONVERT-TO-BITS, be
changed to work with M-expressions instead of S-expressions. And
in [3] we also use a more aggressive kind of M-expression, in which
defined functions as well as primitive functions have their parenthe-
ses omitted. Thus in [3] our concatenation example simplifies to
:(Cxy)/.xy*+xC-xy C’(abc)’(def). The constants in our previ-
ous results, which come from [2], shrink substantially in [3]. Now
we get H(x, y) ≤ H(x) + H(y) + 56, H(x) ≤ 2|x| + 142, H(x) ≤
|x|+H(|x|) + 441, H(ΩN) > N − 1883, and a formal axiomatic system
of complexity N cannot enable us to determine more than N + 2933
bits of the binary representation of the halting probability Ω.

4. Arithmetic

The halting probability Ω shows that some mathematical questions are
irreducible, that is, have the property that essentially the only way to
prove them is to add them as new axioms. The bits of the Ω are irre-
ducible mathematical facts. But can we find irreducible mathematical
facts in elementary number theory? The answer is yes, and I can even
explicitly exhibit arithmetical versions of the bits of Ω. I do this by
using Mathematica to convert an interpreter for the LISP used in [1]
and [2] into an enormous diophantine equation. (I haven’t done this
work yet with the LISP used in [3].)

Here is an outline of how to get a diophantine equation that can
be used as a LISP interpreter. (For the programming details and the
Mathematica software, see [1]. For a detailed explanation, see Chapter
2 of [6].)

The first step is to write abstract register machine code for a LISP
interpreter that works one character at a time on the reversed character
strings for S-expressions. It’s hard work to debug such low-level code!
In order to speed up the job, I use a Mathematica program to com-
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pile the register machine code into C. Then I use another Mathemat-

ica program to compile the register machine code into an exponential
diophantine equation. (“Exponential” just means that unknowns can
occur in exponents.) This equation L(k, x1, x2, . . .) = R(k, x1, x2, . . .)
is several hundred pages long and has tens of thousands of unknowns.
Let the positive integer k be the ASCII representation of the rever-
sal of the character string representation of the S-expression K. Then
L(k, x1, x2, . . .) = R(k, x1, x2, . . .) is constructed so that it has precisely
one solution in positive integers x1, x2, . . . if evaluation of the LISP
S-expression K halts, and this equation is constructed so that it has
no solution in positive integers x1, x2, . . . if evaluation of the LISP S-
expression K fails to halt.

Plug into this monster equation an S-expressionK that loops forever
if the kth bit of Wn is a 0 and that halts if the kth bit of Wn is a 1.
Then L(k, n, x1, x2, . . .) = R(k, n, x1, x2, . . .) has finitely many solutions
in positive integers n, x1, x2, . . . if the kth bit of Ω is a 0, and this
equation has infinitely many solutions in positive integers n, x1, x2, . . .

if the kth bit of Ω is a 1.
Thus whether L(k, . . .) = R(k, . . .) has finitely or infinitely many

positive integer solutions is so delicately balanced that it is completely
accidental whether it goes one way or the other! In other words, this is a
completely accidental mathematical fact, it is a mathematical fact that
is true for no reason, and therefore escapes the power of mathematical
reasoning.

What are we to make of this incompleteness result? I have discussed
this at length in my reductionism paper [7]. Briefly, it makes me ask,
is mathematics quasi-empirical? In other words, should one perhaps
add new axioms to elementary number theory based on the results of
computer experiments?!

To conclude, I think that the incompleteness results of algorith-
mic information theory seem much more real and concrete now that
the programming details have been worked out and all this software is
available.
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