
HAL Id: hal-01964826
https://hal.science/hal-01964826

Submitted on 23 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FPGA-based smart camera for accurate chlorophyll
estimations

Madain Perez-Patricio, Abiel Aguilar-González, Jorge L Camas-Anzueto,
Nestor Antonio Morales Navarro, Rubén R Grajales-Coutiño

To cite this version:
Madain Perez-Patricio, Abiel Aguilar-González, Jorge L Camas-Anzueto, Nestor Antonio Morales
Navarro, Rubén R Grajales-Coutiño. FPGA-based smart camera for accurate chlorophyll estimations.
International Journal of Circuit Theory and Applications, 2018, �10.1002/cta.2489�. �hal-01964826�

https://hal.science/hal-01964826
https://hal.archives-ouvertes.fr


See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/324943665

FPGA-based smart camera for accurate chlorophyll estimations

Article  in  International Journal of Circuit Theory and Applications · May 2018

DOI: 10.1002/cta.2489

CITATION

1
READS

72

5 authors, including:

Some of the authors of this publication are also working on these related projects:

mechatronics devices for aerial images acquisition View project

Processing natural language View project

Madain Perez-Patricio

Instituto Tecnológico de Tuxtla Gutiérrez

24 PUBLICATIONS   65 CITATIONS   

SEE PROFILE

Abiel Aguilar-González

Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE)

20 PUBLICATIONS   37 CITATIONS   

SEE PROFILE

Jorge luisc camas anzueto

Instituto Tecnológico de Tuxtla Gutiérrez

53 PUBLICATIONS   177 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Abiel Aguilar-González on 04 May 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/324943665_FPGA-based_smart_camera_for_accurate_chlorophyll_estimations?enrichId=rgreq-99d76c94266eef430aadf48cd3f06c91-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk0MzY2NTtBUzo2MjI1MzQ3NDM1NjQyODlAMTUyNTQzNTI1NzA3Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/324943665_FPGA-based_smart_camera_for_accurate_chlorophyll_estimations?enrichId=rgreq-99d76c94266eef430aadf48cd3f06c91-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk0MzY2NTtBUzo2MjI1MzQ3NDM1NjQyODlAMTUyNTQzNTI1NzA3Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/mechatronics-devices-for-aerial-images-acquisition?enrichId=rgreq-99d76c94266eef430aadf48cd3f06c91-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk0MzY2NTtBUzo2MjI1MzQ3NDM1NjQyODlAMTUyNTQzNTI1NzA3Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Processing-natural-language?enrichId=rgreq-99d76c94266eef430aadf48cd3f06c91-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk0MzY2NTtBUzo2MjI1MzQ3NDM1NjQyODlAMTUyNTQzNTI1NzA3Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-99d76c94266eef430aadf48cd3f06c91-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk0MzY2NTtBUzo2MjI1MzQ3NDM1NjQyODlAMTUyNTQzNTI1NzA3Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Madain_Perez-Patricio?enrichId=rgreq-99d76c94266eef430aadf48cd3f06c91-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk0MzY2NTtBUzo2MjI1MzQ3NDM1NjQyODlAMTUyNTQzNTI1NzA3Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Madain_Perez-Patricio?enrichId=rgreq-99d76c94266eef430aadf48cd3f06c91-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk0MzY2NTtBUzo2MjI1MzQ3NDM1NjQyODlAMTUyNTQzNTI1NzA3Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Instituto_Tecnologico_de_Tuxtla_Gutierrez?enrichId=rgreq-99d76c94266eef430aadf48cd3f06c91-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk0MzY2NTtBUzo2MjI1MzQ3NDM1NjQyODlAMTUyNTQzNTI1NzA3Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Madain_Perez-Patricio?enrichId=rgreq-99d76c94266eef430aadf48cd3f06c91-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk0MzY2NTtBUzo2MjI1MzQ3NDM1NjQyODlAMTUyNTQzNTI1NzA3Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abiel_Aguilar-Gonzalez?enrichId=rgreq-99d76c94266eef430aadf48cd3f06c91-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk0MzY2NTtBUzo2MjI1MzQ3NDM1NjQyODlAMTUyNTQzNTI1NzA3Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abiel_Aguilar-Gonzalez?enrichId=rgreq-99d76c94266eef430aadf48cd3f06c91-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk0MzY2NTtBUzo2MjI1MzQ3NDM1NjQyODlAMTUyNTQzNTI1NzA3Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Instituto_Nacional_de_Astrofisica_Optica_y_Electronica_INAOE?enrichId=rgreq-99d76c94266eef430aadf48cd3f06c91-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk0MzY2NTtBUzo2MjI1MzQ3NDM1NjQyODlAMTUyNTQzNTI1NzA3Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abiel_Aguilar-Gonzalez?enrichId=rgreq-99d76c94266eef430aadf48cd3f06c91-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk0MzY2NTtBUzo2MjI1MzQ3NDM1NjQyODlAMTUyNTQzNTI1NzA3Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jorge_Camas_Anzueto?enrichId=rgreq-99d76c94266eef430aadf48cd3f06c91-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk0MzY2NTtBUzo2MjI1MzQ3NDM1NjQyODlAMTUyNTQzNTI1NzA3Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jorge_Camas_Anzueto?enrichId=rgreq-99d76c94266eef430aadf48cd3f06c91-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk0MzY2NTtBUzo2MjI1MzQ3NDM1NjQyODlAMTUyNTQzNTI1NzA3Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Instituto_Tecnologico_de_Tuxtla_Gutierrez?enrichId=rgreq-99d76c94266eef430aadf48cd3f06c91-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk0MzY2NTtBUzo2MjI1MzQ3NDM1NjQyODlAMTUyNTQzNTI1NzA3Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jorge_Camas_Anzueto?enrichId=rgreq-99d76c94266eef430aadf48cd3f06c91-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk0MzY2NTtBUzo2MjI1MzQ3NDM1NjQyODlAMTUyNTQzNTI1NzA3Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abiel_Aguilar-Gonzalez?enrichId=rgreq-99d76c94266eef430aadf48cd3f06c91-XXX&enrichSource=Y292ZXJQYWdlOzMyNDk0MzY2NTtBUzo2MjI1MzQ3NDM1NjQyODlAMTUyNTQzNTI1NzA3Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Received ; Revised ; Accepted

DOI: xxx/xxxx

SPECIAL ISSUE ON COMPUTATIONAL IMAGE SENSORS AND SMART CAMERA HARDWARE

FPGA-based smart camera for accurate chlorophyll estimations

Madaín Pérez-Patricio*1 | Abiel Aguilar-González2,3 | J. L. Camas-Anzueto1 | N.
Morales-Navarro1 | R. Grajales-Coutiño1

1Mechatronics Engineering Department,
Instituto Tecnológico de Tuxtla Gutiérrez
(ITTG), Chiapas, Mexico

2Computer Science Department, Instituto
Nacional de Astrofísica, Óptica y
Electrónica (INAOE), Puebla, Mexico

3Institut Pascal, Université Clermont
Auvergne (UCA), Auvergne, France

Correspondence
*Madaín Pérez-Patricio, Carretera
Panamericana Km. 1080, C.P. 29050,
Apartado Postal: 599. Email:
mperez@ittg.edu.mx

Summary

In this work, a new chlorophyll estimation approach based on the reflectance/trans-
mittance from the leaf being analyzed is proposed. First, top/underside images from
the leaf under analysis are captured, then, the base parameters (reflectance/trans-
mittance) are extracted. Finally, a double-variable linear regression model estimates
the chlorophyll content. In order to estimate the base parameters, a novel opti-
cal arrangement is presented. On the other hand, in order to provide a portable
device, suitable for chlorophyll estimation under large scale food crops, we have
implemented our optical arrangement and our algorithmic formulation inside an
FPGA-based smart camera fabric. Experimental results demonstrated that the pro-
posed approach outperforms (in terms of accuracy and processing speed) most
previous vision-based approaches, reaching more than 97% accuracy and delivering
fast chlorophyll estimations (near 5ms per estimation).

KEYWORDS:
Chlorophyll estimation, smart camera, FPGA

1 INTRODUCTION

Smart cameras are image/video acquisition devices with self-contained image processing algorithms that simplify the formula-
tion of a particular application1,2. For example, algorithms for smart video surveillance could detect and track pedestrians3, but
for a robotic application, algorithms could be feature detection or feature tracking4,5. In this work, the aim is for a fast/accurate
solution for the chlorophyll estimation problem. This is motivated because previous work has limitations due to high processing
time and cost or low accuracy. In general, laboratory tests deliver high accuracy (ground truth) but processing time and cost are
high. In practice, others techniques, faster and cheaper than laboratory tests are used, unfortunately, in most cases these tech-
niques have low accuracy or the system size makes it difficult to implement under large scale food crops. In our case, we believe
that a smart camera that addresses the chlorophyll estimation problem could be a useful contribution for the current state of the
art since fast estimations with compact system design could be obtained.

1.1 Chlorophyll estimation under food crops
Given the current population growth rate, food crops demand has been highly increased. So, in order to obtain more efficient
crops, most of the current food producers supervise their crops health since it is well known that stress conditions affect photo-
synthetic activity. In recent years, one popular approach consists in estimate the chlorophyll content in the plants leaves within
a crop6,7,8,9,10,11,12,8. This is because there is a high correlation between the chlorophyll content and the plants health13 then,
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in current literature, several approaches for chlorophyll estimation can be found14,15. In most cases, devices such as the Soil
Plant Analysis Development (SPAD) are used for the chlorophyll estimation16,17. In general, the SPAD device measures the
leaf absorbance at several wavelengths. Then, based on the absorbance, a SPAD numerical value, proportional with the chloro-
phyll content, is computed. In theory the SPAD device delivers fast estimations with high accuracy. Unfortunately, in practice
it only estimates the absorbance at one point of the leaf under analysis. i.e., it estimates the chlorophyll content within a small
spatial location of the leaf. To solve this problem, it is necessary to make iterative measurements at different spatial locations.
Finally, the average value corresponds with the chlorophyll content, in addition, the high cost of the SPAD technology makes
it difficult to implement under large scale food crops. Other trend, that aims for low cost and fast chlorophyll estimations, are
vision-based approaches12,8. In this context, image processing algorithms are applied with the assumption that chlorophyll con-
tent defines the leaf color. i.e., low chlorophyll contents generate yellowish-green colors while high chlorophyll content involves
dark green colors. In previous works, several vision based approaches have been proposed and several image processing algo-
rithms have been developed6,7,8,9,10,11, unfortunately, it was demonstrated that they achieve relatively low accuracy (compared
with the SPAD device).

1.2 Motivation and scope
In this work, the aim is for a fast/accurate solution for the chlorophyll estimation problem, in addition, we are interested in a com-
pact system design since this could be useful under large food crops in which portable devices are desirables. The contribution
of this work is twofold, first, this work proposes a novel mathematical formulation that uses the reflectance/transmittance within
the visible electromagnetic spectrum range as base parameters for the chlorophyll estimation. Second, an FPGA-based smart
camera capable to capture the base parameters (reflectance/transmittance) and where the chlorophyll estimation is carried out in
a parallel architecture is presented. The rest of this manuscript is organized as follows: Section 2 presents the related work. In
Section 3, details about the proposed approach, details about the FPGA architecture and our smart camera implementation are
shown. Experimental results and comparison with previous works are detailed in section 4. Finally, Section 5 concludes this
manuscript.

2 RELATEDWORK

Approaches such as12,8 capture images with airborne cameras. These techniques have the advantage of monitoring large land
areas. Unfortunately, their cost is high (higher than the SPAD-based approach) and there is no control for ambient lighting
changes that decreases the accuracy. There are other approaches that capture images at different wavelengths. In particular,
multispectral and hyperspectral images with 300 - 1200 nm have been used6,7,8,9,10,11. Other authors18,19,20,21 have used images
with visible spectrum (300-700 nm) information in order to determine a correlation value between chlorophyll/nitrogen content.
In general, multispectral/hyperspectral based approaches reach relatively high accuracy and real time processing. Unfortunately,
their cost and size are high (similar size than the SPAD device and similar cost but with lower accuracy). Other approach, that
could be more efficient in terms of system design and cost, could be the use of a single RGB (Red-Green-Blue color space)
camera. In previous work there exist some research for nitrogen and calcium estimations. In22, RGB images from four plants
groups, each group with a different nitrogen level (0%, 50%, 100%, and 150% of the required daily dose) were captured at 5
different growth states (10, 20, 30, 40, and 50 days). Plant leaves were placed on a white surface. Then, an RGB-based classifier
estimates the nitrogen content as deficient or in excess. In23 two color space are used in order to detect calcium deficiency
in lettuce plants. Values as color, entropy, energy, contrast, and homogeneity were used as health indicators. Then, calcium
deficiency is computed via statistical computations. In both cases22 and23 the use of a single RGB camera allowed for a compact
system design and low cost but accuracy is low.

3 MATERIALS AND METHODS

In this section details about the proposed approach are presented. It consists of a novel optical arrangement that captures the
proposed base parameters (reflectance/transmittance). Then, an image processing algorithm extracts the base parameters. Finally,
a double-variable linear regression model estimates the chlorophyll content.
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3.1 Dataset
In this work, more than 400 plants with different health states were tested. For that, several hydroponic crops (Lactuca sativa)
were cultivated. In these crops, different nutritional solutions were applied in order to obtain different health levels for the
plants within the crop. So, 27 nutritional solutions with different macronutrients concentrations were prepared. Each nutritional
solution, corresponds to 0%, 50% or 100% of the daily nutritional requirements. Each nutritional solution was applied for three
different plants within the crop and this process was replicated for 6 different crops. Finally, one SPAD device was used to
measure the SPAD values that corresponds with the chlorophyll content, all measures were realized after 15 grown days, where
the plants have reach maturity and there are not symptoms of damages due to the age. Using this chlorophyll values we could
estimate our crop health, however, to determine crop health is a complex task since it depends on several factors: the crop type,
plantation procedures, weather are important issues. Even the geographical location or any type of external agent such as dust
or snow can affect the health. For example, given a particular crop, chlorophyll values equal to 41 could represent a high health
level in some world regions but in other regions a good chlorophyll values could be 37. In practice, the food producers determine
their crops health given their particular conditions. For this reason, in this work we will only focus on the chlorophyll estimation,
that is the basis of the crop health estimations.

3.2 The base parameters
Previous work demonstrated that there are two crucial issues in the chlorophyll estimation procedures. The first one is for the
acquisition technique using to capture the base parameters. In general, all acquisition techniques are sensitive to noise and this
decreases the accuracy. The second issue is for the base parameters using for the chlorophyll estimation. Robust base parameters
should deliver accurate results. Nevertheless, previous vision-based approaches demonstrated that it is difficult to obtain base
parameters with high discriminant and repeatability 1 24. For the acquisition technique, previous vision-based approaches have
used natural illumination and this has delivered poor performance in terms of accuracy. In this work we believe that one alterna-
tive to this problem could be using light sources with known frequency. Then, more controlled environment, could deliver more
accurate measurements. For the base parameters, previous work demonstrated that chlorophyll content is close related with the
color components in the leaf being analyzed25,26. In this work, we propose the color reflectance/transmittance in the leaf being
analyzed as base parameters since we believe that these parameters deliver high discriminant and robustness, higher than the
base parameters used in previous works.

3.3 The proposed smart camera
In order to capture the base parameters, a novel optical arrangement inside our smart camera fabric is proposed, see Fig. 1 . In
general, one CCD imager connected in a TRDB DC2 development board is used to provide a 1280×1024 Bayer pattern image
where the images are acquired in RGB format. The imager provides raw format with 10 bits per pixel. The external specifications
are: 5.8 × 4.92 mm, and the lens used has 8 mm focal length. The imager was placed at 39◦ opposed to horizontal inclination
(in order to observe simultaneously the upper/lower part of the leaf), and 100 mm of vertical distance. The viewing angle is
computed using Eq. 1; where � is the vertical or horizontal viewing angle, s the vertical or horizontal dimension and f the focal
distance. Considering the visual field perpendicular to the viewing angle bisector, then, it has to full encompass the glass and the
mirror. So, the bisector d (Fig. 1 a) represents the necessary distance between the vision field and the imager, and it is computed
by Eq. 2; where d is the bisector and l the visual field longitude. Finally, the imager is focused on the optical arrangement visual
field line and the diaphragm opening is adjusted to f = f∕8. For the light source, one MCWHD2 LED (800 mW) is used. In
addition, the optical arrangement uses a 50 × 70 millimeter glass that support the leaf being analyzed and, at the bottom, a 70
mm square mirror which reflects the leaf transmittance information. Pieces of black matte plastic control the light flow within
the device and reduce the entry of outside light.

� = 2tan−1 s
2f

(1)

1Discriminant: for different chlorophyll values, different base parameters responses have to be obtained. In practice, low discriminant values decrease the performance
since several chlorophyll values (within a small range) could have similar base parameters response. Repeatability: for similar chlorophyll values, similar base parameters
responses have to be obtained. In some cases, this affirmation is not true and different leafs (with similar chlorophyll content) deliver different base parameters responses.
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d = l
2tan �

2

(2)

3.4 Image processing
In Fig. 2 a), one example of the images captured by our optical arrangement is shown. Then, given the upper part of Fig. 2 a)
contain the reflectance information (I1(x, y)) and the lower part contain the transmittance (I2(x, y)), the proposed algorithm
computes the reflectance (Rr) and transmittance (Tr) as shown in Eq. 3-4; where I1(x, y, r, c) are the red channel pixel values
for c different samples taken from (I1(x, y)) and I2(x, y, r, c) are the red channel pixel values for c different samples from
(I2(x, y)), see Fig. 2 b), in this example 8 different samples were extracted. Finally, Eq. 5 estimates the chlorophyll content, it
was obtained using linear regression, more details can be found in the following section.

Rr =
∑c

1 I1(x, y, r, c)
c

(3)

Tr =
∑c

1 I2(x, y, r, c)
c

, (4)

F (Rr, Tr) = 42.44 + 0.4043Rr − 0.7541Tr (5)

3.5 The base parameters performance
Table 1 presents average values for transmittance/reflectance and their respective chlorophyll content in SPAD values, where
R{R,G,B}, T {R,G,B} are the values for reflectance/transmittance for each RGB channel. In Fig. 3 the reflectance/transmit-
tance values, in relation with the SPAD values are shown. From Fig. 3 a), in all channels reflectance increases as the amount of
chlorophyll increases. This is because high chlorophyll content absorbs high light energy. On the other hand, Fig. 3 b) shows
that higher chlorophyll content reduces the transmittance value for all the channels. This is because high chlorophyll content
reduces the light that passes through the leaf.

3.6 The linear regression model
In order to build a chlorophyll estimation framework, any statistical regression model have to fulfil with the linear dependence
between chlorophyll values and the base parameters. In our case, linear regression is used due to its mathematical simplicity
that involves high processing speed with low computational requirements. It was tested with different combinations of the
base parameters proposed in this work. It was demonstrated that all the proposed parameters deliver high accuracy and in
particular, the combination of both, provide accuracy superior to most previous vision-based approaches (similar than SPAD
measurements). In Table 2 , results of applying single-variable linear regression models for each values presented in Table 1
are shown. The maximum R2 = 94.51 is for the red channel transmittance F (T r), the smallest standard deviation SD = 1.19
and the best mean absolute error MAE = 1.01 is also for F (T r). Thus, it is demonstrated that the best variable to estimate
the chlorophyll content is the transmittance in red channel. In Table 3 , results of applying double-variable linear regression
models for each values presented in Table 1 are shown. The best R2 = 97.73.59 is for the combination of reflectance and
transmittance in the red channel F (Rr, Tr), in addition, this combination has the best standard deviation SD = 0.72. and the
best mean absolute errorMEA = 0.60. So, it is demonstrated that the combination of reflectance and transmittance in the red
channel F (Rr, Tr) deliver the best performance for chlorophyll estimation.

3.7 The FPGA architecture
In Fig. 4 , the developed FPGA architecture is shown. In general, the CCD sensor deliver raw images with 10 bpp as stream,
P[29:0]. Key[3:0] is used for the camera control. Then, the FPGA architecture extracts c samples from the input image, see Eq.
3-4. Finally, the chlorophyll content is computed according Eq. 5 where the ⋅ operation is implemented using a look-up table
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(LUT), Rr and Tr are the index values and, the output value which represents the chlorophyll content is selected using also a
LUT.

3.7.1 The image acquisition module
One CCD imager connected in a TRDB DC2 developement board is used as keystone of the image acquisition module. It
provides 1280×1024 RGB images with 10 bits per pixel. In order to reduce hardware requirements, only the most significant 8
bits of the data provided by the TRDB DC2 board are used.

3.7.2 The sampling module
In Fig. 5 the FPGA architecture of the sampling module is shown. The P[23:0], Hcont[10:0] and Vcont[11:0] are the data
input for the sampling module ( the x, y spatial location form the image pixels ). Both: (Hcont[10:0] and Vcont[10:0]) are
compared with defined values that corresponds with the spatial coordinates of the sample pixels that corresponds with the
transmittance/reflectance areas. Then, each retained value are saved into logical registers.

3.8 The chlorophyll estimation module
Fig. 6 shows the chlorophyll estimation module. This module applies Eq. 5. The mean for the sample values are computed add
all the values and taking the eight most significant values. In Tables 4 and 5 the LUTs used in this step are shown.

4 RESULTS

The developed FPGA architecture was implemented in an FPGA Cyclone II EP2C35F672C6 of Altera. All modules were
designed via Quartus II Web Edition version 10.1SP1. All modules were validated via post-synthesis simulations performed
in ModelSim Altera and, in Table 6 the hardware resource consumption for the developed FPGA architecture is shown. It is
demonstrated that the regression model F (Rr, Tr) delivers a robust framework for chlorophyll estimation. R2 = 97.73, mean
absolute errorMAE = 0.60 and standard deviation SD = 0.72 are reached, see Table 3 .
In Table 7 , accuracy comparisons with respect to previous vision-based approaches are shown. In our case, we compared

the proposed algorithm given different sampling values. It was demonstrated that sample values between 8-32 to deliver high
accuracy and robustness for the chlorophyll estimation process. On the other hand, the proposed approach outperform all previous
vision based approaches. This is because previous formulations use base parameters that have low stability under illumination
changes. For this work, due to the wide availability of RGB cameras with low cost, the proposed solution could be a promising
chlorophyll estimation framework, similar accuracy and size than SPAD but lower cost and lower processing time (near 5 ms
per estimation). For processing speed, in all cases, the proposed algorithm reaches real-time processing (faster than SPAD
measurements and previous vision-based approaches). For the system size in all cases, our smart camera, see Fig. 7 uses a
small FPGA device as processor, in addition all the optical/image acquisition components are inside the camera fabric.

5 CONCLUSIONS

In this work, a novel chlorophyll estimation approach was proposed. First, we have proposed a new mathematical formulation
that uses color reflectance/transmittance from the leaf being analyzed as base parameters for chlorophyll estimation. Second,
we have developed a new FPGA-based smart camera, capable to capture the base parameters and where all the algorithmic part
is processed in a parallel architecture. It was demonstrated that reflectance/transmittance deliver robust/discriminant values for
chlorophyll estimations. Experimental results demonstrated that a double-variable linear regression learning algorithm achieves
97% accuracy under a Lactuca sativa hydroponic crop. In addition, the proposed approach delivers fast measurements with low
cost and allow compact system design (similar than the SPAD device). In this work, the proposed algorithm was applied on a
Lactuca sativa crop. In order to determine if other crop types present similar patterns, the mathematical model could be expanded
to several different food crops. In any case, the smart camera layout and the formulation of the learning algorithm have to be the
same. Only color comparison of the crop being analyzed and some minor adjustments in the multiple regression model would
be needed.
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TABLE 1 Reflectance and transmittance values

SPAD value (C) Reflectance Transmittance
RR RG RB TR TG TB

27.52 47.408 54.26 36.361 46.117 50.384 28.293
28.3 46.481 53.905 35.26 44.683 49.458 27.027
28.94 45.814 52.921 34.782 43.887 48.514 26.601
29.09 41.948 49.597 34.338 39.806 45.42 24.403
29.16 41.718 46.58 34.456 38.992 42.99 23.965
30.17 42.392 50.156 34.992 37.703 42.585 23.586
31.22 40.619 48.52 32.928 35.066 40.792 21.564
31.41 41.777 47.296 32.518 35.439 39.162 21.089
32.62 43.12 49.835 34.141 35.574 40.44 21.213
34.00 40.159 50.379 31.667 32.41 40.885 19.585
34.23 42.299 49.604 31.913 33.268 40.147 19.578
35.36 42.924 55.595 32.071 33.411 40.377 19.378
35.47 43.252 49.98 33.499 32.449 35.014 20.154
35.82 44.173 50.337 32.611 32.545 34.864 19.389
36.38 47.116 51.16 32.699 33.028 34.468 19.356
37.98 37.167 46.722 30.45 26.015 31.265 17.72
39.68 38.78 46.485 30.114 26.306 30.673 17.334
39.88 37.623 47.76 30.999 25.484 31.136 16.852
40.31 37.543 40.051 28.256 23.067 24.265 14.492
40.66 38.086 39.974 28.522 22.704 23.955 13.304
41.67 43.2455 44.697 31.88 23.027 24.216 14.377
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TABLE 2 Regression Models (single-variable)

Independent Variables R2(%) Standard deviation (SD) Mean absolute error
(MAE)

F (Rr ) 90.22 1.6976 3.0232
F (Rg ) 90.67 2.6 2.92
F (Rb ) 88.52 2.27 1.73
F (Tr ) 94.51 1.19 1.01
F (Tg ) 93.65 1.35 1.03
F (Tb ) 93.24 1.3 1.11
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TABLE 3 Regression Models (double-variable)

Independent Variables R2(%) Standard deviation (SD) Mean absolute error
(MAE)

F (Rr, Tr ) 97.73 0.72 0.60
F (Rg, Tg ) 97.11 0.77 0.67
F (Rb, Tb ) 97.27 0.79 0.61
F (Rr, Tg ) 97.71 0.76 0.72
F (Rg, Tb ) 94.47 1.12 0.92
F (Rb, Tr ) 92.63 1.17 1.04
F (Rr, Tb ) 95.72 0.97 0.81
F (Rg, Tr ) 95.43 0.86 0.79
F (Rb, Tg ) 96.11 0.77 0.89



Pérez-Patricio ET AL 11

TABLE 4 Look up table for the linear regresion

Rr Rr× 0.4043 Tr Tr× -0.7542
50 20 50 -38
49 20 49 -37
48 19 48 -36
47 19 47 -35
46 18 46 -35
45 18 45 -34
44 17 44 -33
43 17 43 -32
42 17 42 -32
41 16 41 -31
40 16 40 -30
39 15 39 -29
38 15 38 -29
37 15 37 -28
36 14 36 -27
35 14 35 -26
34 13 34 -26
33 13 33 -25
32 13 32 -24
31 12 31 -23
30 12 30 -23
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TABLE 5 Look up table for the chlorophyll estimation

F (Rr, Tr) SPAD/chlorophyll value
-18 24
-17 25
-16 26
-15 27
-14 28
-13 29
-12 30
-11 31
-10 32
-9 33
-8 34
-7 35
-6 36
-5 37
-4 38
-3 39
-2 40
-1 41
0 42
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TABLE 6 Hardware resource consumption for the developed FPGA architecture

Resource Demand
Total logic elements 1535 (7%)

Total pins 154 (100%)
Total memory bits 64,856 (11%)

Total PLLs 2 (50%)
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TABLE 7 Vision based approaches for chlorophyll estimation: accuracy

Approach Accuracy ( %)

H. Noh and Q. Zhang (2012) 6, Whole area 86
H. Noh and Q. Zhang (2012) 6, Bright area 87
H. Noh and Q. Zhang (2012) 6, Corn area 85

Tewari et.al (2013) 26 93.8
Hao Hu et. al (2014) 17, Green Value 74
Hao Hu et. al (2014) 17, Red Value 74.7
Pagola et. al (2009) 27, IpcaM4 91.89
Pagola et. al (2009) 27, IpcaM2 92.24

Moghaddam et.al (2011) 28, MLPN 94
Moghaddam et.al (2011) 28, R, B (regression) 88
Kawashima et al. (1998) 29, NORMALISED ’r’ 79
Kawashima et al. (1998) 29, NORMALISED ’g’ 76

This work,F (Rr, Tr), n = 4 92.54
This work,F (Rr, Tr), n = 8 97.73
This work,F (Rr, Tr), n = 16 97.81
This work,F (Rr, Tr), n = 32 97.79
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(a) 2D diagram (b) 3D diagram

FIGURE 1 The proposed smart camera: the leaves were inserted in the smart camera and the optical arrangement extracts the
base parameters, then, the imager shots the leaves and finally, an FPGA architecture estimates the chlorophyll content.

(a) Input RGB image (b) Example for the sampling step

FIGURE 2 The image processing step. Given an RGB image from the leaf being analyzed, several pixel values which
corresponds with the reflectance/transmittance are extracted.
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(a) Chlorophyll vs reflectance (b) Chlorophyll vs transmitance

FIGURE 3 The base parameters performance. Experimental results demonstrate that the reflectance value increases as the
amount of chlorophyll increases. On the other hand, higher chlorophyll content reduces the transmittance value.

FIGURE 4 General diagram of the developed FPGA architecture. First, one CCD sensor deliver raw images with 10 bpp as
stream (P[29:0]. Key[3:0]) is used for the camera control. Then, the FPGA architecture extracts c samples from the input image.
Then, the chlorophyll content is computed using a look-up table. Finally, results are displayed to the user in a screen.

FIGURE 5 FPGA architecture for the sampling module. Given the x,y spatial location form the image pixels, then the x,y
values are compared with predefinded spatial values wich corresponds with the spatial coordinates of the sample pixels. These
samples corresponds with the transmittance/reflectance areas and are saved into logical registers.
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FIGURE 6 FPGA architecture for the chlorophyll estimationmodule. First, themean for the sample values are computed adding
all the sample values and taking the eight most significant values. Then the chlorophyll content is estimated using a look-up table.

(a) Acquisition process (b) Results

FIGURE 7 The developed smart camera. One CCD imager connected in a TRDB DC2 development board is used to provide a
1280×1024 Bayer pattern image. The optical arrangement uses a 50 × 70 millimeter glass that support the leaf being analyzed
and, at the bottom, a 70 mm square mirror which reflects the leaf transmittance information. Pieces of black matte plastic control
the light flow within the device and reduce the entry of outside light.
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