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SUMMARY

An analogic CNN algorithm is proposed for detection of multiple moving objects in high resolution,
grey-scale images taken from a �xed camera. The algorithm, based on simple 3× 3 templates, can be
implemented using CNN hardware, providing the real-time operation required in surveillance and tra�c
control applications. E�cient separation of moving objects from the background is obtained through
automatic threshold selection. The performance of the proposed method is shown using real-life indoor
and outdoor video sequences. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Moving object detection is very important in many real-time applications such as autonomous
robotics, tra�c control, driver assistance and surveillance systems. It is a hard problem for
several reasons. Usually high resolution grey-scale images must be processed; since each
image pixel may belong to a moving object, pixel-wise processing is required in conventional
digital methods, which gives an impressive computational burden. On the other hand, the
grey-level intensity of moving objects varies greatly with the lighting conditions, and the
images are usually cluttered and noisy, so moving objects could be almost undistinguishable
from the background. Finally, real-time operation is needed in most applications. A promising
alternative approach to overcome these di�culties is represented by cellular neural networks
(CNNs) [1, 2]. Owing to the analogic fully parallel processing of the CNN hardware, like
the CNN-UM chips [3–5], we can process large scale, high resolution images providing the
required speed of operation. Moreover, since the CNN chips are programmable, complex image
processing tasks can be realized by decomposing them into several but simpler sub-tasks.
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Moving object detection by CNNs have been investigated in the past, also from the view-
point of image coding for low bit-rate transmission [6–10]. In this paper, we propose a simple
and robust algorithm for moving object detection in video sequences taken from a �xed cam-
era. It is well suited for surveillance systems and for car or air tra�c control. The algorithm
can be implemented using exclusively CNN analogic processing with 3 × 3 templates, and
works on real-life, grey-scale images with multiple moving objects. Moderate a priori infor-
mation is needed on the scenario, namely the maximum speed of moving objects and the
frame rate. The outputs of the algorithm are: the co-ordinates representing the centre of each
moving object; an estimation of the overall size of each moving object.
The Paper is organized as follows. Section 2 presents the rationale of the proposed approach

and its limitations. Section 3 describes the algorithm for moving object detection. Section 4
addresses the hardware realization and the processing time.

2. RATIONALE OF THE PROPOSED METHOD AND LIMITATIONS

Let us consider grey-scale images where the pixel intensity varies between −1 (black) and +1
(white). The task is to detect the position and size of each moving object. The simpler way
to extract moving objects in a video sequence is to compare image pairs taken k frames apart,
namely P(n) and P(n+ k), with k¿1. To simplify the exposition assume a dark object (e.g.
with grey level−0:8) moving on a white background, as shown in Figures 1(a) and (b). Taking
the di�erence P(n+ k)−P(n) we obtain three classes of pixels: white pixels representing the
positions �lled by the object in frame n but not in the frame n+k (di�erence=1−(−0:8)=1:8
which is saturated at +1); black pixels corresponding to the positions �lled by the object in
frame n + k but not in frame n(−0:8 − 1= − 1:8 saturated at − 1); the grey pixels of the
background corresponding to zero grey level.

(a) (b)

(c) (d) (e)

Figure 1. (a–b) An object is moving rightward; (c) di�erence between the images in a–b; (d) absolute
value; and (e) �lling of the contour in d.
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(a) (b) (c)

Figure 2. (a) Moving object with horizontal size n; (b) v k �t¡n; and (c) v k �t¿n.

If the movement of the object in the time interval corresponding to k frames is small
enough, we obtain a ring shaped image on a grey background (Figure 1(c)). Taking the
absolute value of the image in Figure 1(c), the pixel intensity varies between 0 (black) and 1
(white); now we have the white contour shown in Figure 1(d). Finally, �lling the area inside
the contour we have a white ‘blob’; its size and position correspond to that of the moving
object in the video sequence (Figure 1(e)).
In some cases the black and white parts in Figure 1(c) could be not connected together;

nevertheless, �lling of concave locations will merge the two parts giving a single connected
and convex object, as shown in the simulation examples in Section 3.
A simple condition can be derived for the correct behaviour of the proposed approach. Let

v represents the speed of the object in pixels/sec; �t the inter-frame time separation; k the
number of frames between the two processed images; n the size of the object (in pixels)
measured in the direction of motion. If v k �t¿n, two separate objects will be present in
the di�erence image (Figure 2). So, the value of k must be selected so that

vk�t¡n ⇒ k¡
n
v�t

Moreover, in order to limit the stretching e�ect in the di�erence image (see Figure 1), it
is convenient to further reduce the value of k with respect to the previous constraint. Since
k¿1, the proposed method can be applied only if the ratio n=(v�t)�1. If n is too small or
v too high, the above condition is not ful�lled.
The three basic operations illustrated in Figures 1(c) and (e) are not su�cient for proper

operation in the various conditions. For example some noise is generally present in the origi-
nal images, which is ampli�ed taking the di�erence; hence, low-pass �ltering of the di�erence
image is required. Moreover, even if the camera is �xed, the background could be slightly
changing due to some clutter (foliage, clouds) and to varying lighting. Owing to scarce il-
lumination and to the presence of clutter, the moving object pixels in the di�erence image
can have an intensity only slightly superior with respect to that of the background. To over-
come this problem we introduce thresholding on the di�erence image: every pixel above the
threshold is set to 1 (white); every pixel below the threshold is set to 0 (black). Thresholding
can separate the moving objects from the rest; however, the threshold value must be carefully
selected for each image sequence, or updated during the same sequence when the lighting
conditions change. An original method is proposed in the paper to compute the threshold
value automatically (the method is illustrated in detail in Section 3.1).
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3. CNN ALGORITHM FOR MOVING OBJECT DETECTION

All the above mentioned operations namely, image di�erence, absolute value, low-pass �l-
tering, thresholding and �lling of concave locations, can easily be obtained using a CNN
described by the following state equation:

ẋij= − xij +
∑

C(k;‘)∈N (i; j)
Aij;k‘yk‘ +

∑

C(k;‘)∈N (i; j)
Bij;k‘uk‘ + I (1)

In Equation (1) xij is the state of cell C(i; j), yij is the cell output and uij is the cell input. The
cells are arranged on a rectangular grid and correspond to the image pixels. N (i; j) represents
the 3 × 3 neighbourhood of cell C(i; j), A is the feedback template, B is the input template
and I represents a bias. The cell output y is related to the state x by the usual piecewise-linear
function, y=(1=2)[|x + 1| − |x − 1|].
We extract a sequence of image pairs taken k frames apart, namely P(n); P(n+ k); n=0; k;

2k; : : : . Each pair of images is processed according to the �ow diagram shown in Figure 3.
Image inversion is obtained with the templates A= 0; B=[0 0 0; 0 −1 0; 0 0 0], I =0. Image
sum is obtained using A= 0, B=[0 0 0; 0 1 0; 0 0 0]; uij=pixel ij of image P(n), Iij=pixel ij
of image P(n + k). Filtering is obtained with the templates A= 0, Bij;kl=1=9 for each
kl; I =0. Absolute value and thresholding are described in Reference [10] and point removal in
Reference [17]; �lling of concave locations is performed using the template HOLLOW (see
Reference [18]).
In Figure 3 P∗ is a black and white image, with white blobs corresponding to the moving

objects. A post processing gives the centre point and the vertical and horizontal extension of
each moving object.
To show the behaviour of the proposed method, we use images taken from two

di�erent video sequences: an indoor sequence called ‘pendulum’ and an outdoor sequence
called ‘van’.
The indoor sequence was realized ad hoc to test the algorithm for moving object detection

(two images from this sequence are shown in Figures 4(a) and (b)). There are a pendu-
lum moving leftward and a little ball rolling toward the head after having bounced on the
background fabric; also the fabric is slightly moving due to ball bouncing. The image size is
320×240, with 256 grey levels. The e�ect of each processing step is illustrated in Figures 4(c)
and (h). The frame separation is k=2.
The di�erence image is computed by summing image P(n+ k) and the negative of image

P(n) (called �P(n) and obtained with the INV template). In Figure 4(d) the di�erence image
is shown. The light portions of the pendulum and those of the ball correspond to the old
positions of these objects; the dark regions correspond to the new positions. After the ab-
solute value computation (Figure 4(e)), the pixel intensities are in the range 0–1. Low-pass
�ltering is obtained by a simple averaging on a 3 × 3 window (Figure 4(f)). Threshold-
ing is performed on the grey-scale �ltered image to get a binary image (Figure 4(g)); the
threshold value is 0.023. In the �ow diagram in Figure 3, thresholding is followed by the
removal of isolated pixels, which can be useful to eliminate spurious white pixels not be-
longing to the moving objects; since there are no isolated pixels in Figure 4(g), in this case
this template has no e�ect. After thresholding, each moving object presents separated parts.
Finally, �lling of concave locations merges the separated parts giving two convex objects
(Figure 4(h)).
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Figure 3. Flow diagram of the proposed algorithm.

The outdoor sequence is typical of a surveillance system (Figures 5(a) and (b)). There
are three moving objects: two walking persons and a light van entering the scene in reverse
motion. The image size is 128 × 128 with 256 grey levels. In this case we used the sep-
aration k=5 frames. The e�ect of each processing step is shown in Figures 5(c) and (h).
Note that the two walking persons are almost undistinguishable after �ltering (Figure 5(f)).
However, the pixel values of the persons are di�erent from those of the background; this
di�erence is evidenced by thresholding (Figure 5(g)). The threshold value used in this case
is 0.015.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Detection of moving objects in the ‘pendulum’ sequence: (a) image P(n); (b) image P(n+k);
(c) negative image �P(n); (d) sum of P(n+ k) and �P(n); (e) absolute value; (f) after averaging with a

3× 3 window; (g) after thresholding; and (h) e�ect of concave locations �lling (P∗).
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 5. Detection of moving objects in the ‘van’ sequence: (a) image P(n); (b) image P(n + k);
(c) negative image �P(n); (d) sum of P(n + 1) and �P(n); (e) absolute value; (f) after averaging with

a 3× 3 window; (g) after thresholding; and (h) after concave locations �lling (P∗).

3.1. Threshold selection

Thresholding is a fundamental step in the proposed processing algorithm. It allows to dis-
criminate between small slightly moving objects and the almost static background. For good
operation, the threshold value is of crucial importance and we developed a systematic and
reliable way to select it. In Figure 6 the di�erence images after �ltering are shown, along with
the grey level histogram (intensity values are in the range 0–1). The lines with larger magni-
tude correspond to the intensity levels of the background (intensity near zero). The small lines
correspond to the pixels of moving objects. The arrow in Figures 6(b) and (d) corresponds
to the threshold value we used in the simulations (0.023 and 0.015). Almost every grey level
is present in the intensity distribution, so it is very di�cult to distinguish between the grey
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(a) (b)

(c)
(d)

Figure 6. (a) Filtered di�erence image (Figure 4(f)); (b) the corresponding histogram
of intensity levels; (c) �ltered di�erence image (Figure 5(f)); and (d) the corresponding

histogram of intensity levels.

levels of the moving objects and those of the background. A better separation is obtained by
histogram equalization. This is a nonlinear pixel-wise transformation enhancing the contrast,
and modifying both the appearance and the histogram of the image [14].
Let nK be the number of pixels with intensity level IK , 06Ik61, and N the total number

of pixels. Then the probability distribution of the intensity levels is

p(Ik)=
nK
N

(2)

Histogram equalization is performed by using, as non-linear transformation, the cumulative
distribution function (CDF) of the intensity levels:

Jk =T (Ik)=
k∑

i=0

ni
N

(3)

where Jk denotes the intensity level in the transformed image corresponding to level Ik in the
original image.
Expression (3) can be computed from the image itself and gives a sort of contrast enhance-

ment very useful for threshold selection. Figures 7(a) and (c) show the images in Figures 6(a)
and (c) after histogram equalization; the corresponding histogram is shown in Figures 7(b)
and (d). It has a characteristic structure with a few isolated lines, corresponding to as many
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(a)
(b)

(c) (d)

Figure 7. (a) Image in Figure 6(a) after histogram equalization; (b) The equalized histogram; (c) image
in Figure 6(c) after histogram equalization; and (d) the equalized histogram.

quantization levels, and several adjacent small lines concentrated in the �nal part of the in-
tensity axis. The arrows in Figures 7(b) and (d) represent the separation between these two
zones. In all our tests on di�erent image sequences, we veri�ed that the isolated lines corre-
spond to the background, while the rightmost continuous distribution represents the moving
objects. So, an optimal choice for the threshold is the value Io =T−1(Jo), where Jo is the
level after the last isolated line in the equalized histogram (corresponding to the arrows in
Figure 7). This value can be obtained by an automatic procedure, due to the following facts:
(a) in the equalized histogram, the maximum intensity value is always present (due to the
type of nonlinearity); (b) the number of adjacent lines is usually a small fraction of N . So,
it is su�cient to explore the equalized histogram from right to left, until an isolated line is
found. The value of the threshold Io can be obtained by inversion of (3) by a look-up table.
In Figure 7(b), it is Jo = 0:97 corresponding to Io = 0:023 which is the threshold value used
in the simulations. In Figure 7(d), it is Jo = 0:85 corresponding to Io = 0:015.
The procedure for threshold selection must be performed at the beginning and should be

repeated at �xed times for better results. The repetition rate depends on the distance of moving
objects from the camera and on the application, however usually it is a small fraction of the
rate with which image pairs are processed. In our simulations, histogram equalization has
been obtained using conventional digital algorithms; however, it is worth noting that also this
processing step could be realized using CNNs, as explained in Reference [12].
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(a) (b)

Figure 8. (a) Results of centre point detection; and (b) correspondence with the initial image.

3.2. Centre and size estimation

Once the image P∗ is obtained, we perform centre point detection and object size estimation.
Centre point detection leaves only one white pixel for each moving object, corresponding to
the ‘centre’ of the object (for more details see Reference [19]). The input image and the
initial state are represented by image P∗ (Figures 4(h) and 5(h) for the two sequences of
images). The e�ect of centre point detection is shown in Figure 8.
In order to estimate the size of moving objects, we perform the connected component

detection (CCD, see [20]) both on the horizontal and vertical directions. The initial state is
the image P∗. The results of CCD are shown in Figures 9 and 10.
Both in Figures 9(a) and (b) there are two projections in sequence; so, the width of each

object can easily be obtained by pairing the vertical and horizontal projections: the association
can easily be resolved by using the information on centre points in Figure 8. However, this is
not the case in Figure 10. In Figure 10(b) there are three vertical projections in sequence, from
the left to right, but the horizontal projections in Figure 10(a) are overlapped. In this case,
we can estimate only the maximum vertical dimension of the three objects. The ambiguity
may be only resolved by directly using the information in Figure 5(h).
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(a) (b)

Figure 9. E�ect of connected component detection in the ‘pendulum’ sequence: (a) horizontal projec-
tions; and (b) vertical projections.

(a) (b)

Figure 10. E�ect of connected component detection in the ‘van’ sequence: (a) horizontal
projections; and (b) vertical projections.

4. PROCESSING TIME AND HARDWARE IMPLEMENTATION

The proposed algorithm was tested by software simulation of the CNN dynamics, giving the
results shown in the previous sections. An important issue concerning the applicability of our
method is the processing time. In most of the templates used in the algorithm only the central
element of A is not zero; in this case, all the cells evolve in parallel and the convergence is
very fast. The most time-consuming steps of the algorithm are: �lling of concave locations,
connected component detection and centre point detection. The �rst two operations require
a di�usion-type A template; as a consequence the convergence time depends on the image
size. Centre point detection is a multi-step operation: eight feedforward templates must be
repeatedly applied until the centre point is extracted. At each step the CNN must reach the
steady-state; the number of steps and then the computation time depend on the size of mov-
ing objects. The processing time of the algorithm can be estimated in terms of analog time
constants (�) needed for convergence. Convergence of the CNN dynamics is assumed when
the variation of the state at integration step n is less than 0.1% of the state at step n−1. The
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Table I. Estimation of processing time.

Processing step No. time constants

Inversion 4.5
Sum 4.2
Abs 5.1
Filtering 4.2
Thresholding 15.3
Isolated point removal 7.2
Filling concave locations 84.4
Centre point 185
CCD (hor. and vert.) 185 + 153=338

number of time constants required by each processing step are summarized in Table I for the
image pair in Figures 5(a) and (b) (from the ‘van’ sequence).
We have 4–5� for convergence in each processing step, except for the di�usion templates

(�lling of concave locations, connected component detection both horizontal and vertical)
and centre point detection. Summing the values in Table I we have the processing time:
tp=648�.
Another important aspect is hardware implementation. Since all the templates used in the

algorithm are 3 × 3 and space invariant, practical implementation can be obtained using ex-
isting CNN analog, optical or mixed-type hardware, with slight modi�cations if necessary. In
particular the 64×64 CNN chip designed in Seville (Spain) can be used [13, 14]. The chip is
based on 0:5 �m CMOS technology and allows grey-scale analog electrical or optical input.
Neighborhood is 3× 3; the chip memory can store 32 templates and 64 switch con�gurations
which are more than enough for the proposed algorithm, requiring 17 di�erent templates
(including the eight templates for centre point detection). Note that the SUM template,
used to obtain the di�erence image between two frames, requires a cell-dependent bias
Iij which can be realized using an extra external input to each cell in addition to uij. A
modi�ed cell circuit is required for the realization of the absolute value template, which
is nonlinear; the piecewise-linear nonlinearity can be realized as explained in References
[15, 16].
The processing time of the hardware realization can be estimated assuming a time con-

stant �=1:2 �s [13], hence tp ∼= 777 �s. Assuming the minimum frame separation k=1, the
maximum frame rate compatible with the processing time is 1=tp=1286 frames=sec.
Threshold computation has not been considered in this estimate because it is performed

with a repetition rate that is far lower with respect to the frame rate.

5. CONCLUSIONS

A CNN algorithm has been proposed for position and size estimation of moving objects
in high resolution grey-scale image sequences. The method requires a �xed camera and it
is suited for surveillance and control applications. Detection of moving objects is obtained
through the sequential application of several space-invariant templates until the co-ordinates of

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2004; 32:509–522



ANALOGIC CNN ALGORITHM 521

the centre and the overall size of the moving objects have been extracted. The algorithm uses
thresholding to separate moving objects from standing ones, and an automatic procedure for
correct threshold selection has been proposed. The simulation results show the good behaviour
of the proposed method. The major limitation of the algorithm concerns the maximum speed
of the objects. Moreover, if the lighting conditions or the background can change rapidly, the
threshold computation must be repeated faster, with an increased computational cost.
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15. Liñ�an G, F	oldessy P, Rodr��guez-V�asquez A, Espejo S, Dom��nguez-Castro R. Realization of nonlinear templates
using the CNNUC3 prototype. Proceedings of IEEE International Workshop on Cellular Neural Networks
and Applications, CNNA-2000, Catania, 2000; 219–224.
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