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7 Abstract: Accurate estimation of the state of charge (SOC) of lithium-ion batteries is quite crucial to battery safety monitoring 

8 and efficient use of energy, to improve the accuracy of lithium-ion battery SOC estimation under complicated working conditions, 

9 the research object of this study is the ternary lithium-ion battery, the forgetting factor recursive least square (FFRLS) method 

10 optimized by particle swarm optimization (PSO), and adaptive H-infinity filter (HIF) algorithm are adopted to estimate battery 

11 SOC. The PSO algorithm is improved with dynamic inertia weight to optimize the forgetting factor to solve the contradiction 

12 between FFRLS convergence speed and anti-noise ability. The noise covariance matrixes of the HIF are improved to realize 

13 adaptive correction function and improve the accuracy of SOC estimation. To verify the rationality of the joint algorithm, a second-

14 order Thevenin model is established to estimate the SOC under three complex operating conditions. The experimental results 

15 show that the absolute value of the maximum estimation error of the improved algorithm under the three working conditions is 

16 0.0192, 0.0131 and 0.0111 respectively, which proves that the improved algorithm has high accuracy, and offers a theoretical 

17 basis for the safe and efficient operation of the battery management system.

18 Keywords: Lithium-ion battery; Thevenin model; Forgetting factor recursive least square; Particle swarm optimization; H-infinity 

19 filter; State of charge

20 1 Introduction

21 With the rapid development of the emerging intelligent industry, the pollution problem facing the world has become more 

22 and more severe[1-4] at present. The energy crisis caused by excessive energy consumption has attracted widespread attention from 

23 all countries in the world[5-7]. Therefore, all countries are committed to the development and research of new energy sources to 

24 meet the needs of huge Energy demand and alleviate environmental pollution problems. Lithium-ion batteries have been widely 

25 used and developed in the field of new energy due to their advantages of high energy density, long life, lightweight and convenient 
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26 portability[8-11]. To meet work requirements, lithium-ion batteries are often used in series and parallel groups. With the in-depth 

27 application of lithium-ion batteries in the field of new energy vehicles, its safety and reliability have been severely tested, due to 

28 individual differences in batteries, over-charging, over-discharging and overheating often occur during use. To solve the above 

29 problems, battery management system (BMS) came into being[12-14]. BMS can detect the physical parameters of the lithium-ion 

30 battery and estimate SOC. Lithium-ion battery SOC is the core parameter of BMS, it can characterize the remaining power of the 

31 battery[15]. The accurate estimation can make the BMS more accurately judge the timing of equilibrium, and the accuracy of the 

32 SOC estimation much depends on the accurate establishment of the battery equivalent model[16-19]. Therefore, how establishing 

33 an equivalent model for the operating characteristics of a lithium-ion battery and using a correct and appropriate algorithm to 

34 estimate the battery SOC is the key to establishing a battery management system and is of great significance to improving battery 

35 efficiency.

36 Currently, the commonly used battery models include electrochemical models, neural network models, and equivalent circuit 

37 models[20, 21]. After establishing an accurate equivalent model and performing parameter identification, relevant algorithms can be 

38 used to estimate the SOC[22, 23]. Commonly used SOC estimation methods include the ampere-hour integration method, Kalman 

39 filter and its extended algorithm, neural network method and so on[24, 25]. Duan et al. use extended Kalman filter (EKF) to update 

40 model parameters, and adaptive unscented Kalman filter (AUKF) to predict battery SOC, the results prove that EKF-AUKF has 

41 high estimation accuracy[26]. Yang et at. proposed a long short-term memory (LSTM)-cyclic neural network to simulate complex 

42 battery behavior at different temperatures and estimate the battery SOC based on voltage, current, and temperature variables. 

43 Combined with UKF to filter out the noise and further reduce estimation errors[27, 28]. Hu et al. adopted a novel SOC estimation 

44 method for series-connected battery packs based on the fuzzy adaptive federated filtering, it combines the SOC estimation value 

45 of the cell average model and the standard deviation of the SOC estimation with the fuzzy system to determine their fusion weight. 

46 The main filter adaptively adjusts the information distribution coefficient according to the estimation accuracy of the local filter 

47 to improve reliability[29, 30].

48 To perform higher-precision online parameter identification and accurate battery SOC estimation, this research constructed 

49 a second-order Thevenin equivalent circuit model and proposed an improved particle swarm optimization forgetting factor least 

50 square method combined with adaptive HIF algorithm for SOC estimation method, through the hybrid pulse power 
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51 characterization (HPPC), dynamic stress test (DST) and Beijing Bus dynamic stress test (BBDST) working conditions for 

52 experimental analysis to verify the effectiveness of the improved algorithm.

Nomenclature R2 electrochemical polarization resistance (B)

Acronyms C2 electrochemical polarization capacitance (F)

SOC state of charge Qv rated battery capacity (Ah)

RLS recursive least square / Coulomb efficiency

FFRLS forgetting factor recursive least square 01 time constant

PSO Particle swarm optimization 02 time constant

IPSO improved particle swarm optimization w(k) process noise

HIF H-infinity filter v(k) measurement noise

AHIF adaptive H-infinity filter 2(k) observation vector

BMS battery management system 3(k) parameter vector

EKF extended Kalman filter e(k) observation noise vector

AUKF adaptive unscented Kalman filter J(3) objective function

LSTM long short-term memory 4 forgetting factor in FFRLS

HPPC hybrid pulse power characterization Vid velocity of the particle

DST dynamic stress test Pi individual extreme value of the particle

BBDST Beijing Bus dynamic stress test Pg group extreme value of the population

RC resistance-capacitance c1 acceleration factor

Ah ampere-hour c2 acceleration factor

OCV open circuit voltage r1 random number

MAE Mean Absolute Error r2 random number

RMSE Root Mean Square Error 6s initial inertia weight

6e maximum number inertia weight
List of symbols & parameters

J cost function

UOC open circuit voltage (V) P0 initial error covariance matrix

UL terminal voltage (V) P0 initial error covariance matrix

E ideal voltage source 3 performance boundary

R0 ohmic internal resistance (B) Kk filter gain matrix

R1 polarization resistance (B) Sk third-order positive definite matrix

C1 polarization capacitance (F) 8 forgetting factor in AHIF

53
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54 2 Theoretical analysis

55 2.1 Equivalent circuit modeling

56 The accurate estimation of the lithium-ion battery state is based on an accurate circuit equivalent model. Among the 

57 commonly used circuit models, the Rint model has a relatively simple structure, including only an ideal voltage source Uoc and 

58 internal resistance R0, and the model accuracy is low[31, 32]; Thevenin model adds an RC parallel circuit based on the Rint model 

59 to characterize the polarization effect of the battery [33]. This model is also simple and can meet the simulation requirements, but 

60 it cannot accurately describe the dynamic characteristics of the battery[34]. To solve this problem and comprehensively consider 

61 the accuracy and simplicity of battery modeling, this research adds an RC parallel circuit to the first-order Thevenin model to 

62 obtain the second-order Thevenin model, as shown in Figure. 1. 

63

E

R1 R2

C2C1
UOC

UL

IL

U1 U2

R0

64 Figure. 1 Second-order Thevenin model

65 In Figure. 1, UOC represents the open circuit voltage of the battery, UL represents the terminal voltage after the battery is 

66 connected to an external circuit, E is the ideal voltage source, R0 is the ohmic internal resistance, which represents the transient 

67 response of the charging and discharging voltage, and R1 is the polarization resistance of the battery; C1 is the polarization 

68 capacitance, which represents the change in the polarization voltage U1 caused by the load current IL. The parallel circuit of R1 and 

69 C1 describes the polarization reaction of the battery, and this process characterizes the rapid reaction of the electrode to the battery. 

70 R2 and C2 are the electrochemical polarization resistance and capacitance, respectively, which characterize the slow reaction of 

71 the electrode to the battery. The improved second-order Thevenin model can better describe the dynamic characteristics of the 

72 lithium-ion battery during charging and discharging. The circuit equation can be obtained from Kirchhoff’s law�

Page 4 of 43

http://mc.manuscriptcentral.com/ijcta

International Journal of Circuit Theory and Application

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



� � � � � � � � � �

� �

� � � �

0 1 2

1 1 2 2
1 2

1 2

oc

0

0 0

[ ]

0

L oc

L

t

v

L

U t U t U t U t U t

dU U dU U
I C C

dt R dt R

U f SOC t

i
SOC t SOC dt

Q

U R I

�

� � � � �
	
	 � 
 � 

	
		

��
	
	 � �
	
	

�	�



(1)

73 In Equation (1), SOC(0) is the initial SOC value, SOC(t) is the SOC value after t time has elapsed, Qv represents the rated 

74 battery capacity, and / represents the Coulomb efficiency. The following equation can be obtained after discretizing Equation (1).
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(2)

75 In Equation (2), T is the sampling period; 01 = R1*C1�02 = R2*C2; w(k) and v(k) are the process noise and measurement noise 

76 at time k, respectively.

77 2.2 Improved optimal forgetting factor least square method

78 Recursive least square (RLS) has the characteristics of easy understanding and fast convergence and has been widely used 

79 in the field of system identification[35, 36]. However, due to the phenomenon of "filter saturation" in the recursive least square 

80 method, that is, as the number of algorithm data iterations increases, the values of gain K and P will become smaller and smaller. 

81 This makes the algorithm's ability to correct data gradually weaker, and the degree of data saturation becomes larger and larger, 

82 which eventually leads to larger and larger parameter identification errors. Therefore, the forgetting factor is considered to be 

83 added in the identification of the least squares method to improve the online estimation ability of the RLS algorithm. The 

84 mathematical description expression of the least square method is shown in Equation (3).

� � � � � �Ty k k e k� �� 
 (3)

85 Wherein, 2(k) is the observation vector; 3(k) is the parameter vector to be estimated; e(k) is the observation noise vector.

86 The objective function J(3) is taken in RLS, the purpose of the algorithm is to find , when , J(3) takes the minimum�̂ ˆ� ��
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87 value. The objective function and estimated parameter values of the system are shown in Equation (4).
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88 In the actual simulation calculation, it is necessary to continuously input and output the latest experimental data, and improve 

89 the accuracy of parameter estimation in the continuous iterative process until a satisfactory accuracy is achieved. After introducing 

90 the forgetting factor , the specific calculation process is shown in Equation (5). 4 (0 < 4 < 1)
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(5)

91 Wherein, 4 generally has a value range of 0.95-1,  is the estimated value of the parameter at time k, ˆ( )k� T ˆ( 1) ( )k k� �


92 is the calculated value of the system observation at time k+1, and wherein is the observed value matrix of voltage 
T ( 1)k� 


93 and current. y(k+1) is the actual observed value at time k+1. In each iteration, the algorithm uses the difference between the system 

94 observation calculation value and the actual observation value, and the gain K to correct the final estimated value. However, when 

95 4 is a fixed value, there is a contradiction between the convergence speed and the anti-noise ability. A small value of 4 will lower 

96 the anti-noise ability and result in low identification accuracy; while a large value of 4 will result in a slower convergence speed. 

97 Therefore, this research employs the particle swarm optimization algorithm to optimize the forgetting factor in real-time, finds the 

98 optimal 4 in each iteration of the algorithm, dynamically adjusts the value of 4, and improves the identification accuracy of the 

99 forgetting factor least square method. In the particle swarm optimization algorithm, the particle velocity and position update 

100 equations are shown in Equation (6).

� � � �1
1 1 2 2

1 1

k k k k k k
id id id id gd gd

k k k
id id id

V V c r P X c r P X
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� 

(6)

101 In Equation (6), 6 is the inertia weight; d = 1, 2, …, D, D is the number of particles; i = 1, 2, …, n; k is the current iteration 

102 number; Vid is the velocity of the particle; Pi is the individual extreme value of the particle, Pg is the group extreme value of the 

103 population;c1 and c2 are non-negative constants which are called acceleration factors; r1 and r2 are random numbers distributed in 

104 the interval. In this research, the actual terminal voltage and the estimated terminal voltage are taken as the fitness function, as 
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105 shown in Equation (7). 

� � � � T ˆ( ) ( 1)OCf U k U k k k� �� � � � (7)

106 Wherein, U(k) represents the actual terminal voltage, is the system observation value at time k.
T ˆ( ) ( 1)k k� � �

107 The inertia weight 6 reflects the ability of the particle to inherit the previous velocity. A larger 6 is conducive to the global 

108 search and a smaller 6 is more conducive to the local search. To better balance the global and local search capabilities of the 

109 particle swarm optimization algorithm, the inertia weight 6 is improved, as shown in the following equation.

� � � �
2

max

s s e

k
k

T
  

� �
� � � � �

� �
(8)

110 In Equation (8), 6s is the initial inertia weight; 6e is the inertia weight when the iteration reaches the maximum number of 

111 times; k is the current iteration number; Tmax is the maximum iteration number. In general, the algorithm performance is best when 

112 the inertia weight 6s = 0.9 and 6e = 0.4. As the iteration progresses, the inertia weight decreases linearly from 0.9 to 0.4, which 

113 ensures that the optimization algorithm has a strong global search ability in the early stage, and a more accurate local search can 

114 be performed in the later stage of the iteration. The flow chart of the particle swarm optimization algorithm is shown in the figure 

115 below.

116

Particle fitness 

value 

calculation

Find individual 

extremes and 

group extremes

Speed and 

location update

Speed and 

location update

Individual 

extreme value 

and group 

extreme value 

update

Meet the 

termination 

conditions?

Y

N

Begin End

117 Figure. 2 Flowchart of particle swarm optimization algorithm

118 In Figure. 2, the particle speed and position are randomly initialized by initialization; the particle fitness value is calculated 

119 according to Equation (7); the individual extremum and the group extremum are determined according to the initial particle fitness 

120 value; the particle speed and position are updated by Equation (6); The individual extreme value and the group extreme value are 

121 updated according to the fitness value of the particles in the new population.

122 2.3 Adaptive HIF algorithm

123 From the discrete system Equation (2), the following equation can be derived.

Page 7 of 43

http://mc.manuscriptcentral.com/ijcta

International Journal of Circuit Theory and Application

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



1k k k k k k

k k k k k k

X A X B u w

Y C x D u v


 � 
 
�
�

� 
 
�
(9)

124 In Equation (9), xk is the state variable; uk is the system input; Ak is the state transition matrix, which predicts the system 

125 variables; Bk is the system control input matrix; Ck and Dk are the system observation matrices, driving the forecasting system 

126 observations; wk and vk are independent Gaussian white noises. Combined with the state space expression of the battery, the 

127 expressions of Ak�Bk�Ck and Dk can be obtained, as shown in Equation (10).
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(10)

128 The HIF algorithm adopts the idea of game theory and introduces a cost function J[37], as shown in Equation (11). 
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129 In Equation (11), x0 and X0 are the initial value and initial setting value of the state variable respectively; P0 is the initial error 

130 covariance matrix; Qk and Rk are the covariance matrix of wk and vk. The goal of HIF is to find an estimated value of  such that ��

131  takes the minimum value to obtain the best estimate[37, 38]. In practical applications, it is difficult to minimize it directly, ��� ��

132 therefore, an appropriate performance boundary 3 is selected to satisfy the conditions in Equation (12).

1
J

�
% (12)

133 Combining Equation (11) and Equation (12), the expression of the cost function J1 can be obtained, as shown in Equation 

134 (13).
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135 Combining Equation (9) and Equation (13), the recurrence relationship of the HIF algorithm can be obtained as shown in the 

136 following equation.

Page 8 of 43

http://mc.manuscriptcentral.com/ijcta

International Journal of Circuit Theory and Application

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



µ µ� �

1
1 1

1

1
1 T

1

T T

k k k k k k k k k k

k k k k k k

T

k k k k k k k k k

K P I S P C R C P C R

X Ax Bu K y y

P AP I S P C R C P A Q

�

�

�� �




��



� � �� � 
� �	
	

� 
 
 ��
	
	 � �� � 
 
� ��

(14)

137 In Equation (14), Kk is the filter gain matrix; Sk is a third-order positive definite matrix, which is set by the importance of 

138 each state. The noise covariance matrixes Qk and Rk in the HIF algorithm are both artificially set fixed values. To improve the 

139 estimation performance of the algorithm, Qk and Rk are improved, and the noise covariance matrix is updated in real-time using 

140 measurement data, as shown in Equation (15).
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141 In Equation (15), ; 8 is forgetting factor, 0< 8<1, 8 = 0.96. It can be seen from Equation (15) that the estimation  
� � 1 =
1 � �

1 � ��

142 accuracy of SOC can be improved and the correction function can be realized according to the real-time estimation of Qk and Rk. 

143 The entire SOC estimation process is shown in Figure. 3, and the values of different parameters in experimental verification are 

144 shown in Table 1.

145
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146 Figure. 3 Flowchart of the whole algorithm
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147 Table 1. Values of different parameters

Algorithms Parameters

FFRLS 0 = 0.98

IPSO  � (0.95,1)

 � = [
1 0 0
0 1 0
0 0 1]

� = 1 × 10�8 × [
1 0 0
0 1 0
0 0 1]HIF

� = 1 × 10�3 × [
1 0 0
0 1 0
0 0 1]

� = 0.96

AHIF
�� = [

0.01 0 0
0 0.01 0
0 0 0.01]

148

149 3 Experimental analysis

150 The battery used in the experiment is a ternary lithium-ion battery with a rated capacity of 70Ah and an actual capacity of 

151 68Ah. The battery charging and discharging equipment adopts the power battery module test system BTS750-200-100-4, and the 

152 thermostat is BTKS5-150C. Since the internal parameters of the battery change with temperature, this experiment was carried out 

153 under the condition of 25°C. The experimental platform is shown in Figure. 4.

154

155 Figure. 4 Experimental platform
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156 3.1 SOC-OCV fitting curve

157 Because of the good mapping relationship between battery SOC and OCV, in the process of online parameter identification 

158 of the battery based on the IPSO-FFRLS algorithm, it is necessary to obtain a more accurate SOC-OCV curve to avoid large 

159 observation errors. In this research, the HPPC test is employed to obtain the current and voltage data of the single battery, and the 

160 model is used to identify effective online parameters. The HPPC experiment steps are as follows: 

161 � At first, the lithium-ion battery is charged as standard. After the end of charging, shelve it for 2h, where the charging 

162 current is set to 1C (68Ah), the charging voltage is set to 4.5V, and the cut-off condition is set to the current 3.4A.

163 � After the battery is fully charged, a current pulse experiment is conducted on the battery. It is discharged with a current 

164 of 1C for 10s firstly, then shelved for 40s, and then charged with a current of 1C for 10s. The purpose is to return the 

165 battery to the SOC value before discharge and complete a set of pulse charge and discharge experiments.

166 	 The battery is discharged with a current of 1C for 6 minutes (battery SOC is 90%), and then shelved for 1h. The cut-off 

167 condition is 3V.

168 
 Repeat step � and step 	, discharge with 10% capacity for each cycle and record relevant data at SOC of 1, 0.9,..., 

169 0 to provide data for the parameter identification. 

170 The functional relationship of SOC-OCV is obtained from the HPPC test data as shown in Equation (16).

5 4 3 24.265 14.9 19.38 10.77 2.947 3.251OC SOC SOC SU OC SOC SOC& � & 
 & � & 
 & 
� (16)

171 After comparing the fitting effect many times, it is found that the 5th-order polynomial avoids excessive fitting and the 

172 complexity of the processor under the premise of ensuring the fitting effect. Therefore, this research chooses the 5th-order 

173 polynomial to fit the SOC-OCV curve.

174 3.2 Analysis of parameter identification results

175 To verify the effectiveness of the IPSO-FFRLS algorithm, the online parameter identification of the model was performed 

176 with the RLS, FFRLS and IPSO-FFRLS algorithms. The parameter identification results are shown in the figure below.
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224 the estimation accuracy of the IPSO-FFRLS algorithm is always higher. It indicates that under more complex conditions, the 

225 IPSO-FFRLS algorithm has a better parameter identification effect and faster convergence speed. It can be seen from 

(c) SOC estimation results with different algorithms (d) SOC estimation error with different algorithms

226 Figure. 7(d) that under more complex conditions, the HIF and AHIF algorithms almost coincide with the actual SOC curve 

227 in the early stage of estimation, and the maximum estimation error of the two algorithms in the later stage is also within 0.02. It 

228 shows that the HIF algorithm has a better estimation effect under the uncertainty of the system model and external interference, in 

229 the case of severe chemical reaction in the later stage of discharge, the error fluctuation of the AHIF algorithm is smaller and more 

230 stable. The maximum absolute estimation error of the AHIF algorithm is 0.0131, and the estimation error interval is kept within 

231 ±0.014, which proves that the AHIF algorithm has strong estimation stability under more complicated working conditions. The 

232 MAE and RMSE of the estimation results under DST working conditions are shown in Table 3.

233 Table 3. Comparison of performance indicators of various algorithms under DST working conditions

Algorithms MAE RMSE

IPSO-EKF 1.512% 1.624%

IPSO-HIF 0.777% 0.963%

FFRLS-AHIF 1.335% 1.593%

IPSO-AHIF 0.548% 0.652%

234

235 3.3.3 Analysis of experimental results under BBDST working conditions

236 To further verify the estimated performance of the improved algorithm in the actual complex working conditions of the 

237 lithium-ion battery, the research refers to the Beijing Bus Dynamic Stress Test (BBDST) working condition to conduct a 

238 corresponding test on the battery. The BBDST working condition steps include starting, accelerating, sliding, braking, rapid 

239 acceleration and parking steps, which are the working conditions obtained by real data collection of Beijing buses, which can 

240 restore the actual working state of the lithium-ion battery. SOC estimation results are shown in 

(c) SOC estimation results with different algorithms (d) SOC estimation error with different algorithms

241 Figure. 8.

Page 15 of 43

http://mc.manuscriptcentral.com/ijcta

International Journal of Circuit Theory and Application

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 16 of 43

http://mc.manuscriptcentral.com/ijcta

International Journal of Circuit Theory and Application

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



254 The legend in Figure. 8 is consistent with Figure. 6. It can be seen from 

(c) SOC estimation results with different algorithms (d) SOC estimation error with different algorithms

255 Figure. 8 that in the BBDST operating condition, which is more complex than the DST operating condition, there are more 

256 sudden changes in current, and the error of the EKF algorithm fluctuates greatly, while the HIF and AHIF algorithms remained 

257 stable in the whole SOC estimation process. In HIF algorithm, the process and measurement noise covariances are constant, but 

258 in the SOC estimation process, the noise covariance may change with the changes in operating conditions inside and around the 

259 battery. Therefore, AHIF algorithm which can dynamically adjust the noise covariance is proposed to estimate SOC. The 

260 maximum absolute estimation error of the AHIF algorithm is 0.111, which proves that the proposed AHIF algorithm still has the 

261 highest accuracy. The MAE and RMSE of the estimation results under BBDST working conditions are shown in Table 4.

262 Table 4. Comparison of performance indicators of various algorithms under BBDST working conditions

Algorithms MAE RMSE

IPSO-EKF 1.633% 1.755%

IPSO-HIF 0.635% 0.716%

FFRLS-AHIF 1.014% 1.145%

IPSO-AHIF 0.571% 0.660%

263

264 Combining the comparison diagrams of several algorithms under the three working conditions, the IPSO-FFRLS algorithm 

265 can identify battery parameters more accurately, and has a faster convergence time than FFRLS algorithm with a fixed forgetting 

266 factor. It can be seen that the EKF, HIF and AHIF algorithms can predict the SOC value more accurately, but through the 

267 improvement of the covariance matrix, the AHIF algorithm has a stronger tracking effect and more accurate estimation ability, as 

268 can be seen from the error comparison chart, the AHIF algorithm also has a better stability.

269 4 Conclusions

270 The high-precision model parameter identification and the accurate estimation method of SOC provide a guarantee for the 

271 normal operation of the BMS. To improve the accuracy of model identification and the stability of estimation methods, IPSO-

272 FFRLS and AHIF algorithms are proposed to estimate SOC. A second-order Thevenin model is established to verify the algorithm 

273 under three different working conditions. Experimental results show that the improvement of the inertia weight 6 in PSO algorithm 

274 can effectively improve the accuracy and convergence speed, the IPSO algorithm can select the optimal forgetting factor in FFRLS 

275 and IPSO-FFRLS algorithm has higher parameter identification accuracy than fixed forgetting factor FFRLS algorithm. The 
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276 experimental results also prove that it is feasible to improve the SOC estimation accuracy by dynamically adjusting the noise 

277 covariance in HIF algorithm. The maximum absolute estimation error of the AHIF algorithm is 1.92%, 1.31% and 1.11% under 

278 HPPC, DST and BBDST conditions, respectively. The IPSO-FFRLS algorithm can obtain high-precision model parameters, 

279 thereby improving the SOC estimation effect. The AHIF algorithm can accurately estimate the SOC with good stability and can 

280 be used in complex working conditions. The combined algorithm of IPSO-FFRLS and AHIF provides a theoretical basis for 

281 lithium-ion battery state estimation, it also promotes the intelligent development of BMS, and plays a positive role in prolonging 

282 the service life and improving the safety performance of lithium-ion batteries.

283 The experiments of this research are carried out at room temperature, and the influence of high temperature or low 

284 temperature on SOC estimation has not been considered. In the future, experiments in different temperature ranges will be carried 

285 out on the basis of this study to further explore the estimation accuracy of IPSO-FFRLS algorithm and AHIF algorithm under 

286 different temperature conditions, to improve the practicability of the proposed algorithms.
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