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Abstract— This paper studies a system of parallel-
connected dc/dc converters under master-slave current shar-
ing and proportional-integral (PI) PWM control. Two distinct
types of bifurcations can be identified. Depending on the
value of the integral time constant, the system exhibits either
a slow-scale bifurcation (Neimark-Sacker bifurcation) or a
fast-scale bifurcation (period-doubling). Extensive simula-
tions are used to capture the behaviour. Trajectories before
and after these bifurcations are shown. The boundaries be-
tween these two types of bifurcations are located. Parameter
spaces of the feedback controller for stable and unstable
operation are presented.

I. INTRODUCTION

Power supplies based on paralleling switching convert-
ers offer a few advantages over a single, high-power,
centralized power supply. They enjoy low component
stresses, increased reliability, ease of maintenance and
repair, improved thermal management, etc. [1]– [2]. Par-
alleling of standardized converters is an approach used
widely in distributed power systems for both front-end and
load converters.

In parallel converter systems, mandatory control is
needed to ensure proper current sharing, and many effec-
tive control schemes have been proposed [1]– [4]. One
widely used method for balancing the currents among
the modules is the master-slave current sharing method.
Under the master-slave scheme, one of the converters is
the master and the other is the slave. The master has a
simple feedback loop, consisting of a typical proportional-
integral (PI) control, to regulate the output voltage. The
slave basically sets its current to equal that of the master
via an active loop involving comparison of the currents of
the two converters, as shown in Fig. 1.

Generally, two distinct types of bifurcations have been
identified for parallel converter systems, namely slow-
scale bifurcation [5] and fast-scale bifurcation [6]. Under
the master-slave current sharing and PI PWM control,
the system can exhibit either slow-scale or fast-scale
bifurcation. The determining parameter is the integral time
constant τF1 (τF2). Parameter spaces of the feedback
controller are shown to be completely different under these

two bifurcations. In this paper, we will study the effects of
τF1 (τF2). We will also identify the boundaries between
these two types of bifurcations.

II. SYSTEM DESCRIPTION AND OPERATION

A. Proportional and Integral (PI) PWM Control

Figure 1 (a) shows two buck converters connected in
parallel. In this circuit, S1 and S2 are switches, which are
controlled by a standard pulse-width modulator consisting
of a comparator that compares a control signal with a ramp
signal. The ramp signal is given by

Vramp = VL + (VU − VL)
(

t

Ts
mod 1

)
(1)

where VL and VU are the lower and upper thresholds
of the ramp respectively, and Ts is the switching period.
Basically, switch Si (i = 1, 2) is closed if vconi > Vramp

and is open otherwise.
The control signal vcon1 and vcon2 are derived from the

feedback compensator, as shown in Figs. 1 (b) and (c).
Here the compensator is a PI controller, i.e.,

Vcon1(s)
Ve(s)

= −Kp

(
1 +

1
Tis

)
(2)

where Vcon1(s) and Ve(s) are the Laplace transforms
of vcon1 and ve; ve is the error between the reference
voltage Vref and the output voltage vo; Kp and Ti are the
parameters in the PI controller. As for the slave-converter,
an extra current sharing signal is included, as shown in
Fig. 1 (c).

B. Exact State Equations

The system can be regarded as a variable structure that
toggles its topology according to the states of the switches.
We assume that the converters are operating in continuous
conduction mode, diode Di is always in complementary
state to switch Si, for i = 1, 2. That is, when Si is on,
Di is off, and vice versa. Hence, only four switch states
are possible during a switching cycle, namely (i) S1 and
S2 are on; (ii) S1 is on and S2 is off; (iii) S1 is off and
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Fig. 1. Parallel connected buck converters under master-slave current sharing and PI control. (a) Converter stage; (b) controller for the master; (c)
controller for the slave.

S2 is on; (iv) S1 and S2 are off. The converter stage’s
state equations corresponding to these switch states are
generally given by

ẋ = A1x + B1E for S1 and S2 on
ẋ = A2x + B2E for S1 on and S2 off
ẋ = A3x + B3E for S1 off and S2 on
ẋ = A4x + B4E for S1 and S2 off,

(3)

where E is the input voltage, x is the state vector defined
as

x = [iL1 iL2 vc]
T

, (4)

and the A’s and B’s are the system matrices.

According to the feedback circuits, we can derive the
control equations for vcon1 and vcon2

dvcon1

dt
= −K1

dvo

dt
− K1

τF1
vo +

K1

τF1
Vref , (5)

dvcon2

dt
= −K2

dvo

dt
− K2

τF2
vo + K2Ki

(
diL1

dt
− diL2

dt

)

+
K2Ki

τF2
(iL1 − iL2) +

K2

τF2
Vref . (6)

where K1 and K2 are the proportional gains, τF1 and τF2

are the integral time constants, Ki is the current sharing
coefficient, and Vref is the reference voltage (expected
output voltage). In circuit terms, K1 = RF1/R1, τF1 =
RF1CF1, K2 = RF2/R2, τF2 = RF2CF2, Ki = RF Rs/R,
where Rs is the current sensing resistance.

Also, the output voltage dvo/dt can be written as

dvo

dt
=

R

R + rC

[
dvc

dt
+ rC

(
diL1

dt
+

diL2

dt

)]
(7)

Substituting equations (3) and (7) into (5) and (6), we
obtain

dvcon1

dt
= M1x1 + M2x2 + M3x3 −

K1RrC

(R + rC)

(
q1E

L1
+

q2E

L2

)
+

K1

τF1
Vref (8)

and
dvcon2

dt
= N1x1 + N2x2 + N3x3 − K2RrC

(R + rC)

(
q1E

L1
+

q2E

L2

)
+K2Ki

(
q1E

L1
− q2E

L2

)
+

K2

τF2
Vref , (9)

where M1, M2, M3, N1, N2 and N3 are the simplified
coefficients related to the circuit parameters, and q1, q2

are the switching functions determined by the output of
the controllers, which are given by

qi(t) =

{
1, if vconi ≥ Vramp, i.e., Si on,

0, if vconi < Vramp, i.e., Si off.
(10)

Controller equations (8) and (9), together with the power
stage equation (3), form the complete set of state equations
of the system. It is a fifth order system.

III. IDENTIFICATION OF SLOW-SCALE AND

FAST-SCALE BIFURCATIONS

In this section, some observed bifurcation phenom-
ena from numerical simulations that employ an exact
piecewise-switched model will be presented. The simu-
lations are based on the state equations derived in the
foregoing section. We will primarily investigate the effects
of the choice of the controller’s parameters K1, K2,
τF1 and τF2, which are important design parameters in
practice. The following circuit parameters are used in our
simulations: switching period Ts = 10µs, input voltage
E = 12V, reference voltage Vref = 5V, ramp voltage VL,
VU = 3V, 8V, inductance L1 = 550µH, rL1 = 0.01Ω,
inductance L2 = 600µH, rL2 = 0.05Ω, capacitance C=
126µF, rC = 0.01Ω, load resistance R = 0.5Ω and current
sensing resistance Rs = 0.01Ω. We identify two types of
bifurcations, namely, slow-scale bifurcation and fast-scale
bifurcation.
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Fig. 2. 3-dimensional trajectories. (a) Stable period-1 trajectory for K1 = K2 = 1.9, τF1 = τF2 = 0.3/ω0, Ki = 1; (b) quasi-periodic trajectory
after the slow-scale bifurcation for K1 = K2 = 2, τF1 = τF2 = 0.3/ω0, Ki = 1.

4.95

5

5.05

4.95

5

5.05
4.999

4.9995

5

5.0005

5.001

 i
 L1

(A) i
 L2

(A)

 v
c(V

)

4.95

5

5.05

4.95

5

5.05
4.998

4.999

5

5.001

5.002

 i
 L1

 (A) i
 L2

 (A)

 v
 c

 (
V

)

(a) (b)

Fig. 3. 3-dimensional trajectories. (a) Stable period-one trajectory for K1 = K2 = 560.5, τF1 = τF2 = 1/ω0, Ki = 1; (b) period-2 trajectory
after the fast-scale bifurcation for K1 = K2 = 561, τF1 = τF2 = 1/ω0, Ki = 1.

A. Slow-Scale Bifurcation

In the simulation, we set K1 = K2, τF1 = τF2 for
simplicity. Normally, the PI controller will introduce a
zero, 1/τF1 (1/τF2), to the control loop, to cancel the
effect of double poles of the circuit. So, we compare
τF1, τF2 with the system’s inherent natural frequency ω0,
which is defined as ω0 = 1/

√
LeC. Here, Le is the

equivalent inductance of the paralleled converters. When
τF1 (τF2) is relatively small, e.g., τF1 = τF2 = 0.3/ω0,
we can identify slow-scale bifurcation (Neimark-Sacker
bifurcation) as we increase K1 (K2). The 3-dimensional
trajectories of the period-1 orbit before the bifurcation and
the quasi-periodic orbit after the bifurcation are shown in
Fig. 2 (a) and Fig. 2 (b), respectively.

B. Fast-Scale Bifurcation

When τF1 (τF2) is relatively large, e.g., τF1 = τF2 =
1/ω0, we can identify fast-scale bifurcation (period-
doubling) as we increase K1 (K2). The 3-dimensional
trajectories of the period-1 orbit before the bifurcation
and the period-2 orbit after the bifurcation are shown in
Fig. 3 (a) and Fig. 3 (b), respectively.
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Fig. 4. Boundaries of slow-scale and fast-scale bifurcations for Ki = 1.
The dash line shows the boundary between the two types of bifurcation.

C. Boundaries Between the Two Types of Bifurcation

From the above simulations, we know that two types
of bifurcation will occur in the parallel-connected buck
converters under PI control. Computer simulations reveal
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Fig. 5. Critical τF1ω0 (τF2ω0) separating the slow- and fast-scale
bifurcations for different output power levels with Ki = 1. For
τF1ω0 (τF2ω0) below the critical value, slow-scale bifurcation occurs
as K1 (K2) is increased. Fast-scale bifurcation occurs otherwise.

that the crucial parameter that determines the type of
bifurcation is τF1 (τF2). For each value of τF1ω0 (τF2ω0),
we first determine the critical value of K1 (K2). Then,
we may construct the stability boundaries, as shown in
Fig. 4. Moreover, we can locate the critical value of
τF1ω0 (τF2ω0) that determines the type of bifurcation
occurred. The boundary between slow-scale and fast-scale
bifurcations is shown as dash line in Fig. 4. The parallel
converters work in the normal stable period-1 operation
when the values of control parameters are located be-
low the boundary curve. However, the system undergoes
Neimark-Sacker bifurcation when K1 (K2) crosses the
boundary at the left side of the critical value of τF1ω0

(τF2ω0), and period-doubling at the right side. In the
figure, the boundary of Neimark-Sacker bifurcation is
much lower than that of period-doubling, which is very
important for practical design. In practice, we avoid the
occurrence of slow-scale bifurcation and prefer to set a
large value of τF1ω0 (τF2ω0) in order to get a wide range
of K1 (K2).

We can adjust the output power by changing the load
resistance R (the output voltage is kept at a constant
value). For different levels of the output power (with fixed
ω0= 1√

LeC
), we have collected the critical values of τF1ω0

(τF2ω0). A graphical presentation is shown in Fig. 5. We
observe that the critical value of τF1ω0 (τF2ω0) increases
linearly with the increase of load resistance R. Then, we
fix the output resistance R and change the value of C, i.e.,
ω0, and again collect the the critical values of τF1 (τF2). A
graphical presentation is shown in Fig. 6. From the figure,
the critical value of τF1 (τF2) decreases significantly with
the growth of ω0.

IV. CONCLUSION

In this paper, a system of parallel connected
buck converters under master-slave current sharing and
proportional-integral (PI) PWM control is studied. Fun-
damentally different types of nonlinear phenomena are

3000 4000 5000 6000 7000 8000 9000

4

6

8

10

12

14

16
x 10

−5

  ω
 0

 τ
 F

1, τ
 F

2

Critical  τ
 F1

 ( τ
 F2

 ) separating the

 slow− and fast−scale bifurcations

Fig. 6. Critical τF1 (τF2) separating the slow- and fast-scale bifur-
cations for different ω0 with Ki = 1. For τF1(τF2) below the critical
value, slow-scale bifurcation occurs as K1 (K2) is increased. Fast-scale
bifurcation occurs otherwise.

observed in these systems. Depending on the value of
the integral time constant τF1 (τF2), either fast-scale
or slow-scale bifurcation occurs. For small τF1 (τF2),
Neimark-Sacker bifurcation will occur, and for large τF1

(τF2), period-doubling bifurcation occurs. The ranges of
parameter space of the feedback controller are shown
to be different under these two bifurcations. Extensive
computer simulations are used to identify the bifurcation
boundaries. The critical values of τF1 (τF2) for different
values of power and natural frequency ω0 are collected.
The simulations and numerical analysis reveal the fact that
two types of bifurcation will occur in the system, and τF1

(τF2) will determine the type of bifurcation. The results
presented provide a useful reference for practical design of
parallel converters in a wide range of control parameters.

ACKNOWLEDGMENT

This work was supported in part by Hong Kong Re-
search Grant Council under a competitive earmarked re-
search grant (No. PolyU 5237/04E) and ARC Discovery
Project Grant (No. DP0559109).

REFERENCES

[1] V. J. Thottuvelil and G. C. Verghese, “Analysis and control of
paralleled dc/dc converters with current sharing,” IEEE Trans. Power
Electron., vol. 13, no. 4, pp. 635–644, Jul 1998.

[2] K. Siri, C. Q. Lee and T. F. Wu, “Current distribution control
for parallel connected converters: Part I and Part II,” IEEE Trans.
Aerospace Electron. Syst., vol. 28, no. 3, pp. 829–851, Jul 1992.

[3] R. Giral, L. Martinez-Salamero and S. Singer, “Interleaved convert-
ers operation based on CMC,” IEEE Trans. Power Electron., vol. 14,
no. 4, pp. 643–652, Jul 1999.

[4] X. Zhou, P. Xu and F. C. Lee, “A novel current-sharing control
technique for low-power high-current voltage regulator module ap-
plications,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1153–
1162, Nov 2000.

[5] Y. Huang and C. K. Tse, “On the basins of attraction of parallel
connected buck switching converters,” in Proc. IEEE Int. Symposium
Circ. Syst., pp. 5647–5650, May 2006.

[6] H. H. C. Iu and C. K. Tse, “Bifurcation behaviour in parallel-
connected buck converters,” IEEE Trans. Circ. Syst. Part I, vol. 48,
no. 2, pp. 233–240, Feb 2001.

2422

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on December 14, 2008 at 21:47 from IEEE Xplore.  Restrictions apply.


