Received: 12 September 2016

Revised: 4 October 2018

W) Check for updates

Accepted: 15 March 2019

DOI: 10.1002/dac.3961

RESEARCH ARTICLE

WILEY

A virtualized infrastructure to offer network mapping
functionality in SDN networks

Pilar Manzanares-Lopez
Adrian Flores-de la Cruz

Department of Information Technologies
and Communications, Technical
University of Cartagena, Cartagena, Spain

Correspondence

Pilar Manzanares-Lopez, Department of
Information Technologies and
Communications, Technical University of
Cartagena, Antiguo Cuartel de Antigones
Campus Muralla del Mar s/n, Cartagena
E-30202, Spain.

Email: pilar.manzanares@upct.es

Funding information

Ministerio de Economia y Competitividad,
Grant/Award Number:
TEC2003-47016-C2-2R and
TEC2016-76465-C2-1R

1 | INTRODUCTION

| Juan Pedro Mufioz-Gea

| Josemaria Malgosa-Sanahuja‘> |

Summary

The separation of control and forwarding planes in software-defined network-
ing (SDN) networks is a key issue of the SDN technology. This feature and
the existence of the SDN controller allow the developing of dynamic, adapt-
able and manageable networks, networks that require adequate services, and
applications. However, the separation of these planes prevents the use of exist-
ing powerful tools that were coded considering traditional networks. In this
paper, we make use of the potential of network virtualization (NV) technolo-
gies to propose the use of a virtualized infrastructure that makes possible the
incorporation of these existing services and/or applications to an SDN network,
without the need for programming additional and complex software modules in
the SDN controller. Thus, in this paper, NV is not employed to develop a net-
work managed by SDN but to broaden and give support to the SDN control layer.
As an example, we describe the incorporation of nmap (a versatile and power-
ful tool widely used by security experts for network exploration) into the SDN
framework. It is only necessary to develop a simple control plane service that
thanks to the proposed virtualized infrastructure allows the inclusion of this
powerful management application. The result offers the complete functionality
of the nmap utility to the network administrators, who control the SDN net-
work through the out-of-band control plane. In addition, a northbound REST
API has been defined to offer the main functionality of the tool (host discovery,
port scanning, and operating system detection) to the application layer.

KEYWORDS

network mapping, network virtualization, OpenFlow, SDN

Software-defined networking (SDN) and network virtualization (NV) have changed the traditional networking paradigms.
Both are different but are strongly related. SDN can be seen as a programmable and customizable framework that allows
the integration and management of networks, regardless of whether they are physical or virtual networks.

The SDN controller is the core of the network acting as the control point of the SDN network. Making use of the
adequate software modules, the controller will be able of managing dynamic, adaptable, and efficient networks. However,

Int J Commun Syst. 2019;32:e3961.
https://doi.org/10.1002/dac.3961

wileyonlinelibrary.com/journal/dac © 2019 John Wiley & Sons, Ltd. | 10f10

https://doi.org/10.1002/dac.3961
https://orcid.org/0000-0003-1296-7158
https://orcid.org/0000-0001-8342-4797
https://orcid.org/0000-0001-8137-1089
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fdac.3961&domain=pdf&date_stamp=2019-04-17

20f10 WI LEY MANZANARES-LOPEZ ET AL.

the deployment of new and advanced networking applications that improve the network performance and functionality
involves the programming of additional and complex modules.

Asin the case of traditional network administrators, SDN-network administrators require adequate utilities to solve the
variety of networking tasks. They include examples such as bandwidth monitoring, diagnostic tests, real time analytics, or
troubleshooting network problems. The logically centralized control offered by the SDN controllers, by means of different
software modules, provides networking related information to give a solution to most of these goals.

From a management perspective, the accessibility to the SDN network from the controller is obtained by the out-of-band
(OOB) control plane connection through the OOB port of the network elements (routers and switches). OpenFlow
protocol' is used for this purpose. In contrast, hosts are not accessible through the OOB. Thus, it is not possible to make use
of any network tool that is performed using end hosts. Active measurement tools such as ping and traceroute or network
mapping tools such as nmap are some examples.

Using the proposal we described in this work, it will not be necessary to implement the whole management functionality
of any of these tools as a new module in an SDN controller. We make use of the potential of NV technologies to propose the
creation and use of a virtualized infrastructure that allows the incorporation of these and other useful network services and
applications offered by existing and well-known software tools into an SDN network, without the need for programming
additional and complex software modules in the SDN controller.

NV is not used to develop the network managed by SDN but to broaden the SDN framework. Using this virtualized
infrastructure, it will be easy to offer to network administrators existing software tools for network management or even
to integrate these applications in more complex network management tools.

In particular, by the way of example, this work describes the incorporation of the existing nmap tool? in the SDN net-
works, without the need of implementing it from the scratch as a controller module. Using our proposal, the required SDN
controller module will not be in charge of building the management packets, sending and receiving them, and proceeding
according to the management protocol state machine. Instead, it is only necessary to code a simple control plane service
that thanks to the developed virtualized infrastructure allows the inclusion of this powerful management application.

While nmap is commonly used for security audits, many systems and network administrators find it useful for rou-
tine tasks such as network inventory, managing service, upgrade schedules, and monitoring host or service uptime. Our
solution allows network administrators and application developers to make use of the complete functionality of the com-
mand line nmap utility. In addition, a REST API has been defined to facilitate the communication between the agents
that require network mapping information and the SDN controller.

Although the proposed network architecture has been employed to integrate the use of a particular software tool,
the potential of this solution is huge. The virtual infrastructure would allow developers to define more complex scenar-
ios where different SDN controllers and services can coexist. In this paper, the SDN network is managed by the Ryu
controller,® exposing a northbound REST API and also offering the complete functionality of the nmap tool.

The rest of this paper is organized as follows. Section 2 describes the network mapping functionality and outlines SDN
and NV. In Section 3, we present some related works. Section 4 describes the virtualized infrastructure proposed in this
paper, the required Ryu software module, and the northbound APIs that have been defined. Section 5 presents some
situations where network mapping functionality is useful to improve the network management. Finally, Section 6 offers
some conclusions.

2 | BACKGROUND

2.1 | Network mapping

Network mapping is a fundamental task to help network administrators to “know” the network infrastructure that they
are controlling. There are different processes involved in gathering information about computer networks, such as host
discovery, port scanning, service detection, and operating system detection.*

Ping utility using the ICMP protocol® is the most commonly used method for discovering which hosts are located in a
network, checking a range of IP addresses. ARP protocol® is an effective way of detecting hosts in most IEEE 802 network
technologies, including Ethernet and Wi-Fi. On the other hand, nodes in a network often have one or more names or
aliases associated with them. In order to translate these names into IP addresses, Domain Name System (DNS)”# servers
exist. The port scanning objective is to find out which TCP/UDP ports are open, closed, or filtered. It is conducted by simply
trying to establish a socket connection with a node on a particular port. Service detection is the process of determining
which service and version is running on a specific port. After the open ports are discovered, version detection interrogates

5UB01 SUOLILIOD BAIRR1D) 3ceoljdde 8y} Aq pausenoh 8 e Sap1e YO ‘8sn JO S| 10 AkiqiT autiuQ 4|1 UO (SUONIPUOD-pUe-SWB) /0D A3 1M Afelq 1 pul|uo//Sdny) SUO BIPUOD pue WP | Y3 88S *[r202/T0/9T] Uo ARrigi auluo As|Ia ‘eusberie] 8 eaiussljod pepseAIuN AQ TOBE I2P/Z00T 0T/I0p/Woo A8 | 1m ARelq 1 jBul|uo//Sdny Wwoly papeojumod ‘0T ‘6102 ‘TETTE60T

MANZANARES-LOPEZ ET AL. Wl L EY 30f10

those ports to determine more about what is actually running. Operating system detection is accomplished in a similar
way as service detection. The remote host is interrogated and, after performing multiple tests and analysing the responses,
the OS executed on the node is identified by its behaviour.

2.2 | Overview of SDN

SDN is based on the separation between the control plane and the data plane. The network elements only perform packet
forwarding (this is called the data plane). The decisions on how packets should be forwarded by the network devices
and the pushing of such decisions down to the network for execution are the responsibility of the control plane.’ The
intelligence of the network is logically centralized in SDN controllers, which contains a collection of pluggable modules
that perform different network tasks.

The SDN controller (control plane) communicates with the routers and switches (data plane) using a southbound inter-
face (SBI). OpenFlow is probably the most-known SBI protocol. It offers a flexible, dynamic, and programmable interface
to manage network elements from a logically centralized location.

On the other hand, the SDN controller interacts with applications and business logic (application plane) using a north-
bound interface (NBI). The NBI should be a clearly defined interface by which applications can access the underlying
devices, coexist and interact with other applications, and use system services (eg, topology discovery and forwarding)
without requiring the application developer to know the implementation details of the controller.® Although there have
been some attempts to standardize a NBI for SDN, such as the Open Daylight Project,'" a standard solution does not exist
yet. Currently, different SDN controller solutions have proprietary NB APIs.

On that point, one of the common technologies used to define the NB APIs is REST." REST APIs use the HTTP protocol
to execute common operations on resources represented by URI strings. An application can use the REST APIs to send
HTTP messages via the SDN controller's IP address. The messages would contain a URI string referencing the relevant
network device, the HTTP method, and a JSON/XML payload and/or parameters.

2.3 | Network virtualization

Over the last years, NV has become a promising area for developing modern network technologies."* NV offers the ability
to integrate multiple hardware and software networking resources into a logical software-based virtual network entity
that can be easily consolidated and efficiently managed using commercial computing servers, network switching gears,
and off-the-self equipment.’* NV allows IT managers to consolidate multiple physical networks, divide a network into
multiple segments, or create software-only networks between virtual machines.

To solve the NV objectives, different virtualization technologies are available. Layer 2 switching is typically implemented
by means of kernel level virtual bridges or switches interconnecting virtual and physical interfaces. Open vSwitch (OVS)**
is an open source and software-defined virtual multilayer switch designed to enable network automation through stan-
dard management interfaces and protocols. It has been available in the Linux kernel since version 3.3, and it is widely used
within the SDN developer communities. Layer 3 routing functions can be executed by taking advantage of lightweight vir-
tualization tools, such as Linux network namespaces.' Network namespaces provide the isolation of the system resources
associated with networking: network devices, IPv4 and IPv6 protocol stacks, routing tables, firewalls, port numbers, and
SO on.

3 | RELATED WORK

A wide range of network functionality is not standardized on SDN controllers, so each controller should define and
implement complete software modules to solve the required tasks.

In some cases, it will be enough for the controller to interact with the network elements through the standard OpenFlow
protocol, requesting some standardized information (port status, transmission/reception statistics, etc). In other cases, the
resolution of the task may demand that the controller generates network traffic proactively. In these cases, the software
module will require that some packets are created from the scratch. By means of the OpenFlow protocol, the switches will
be instructed to how forward these packets (using PacketOut messages) and how process and forward them when received
from other switches according to the adequate flow rules (that will be set using FlowMod messages). The controller will
address the non-standardized network functionality by the processing the information obtained from the switches by

5UB01 SUOLILIOD BAIRR1D) 3ceoljdde 8y} Aq pausenoh 8 e Sap1e YO ‘8sn JO S| 10 AkiqiT autiuQ 4|1 UO (SUONIPUOD-pUe-SWB) /0D A3 1M Afelq 1 pul|uo//Sdny) SUO BIPUOD pue WP | Y3 88S *[r202/T0/9T] Uo ARrigi auluo As|Ia ‘eusberie] 8 eaiussljod pepseAIuN AQ TOBE I2P/Z00T 0T/I0p/Woo A8 | 1m ARelq 1 jBul|uo//Sdny Wwoly papeojumod ‘0T ‘6102 ‘TETTE60T

40f10 WI LEY MANZANARES-LOPEZ ET AL.

means of the Packet-In messages. For example, in a previous work,'” we have implemented and evaluated a new module
that offers an improved host discovery functionality.

An alternative approach has been described in this paper. The main idea is to facilitate the reuse of existing tools to
make easier the integration of their functionality in SDN networks. With a similar approach but with a different proposal,
SDN-Radar'® thinks about the possibility of reusing existing network management tools in an SDN network. Their aim
is to help network administrators to determine the location and type of a network fault. They propose an architecture
composed of the SDN controller and SDN network devices, and users called agents that are connected to switches in
the network and that will be in charge of executing the adequate network management tool. The work of the agents is
coordinated by an agent controller, which also collects the user reports. Finally, it is required an application that takes into
account the measurements required by the agents and other features provided by the SDN controller to identify problems
in the network.

SDNIPS" is another solution that makes use of an existing tool to enhance offered functionality of SDN networks. They
utilize Snort, a multimode packet analysis tool dominating the IDS/IPS market, and the flexibility offered by the network
reconfiguration of SDN networks to present an SDN-based IPS solution.

4 | PROPOSED SOLUTION

The usual way of adding new network functionality to an SDN controller is by means of coding new modules. In this
way, new modules should be coded from scratch to implement the network mapping tasks. However, there are different
software tools, such as nmap,? that already offer this functionality. Nmap runs on all major operating systems, and official
binary packages are available for Linux, Windows, and Mac OS X.

In this paper, we propose an alternative approach that clearly reduces the complexity assigned to the SDN controller.
The solution consists in the development of a virtualized architecture that allows the use of the existing network mapping
utilities. Thus, the nmap tool will be the process in charge of creating and processing all the required TCP/IP packets to
offer the network mapping services.

If this approach is compared with the purely controller-based SDN solution, the number of involved packets that are
generated to execute any of the nmap functionality is the same. In our proposal, the packets are created directly by the
nmap process, while in the second case, the packets must be created by the controller.

However, the implications in terms of controller performance if the network mapping functionality were imple-
mented as a new module would be harder, because the developed module should be in charge of sending and receiving
management packets and also for building them according to the management protocol state machine.

As described in the following sections, our solution offers two levels of interaction with the nmap tool. On the one
hand, network administrators and application developers can make use of the complete functionality of the command
line nmap utility (the most important commands of nmap are shown in Table 1). On the other hand, a northbound REST
API has been coded providing the most interesting nmap options.

4.1 | Required virtualized infrastructure

Nmap process creates raw TCP/IP packets, sends them to the target network, and processes the responses to carry out the
different network mapping tasks. Therefore, there needs to be a communication between the computer where the nmap
application is executed and the target network, in this case, the OpenFlow-based SDN network.

However, in SDN networks, the controller has only access to the management port of the switches and routers through
an out-of-band network (OOB). Therefore, from a management perspective, the target network, and consequently the
hosts, is not accessible from the SDN controller.

Thanks to the proposed virtualized infrastructure, this problem is solved and the complete functionality of the nmap
utility is offered to the network administrators, who control the SDN network through the OOB control plane. The key
idea is that the SDN controller benefits from the nmap tool, avoiding having to create all the TCP/IP traffic required to
carry out the network mapping tasks. Nmap will be executed at the controller as usual and the virtualized infrastructure
will enable the communication between the nmap process and the target network using the OpenFlow interface.

Figure 1 shows the virtualized network infrastructure designed to implement the proposal. Although we consider
only the use of a particular software tool (nmap), the potential of this solution is huge. The virtual network allows
defining different scenarios in which different SDN controllers and services can coexist by means of the use of different
namespaces.

5UB01 SUOLILIOD BAIRR1D) 3ceoljdde 8y} Aq pausenoh 8 e Sap1e YO ‘8sn JO S| 10 AkiqiT autiuQ 4|1 UO (SUONIPUOD-pUe-SWB) /0D A3 1M Afelq 1 pul|uo//Sdny) SUO BIPUOD pue WP | Y3 88S *[r202/T0/9T] Uo ARrigi auluo As|Ia ‘eusberie] 8 eaiussljod pepseAIuN AQ TOBE I2P/Z00T 0T/I0p/Woo A8 | 1m ARelq 1 jBul|uo//Sdny Wwoly papeojumod ‘0T ‘6102 ‘TETTE60T

MANZANARES-LOPEZ ET AL. Wl L EY 50f10

TABLE1 Main nmap commands

Host discovery

nmap -sn 192.168.1.0/24 ICMP Echo Request, ICMP Timestamp Request,
TCP SYN to port 443, TCP ACK to port 80

nmap -PO 192.168.1.0/24 Only ICMP ping
nmap -PS 192.168.1.0/24 TCP SYN (if ICMP pings are blocked)
nmap -PA 192.168.1.0/24 TCP ACK (if ICMP pings are blocked)
nmap -PU 192.168.1.0/24 UDP ping

Port scanning
nmap -p 22 192.168.1.1 scan a single port
nmap -p 1-100 192.168.1.1 scan a range of ports
nmap -F 192.168.1.1 100 most common ports

nmap -p T:80 192.168.1.1 scan a TCP port

nmap -p U:80192.168.1.1 scan a UDP port
Alias resolution (reverse DNS resolution)

nmap -sL 192.168.1.0/24 [-dns-servers=server|

OS detection
nmap -0 192.168.1.1 Detect remote Operating System
Service detection

nmap -sV 192.168.1.1 Detect remote Services
If a host/network is protected by a firewall

nmap -sA 192.168.1.254 Find out if a host/network is protected by a firewall
nmap -PN 192.168.1.254 Scan a host when protected by the firewall

Note. In this table, the target network is 192.168.1.0/24.

NS2 Namespace NSi Namespace
Nmap = ~~---°====7==°7=°7°7% Process i
vethl veth i
veth pair veth pair
vethO
veth
pair OF Controller

Software Switch

ethO Root Namespace

C OpenFlow

PHYSICAL HOST

FIGURE1 Required virtualized network infrastructure

In this case, to allow the controller to receive the packets generated by the nmap process, two independent networking
instances are used. The key point is to allow the controller to “intercept” the packets which are generated by nmap and
send them to the SDN network to perform all the network mapping tasks efficiently. The SDN controller will be executed
in the default namespace (the root namespace in Figure 1) and the nmap application will be executed in a new network
namespace (NS2 in Figure 1). As said before, each network namespace maintains its own ARP table and routing table.
Both networking instances are interconnected through a virtual network consisting of a virtual bridge (OVS" has been
used) and two virtual Ethernet (veth) links.

The commands to implement and configure the virtual infrastructure in a Linux machine are detailed in Appendix A.

95UB01 7 SUOLULLIOD BAIIER1) 3[cfedt [dde au Aq paueA0b 8.2 Sao1Le YO ‘9SO S3INJ 10) AIqITaUIIUQ AB]IM UO (SUOTPUOO-PUR-SLLLBYW0D" A 1M A TRIq 1 jBU 1 UO//STIY) SUONIPUOD PUe SWLB | 8U 89S *[7202/T0/9T] Uo Akeiqiaulluo A8|1m eusBered 8@ eoludelijod PepisieAlun A T96E 9P/Z00T OT/I0PAW0d A3 IM Ar.q jpul Uoy/Sdiy Woly papeojumod ‘0T ‘6T0Z ‘TETTE60T

6 of 10 WI LEY MANZANARES-LOPEZ ET AL.

4.2 | Ryu software components

The Ryu controller provides software components, commonly known as modules, with well-defined application program
interfaces (APIs), that make it easy for developers to create new network management and control applications. Table 2
shows the main modules providing REST APIs in Ryu 4.4, and as an example, Table 3 shows the northbound REST APIs
offered by the rest_conf_switch.py module.

4.2.1 | New controller module: sdn-nmap.py

In this paper, we have developed a new software module for the Ryu controller which, thanks to the previously described
network infrastructure, provides the complete functionality of the nmap tool to network administrators and application
developers and also offers a set of REST APIs offering the most interesting nmap options. We have called it sdn-nmap.py.

The key element of sdn-map.py is the use of raw layer 2 sockets. If a raw layer 2 socket is created, packets bypass the
normal TCP/IP processing and are passed directly to the specific user application. That is, the application will receive all
the Ethernet frames.

The implemented module creates a raw socket to listen to the virtual interface veth0. As detailed in Appendix A, the
interface vethO is the default gateway of the namespace ns2, so any packet created by the nmap tool will be received by
the controller. Depending on the nmap command, the received packets will be ICMP, TCP, or UDP packets.

When ping-based host discovery commands are executed, ICMP Echo Requests (type 8) and ICMP Timestamp Requests
(type 13) are created by the nmap application. The sdn-nmap.py module will receive the messages and, to allow the dis-
covery of any host, will generate packet_out messages containing the received Ethernet frames. The packet_out messages
will be sent directly to each switch in the network, indicating the action of forwarding the encapsulated frame through
each port.

Notice that, as said before, the TCP/IP traffic is not created by the controller but by the nmap utility. Due to the virtual-
ized network infrastructure, the ICMP requests are encapsulated in an Ethernet frame with veth1's mac address as source
address and vethO's mac address as destination. For that reason, to allow the existing hosts of the SDN target network
to receive and process the queries, the destination address must be changed to the broadcast address by the controller,
before generating the packet_out messages.

Each existing host will respond to adequate ICMP requests with the corresponding ICMP replies. The replies will be
received by the leaf switch, which will perform a matching lookup in its flow table. So that the sdn-nmap.py module will
not depend on table-miss flow entries, a flow entry is proactively inserted in each switch. The flow entry will match all the
packets whose destination's IP address is equal to veth1's IP address and set the instructions for sending to the controller
as a packet_in message. In addition, another flow entry is proactively inserted in each switch. In this case, the flow entry
will match all the packets whose source's IP address is equal to veth1's IP address, and set the instruction for dropping the

TABLE 2 Northbound APIs
Provides a set of REST APIs for:

ofctl_rest.py retrieving and updating switch statistics

rest_conf switch.py switch configuration

rest_topology.py links configurations

rest_router.py getting/deleting/setting address data and routing data

rest_qos.py getting/deleting/setting qos rules/meter entries/queue status
rest_firewall.py getting/setting firewall status; getting/deleting/setting firewall rules

TABLE 3 Set of REST APIs provided by rest_conf_switch.py

REST API URI Description
GET /v1.0/conf/switches G et all the switches
/v1.0/conf/switches/{dpid} g et all the configuration keys of the switch dpid
/v1.0/conf/switches/{dpid}/{key} get the key configuration of the switch dpid
PUT /v1.0/conf/switches/{dpid}/{key} set the key configuration of the switch dpid
DELETE /v1.0/conf/switches/{dpid} delete all the configuration of the switch dpid

/v1.0/conf/switches/{dpid}/{key} delete the key configuration of the switch dpid

95UB01 7 SUOLULLIOD BAIIER1) 3[cfedt [dde au Aq paueA0b 8.2 Sao1Le YO ‘9SO S3INJ 10) AIqITaUIIUQ AB]IM UO (SUOTPUOO-PUR-SLLLBYW0D" A 1M A TRIq 1 jBU 1 UO//STIY) SUONIPUOD PUe SWLB | 8U 89S *[7202/T0/9T] Uo Akeiqiaulluo A8|1m eusBered 8@ eoludelijod PepisieAlun A T96E 9P/Z00T OT/I0PAW0d A3 IM Ar.q jpul Uoy/Sdiy Woly papeojumod ‘0T ‘6T0Z ‘TETTE60T

MANZANARES-LOPEZ ET AL. Wl L EY 7 0f10

packet. This last entry is inserted to reduce the switch-to-controller traffic due to forwarding of the nmap's TCP/IP traffic
between interconnected switches.

Thus, after receiving the ICMP reply within a packet_in message, the controller just needs to change the destination
mac address of the Ethernet frame and send it to the nmap application though the raw layer 2 socket.

The UDP traffic generated by nmap is processed in a similar way. The destination mac address of the Ethernet frames
that are sent to the switches is changed to the broadcast address. Regarding the response traffic, the destination mac
address is changed to the veth1's mac address. However, for the TCP traffic, the procedure is a bit different. The Linux
kernel does not allow encapsulating a TCP packet into an Ethernet frame with a broadcast destination address. The
destination address must be unicast. This fact only affects the “nmap -PS” and “nmap -PA” commands (see Table 1),
which are used to perform the host discovery task if ICMP pings are blocked. In the rest of the cases, the TCP traffic is
generated once a host has been discovered, so its mac address is known.

As shown in Table 4, this new module has been programmed to offer four northbound REST APIs, corresponding to
the most used nmap options.

The returned format of the host discovery and OS detection APIs is as follows:

HTTP/1.1 200 OK
Content—type: html
{Corresponding nmap output}

Figure 2 shows a screenshot after using the REST API to discover the OS of a host.
In the case of the port scanning API, the returned format is as follows:

HTTP/1.1 200 OK
Content—type: json
{JSON data}

TABLE 4 Set of REST APIs provided by sdn_nmap.py

REST API URI Description
GET /nmapsdn/hosts/{net}/{mask} Performs host discovery on the net/mask network
/nmapsdn/ports/{ip} Scans the most 1000 common ports of host ip

/nmapsdn/ports-reduced/{ip} Scans the most 100 common ports of host ip
/nmapsdn/os/{ip} Detects the operating system of host ip

ncnsl(=)
http://192168.5...sdn/0s/10.00.1 % \\+

€) () 192168.56101:30¢ 1 e || Q searct wB 93 A0 =

185 Most Visited @ Getting Started

Starting Nmap 6.40 (http://nmap.org) at 2016-07-05 14:12 PDT Nmap scan report for 10.0.0.1 Host is up (0.021s latency). Not shown: 998 closed ports PORT STATE
SERVICE 80/tcp open http 8000/tcp open http-alt Aggressive OS guesses: Netgear DG834G WAP or Western Digital WD TV med:ia player (94%). Linux 2.6.32 (94%),
Linux 2.6.32 - 3.9 (93%), Crestron XPanel control system (93%), Linux 3.1 (90%), Linux 3.2 (90%), Linux 2.6.32 - 2.6.35 (90%), Linux 2.6.32 - 3.2 (90%), AXIS 210A
or 211 Network Camera (Linux 2.6) (90%). Android 4.1.1 (89%) No exact OS hes for host (test d non-ideal). OS detection performed. Please report any
incorrect results at http:/nmap.org/submit/ . Nmap done: 1 IP address (1 host up) scanned in 171.94 seconds

- | Highlight Al Metch Case x

FIGURE 2 Example of the operating system detection output

95UB01 7 SUOLULLIOD BAIIER1) 3[cfedt [dde au Aq paueA0b 8.2 Sao1Le YO ‘9SO S3INJ 10) AIqITaUIIUQ AB]IM UO (SUOTPUOO-PUR-SLLLBYW0D" A 1M A TRIq 1 jBU 1 UO//STIY) SUONIPUOD PUe SWLB | 8U 89S *[7202/T0/9T] Uo Akeiqiaulluo A8|1m eusBered 8@ eoludelijod PepisieAlun A T96E 9P/Z00T OT/I0PAW0d A3 IM Ar.q jpul Uoy/Sdiy Woly papeojumod ‘0T ‘6T0Z ‘TETTE60T

8 of 10 WI LEY MANZANARES-LOPEZ ET AL.

where the corresponding JSON data are, for example,

[{"port":"80","state":"open","service":"http"},
{"port":"8000","state":"open","service":"http—alt"}].

Finally, as can be seen in the screenshot shown in Figure 3, we have integrated the use of this API into the topology
viewer provided by Ryu (ryu.app.gui_topology.gui_topology.py). The original topology viewer shows the SDN network
controlled by Ryu, concretely, the switches, links, and only those hosts that have already generated traffic. Additionally,
when the user double-clicks a switch, the /stats/flow/dpid API is employed to get the flow statistics of the switch. The
obtained information is shown at the bottom of the website.

Using our virtualized network infrastructure and the enhanced version of the topology viewer, after performing the
host discovery task, the topology viewer will be able to show the switches, links, and all the discovered hosts, even if they
have not generated traffic yet. In addition, when the user double-clicks a host, the port discovery API corresponding to
that host is employed. The result will be also shown at the bottom of the website (see Figure 3).

5 | EXAMPLES OF USE

Asin traditional networks, network monitoring is an essential task for network management in the case of SDN networks.
Whatever the solution chosen to perform the monitoring (an interesting survey can be found in®), it would provide useful
information to reach an efficient configuration and management of the networks.

However, in addition to network monitoring, network mapping can help to improve even more the operation of the
networks. The better the knowledge of the network is, the better the network can be managed and defended. Next, we
are going to describe some examples of use in which network mapping tasks can help network management.

The Internet infrastructure, a university's network, and cloud datacenters are some examples of enterprise networks,
where resource allocation, network management, and security are laborious to control. These networks, which typically
have massive infrastructures that are tedious to manage, benefit from SDN technology.

In this scenario, workers usually connect to the enterprise network not only by desktops but also by laptops. When a
worker receives a computer, the network administrator can guarantee that the computer is “clean,” but after that moment,
this cannot be assured. For example, the worker could click accidentally on an email attachment consisting of malware,

J’»;np;m9z.1t>s,55,1o1:sow * &
€) () 19216856101 e w B ¥ A O =

&) Most Visited @ Getting Started

Ryu Topology Viewer

o { "port": "80/tcp", "state": "open", "service": "hitp" }
o { "port": "8000/tcp", "state”: "open", "service": "http-alt" }

FIGURE 3 Example of the operating system detection output

95UB01 7 SUOLULLIOD BAIIER1) 3[cfedt [dde au Aq paueA0b 8.2 Sao1Le YO ‘9SO S3INJ 10) AIqITaUIIUQ AB]IM UO (SUOTPUOO-PUR-SLLLBYW0D" A 1M A TRIq 1 jBU 1 UO//STIY) SUONIPUOD PUe SWLB | 8U 89S *[7202/T0/9T] Uo Akeiqiaulluo A8|1m eusBered 8@ eoludelijod PepisieAlun A T96E 9P/Z00T OT/I0PAW0d A3 IM Ar.q jpul Uoy/Sdiy Woly papeojumod ‘0T ‘6T0Z ‘TETTE60T

MANZANARES-LOPEZ ET AL. Wl L EY 90f10

which could end up installing an undesired program in the computer. Port scanning can be useful in this situation. If the
worker's computer is supposed to not be running any server program, no ports on the computer should be open.

Even, if the worker is careful, the use of laptops adds other potential risks. If the workers are allowed to take the com-
puter home, the risk of malware infection from the employee's home network should be considered. A real case of a small
company that was infected by Sircam virus a few years ago is described.” An employee took his laptop home to continue
working, and he allowed his daughter to access her emails from the laptop, which unfortunately included an infected
message.

Continuing with security aspects, OS detection could also help network administrators. If the workers of a company are
required to keep an updated operating system version, traffic generated from nonupdated computers can be redirected to
be analysed.

Some companies have strict policies that prevent employees from using personal devices (smartphones, tablets, etc) at
the workplace. Others do not. In this situation, network mapping could be useful. OS detection could allow identifying
these devices. Thus, the network could be configured accordingly, routing the associated traffic through particular paths
or even limiting the network bandwidth.

6 | CONCLUSIONS

In this paper, we have proposed a virtualized network architecture that allows the integration of existing software
tools in the management and control of OpenFlow-based SDN networks. The proposed architecture makes use of dif-
ferent virtualization technologies; concretely, it employs software-defined virtual switches (OVS) and Linux network
namespaces.

The proposed infrastructure allows the implementation of different scenarios, where different SDN controllers and
software tools can coexist. In this paper, the defined infrastructure has been used to allow network administrators and
application developers to make use of the well-known network mapping tool nmap in OpenFlow-based SDN networks
controlled by Ryu. In the implemented solution, users can make use of the complete functionality of the command line
tool utility. In addition, a northbound REST API has been coded to offer the most interesting nmap commands. By way
of example, we have integrated the use of the defined API into the topology viewer provided by Ryu.

ACKNOWLEDGEMENT

This work was supported by the MINECO/FEDER Project Grants TEC2013-47016-C2-2-R (COINS) and
TEC2016-76465-C2-1-R (AIM).

ORCID

Pilar Manzanares-Lopez"* https://orcid.org/0000-0003-1296-7158
Juan Pedro Murioz-Gea'” https://orcid.org/0000-0001-8342-4797
Josemaria Malgosa-Sanahuja"® https://orcid.org/0000-0001-8137-1089

REFERENCES

Openflow. Available: <https://www.opennetworking.org/sdn-resources/openflow>; 2016.

Lyon G. Nmap Network Scanning. Sunnyvale CA, USA: Insecure.com LLC; 2008.

Build SDN agilely. Available: <https://osrg.github.io/ryu/>; 2016.

Senekal F, Vorster J. Network mapping and usage determination. In: Proceedings of MICSSA 2007; 2007 Pretoria, South Africa. pp. 1-12.
Postel J. Internet control message protocol. In: RFC 792; 1981.

Plummer D. C. An ethernet address resolution protocol. In: RFC 826; 1982.

Mockapetris P. Domain names. Concepts and facilities. In: RFC 1034; 1987.

Mockapetris P. Domain names. Implementation and specification. In: RFC 1035; 1987.

AR BN U e o A

Haleplidis E, Pentikousis K, Denazis S, Hadi Salim J, Meyer D, Koufopavlou O. SDN layers and architectures terminology. In: RFC 7426;
2016.

Nunes BAA, Mendonca M, Nguyen X-N, Obraczka K, Turletti T. A survey of software-defined networking: past, present, and future of
programmable networks. IEEE Commun Surv Tutorials. 2014;16(3):1617-1634.

-
=

95UB01 7 SUOLULLIOD BAIIER1) 3[cfedt [dde au Aq paueA0b 8.2 Sao1Le YO ‘9SO S3INJ 10) AIqITaUIIUQ AB]IM UO (SUOTPUOO-PUR-SLLLBYW0D" A 1M A TRIq 1 jBU 1 UO//STIY) SUONIPUOD PUe SWLB | 8U 89S *[7202/T0/9T] Uo Akeiqiaulluo A8|1m eusBered 8@ eoludelijod PepisieAlun A T96E 9P/Z00T OT/I0PAW0d A3 IM Ar.q jpul Uoy/Sdiy Woly papeojumod ‘0T ‘6T0Z ‘TETTE60T

https://orcid.org/0000-0003-1296-7158
https://orcid.org/0000-0003-1296-7158
https://orcid.org/0000-0001-8342-4797
https://orcid.org/0000-0001-8342-4797
https://orcid.org/0000-0001-8137-1089
https://orcid.org/0000-0001-8137-1089
https://www.opennetworking.org/sdn-resources/openflow
https://osrg.github.io/ryu/

10 of 10 MANZANARES-LOPEZ ET AL.
WILEY

11. OpenDayLight. A Linux foundation collaborative project. Available: <https://www.opendaylight.org>; 2016.

12. Zhou W, Li L, Luo M, Chou W. REST API design patterns for SDN northbound API. In: Proceedings of 28 th. International Conference
on Advanced Information Networking and Applications Workshops; 2014. Victoria, Canada. pp. 358-365

13. Mosharaf N, Chowdhury K, Boutaba R. A survey of network virtualization. Comput Networks. 2010;54(5):862-876.

14. Network functions virtualisation: an introduction, benefits, enablers, challenges & call for action. Available: <http://portal.etsi.org/NFV/
NFV_White_Paper.pdf>; 2012.

15. Open vSwitch: An open virtual switch. Available: <http://www.openvswitch.org>; 2016.

16. Linux namespaces. Available: <http://man7.org/linux/man-pages/man7/namespaces.7.html>; 2016.

17. Manzanares P, Muifioz J, Delicado F, Malgosa J, Flores A. Host discovery solution: an enhancement of topology discovery in OpenFlow
based SDN networks. In: Proceedings of 7th. DCNET; 2016. Lisbon, Portugal. pp. 80-88.

18. Gheorghe G, Avanesov T, Palattella M, Engel T, Popoviciu C. SDN-RADAR: network troubleshooting combining user experience and SDN
capabilities. In: 1st. IEEE Conference on Network Softwarization (NetSoft); 2015. London, UK. pp. 1-5.

19. Xing T, Xiong Z, Huang D, Medhi D. SDNIPS: enabling software-defined networking based intrusion prevention system in clouds. In:
10 th. International Conference on Network and Service Management (CNSM); 2014. Rio de Janeiro, Brasil. pp. 308-311

20. Yassine A, Rahimi H, Shirmohammadi S. Software defined network traffic measurement: current trends and challenges. IEEE Instrum
Meas Mag. 2015;18(2):42-50.

21. http://www.computerweekly.com/feature/The-security-dangers-of-home-networks; 2016.

How to cite this article: Manzanares-Lopez P, Mufioz-Gea JP, Malgosa-Sanahuja J, Flores-de la Cruz A. A vir-
tualized infrastructure to offer network mapping functionality in SDN networks. Int J Commun Syst. 2019;32:€3961.
https://doi.org/10.1002/dac.3961

APPENDIX A

This appendix details the commands to implement the virtual infrastructure in a Linux machine.

ip netns add ns2 #create the new namespace

ovs—vsctl add-br snmap #create the virtual bridge

ovs—vsctl add-port snmap snmap—vethO #add the ports
ovs—vsctl add-port snmap snmap—vethl #to the virtual bridge
#create the veth pairs

ip link add vethO type veth peer name snmap-vethO

ip link add vethl type veth peer name snmap-vethl

#move the virtual interface vethl to the ns2 namespace

ip link set vethl netns ns2

And the commands to configure the virtual network are as follows:

ip netns exec ns2 ifconfig vethl 192.168.3.1

ip netns exec ns2 route add default gw 192.168.3.254

ip netns exec ns2 ifconfig vethl hw ether 00:33:33:ff: ff:ff
ifconfig vethO 192.168.3.254

ifconfig vethO0 hw ether 00:22:22: ff: ff: ff

ifconfig snmap—vethO up

ifconfig snmap-vethl up

95UB01 7 SUOLULLIOD BAIIER1) 3[cfedt [dde au Aq paueA0b 8.2 Sao1Le YO ‘9SO S3INJ 10) AIqITaUIIUQ AB]IM UO (SUOTPUOO-PUR-SLLLBYW0D" A 1M A TRIq 1 jBU 1 UO//STIY) SUONIPUOD PUe SWLB | 8U 89S *[7202/T0/9T] Uo Akeiqiaulluo A8|1m eusBered 8@ eoludelijod PepisieAlun A T96E 9P/Z00T OT/I0PAW0d A3 IM Ar.q jpul Uoy/Sdiy Woly papeojumod ‘0T ‘6T0Z ‘TETTE60T

https://www.opendaylight.org
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://www.openvswitch.org
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://www.computerweekly.com/feature/The-security-dangers-of-home-networks
https://doi.org/10.1002/dac.3961

	A virtualized infrastructure to offer network mapping functionality in SDN networks
	Abstract
	INTRODUCTION
	BACKGROUND
	Network mapping
	Overview of SDN
	Network virtualization

	RELATED WORK
	PROPOSED SOLUTION
	Required virtualized infrastructure
	Ryu software components
	New controller module: sdn-nmap.py

	EXAMPLES OF USE
	CONCLUSIONS
	References
	APPENDIX A

