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Summary

Currently deployed in a wide variety of applicational scenarios, wireless
sensor networks (WSNs) are typically a resource-constrained infrastructure.
Consequently, characteristics such as WSN adaptability, low-overhead, and
low-energy consumption are particularly relevant in dynamic and autonomous
sensing environments where the measuring requirements change and human
intervention is not viable. To tackle this issue, this article proposes e-LiteSense as
an adaptive, energy-aware sensing solution for WSNs, capable of auto-regulate
how data are sensed, adjusting it to each applicational scenario. The proposed
adaptive scheme is able to maintain the sensing accuracy of the physical phe-
nomena, while reducing the overall process overhead. In this way, the adaptive
algorithm relies on low-complexity rules to establish the sensing frequency
weighting the recent drifts of the physical parameter and the levels of remaining
energy in the sensor. Using datasets from WSN operational scenarios, we prove
e-LiteSense effectiveness in self-regulating data sensing accurately through a
low-overhead process where the WSN energy levels are preserved. This consti-
tutes a step-forward for implementing self-adaptive energy-aware data sensing
in dynamic WSN environments.
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1 INTRODUCTION

As a key enabler of the Internet of Things (IoT) and Smart Cities paradigms, wireless sensor networks (WSNs) are
currently a technology capturing much attention, both from the academic community and industry. Sustained by the
development of multifunctional low-cost wireless sensors, WSNs are applied in a large range of scenarios, many of then
requiring operation without human intervention.1,2 This versatility and difficult maintenance urge for mechanisms of
self-management and power saving in order to allow a cost-effective adaptation of the sensing process to the application
area, while optimising WSN lifetime.3

Reducing energy consumption of sensor nodes for improving WSN lifetime has been a major topic of research in the last
decade, being identified three major subsystems impacting on energy consumption—communication, sensing, and pro-
cessing. The communication subsystem revealed to be the most demanding, even for devices able of energy harvesting.4
This motivated solutions such as data gathering aggregation in order to reduce the number of transmission events.

However, several works revealed that, depending on the operational scenario, acquiring and processing data may be
more demanding than communicating.5,6 This suggests that a versatile data gathering process should avoid acquiring
redundant information, even when data aggregation strategies are in place.
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This motivates the present study, which the main objective is to improve the ability of WSNs to efficiently and
autonomously adapt to distinct operational environments, through a self-adjustable data gathering process able to balance
accuracy in data acquisition with energy conservation. To improve this trade-off, e-LiteSense, an energy-aware adaptive
sensing scheme, is proposed to adjust sensing to specific data gathering requirements without human intervention, while
increasing network lifetime. In order to reduce the impact on sensing, processing, and communicating subsystems, this
scheme resorts to low-complexity rules able to adjust the sensing frequency according to the variation in scalar physical
quantities being measured and the residual battery level of sensor devices. The proof of concept of e-LiteSense resorts to
real datasets to evaluate the performance and reactivity of the proposed rules when applied to distinct WSNs measuring
scenarios. Facing the above, the contributions of this work are summarised as follows:

• e-LiteSense is presented, being discussed important design principles for achieving an efficient data gathering pro-
cess with low complexity and enlarged scope. The building blocks of its architecture and the proposed sensing
algorithms are discussed in detail;

• a software-based prototype designed according to TelosB motes' specifications5 was implemented to evaluate
e-LiteSense performance and reactivity. This prototype, used for the proof-of-concept, receives real datasets as input
and allows to assess a fine-grain power profile of communication, sensing, and processing subsystems;

• the results evince that a high accuracy in capturing the sensing parameters dynamics is achieved while reducing
the number of sensing events significantly (from approximately 40% to 70%, according to the test scenario) and that
sensor operational lifetime can be extended to five times when comparing with a systematic sensing approach.

This paper is organised as follows: Related work on adaptive sensing is discussed in Section 2; the e-LiteSense design
principles, architecture, and algorithms are described in Section 3; the methodology of tests and the evaluation results
are presented in Section 4; and main conclusions are summarised in Section 5.

2 RELATED WORK

Although adaptive sampling (and sensing) has been successfully used in conventional computer networks,7 the avail-
able solutions can hardly be applied in resource-constrained networks such as WSNs. In fact, by disregarding the energy
parameter in the adaptive sampling process, Silva et al7 do not reflect the required balance between accuracy and network
lifetime.

The definition of WSNs lifespan, although closely related with its battery, may change depending on the application's
functionality and behaviour, on the goal function and on the network topology in use. Yetgin et al8 provided an overall view
of the most relevant WSN lifespan maximisation techniques in the literature, being the optimisation algorithms classified
as resource allocation, opportunistic transmissions, sleep-wake scheduling, routing, clustering, mobile relays and sinks,
coverage and connectivity, optimal deployment, data gathering, network coding, data correlation, energy harvesting, and
beamforming.

e-LiteSense is a technique to perform self-adaptive sensing based on battery levels of sensor nodes and sensing varia-
tions being measured and can be combined with other techniques. In particular, data correlation techniques reduce the
amount of data transmission and, by reducing/removing redundancy, improve power usage and network lifetime. When
these techniques are combined with self-adaptive sensing schemes, data gathering and transmission may be substantially
reduced, improving lifespan of WSNs in different scenarios and environments.

Many studies on adaptive sensing have been proposed for WSNs taking into account the processing and energy con-
straints of these networks. In Yang et al,9 an optimal sensing scheduling policy is proposed for a power harvesting system
equipped with a finite battery. The objective is to select the best sensing periods so that the average sensing performance
is optimised. In that system, the authors assume that performance depends on time duration between two consecutive
sensing periods and develop an algorithm where the sensing rates depend on the battery power levels of sensor nodes.
However, this study only considers the battery level of sensor nodes disregarding the variability of the observed param-
eter. Unlike this study, e-LiteSense considers these two parameters (battery level and sensing variability) to perform its
technique properly.

In Wimalajeewa,10 an approach was developed to reduce the network data communication load resorting to
compressive sensing (CS). It consists in getting information based on signal sparsity, statistical analysis and other related
theory.11 However, in general, the data decompression process in sensor nodes is inefficient.12 In addition, the sparsity
of the sensor data may change significantly due to their time varying nature, affecting the recovery of the measured
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signal.13 In particular, Mehrjoo and Khunjush14 also highlight the errors CS may suffer in the reconstruction phase,
proposing a distributed and semi-adaptive CS-based data collection method to tackle CS limitations. This method reduces
the reconstruction errors considering the remaining energy of the nodes, at cost of a distributed control.

In Quer et al,15 an analytical study was carried out for sensing, compression, and recovering signals from large datasets.
The analysis resorts to probabilistic relations among variables involved in those processes to capture the space and time
correlations of the signals of interest. The proposal lowers the number of transmissions and, consequently, the power
consumption in sensor nodes. However, this study is mainly focused on reducing the transmission rate, disregarding
the accuracy of the sensing process. Later, Gupta and De16 propose a sparse Bayesian learning-based adaptive sensor
selection framework for increasing the lifetime of a densely deployed WSN for monitoring spatiotemporally varying signal.
Sensor selection takes into account the trade-off between sensing quality and energy efficient. The analytical optimisation
approach, difficult to deploy in a real environment, requires a topological knowledge of the WSN, which, per se, is a
limitation for deploying wide WSN scenarios.

Indeed, the complex relation between data analysis and data acquisition in adaptive sensing paradigms can be highly
powerful, as it allows a reliable estimation in situations where non-adaptive sensing fails.17 Castro and Tanczos17 present
a general estimation procedure which may be satisfactory for a variety of cases; however, it is recognised that requiring
prior knowledge of some parameters might not be available in a real life setting.

Chou et al18 establish a framework for collecting data from a WSN based on adaptive compression sensing (as in Quer
et al15). Focusing on adapting the transmission rate, this proposal aims to reduce the power consumption and the amount
of information in sensing data. The paper proposes an algorithm for obtaining an approximation of the measurements
using the lowest possible energy, in a precise way.

Kerasiotis et al6 estimated the battery lifetime based on a prediction model. The methodology adopted relies on the
decomposition of the hardware operations by time periods, using sensor nodes datasheets as reference. Antonopoulos
et al5 propose a system to calculate in runtime power consumption in WSNs. The authors based the evaluation on different
pieces of hardware in a isolated way, such as leds, data transmission, transmission power, micro-controller, and CPU
instructions.

The above review highlights the need for studying and improving the trade-off between measurement accuracy and
sensing events for different scenarios involving WSN, including real scenarios, having present energy concerns.

The present proposal extends previous work of the same authors19,20 in the sense that data acquisition rate now is
dependent not only on the observed variation in the scalar physical quantities measured but also on the perceived devices
residual battery level over time.

3 E-LITESENSE: PRINCIPLES, ARCHITECTURE, AND ALGORITHMS

First, the main principles underneath e-LiteSense design are identified, then its architecture is presented to provide an
overall framing and, finally, the algorithms ruling e-LiteSense behaviour are explained.

3.1 Main design principles
The overall goal to achieve is to perform adaptive sensing of physical parameters, gauging their values and variations
correctly with minor impact on the limited resources sensor nodes have available. Thus, e-LiteSense conception and
architecture must follow several main design principles, highlighted in Figure 1 and described below.

At higher level, e-LiteSense must constitute a versatile solution. It is well-known that WSNs are application dependent
and may include diverse motes sensing multiple physical phenomena; therefore, the sensing scheme should be capable of
operating in heterogeneous WSN contexts, with diverse measuring requirements and corresponding parameters. Other
fundamental aspect to cover is energy awareness in order to allow effective energy saving. Thus, the sensing mechanism
should capture the physical parameters under consideration based on an energy-conserving approach so that the sensing,
processing, and communication components save energy.

These two design principles—versatility and energy awareness—demand for a major e-LiteSense argument, which is
self-adaptive sensing. If fact, the sampling scheme should be able to self-regulate according to variations on the param-
eters being sensed and the levels of energy available. To achieve this, a proper trade-off among accuracy, overhead, and
complexity of the sensing process needs to be found. In more detail, accuracy means that the sensing mechanism should
be able capture the behaviour of the physical variables, gauging their values for each WSN applicational scenario. “Correct
behaviour” is actually an “expected behaviour” as the application may require for more accurate or coarse measurements.
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FIGURE 1 e-LiteSense underlying principles

Low overhead means that the sensing process should minimise the burden of sensing, while keeping accuracy within an
acceptable range. Low complexity means that the expected self-adaptive behaviour of the sensing mechanism should be
easy to implement and consume minimal resources.

As mentioned, the versatility of the sensing mechanism is understood as the capacity of self-regulate sensing as a func-
tion of the intrinsic behaviour of the parameters under control. This implies gauging the variations in the measured
parameters, adjusting the sensing frequency as required. Measurement accuracy involves detecting both the continuous
behaviour of the parameter of interest and events which are critical or sporadic. In Section 3, the accuracy of the mea-
sures obtained through e-LiteSense scheme is evaluated comparing visually and statistically the time series involved in
systematic and self-adaptive sampling. Despite being a common design goal, a low-overhead process assumes an even
more relevant role in the presence of resource-constrained devices. Thus, the self-adaptive sensing scheme should exploit
parameters steadiness in order to reduce the sensing frequency, reacting to data variations wisely, ie, causing a minor
impact on the overall performance. In addition, sensing adaptivity is achieved based on a simple arithmetic process,
which is a simpler version of the mechanism transmission control protocol uses to estimate round-trip times,21 thus con-
tributing to low-complexity processing. In summary, the measures contributing directly to energy savings are threefold: (a)
reduction of the number of sensing events required to capture each parameter behaviour; (b) adjustment of the sensing
frequency through low-cost algorithms; and (c) reduction of the number of transmissions to other sensors or actuators.

3.2 Architecture
To better understand e-LiteSense role and placement in a WSN deployment scenario, a three plane architecture is
envisioned as illustrated in Figure 2 and explained next.

3.2.1 Application plane
As known, the application plane may encompass a myriad of WSN applicational areas. According to the taxonomy pro-
posed in Yetgin et al,8 WSN applications fall within eight broad areas ranging from medical and health to environmental
monitoring. Consequently, different measuring requirements have to be specified depending on the required features each
application aim to offer, which in turn determine the configuration of sensor nodes. At certain point, the application plane
will receive the required measures resulting from single or multiple sensor measurements within the WSN, reflecting,
for instance, the spacial or temporal variation of the physical variables under control. Upon receiving the measurement
results from the control plane, the application plane may also include processing and user interface units, if applicable.
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FIGURE 2 e-LiteSense
architecture

3.2.2 Control plane
Directly deployed in WSN sensor nodes, this plane is where e-LiteSense is implemented following the principles drawn in
Section 3.1. As detailed in Section 3.3, e-LiteSense determines the occurrence of sensing events autonomously resorting to
low-complexity algorithms, which target energy savings within the communicating, processing, and sensing subsystems
(vertices of the triangle in Figure 2). As mentioned, the proposed self-adaptive sensing algorithms are aimed at obtaining
accurate sensor readings with minor overhead. Balancing the accuracy-overhead trade-off, scheduling of sensing events
is configured in runtime depending on how measures vary along the time, conferring a self-adaptive nature to the pro-
cess. On the other way, the control plane also handles the sensing outcome received from the data plane performing, for
instance, data aggregation before passing the results to the application plane.

In practice, control plane functions can be directly instantiated in sensor nodes (see Figure 2) or in any external control
component following, for instance, software defined networks (SDN) or edge computing principles.2223 If an external
component such as an SDN controller is in place, it would be responsible for configuring e-LiteSense on sensor nodes
remotely.

3.2.3 Data plane
Sensing data are effectively collected within data plane. Taking into consideration the scheduled sensing frequency, sensor
readings are collected and sent to the control plane. Recall that e-LiteSense, as a flexible sensing mechanism, allows
scheduling the next sensing event according to the application dynamics and measuring requirements.

3.3 Sensing algorithms
Independently of the application type, it is clear that increasing the number sensing events tends to increase the mea-
surements accuracy. This increase in accuracy has however a major downside: the burden on the sensing, processing, and
communicating subsystems regarding energy consumption. In order to find the best balance between measuring accuracy
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TABLE 1 Description of Algorithms 1 and 2 elements

S sensed value of the parameter of interest
X̄i moving average of the sensed parameter from current reading.
X̄i−1 moving average of the sensed parameter from previous reading
V̄i current mean deviation of the sensed values.
𝛼 weight of S in the moving average X̄i.
V̄i−1 mean deviation from the last reading.
𝛽 the weight of the current deviation |X̄i − S|.
ΔTnext the time interval until the next sensing reading.
ΔTmin|ΔTmax lower and upper ΔT bounds.
getScale() function ruling reactivity scale.
𝜖min|𝜖max scale reactivity bounds.
𝛾 scale adjustment threshold.

and energy consumption, e-LiteSense takes advantage of the variations in the sensed parameters and the current energy
levels to regulate the sensing frequency accordingly. In this way, if data sensing does not exhibit significant variability, the
sensing frequency is reduced, ie, the time period until the next sensing event (ΔTnext) is increased to save energy and pro-
cessing resources. This adjustment has to be carefully defined and tuned so that measuring accuracy is yet acceptable. In
opposition, if data sensed expresses significant variability, ΔTnext is decreased with the aim to increase e-LiteSense reac-
tivity to scalar fluctuations of the parameter of interest. Therefore, defining ΔTnext always takes into account battery level
of the sensor board.

As mentioned in Section 3.1, e-LiteSense resorts to simple arithmetic rules, pursuing simplicity of implementation
and low resource consumption as main design principles. Using intuitive pseudocode, Algorithms 1 and 2 illustrate how
e-LiteSense behaves. Table 1 summarises the main constants and variables handled. As illustrated in Algorithm 1, when
a sensing event takes place (lines 4,5), the mean value of the observed variable X̄i is calculated using the moving average
between the mean obtained in the previous event and the new sample S, ie, X̄i = (1 − 𝛼)X̄i−1 + 𝛼S (line 6). The constant
𝛼 allows to express the weight of new observed value S on X̄i. Here, for the sake of simplicity, the scalar variation of the
parameter of interest is defined as the moving average of the observed parameter X̄i and its mean deviation V̄i. This is a
simple and acceptable approach to compute an approximation for the standard deviation, as in Shi et al.21 Thus, when
the sensing event S occurs, the algorithm compares how the new reading has evolved

(X̄i−1
V̄i−1

←−−−−→X̄i
V̄i

←−−−−→S),

in order to determineΔTnext, ie, the time period until the next sensing event (lines 8,9). If the deviation between the current
and last variations (V̄i and V̄i−1), in absolute terms, exceeds a threshold 𝛾 , the sensed value S has suffered a nonnegligible
change; therefore, ΔTnext is decreased to capture the new variation trend. Otherwise, if this deviation is minor means that
the sensed value S is in a reasonable steady state which allows defining a longer ΔTnext to preserve sensor energy.
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The function getScale() allows to adjust the scale of e-LiteSense reactivity between sensor readings (see Algorithm 1).
As shown, ΔT adjustments are sensible to the current energy in the node's battery. In the presence of high-energy levels,
ΔT tend to suffer a fast decrease or slow increase, whereas for low-energy levels, the behaviour is the opposite, ie, ΔT has
a slow decrease or fast increase. The constants (𝜖min and 𝜖max) are lower and upper bounds to the reactivity scale. These
values are adjusted according to each application type and to the corresponding measuring requirements of physical
phenomena.

The algorithm also sets important lower and upper bounds on ΔT, namely, ΔTmin and ΔTmax (see line 9). While ΔTmax
prevents ΔT from growing indefinitely, thus guaranteeing a minimum number of readings per time unit, (ΔTmin) limits
the maximum sensing frequency so that the ΔT does not tend to zero, resulting in extreme resource consumption. Again,
setting these bounds also depend on the application scenario.

Although not represented in Algorithms 1 and 2, e-LiteSense also provides a critical operation mode which is triggered
if a threshold value is observed in the measurements. In this operation mode, sensing events are performed at the highest
frequency regardless the sensor's battery level. Monitoring human vital signs or sensitive environments are examples in
which such feature is essential, even though redundant batteries are in place.

4 PROOF- OF- CONCEPT

The main goal in e-LiteSense design is to reduce the overall energy consumed in a WSN while producing accurate readings
about the measured environmental phenomena. In this way, the proof-of-concept provides a comprehensive analysis of
the proposed adaptive scheme effectiveness, including the impact of adjusting its time boundaries (ΔTmin and ΔTmax) and
sensing reactivity (𝜖min and 𝜖max).

4.1 Test scenarios
The e-LiteSense evaluation resorts to a flexible prototype of TelosB motes designed to allow the deployment of dif-
ferent sensing schemes and provide a detailed power profiling of sensing, processing and communication subsystems
considering their underlying energy costs.5

The analysis consists of comparing the energy consumed and the accuracy in measuring scalar physical quantities
between the proposed scheme and a systematic approach, which represents the most common scheme adopted in WSNs.
In order to assess e-LiteSense performance in diverse scenarios, both sensing schemes are applied to pre-collected and
public datasets from real environments, described below and summarised in Table 2.

TABLE 2 Identification and description of sensors for each scenario

Sensor ID Scenario Description
STI_1 1 Indoor temperature (◦ C)
STI_2 1 Indoor temperature (◦ C), exposed to a steam of hot water
STO_1 1 Outdoor temperature (◦ C)
STO_2 1 Outdoor temperature (◦ C), exposed to a steam of hot water
SHI_1 1 Indoor relativity humidity (%)
SHI_2 1 Indoor relativity humidity (%), exposed to a steam of hot water
SHO_1 1 Outdoor relativity humidity (%)
SHO_2 1 Outdoor relativity humidity (%), exposed to a steam of hot water
LUX_T 2 Four years of indoor temperature measurements (◦ C)
LUX_P 3 One year of atmospheric pressure measurements, (kPa)
LUX_M 3 One year of precipitation measurements (mm)
LUX_H 3 One year of outdoor relative humidity measurements (%)
LUX_I 3 One year of solar irradiance (kW∕m2)
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Scenario 1 - eight sensors deployed in indoor and outdoor environments, measuring temperature and relative
humidity, at intervals of five seconds, along six hours.24 Aiming at evaluating e-LiteSense accuracy in
identifying sudden changes in the observed parameters, some of these sensors were exposed to a steam of
hot water to spark humidity and temperature levels (see Table 2);

Scenario 2 - one indoor sensor, located in Luxembourg City, measuring environmental temperature, at intervals of
3 minutes, along with 4 years25;

Scenario 3 - four sensors deployed in a river area weather station in Luxembourg City measuring atmospheric pressure,
precipitation, relative humidity, and solar irradiance, at intervals of 3 minutes, along with approximately
10 months.26

FIGURE 3 Number of sensing events
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The performance evaluation consists in assessing (a) the number of sensing events along the monitoring period; (b)
the accuracy in identifying the temporal variation of the observed parameters; and (c) the overall energy consumed by all
sensor subsystems. Estimating the measurement accuracy provided by e-LiteSense relies on the correlation coefficient and
the Mean Squared Error (MSE) between the sensed values and the real phenomena dynamics, a methodology commonly
used to evaluate sampling-based estimators. Furthermore, with the aim of clearly represent the impact of the compared
schemes, the energy consumed in each sensing cycle for the smaller datasets was normalised.

The parameterisation of tests, discussed in Section 4.2, considers ΔTmin = 5 and ΔTmax = 60, meaning that, at least,
one sensing event occurs every 60 seconds for Scenario 1, and every 60 minutes for Scenarios 2 and 3. The reactivity factor
is defined as 𝜖min = 0.05 and 𝜖max = 0.30, meaning that ΔTnext will vary between 5% and 30% in each cycle. The overall
impact of adjusting these parameters is further discussed in Section 4.3. In addition, the weight of the last observations X̄i−1
and V̄i−1 on X̄i and V̄i (see Algorithm 1) are 𝛼 = 0.7 and 𝛽 = 0.7, respectively, and 𝛾 = 0, representing a nonconservative
approach in which any deviation observed between V̄i and V̄i−1 will trigger a change in ΔTnext.

4.2 Performance evaluation
As mentioned above, a performance parameter under evaluation is the e-LiteSense ability to reduce the number of sensing
events. As reference, the systematic sensing frequency in scenario 1 is 30 seconds and in scenario 3 is 15 minutes. For
test scenario 1, Figure 3A shows that, for all types of sensor nodes considered, e-LiteSense reduces the number of sensing
events significantly, ie, around 39% for STI_1 (worst case) and 50% for SHO_2 (best case) when compared with the number
of events observed using the systematic scheme. For test scenario 3, in Figure 3B, the reduction ranges between 47% for
sensor LUX_H and 69% for sensor LUX_M.

Although, in order to achieve the expected efficiency, such significant reduction in the number of sensing events must
be accompanied by accurate readings, which consists of producing measurements statistically representative when com-
pared to the real distribution of the observed parameters. In this regard, Figure 4 highlights such relation for sensor
STO_2, in which, even exhibiting a temperature burst, e-LiteSense was able to provide mostly an overlapped distribution
based on 46% of the sensing events compared with the original dataset (systematically sensed every 5 seconds). The visual
perception is statistically validated through the low MSE and high correlation coefficient, presented in Table 3.

FIGURE 4 Measurements for sensor STO_2

TABLE 3 Measurement accuracy

Scenario 1 Scenario 2 Scenario 3
Sensor Correlation MSE Sensor Correlation MSE Sensor Correlation MSE
STI_1 0.998 0.003 LUX_T 0.999 0.0008 LUX_P 0.999 0.070
STI_2 0.998 0.060 LUX_M 0.690 0.004
STO_1 0.999 0.010 LUX_H 0.992 0.34
STO_2 0.999 0.019 LUX_I 0.988 0.0009
SHI_1 0.996 0.001
SHI_2 0.955 0.079
SHO_1 0.999 0.0001
SHO_2 0.999 0.0009
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Table 3 extends the analysis in Figure 4 for all considered scenarios. The high accuracy achieved for all datasets
demonstrates the effectiveness of e-LiteSense self-adaptive sensing behavior according to the dynamics in the observed
phenomena.

Due to the reduced number of sensing events, and consequently less data being processed and transmitted, e-LiteSense
also promotes high optimization in energy consumption. As presented in Figure 5, for the sensor LUX_T (scenario 2),
when compared with the current operation deployment in Luxembourg (ie, one sensing every 3 minutes), the proposed
scheme has extended its operational lifetime in approximately five times. Further adjusting the reference approach to a

FIGURE 5 Power consumption for scenario 2
(sensor LUX_T)

TABLE 4 Energy saving

Scenario 1
STI_1 STI_2 STO_1 STO_2 SHI_1 SHI_2 SHO_1 SHO_2
49.35% 51.41% 44.35% 44.95% 47.77% 47.63% 41.02% 38.72%

Scenario 3
LUX_P LUX_M LUX_H LUX_I
69.20% 71.25% 47.62% 61.11%

FIGURE 6 Dispersion of measured
values for different battery levels
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more conservative frequency, ie, systematically sensing every 10 minutes, a sensor running e-LiteSense algorithm would
still extend its lifetime around 1 year until full battery depletion.

The overall energy saved by the e-LiteSense approach, when compared with the systematic scenarios described in
Section 4.1, is summarised in Table 4. The results show a reduction between 38% (sensor SHO_2) and 71% (sensor
LUX_M), confirming its effectiveness, mainly taking into consideration the underlying high accuracy in the yielded
measurements (see Table 3).

As described in Section 3.3, the residual energy level in a sensor running e-LiteSense regulates the reactivity used
to self-adjust its sensing frequency. Therefore, the accuracy tends to be affected along the energy draining process by
increasing the measurement error as the battery is depleted. This behaviour is demonstrated in Figure 6, which shows
the accuracy dispersion of the measured temperature per minute in sensor LUX_T, related to the original dataset. In this
way, the proposed scheme provides the flexibility for configuring the time boundaries and reactivity in order to balance

FIGURE 7 Impact of adjusting time
boundaries (B)



SILVA ET AL. 13 of 14

the extension of the sensor lifetime with the tolerated error for a specific application. The underlying impact of such
parameterisation is discussed in Section 4.3.

4.3 Analysing the algorithm reactivity and time boundaries
The flexibility of adjusting the algorithm reactivity and time boundaries (see Section 3) leverages the variety of sce-
narios and applications in which e-LiteSense can be applied. Both parameters can be previously defined according to
specific requirements or dynamically adjusted by an external entity (eg, an SDN controller) able to react to the WSN
measurements.

In this way, Table 5 presents the overall impact of adjusting the algorithm reactivity, ie, 𝜖min and 𝜖max for all scenarios
considered. For these tests, time boundaries are kept fixed (ΔTmin = 5 and ΔTmin = 45). As observed, even though
varying, the overall performance is high for all scenarios, which demonstrates e-LiteSense effectiveness regardless the
setup defined. In these cases, the major impact observed is on the sensing accuracy, where MSE varies up to an order of
magnitude.

Considering the impact of adjusting the sensing scheme time boundaries, similarly to the observed in Section 4.2,
Figure 7 shows a clearer trend regarding the relation between accuracy and energy consumption. In this case, for different
sensors, it is possible to observe that increasing ΔTmax reduces the energy consumption, with a slight impact on measure-
ment accuracy. As observed for the reactivity assessment, for all considered scenarios, adjusting the time boundaries does
not affect the high accuracy of measurements significantly.

5 CONCLUSIONS

Currently, WSNs sustain a multitude of applicational areas involving the sensing of physical or environmental conditions.
A common challenge to this diversity is the confined resources available in sensor nodes, regarding energy, processing, and
transmission capacity. To mitigate this problem and improve the adjustment of the data collection process to each specific
WSN context, this paper has proposed e-LiteSense, which relies on properties such as self-adaptiveness, energy-awareness
and low-complexity to achieve these goals.

An encompassing view of a WSN architecture integrating e-LiteSense sensor nodes has been discussed, detailing the
low-complexity rules behind the auto-regulation behaviour of data collection. This process adjusts the sensing frequency
according to the variability of the parameters under measurement and the energy levels of sensors, improving the trade-off
between accuracy and WSN lifetime.

The proof-of-concept has resorted to a software-based prototype, designed according to the specification of commonly
used sensors, and real datasets to evaluate the performance and reactivity of the proposed scheme for distinct test sce-
narios. The obtained results have demonstrated the high-accuracy levels of e-LiteSense in capturing the behaviour of the
parameters under analysis, with a remarkable reduction of sensing events and increase of sensors lifetime.

Following SDN and edge computing concepts, the architecture presented in Figure 2 is currently evolving to adopt edge
computing facilities to adjust e-LiteSense configuration parameters dynamically according to the measuring requirements
of each deployed WSN scenario.
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