
INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS
Int. J. Commun. Syst. 2003; 16:513–534 (DOI: 10.1002/dac.593)

Evaluation of performance enhancing proxies in internet
over satellite

Navid Ehsan1,y, Mingyan Liu1,n,z and Roderick J. Ragland2,}

1Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, MI 48109-2122, U.S.A.
2Hughes Network Systems, Inc., Germantown, MD, U.S.A.

SUMMARY

Performance enhancing proxies (PEPs) are widely used to improve the performance of TCP over high
delay-bandwidth product links and links with high error probability. In this paper we analyse the
performance of using TCP connection splitting in combination with web caching via traces obtained from a
commercial satellite system. We examine the resulting performance gain under different scenarios,
including the effect of caching, congestion, random loss and file sizes. We show, via analysing our
measurements, that the performance gain from using splitting is highly sensitive to random losses and the
number of simultaneous connections, and that such sensitivity is alleviated by caching. On the other hand,
the use of a splitting proxy enhances the value of web caching in that cache hits result in much more
significant performance improvement over cache misses when TCP splitting is used. We also compare the
performance of using different versions of HTTP in such a system. Copyright # 2003 John Wiley & Sons,
Ltd.

KEY WORDS: performance enhancing proxy; TCP connection splitting; caching; persistent connection;
satellite network

1. INTRODUCTION

The performance of TCP over heterogeneous connections such as those including satellite and
wireless links has been extensively studied for the past few years. Proposed performance
enhancing techniques can roughly be categorized into link layer solutions (see for example,
References [1,2]), end-to-end solutions where the end-to-end semantic of TCP is maintained (see
for example, References [3–10]) and non-end-to-end solutions where the end-to-end semantic is
violated (see for example, References [11–13]). Various link layer and end-to-end approaches
can be quite effective for connections over wireless links through better error correction
schemes, local retransmission schemes and schemes that distinguish congestion losses from link
failure losses for TCP. In a connection that incorporates a satellite link on the other hand, the

Received 12 September 2002
Revised 7 January 2003Published online 9 May 2003

Accepted 3 February 2003Copyright # 2003 John Wiley & Sons, Ltd.

yE-mail: nehsan@eecs.umich.edu
zE-mail: mingyan@eecs.umich.edu

nCorrespondence to: M. Liu, Electrical Engineering and Computer Science Department, University of Michigan, Ann
Arbor, MI 48109-2122, U.S.A.

}E-mail: rragland@hns.com

main bottleneck in TCP performance is due to the large delay-bandwidth product of the satellite
link (for an overview of research on TCP over satellite see for example, Reference [14]). Over
such a link the normal TCP window dynamics result in significantly increased latency before the
channel is fully utilized. This problem cannot be effectively solved simply by improving the
satellite channel quality, or by using large initial window size. This is because a connection using
the satellite link typically also has a terrestrial part, thus using large window end to end could
affect the performance and fairness of the terrestrial part of the connection.

One typical non-end-to-end solution that has been adopted by many satellite data
communication service providers is the TCP connection splitting technique. The idea
behind this technique is to segregate the end-to-end connection into segments so that
each can be optimized separately, and in particular so that the TCP window over the satellite
segment can be opened up faster. This involves placing at the Network Operating Center (NOC)
a splitting proxy that acknowledges end user packets on behalf of the remote server and
acknowledges the remote server on behalf of the end user (assuming the end user is directly
connected to the satellite down link). This proxy operates at the TCP level and therefore breaks
the end-to-end semantic of TCP. It is also not compatible with IPSec [15]. The benefit, however,
is that (1) splitting a connection results in shortened TCP feedback control loop, so that the
remote server receives ACKs much sooner from the NOC (proxy) than from the end user, and
therefore its window can quickly ramp up; and (2) by segregating an end-to-end connection into
segments, each segment is enhanced separately. The proxy can use large initial window over the
satellite link, which can either be the last hop or somewhere in the middle of the end-to-end
connection.

The performance gain of using a splitting proxy has been reported in Reference [16] as a result
of simulation study and in Reference [11] from experimental study. In References [17,18]
some analysis was presented to quantitatively study the benefit of such a proxy. We observe
that in a typical satellite system TCP connection splitting is not the only performance
enhancing technique that is commonly used. Web caching is also widely implemented to reduce
latency by pushing contents closer to the end users. Moreover, whenever there is a cache miss,
the cache in effect ‘breaks’ the server–client transfer into two separate connections. This is
because the cache opens up a connection to the remote server and starts downloading the file to
the cache (for cacheable objects) while forwarding packets to the client at the same time.
Although this happens at the application layer, it results in a server–cache connection and a
cache–client connection, and thus has a very similar effect on the end-to-end performance as
that of a TCP splitting proxy, as will be shown more clearly in the next section. Our focus in this
study is the combined performance implication of using both types of enhancements}TCP
splitting and web caching. By taking measurements from a live Internet over satellite system,
we hope to gain more insights into the use of proxy as a general solution to such systems,
and more importantly to apply such understanding to system level design issues. Our
measurements are obtained via repeated downloads of selected files (both pure text and with
embedded objects).

Our main observations are as follows:

(1) Connection splitting enhances the value of caching. When splitting is not used, whether
there is a cache hit or cache miss generates almost identical performance (in terms of
delay and throughput). When splitting is used, a hit at the cache results in much higher
throughput.

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

N. EHSAN, M. LIU AND R. J. RAGLAND514

(2) The throughput of a split connection is more sensitive to increased congestion delay than
an end-to-end connection. Having simultaneous connections will cause the performance
of splitting to decrease much faster than the end-to-end case.

(3) The throughput of a split connection is highly sensitive to packet losses for small file
transfers. Split connection provides much better guarantee of performance improvement
for a large file than for a small file. Guarantee of performance improvement refers to the
probability that the split connection results in higher throughput than the end-to-end
connection. This probability is defined as the relative frequency of such events in our
measurements. This guarantee is improved when there is a cache hit.

(4) The performance gain of using connection splitting is reduced as the number of
embedded objects in a file increases. In addition, connection splitting is no substitute for
persistent connection. If a splitting proxy is used, it is important that persistent
connection is also used between the client and the proxy. Non-persistent connection even
when connection splitting is used can result in much worse performance than an end-to-
end persistent connection.

It’s worth pointing out that TCP connection splitting is also often called TCP spoofing.
Strictly speaking splitting refers to breaking up a connection and spoofing refers to faking an
address. They are often related because in splitting a connection a transparent proxy typically
spoofs the end points’ addresses. Since our interest is in the end-to-end performance as a result
of split connections (either at the transport layer or at the application layer), we will limit
ourselves to the term connection splitting in this paper.

The rest of the paper is organized as follows. We describe the system configuration and our
experiment methodology in the next section. We then present the measurements and our
observation/explanation in Section 3. These results are organized into six subsections, where we
examine the effect of file size, caching, number of simultaneous connections, congestion and
random losses, number of embedded objects and persistent connection, respectively.
Conclusions are given in Section 4.

2. SYSTEM DESCRIPTION

Our measurements are taken from a commercial satellite system that uses a geo-stationary
(GEO) satellite (Ku band) for forward data transfer (from the NOC to the client/end host) and a
regular phone line as the return channel (from the client/end host to the NOC via an ISP), as
shown in Figure 1. Available bandwidth on the forward channel is up to 24 Mbps and the one
way propagation delay of the satellite link is roughly 250 ms (however, due to NOC
configuration the maximum throughput we were able to achieve per client was 300–400 kbits=s).
The return channel has a speed of up to 56 kbps:

The TCP connection splitting proxy (which we will simply call proxy in the following) is
implemented on a Hybrid Gateway (HGW) located in the NOC. The end host can choose to
either enable or disable the proxy. When the proxy is disabled, a packet from the server to the
end host passes through the HGW as if passing through a normal router, and goes directly to a
Satellite Gateway (SGW) connected to the satellite uplink. When the proxy is enabled, it breaks
up the server–client end-to-end connection in two, and pre-acknowledges one on behalf of the
other in the following way, as illustrated in Figure 2(a).

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

EVALUATION OF PERFORMANCE ENHANCING 515

NOC

ISP

Satellite

Server

Internet

Client

Figure 1. Main components of the satellite system.

GET

ProxyServer

GET

Client

SYNACK

Server Cache

GET

(a) (b)

SYN

Client

SYN

ACK

DATA

DATA

SYNACK

SYN

DATA

ACK

SYNACK
ACK

ACK

ACK

ACK

DATA

ACK

Figure 2. Splitting a connection at (a) a proxy and (b) a cache (miss).

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

N. EHSAN, M. LIU AND R. J. RAGLAND516

During the connection establishment, the proxy simply forwards the SYN and SYNACK
packets. Then the server starts sending data to the client upon receipt of the file request. Upon
receiving a data packet from the server, the proxy sends an ACK back to the server. Since the
proxy is transparent by spoofing the client’s address, the server takes the ACK as an indication
that the data being ACKed has been received successfully by the client, and therefore moves on
to the next window and so on. Since the proxy is located closer to the server (than the client),
because of the large satellite delay, this results in a much shorter round-trip time (RTT) seen by
the server and thus enables the server to reach a much higher sending rate. At the same time the
proxy is maintaining a separate connection with the client by forwarding data packets to the
client, waiting for ACKs to come back from the client, and then releasing more data packets to
the client. All packets received from the server are stored at the proxy. When an ACK is received
from the client, data being ACKed is purged from the buffer. Otherwise the proxy retransmits
upon duplicate ACKs or timeouts (local retransmission) in contrast with the end-to-end case
where each retransmission comes from the server.

The web caches are also located in the NOC. Regardless of whether the splitting proxy is
enabled or disabled, when an HTTP request is received at the NOC, it first goes through the cache
before being sent to the server. For cacheable content, if a fresh copy of the requested file is
located in the cache (a hit), the file is delivered to the client directly from the cache without going
to the remote server. If the requested file is not found in the cache (a miss), the cache will open up
a connection to the remote server to fetch the file, as shown in Figure 2(b). This server–cache
connection is concurrent with the cache–client connection in that as soon as the cache starts
receiving data from the server (via the server–cache connection), it will transfer it to the client (via
the cache–client connection). Thus, in the case of a miss, the cache effectively handles two
connections that constitute the end-to-end connection between the server and the client. In terms
of data transfer, this is very similar to a splitting proxy. (However, with a cache this takes place at
the application layer so the server sees a connection with the cache rather than being pre-
acknowledged by the cache.) Figure 2 compares the packet flow in the case of a splitting proxy
and in the case of a cache miss. Except for the connection establishment process, the data transfer
essentially proceeds in an identical manner (note that this figure does not show processing delay).
Consequently the splitting proxy together with the cache results in an end-to-end connection split
twice upon a cache miss and once upon a cache hit, as shown in Figures 3(a) and 3(b),

(b)(a)

ClientProxyCacheServer Cache ClientProxy

CacheServer Client

Server Proxy Client ClientServer

ClientCache

(d)

(f)

(c)

(e)

Figure 3. Experiment scenarios: (a) Cache miss, proxy enabled; (b) Cache hit, proxy
enabled; (c) Cache miss, proxy disabled; (d) Cache hit, proxy disabled; (e) No cache,

proxy enabled; (f) No cache, proxy disabled.

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

EVALUATION OF PERFORMANCE ENHANCING 517

respectively. Figures 3(c) and 3(d) illustrates cache hit and cache miss, respectively, when the
proxy is disabled. Figures 3(e) and 3(f) illustrates the cases where connections bypass the cache
with the splitting proxy enabled and disabled, respectively.

Important parameters of our system are as follows. The client is running Windows ME that
uses TCP SACK [19] with delayed acknowledgments (one ACK for every two received packets).
Our web server is running Linux Redhat 7.1. Because of the high asymmetry in link speeds
between the forward and return paths, we also use ACK filtering [20] at the client and send one
out of every four ACKs. Thus each ACK received at the server (assuming no loss) in general
represents eight packets. Byte counting instead of ACK counting is used at the server as well as
the proxy, so that the lower rate of ACKs does not reduce the data sending rate. The splitting
proxy uses an initial window size of 64 kbytes for the proxy–client connection over the satellite
whenever enabled.

Our study consists of six main scenarios: splitting enabled or disabled with cache hit or cache
miss and the option of whether to bypass the cache or not, as shown in Figure 3. Whether to use
the file in the cache or not is controlled by a no-cache pragma [21,22] set in the request header.
When set, this parameter tells the cache not to use the cached copy even if there is one and to get
the most updated version from the server. Whether the connection splitting proxy is used or not
is controlled by the end hosts. We have two end hosts, one of which has the proxy option
enabled and the other one has the option disabled. This option is then encapsulated in the
header of packets sent to the NOC. For comparison purposes, we always run experiments on
these two hosts simultaneously. We download files from a dedicated web server onto both hosts
repeatedly for durations of 1–2 h per data/point (measurements over this period are averaged
into one data point).

All measurements are taken from a live commercial system with varying amounts of customer
traffic. Our connections and experiment traffic go through a dedicated HGW and therefore a
dedicated splitting proxy that is not shared by other traffic. However, our connections does
share the cache access, the satellite gateway and the satellite transponder with other through
traffic. Such a setup results in both controllable and uncontrollable factors as we will point out
when we discuss our results in the next section.

The performance metrics we use in this study are the file transfer latency (using HTTP) and
throughput. We define latency seen by the client as the time between when the SYN request is sent
and the time when FINACK is sent by the client. For files with multiple embedded objects, this is
defined as the time between when the first SYN request is sent and the time when the last FINACK
is sent. Throughput is defined as file size divided by latency. Files used in this study contain a set of
text files of varying sizes and a set of HTML files with varying number of embedded objects. Often
for comparison purposes we keep the total file transfer size (base page plus embedded objects) the
same while changing the number of embedded objects and thus the size of each object. The list of
files with file types and file sizes are provided in Table A1 in the appendix.

3. RESULTS AND ANALYSIS

For comparison purposes and better illustration of our results, we define the Gain of Splitting
(GoS) as

GoS ¼
Throughputsplitting � Throughputend to end

Throughputend to end

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

N. EHSAN, M. LIU AND R. J. RAGLAND518

Thus larger GoS means higher throughput gain from using the splitting proxy. A negative GoS
means that the end-to-end connection has a higher throughput (or smaller latency) than the split
connection. We will frequently use this metric in subsequent discussions.

3.1. Effect of varying file sizes

We first compare the file transfer throughput with the splitting proxy enabled and disabled
under scenarios described in Figures 3(e) and 3(f). We download files onto both the splitting
enabled and the splitting disabled hosts repeatedly over a 1 hour period and average the
measured throughput over this period. The corresponding GoS for files ranging from 10 kbytes
to 1 Mbytes are shown in Figure 4.

This result essentially confirms some earlier reports, see for example, References [16,18], that
splitting provides better performance gain for larger files. This is due to the fact that the time
spent in TCP connection establishment has a bigger portion in the overall latency for smaller
files and this time is not reducible by using splitting. At the same time larger files benefit more
from the large initial window size (for example, a 1 kbyte file and a 64 kbyte file can both be
transmitted in the first window and experience almost the same latency, if file transfer from the
source to the proxy is fast enough). However, this gain saturates around 80 K: This is because
when the satellite link is fully utilized (as in the case of a very large file), the difference in
throughput between the two scenarios becomes smaller and smaller. The main benefit of using a
split connection comes from sending faster over the satellite link. When the capacity of the
satellite link is fully utilized this benefit starts decreasing. The larger the file size, the more
diluted this benefit gets. Therefore, we see the gain decreases as the file becomes bigger.

3.2. Effect of caching

In this section, we compare the performance under scenarios described in Figures 3(a)–3(d).
Again files are downloaded onto both the splitting enabled and the splitting disabled hosts

0 1 2 3 4 5 6 7 8 9 10
x 105

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

filesize (bytes)

G
oS

Figure 4. GoS for varying file sizes.

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

EVALUATION OF PERFORMANCE ENHANCING 519

repeatedly over a 1 h period. Figure 5 shows the GoS of five files ranging from 10 to 120 kbytes
in the cache hit and the cache miss cases. Each point is an average over the 1 h download period.

An interesting observation from this comparison is that when a file is in the cache, the
splitting gain is higher. This can be more clearly seen in Figures 6(a) and 6(b), where we compare
the file transfer throughput separately for the cache hit and cache miss cases.

It becomes obvious, by comparing the two, that the use of splitting enhances the value of
caching, i.e. when splitting is used, having the file in the cache provides significant increase in
throughput over the case where the file has to be retrieved remotely from the server. In addition,
this improvement increases as the file size increases. On the other hand, when splitting is
disabled, whether the file is in the cache or not makes very little difference.

0 2 4 6 8 10 12 14
x 104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

filesize (in bytes)

G
oS

hit
miss

Figure 5. Comparing GoS in the case of cache hit and cache miss.

0 2 4 6 8 10 12 14

x 104

0.5

1

1.5

2

2.5

3

3.5
x 10 4

file size in bytes(a)

th
ro

ug
hp

ut
 in

 b
yt

es
 p

er
 s

ec
on

d

hit
miss

0 2 4 6 8 10 12 14

x 10
4

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

th
ro

ug
hp

ut
 in

 b
yt

es
 p

er
 s

ec
on

d

file size in bytes(b)

hit
miss

Figure 6. Comparing throughput for cache hit and cache miss with
(a) splitting enabled and (b) splitting disabled.

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

N. EHSAN, M. LIU AND R. J. RAGLAND520

The reason lies in the following. Consider the case where the connection is not split by the
proxy. Assuming there is a cache miss (Figure 3(c)), since the cache–client connection is much
slower (as a result of higher propagation delay) than the server–cache connection, by the time
the cache–client connection gets to the first few windows, the entire file could be available in the
cache (i.e. the server–cache connection is completed). As an example consider 1 kbyte packet
size and a 7 kbyte file. Assume that the RTT of the server–cache connection is 50 ms and the
RTT of the cache–client connection to be 500 ms: As the first packet arrives at the cache it is
immediately sent to the client. It takes two more RTTs for the whole file to be available in the
cache ð100 msÞ; but by this time the first packet has not even reached the client yet. By the time
the first acknowledgement arrives at the cache from the client, the file will be completely
available in the cache. So a cache hit and a cache miss have about the same latency and
throughput.

Therefore, having the file locally in the cache provides very limited benefit. Intuitively when
an end-to-end connection is split in two, the slower segment (as a result of higher propagation
delay, smaller initial window size, or higher losses) will dominate the end-to-end performance. A
more precise analytical explanation is out of the scope of this paper, but can be found in
Reference [18]. In this case the cache–client segment is much slower than the server–cache
segment, and clearly dominates the end-to-end performance. Having the file locally in the cache
has the effect of ‘speeding up’ the server–cache connection, i.e. this connection is completely
eliminated. However, since the overall performance is governed by the cache–client connection,
whether the server–cache connection is a bit faster or not does not matter much, as shown in
Figure 6(b).

Now consider the case where the connection splitting proxy is enabled. Splitting the
connection at the gateway results in either three or two segments of an end-to-end connection
(Figures 3(a) and 3(b), respectively). As we have just discussed, if the proxy only splits the
connection, then the server–cache connection and the cache–proxy connection would still be
much faster than the satellite link and therefore the proxy–client connection would again
dominate the overall performance. However, in addition to splitting the connection, the proxy
also opens up the window size over the satellite link much faster by using an initial window size
of 64 kbytes and thus bypassing the slow-start stage of normal TCP window evolution. This
means that the satellite link is now comparable to or even faster than the server–cache and
cache–proxy connections in terms of throughput. For instance, for a file smaller than 64 kbytes,
the entire file fits into the very first window. Therefore, the transfer of the file is constrained by
how fast the proxy receives rather than how fast the proxy can send since the window size would
be perceived as ‘unlimited’ for such a file. Thus having the file in the cache (much closer to the
proxy) would enable the proxy to receive much faster than having to fetch the file remotely, and
results in higher throughput and lower latency. This result highlights the importance of
optimizing different segments of a split connection. More importantly, such optimization has to
be done in a way to reduce asymmetry between the segments, e.g. to bring the slower link faster,
which in this case corresponds to using a large initial window size over the satellite link.

3.3. Effect of simultaneous connections

Results from the previous section were obtained by having 10 simultaneous connections to the
HGW from each client. We showed that receiving faster at the proxy results in higher
throughput. However, the proxy’s sending rate can be constrained by the number of

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

EVALUATION OF PERFORMANCE ENHANCING 521

connections it is handling. That is, although each connection has a large initial window size, this
large window does not get fully utilized fast enough due to the number of simultaneous
connections. In this section, we compare the performance as a result of different number of
simultaneous connections from the same host.

Our measurements are taken as follows. First we simultaneously download six files, Files 1, 3,
6, 10, 13 and 16, repeatedly over a period of 1 h from each host. Then we repeat this process
with nine simultaneous downloads, for Files 1, 3, 4, 6, 8, 10, 13, 15 and 16, and 14 simultaneous
downloads, for Files 1, 3–4, 6–8, 10–13, 15–17 and 19. In this experiment, connections do not go
through the cache and files are directly originated from the remote server. The same experiment
is run on both the proxy-enabled host and the proxy-disabled host (corresponding to Figures
3(e) and 3(f)). Figure 7 shows the throughput of split connection and end-to-end connection
under these three scenarios and Figure 8 compares their GoS.

As can be seen from these results, connection splitting suffers more from higher number of
simultaneous connections than end-to-end connections (although the gain is still positive). This
is mostly due to the fact that with more simultaneous connections, the large initial window size
of the split connections becomes less effective.

As mentioned earlier, the maximum overall throughput achieved per client was observed to be
between 300–400 kbytes=s: Although each of the split connections has an initial window size of
64 kbytes; when there are multiple simultaneous connections, this 64 kbytes cannot be fully
utilized all at once. The effective share of window size each connection actually realizes decreases
with the increase in the number of simultaneous connections. For connections with the proxy
disabled, the initial window size is much smaller than 64 kbytes; and therefore the impact of
increased number of simultaneous connections is also much smaller.

Another reason for this could be due to the higher round trip time in end to end. Both end to
end and split-connection packets experience the same queuing delay at the Satellite Gateway. It
is well known that the steady-state throughput of TCP is inversely proportional to RTT (see for
example, References [23,24]). For the split-connection case the RTT ðRÞ is obviously smaller
than the end-to-end case ðR0Þ: Now we are adding a constant q (queuing delay) to the RTT, in

0 2 4 6 8 10 12 14 16 18

x 104

0

0.5

1

1.5

2

2.5

3

3.5

4

filesize(bytes)(a)

th
ro

ug
hp

ut
 (

by
te

s
pe

r
se

co
nd

)

6 connections
9 connections
14 connections

0 2 4 6 8 10 12 14 16 18

x 104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 104

th
ro

ug
hp

ut
 (

by
te

s
pe

r
se

co
nd

)

filesize(bytes)(b)

6 connections
9 connections
14 connections

x 104

Figure 7. Throughput for different number of simultaneous connections:
(a) Splitting enabled; (b) splitting disabled.

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

N. EHSAN, M. LIU AND R. J. RAGLAND522

both cases. Since R5R0 we expect this constant to have a larger impact on the steady-state
throughput of split connections.

We note that the results shown in Figures 7 and 8 are obtained over different time periods,
and therefore could reflect different traffic load and congestion levels in the network. However,
the same experiments were repeated several times and each time the results show the same trend
with similar measurements. Therefore, although random fluctuations in traffic load do exist in
the network, the results we show here is typical and representative of the performance and
change in performance under the given scenarios.

3.4. Effect of congestion and packet losses

By examining the traces of each file download, we can determine the exact number of losses and
retransmissions occurred per connection. However, such losses could involve both random and
congestion losses, the distinction of which not directly available to us by only taking
measurements at the end point. On the other hand, congestion and losses are highly correlated
with increased end-to-end delay, which is observable. In this section, we illustrate the
relationship between increased file transfer delay and the gain from using connection splitting.
In doing so we attempt to understand the relationship between the splitting gain and congestion/
losses.

First we repeatedly download a file directly from the server for 2 h so that the resulting trace
may reflect a reasonable range of work load and congestion conditions in the network. We then
sort the latency trace of the proxy-enabled connection in descending order, and reorder the
proxy-disabled trace accordingly. These two cases corresponds to that illustrated in Figures 3(a)
and 3(c). Figure 9 shows the reordered traces for Files 3 ð11 kbytesÞ and 16 ð120 kbytesÞ: Figure
10 shows the GoS for these two files. It can be seen that the gain decreases as the latency of the
proxy-enabled connection increases. This decrease is much steeper for the 11 kbyte file and there
is a sizable portion of samples showing the proxy-enabled connections under-performing the
proxy-disabled connections. This, however, is not observed in the case of the 120 kbyte file. We

0 2 4 6 8 10 12 14 16 18
x 104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

filesize (in bytes)

G
oS

6 connections
9 connections
14 connections

Figure 8. GoS with different number of simultaneous connections.

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

EVALUATION OF PERFORMANCE ENHANCING 523

define the guarantee of performance improvement as number of samples with GoS > 0 divided by
total number of samples.

We then repeat the same experiment with the same files, but this time files are directly from
the cache (corresponding to Figures 3(b) and 3(d)). Figures 11 and 12 show the latency and GoS
in this case. Note that the correlation between the slowdowns of proxy-enabled and proxy
disabled connections is not very obvious. This is due to the fact that the slowdowns are mostly
caused by random packet losses rather than persistent congestion.

There are two main observations from these results. (1) The splitting gain decreases as the file
transfer latency increases due to higher loss and/or congestion; (2) Whether the file is directly
from the cache or from the remote server, the proxy-enabled connections experience worse
performance (higher latency) than the proxy-disabled connections for small file transfers (e.g.
11 kbyte), for a small portion of the samples. This portion is reduced in the case of a cache hit.
The same phenomenon was not observed for large file transfers (e.g. 120 kbyte). The

0 100 200 300 400 500 600 700
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

samples(a)

la
te

nc
y

proxy enabled
proxy disabled

0 100 200 300 400 500 600 700
1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

samples(b)

la
te

nc
y

proxy enabled
proxy disabled

Figure 9. Sorted latency traces in case of a cache miss for (a) File 12 ð120 KÞ and (b) File 2 ð11 KÞ:

3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
0

0.5

1

1.5

2

2.5

3

latency of split connection (msec)(a)

G
oS

1500 2000 2500 3000 3500 4000 4500 5000
-0.5

0

0.5

1

1.5

2

latency of split connection (msec)(b)

G
oS

Figure 10. GoS in case of a cache miss for: (a) file 12 ð120 KÞ and (b) file 2 ð11 KÞ:

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

N. EHSAN, M. LIU AND R. J. RAGLAND524

percentages of negative GoS for different files are listed in Table I (guarantee of performance
improvement for a given file size is one minus the corresponding term in the table). Note that the
average performance of using the splitting proxy is still above that of disabling the proxy.

Since our connections go through a dedicated proxy, the fluctuation in file transfer latency as
seen from these traces is mainly due to the fluctuation in work load, congestion and loss
situations elsewhere along the path of the connection, i.e. from the server to the cache (in the
case of a cache miss), from the cache to the proxy, and from the proxy to the end host. (Note
that in general, connection splitting leading to worse performance can be caused by excessive
congestion and delay at the proxy, which is only experienced by split traffic, but not by end-to-
end traffic. This can happen if the proxy handles many split connections at the TCP layer, while
the end-to-end traffic simply goes through the IP queue and is unaffected. However, since we use
a dedicated proxy the increase in delay and loss incurred by splitting is minimal.) The reason
that connection splitting can result in higher latency for small files lies within the relationship
between the reduction in latency due to splitting and the increase in latency due to losses in

0 100 200 300 400 500 600 700
2000

4000

6000

8000

10000

12000

14000

16000

18000

samples(a)

la
te

nc
y

proxy enabled
proxy disabled

0 100 200 300 400 500 600 700
0

2000

4000

6000

8000

10000

12000

samples(b)

la
te

nc
y

proxy enabled
proxy disabled

Figure 11. Sorted latency traces in case of a cache hit for: (a) file 12 ð120 KÞ and (b) file 2 ð11 KÞ:

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
0

0.5

1

1.5

2

2.5

3

3.5

latency of split connection (msec)(a)

G
oS

1000 1500 2000 2500 3000 3500 4000 4500 5000
-0.5

0

0.5

1

1.5

2

2.5

3.5

3

4

latency of split connection (msec)(b)

G
oS

Figure 12. GoS in case of a cache hit for: (a) file 12 ð120 KÞ and (b) file 2 ð11 KÞ:

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

EVALUATION OF PERFORMANCE ENHANCING 525

general, both as a function of file size. The reduction in latency by using the proxy is largely due
to the fact that the end-to-end TCP is broken down into shorter feedback loops and that a large
initial window size is used over the satellite. When the file is small, one more or one less lost
packet during the transfer, and whether the loss occurs sooner or later can result in significant
difference in latency. This difference may not be compensated by the benefit from using the
splitting proxy when the file is relatively small since the transfer completes soon afterwards.
However, as the file size increases, the benefit of splitting becomes more prominent. In other
words, it would take more packet losses for a split connection to perform at a similar level as a
non-split connection, which can have very small probability considering the fact that a long
connection tends to reflect more average loss rate. When the file is located in the cache, one
segment (server–cache) is eliminated from the path, thus reducing the probability of packet
losses and consequently reducing the probability that a particular split connection experiences
longer latency than a non-split connection due to different loss occurrences.

In summary, when the file size is large split connections can sustain more losses than non-split
connections and still yield shorter latency, thus provide higher probability of performance
improvement. When the file is small, the split connection is more affected by packet losses and
therefore the probability of performance improvement is lower.

3.5. Effect of embedded objects

So far all our measurements are taken from full text files transferred using HTTP. In this and the
next section we examine the effect of embedded objects in a file/page, and the effect of using
persistent connection.

We first compare the latency for files with same size but different numbers of embedded
objects. We repeatedly download Files 12, 39 and 43 over a 2 h period. File 12 is a text file, and
Files 39 and 43 contains 7 and 19 equal-sized embedded objects, respectively. The total size of
each of these three files is about 65 kbytes: In downloading these files, HTTP/1.0 [21] is used
between the end hosts and the proxy or the cache. No parallel connections are used. The
throughput of proxy-enabled and proxy-disabled transfers is shown for both the cache miss
(corresponds to Figures 3(a) and 3(c)) and cache hit (corresponds to Figures 3(b) and 3(d))
cases, in Tables II and III, respectively.

We see that when a file contains a larger number of embedded objects the GoS decreases. This
result is expected considering our observations in Sections 3.1 that the gain from using the
splitting proxy decreases as the file size decreases (before the satellite channel is fully utilized).
This is because the time spent in handshake has a bigger portion in the overall latency for
smaller files. Thus, if we break a large file into many small objects and open a new connection
for each of these objects, we expect to see a lower performance gain.

Table I. Percentage of samples where disabling the proxy outperforms enabling the proxy.

Percentage of GoS50 Percentage of GoS50
File no. Size (bytes) (cache hit) (cache miss)

3 11033 2.2 3.49
4 16565 0.79 1.26
6 21027 0.0 0.48
12 65331 0.16 0.0
16 120579 0.0 0.0

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

N. EHSAN, M. LIU AND R. J. RAGLAND526

It should be noted that the measurements in Tables II and III are taken over different time
periods and thus numbers from different tables are not directly comparable.

3.6. Effect of persistent connection

In this section, we explore the performance comparison between using HTTP/1.0 and HTTP/1.1
[22]. Web browsers are typically configured to use HTTP/1.0 in the proxy mode where a
separate connection is established for each embedded object on a page. HTTP/1.0 generally
results in large delay due to the time spent in handshaking and low throughput in the slow-start
phase of TCP. HTTP/1.1 on the other hand opens up a persistent connection which is used to
deliver both the base page and subsequent embedded objects. Latency is thus reduced since with
a single connection, there is only one handshake procedure and one slow-start stage of TCP.
There has been extensive studies on the performance of different versions of HTTP, see for
example, References [25,26].

Here we compare HTTP/1.0 vs HTTP/1.1 with the option of enabling and disabling the
splitting proxy. The connection set-up of this part of our measurements corresponds to Figures
3(e) and 3(f), i.e. the connections do not go through the cache and that the connection is either
end to end (proxy disabled) or split into two (proxy enabled).

For comparison purposes we summarize the results obtained from different combination of
splitting enabled/disabled and persistent connection enabled/disabled in Tables IV and V. These
results are obtained with a total transfer size of 65 kbytes:

The graphical representation of GoS for three transfer sizes (base page plus embedded
objects) vs different number of embedded objects are shown in Figure 13. This figure
corresponds to 16, 65 and 180 kbyte file transfer sizes.

From these results we see that overall the gain from using connection splitting decreases with
increased number of embedded objects in a file (of the same size). This is consistent with results
from the previous section. However, when persistent connection is used, GoS decreases much
faster than the case for non-persistent connections as shown in Tables IV, V and Figure 13 (by
ignoring the first point with 0 embedded object since that is a text file). As the number of
embedded objects increases, the splitting gain under persistent connection and non-persistent

Table II. Throughput of files with different number of embedded objects (in the case of a cache miss).

No. of embedded Proxy-enabled Proxy-disabled
objects (bytes/s) (bytes/s) GoS

0 32124 12544 1.56
7 6027 3663 0.64
19 2701 2026 0.33

Table III. Throughput of files with different number of embedded objects (in the case of a cache hit).

No. of embedded Proxy-enabled Proxy-disabled
objects (bytes/s) (bytes/s) GoS

0 31451 15899 0.98
7 6006 3845 0.56
19 2772 2110 0.31

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

EVALUATION OF PERFORMANCE ENHANCING 527

connection starts to converge. The decreasing gain is due to the fact that the client requests each
object individually (although within the same connection) after receiving the base page.
Depending on the number of objects and the size of these objects, using end-to-end connection
could achieve very similar performance to that of a split connection. Here pipelining is not used.
Note that although we did not provide any measurement for the case of persistent connection
with pipelining, its effect can be predicted using Table V. When pipelining is used, all the
requests for embedded objects are sent at the same time after receiving the base page. This is
similar to having one large embedded object instead of many small ones. Using Table V as well
as Figure 13 (moving toward the left) we would expect pipelining to result in higher GoS.

Table IV. Comparison between splitting enabled and disabled with non-persistent connection.

No. of embedded objects 0 2 4 9 11 19 23

Throughput (kbytes/s) for non-persistent,
splitting disabled

7.30 5.00 3.54 3.00 2.36 2.12 1.91

Throughput (kbytes/s) for non-persistent,
splitting enabled

21.84 10.63 6.14 3.77 2.97 1.83 1.67

GoS 1.99 1.12 0.73 0.25 0.25 �0.13 �0.12

Table V. Comparison between splitting enabled and disabled with persistent connection.

No. of embedded objects 0 2 4 9 11 19 23

Throughput (kbytes/s) for persistent,
splitting disabled

6.99 5.95 4.23 3.95 4.09 3.95 3.44

Throughput (kbytes/s) for persistent,
splitting enabled

21.38 15.99 10.29 6.68 5.56 3.62 3.19

GoS 2.05 1.68 1.43 0.69 0.35 �0.08 �0.07

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

G
oS

16K, proxy disabled
16K, proxy enabled
65K, proxy disabled
65K proxy enabled
180K, proxy disabled
180K, proxy enabled

number of embedded objects

Figure 13. GoS with varying number of embedded objects.

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

N. EHSAN, M. LIU AND R. J. RAGLAND528

To better examine the effect of persistent connection we further define the Gain of Persistent
Connection (GoP) as follows:

GoP ¼
Throughputpersistent � Throughputnon-persistent

Throughputnon-persistent

Figures 14–16 show the GoP for three transfer sizes.

0 2 4 6 8 10 12 14 16 18

0

0.2

0.4

0.6

0.8

1

number of embedded objects

G
ai

n
of

 P
er

si
st

en
t c

on
ne

ct
io

n

proxy enabled
proxy disabled

Figure 14. GoP with total transfer size of 16 kbytes:

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of embedded objects

G
ai

n
of

 P
er

si
st

en
t c

on
ne

ct
io

n

proxy enabled
proxy disabled

Figure 15. GoS with total transfer size of 65 kbytes:

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

EVALUATION OF PERFORMANCE ENHANCING 529

The general observation from this set of figures is that using persistent connection provides
higher performance gain over non-persistent connection when the proxy is enabled. This can be
explained as follows. If we denote by dp and dn the total transfer delay when persistent
connection is used and non-persistent connection is used with the proxy enabled, then
approximately

dp ¼ dn � ðk � 1ÞRTT

where k is the number of objects, and RTT is the round trip time between the proxy and the
client, denoted by R2: This is because by using persistent connection we save one RTT per object
on connection establishment (without pipelining). This approximation also ignores the
connection between the server and the proxy. Therefore, we have

GoP ¼
1=dp � 1=dn

1=dn
¼

ðk � 1ÞR2

dp

Similarly for the proxy disabled case, we have

GoP0 ¼
ðk � 1ÞðR1 þ R2Þ

d 0p

where R1 is the RTT between the server and the proxy and d 0p is the total transfer latency when
using persistent connection with the proxy disabled. Since d 0p is much larger than dp for k not
too big, we have GoP > GoP0: As k increases, however, this relationship can reverse. Note that
the above analysis is much simplified for the purpose of illustrating the relationship only and not
intended to be rigorous.

Finally we compare non-persistent connection with proxy vs persistent connection without
proxy for a total file transfer size of 65 kbytes; as shown in Table VI (we did not compare
HTTP/1.0 when proxy is disabled vs HTTP/1.1 when proxy is enabled, as we do not see
particular interest in this case).

0 5 10 15 20 25
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

number of embedded objects

G
ai

n
O

f P
er

si
st

en
t C

on
ne

ct
io

n

proxy enabled
proxy disabled

Figure 16. GoS with total transfer size of 180 kbytes:

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

N. EHSAN, M. LIU AND R. J. RAGLAND530

We see that the gain from using connection splitting quickly becomes negative, i.e. split
connection results in smaller throughput than end-to-end connection. This shows that using a
persistent connection is far more important than connection splitting for a file that contains
multiple embedded objects (for even a relatively small number) since the time spent in
handshake in this case is significant over the satellite link. In other words, the gain from using
connection splitting cannot substitute for the performance improvement achieved by having a
persistent connection. Therefore, in an Internet over satellite system, configuring the browser to
run the default HTTP/1.0 with a connection splitting proxy would defeat the purpose of having
a proxy, unless all the files are pure text. It is thus crucial that a persistent connection be
established between the client and the proxy in such a system.

4. DISCUSSIONS AND CONCLUSIONS

In this paper, we examined the gain from using a TCP connection splitting proxy along with web
caching under various scenarios by taking measurements from a live commercial system. In
these experiments, not all parameters are controllable, e.g. the bit error rate over the satellite
link, the amounts of traffic and congestion in the network, etc. However, by properly isolating
elements that contribute to the result, not only does our measurement confirm earlier studies on
connection splitting, but it also revealed additional insights into the common performance
enhancing techniques used for Internet over satellite.

To summarize, connection splitting is a valid approach to improve TCP throughput and
reduce file transfer latency over the satellite. The performance gain increases as the file
size increases, but decreases as the number of embedded objects in the file increases. This
gain is also very sensitive to the number of simultaneous connections and to
congestion and packet losses, especially for small files. On the one hand having a cache
hit will alleviate such sensitivity, on the other hand using connection splitting proxy
enhances the benefit of caching. We also showed that although connection splitting improves
throughput, it is no substitute for persistent connection. The best performance is achieved
by using both the splitting proxy and persistent connection (HTTP/1.1) between the proxy
and the client.

By segregating an end-to-end connection into separate connection segments we have
shortened TCP feedback control loops. Thus for each of these connection segments we
have a smaller RTT and lower loss probability p comparing to the original end-to-end
connection. Since the TCP throughput is inversely proportional to RTT and

ffiffiffiffi
p

p
(see for

example, References [23,24]), having smaller connection segments naturally results in

Table VI. Comparison between splitting enabled with persistent connection and disabled with
non-persistent connection.

No. of embedded objects 0 2 4 9 11 19 23

Throughput (kbyte/s) for persistent,
splitting disabled

6.99 5.95 4.23 3.95 4.09 3.95 3.44

Throughput (kbyte/s) for non-persistent,
splitting enabled

21.84 10.63 6.14 3.77 2.97 1.83 1.67

GoS 2.03 0.94 0.54 �0.06 �0.47 �0.99 �0.93

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

EVALUATION OF PERFORMANCE ENHANCING 531

higher throughput. However, these segments are not completely un-coupled, and the slowest
segment will constrain the other segments and dominate the end-to-end performance. The proxy
cannot forward client data it has not received from the server. Therefore, if the proxy is
constrained by slow receiving then increasing the rate at which proxy receives will improve
the overall performance. This is why cache hits improve the throughput when the splitting
proxy is enabled. On the other hand if we only use the cache, we will have a cache–client
connection highly constrained by slow sending due to the large propagation delay. This is why
having a large initial window size over the satellite link is so important. Overall this illustrates
the importance of properly provisioning the proxy and the NOC, and the importance of
optimizing each split segment to reduce the asymmetry among them so that one is not
constrained by the other.

Our measurement and subsequent results are obtained from a live system, over which we have
limited control. These results therefore may reflect the combined effect of a range of factors. We
have considered the most prominent factor(s) and cause(s) for each of these results, but we
strongly believe that deriving a detailed quantitative analysis will help explain the exact role of
each factor and serve as good supplement to our measurement-based study. This is part of our
current research.

APPENDIX

Table A1. Files used for measurements.

File no. Type Size (kbytes) File no. Type Size (kbytes)

1 Full text 2.5 26 Full text 720
2 Full text 10 27 Full text 810
3 Full text 11 28 Full text 900
4 Full text 16 29 Full text 1000
5 Full text 20 30 2 Embedded objects 16
6 Full text 21 31 4 Embedded objects 16
7 Full text 28 32 9 Embedded objects 16
8 Full text 37 33 11 Embedded objects 16
9 Full text 40 34 15 Embedded objects 16
10 Full text 42 35 18 Embedded objects 16
11 Full text 53 36 2 Embedded objects 65
12 Full text 65 37 3 Embedded objects 65
13 Full text 77 38 4 Embedded objects 65
14 Full text 80 39 7 Embedded objects 65
15 Full text 93 40 9 Embedded objects 65
16 Full text 120 41 11 Embedded objects 65
17 Full text 152 42 18 Embedded objects 65
18 Full text 160 43 19 Embedded objects 65
19 Full text 168 44 23 Embedded objects 65
20 Full text 180 45 2 Embedded objects 180
21 Full text 240 46 5 Embedded objects 180
22 Full text 320 47 16 Embedded objects 180
23 Full text 480 48 21 Embedded objects 180
24 Full text 560 49 23 Embedded objects 180
25 Full text 640

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

N. EHSAN, M. LIU AND R. J. RAGLAND532

REFERENCES

1. Parsa C, Garcia-Luna-Aceves JJ. Improving TCP performance over wireless network at the link layer. Mobile
Networks and Applications 2000; 5(1):57–71.

2. Parsa C, Garcia-Luna-Aceves JJ. TULIP: a link-level protocol for improving TCP over wireless links. Proceedings of
IEEE WCNC’99, 1999; 1253–1257.

3. Ratnam K, Matta I. WTCP: an efficient mechanism for improving TCP performance over wireless links. Proceedings
of IEEE ISCC, 1998; 74–78.

4. Ratnam K, Matta I. Effect of local retransmission at wireless access points on the round trip time estimation of TCP.
Proceedings of 31st Annual Simulation Symposium, 1998; 150–156.

5. C!aaceres R, Iftode L. Improving the performance of reliable transport protocol in mobile computing environments.
IEEE Journal on Selected Areas in Communications 1995; 13(5):850–857.

6. Vaidya NH, Mehta M, Perkins C, Montenegro G. Delayed duplicated acknowledgments: a TCP-unware approach
to improve performance of TCP over wireless. Technical Report 99-003, TAMU, 1999.

7. Biaz S, Vaidya NH. Discriminating congestion losses from wireless losses using inter-arrival times at the receiver.
Proceedings of IEEE ASSET, 1999; 10–17.

8. Balakrishnan H, Seshan S, Amir E, Katz RH. Improving TCP/IP performance over wireless networks. ACM/IEEE
International Conference on Mobile Computing and Networking (MobiCom’95), vol. 2(11), 1995.

9. Balakrishnan H, Padmanabhan VN, Seshan S, Katz RH. A comparison of mechanisms for improving TCP
performance over wireless links. IEEE/ACM Transactions on Networking 1997; 5(6):756–769.

10. Badrinath BR, Sudame P. To send or not to send: implementing deferred transmissions in a mobile host. Proceedings
of IEEE ICDCS, 1996; 327–333.

11. Bharadwaj VG. Improving TCP performance over high-bandwidth geostationary satellite links. Technical Report,
MS 99-10, Institute for Systems Research, University of Maryland, College Park, 1999, http://www.isr.umd.edu/
TechReports/ISR/1999/.

12. Bakre A, Badrinath BR. I-TCP: indirect TCP for mobile hosts. Proceedings of IEEE ICDCS, 1995; 136–143.
13. Bakre AV, Badrinath BR. Implementation and performance evaluation of indirect TCP. IEEE Transactions on

Computers 1997; 46(3):260–278.
14. Allman M, Dawkins S, Glover D, Tran D, Henderson T, Heidemann J, Touch J, Kruse H, Ostermann S, Scott K,

Semke J. Ongoing TCP research related to satellites. IETF RFC 2760, 2000.
15. Karir M. IPSEC and the internet. Technical Report MS 99-14, Institute for Systems Research, University of

Maryland, College Park, 1999, http://www.isr.umd.edu/TechReports/ISR/1999/.
16. Ishac J, Allman M. On the performance of TCP spoofing in satellite networks. IEEE Milcom, 2001.
17. Rodriguez P, Sibal S, Spatscheck O. TPOT: translucent proxying of TCP. Technical Report, AT & T labs-Research

and EURECOM Technical Report, 2000.
18. Liu M, Ehsan N. Modeling TCP performance with proxies. International Workshop on Wired/Wireless Internet

Communications (WWIC), in conjunction with International Conference on Internet Computing (IC’02), June 2002.
19. Mathis M, Mahdavi J, Floyd S, Romanow A. TCP selective acknowledgement options. IETF RFC 2018, 1996.
20. Balakrishnan H, Padmanabhan VN, Katz RH. The effects of asymmetry on TCP performance. ACM/IEEE

International Conference on Mobile Computing and Networking (MobiCom’97), 1997; 77–89.
21. Berners-Lee T, Fielding R, Frystyk H. Hypertext transfer protocol – HTTP/1.0. IETF RFC 1945, 1995.
22. Fielding R, Gettys J, Mogul J, Frystyc H, Berners-Lee T. Hypertext transfer protocol – HTTP/1.1. IETF RFC 2068,

1997.
23. Padhye W, Firoiu V, Towsley DF, Kurose JF. Modeling TCP reno performance: a simple model and its empirical

validation. IEEE Transactions on Networking 2000; 8(2):133–145.
24. Lakshman TV, Madhow U, Suter B. TCP performance with random loss and bidirectional congestion. IEEE

Transactions on Networking 2000; 8(5):541–555.
25. Heidemann J, Obraczka K, Touch J. Modeling the performance of HTTP over several transport protocols. IEEE/

ACM Transactions on Networking 1997; 5(5):616–630.
26. Nielsen HF et al. Network performance effects of HTTP/1.1, Css1, and PNG. Technical Report 1997, http://

www.w3.org/TR/NOTE-pipelining.

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

EVALUATION OF PERFORMANCE ENHANCING 533

AUTHORS’ BIOGRAPHIES

Mingyan Liu (S’96-M’00) received the BS degree in electrical engineering from the
Nanjing University of Aero. and Astro., Nanjing, China, in 1995, MS degree in
systems engineering and PhD degree in electrical engineering from the University of
Maryland, College Park, in 1997 and 2000, respectively.

She joined the University of Michigan, Ann Arbor, in September 2000, and is
currently an Assistant Professor with the Department of Electrical Engineering and
Computer Science. Her research interests are in performance modelling, analysis,
energy efficiency and resource allocation issues in wireless mobile ad hoc networks,
wireless sensor networks, and terrestrial/satellite hybrid networks.

Roderick J. Ragland (S’78-M’78) received the BS degree in computer engineering
from the University of Michigan, Ann Arbor, in 1978 and the MS degree in
Electrical Engineering from the Georgia Institute of Technology, Atlanta, in 1979.

From 1979 to 1980 he was with AT&T Bell Laboratories in Naperville, IL. From
1980 to 1985 he was with Tellabs Incorporated in Lisle, IL. From 1985 to 1990 he
was with the Gould Research Centre, which was acquired by the Martin Marietta
Aero and Naval Division in Glenn Burnie, MD, in 1986. From 1990 to 1997 he was
with COMSAT Laboratories. While at COMSAT Laboratories, he was a scientist in
the Voice-Band Processing Department, developing real-time hardware and software
applications of digital signal processing, speech and bilevel image transmission over
satellite networks, secure communications, and digital filtering. During his final

years at COMSAT Laboratories, he worked in the Network Technology Group developing real-time
Internet applications for the company’s next generation satellite Very Small Aperture Terminal (VSAT)
product. Presently, he is a Technical Director with Hughes Network Systems in Germantown, MD
developing software applications for the company’s DIRECWAY 2-way satellite network products. His
research and development interests include computer network traffic management; congestion controls and
traffic engineering for satellite related data networks.

Navid Ehsan was born in Tehran, Iran on 23 September 1976. He received his BS in
Electronics Engineering in 1998 and MS in Communications in 2002 from Sharif
University of Technology and University of Michigan, respectively. He is currently a
PhD student working on bandwidth allocation in satellite networks at university of
Michigan.

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2003; 16:513–534

N. EHSAN, M. LIU AND R. J. RAGLAND534

