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Abstract  
 
   In this paper, we model multi-dimensional QoS in a unified 
framework, and study some fundamental constraints from the 
network and the traffic on realizing multiple QoS goals. Multi-
dimensional QoS requirements are quantitatively represented 
using a QoS region. Based on the theory of effective bandwidths, 
the framework connects the throughput, the delay, and the loss 
rate in a uniform formula. Important traffic and network factors, 
namely, the burst size and the link speed are involved. With this 
framework, it is found that the burst size sets hard limit on the 
QoS region that can be achieved, and that the matching 
between the link speed and the node processing power can 
greatly improve the limit. It is also made clear that while pure 
load imbalance among links does not affect the QoS region, the 
heterogeneities of burst size or link speed may severely degrade 
the QoS performance. Applying the theory to real-time services 
in differentiated services architecture, we show it provides a 
useful tool for QoS prediction and network dimensioning. 
 

1. Introduction 
 
   The Internet is accommodating more and more services to 
support different applications and fulfill different needs of users. 
An important issue with the multiple service networks is to 
provide multi-dimensional quality of service (QoS) for different 
services in the same infrastructure. Because of the conflicts 
between QoS goals and the complexity of the service setting, 
this is a challenging problem. 
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   There has been continuing effort on QoS research for Internet. 
Huge literature exists with regard to QoS mechanisms, such as 
the packet scheduling in the router [16], the admission control 
at network edge [13], and the rate adaptation in the end system 
[10]. Although great achievement has been made, much of the 
work either focuses on a single QoS dimension [7] [14] [15] 
[17] 18] [19] like the delay, the throughput, or the loss rate, or is 
dedicated to design of architectures or algorithms [4] [9] [10] 
[13]. Not much effort has been put on considering multiple 
dimensions as a whole, examining inherent relations between 
them, discussing the nature of their conflicts, and evaluating the 
conditions of the network and the traffic to realize multiple QoS 
goals altogether. With increasing demands on multi-
dimensional QoS, it is necessary to address these issues in a 
unified framework. 
   Paper [1] demonstrates some examples that multi-
dimensional QoS requirements may not be satisfied when we 
expect they are. An extreme case for real-time services in the 
differentiated services (DS) networks is given in [3], in which 
simultaneous arrivals of bursts severely delay some packets in a 
node and the delay accumulates exponentially with the number 
of hops. This case may be tolerated in practice with statistical 
QoS. However, we need find out what we can gain by 
sacrificing the loss rate, and in what conditions the real-time 
deadline can be fulfilled with an acceptable loss rate and a 
reasonable throughput. To do this, a model formally connecting 
multiple QoS dimensions seems to be indispensable. 
   In this paper, we make an attempt to formulate such a 
framework. We use a QoS region to quantitatively represent 
multi-dimensional QoS goals.  Relations between different QoS 
dimensions are established through the theory of effective 
bandwidths. With this framework we explore some 
fundamental conditions imposed by the traffic and the network 



 

on realizing multi-dimensional QoS. These are basic constraints 
in the sense that they set the limit for the performance that any 
packet scheduling algorithm or traffic shaping algorithm can 
achieve, and that they should count in even the preliminary 
network dimensioning to supply QoS. How the traffic and the 
network factors affect multiple QoS dimensions at the same 
time are displayed as well. 
  The rest of the paper is organized as follows. In Section 2 the 
QoS region is defined. In Section 3 the establishment of 
relations between different QoS dimensions is presented. 
Section 4 to Section 7 are dedicated to conditions and effects of 
the traffic and the network in supporting multi-dimensional 
QoS. Among them Section 4 is for the burst size, Section 5 is 
for the link speed, and the Section 6 is for traffic and link 
heterogeneities. Section 7 gives an example applying the theory 
in DS networks. Section 8 concludes the paper. 
 

2. The Multi-Dimensional QoS Region 
 
   We use the multi-dimensional QoS region to represent the 
multiple QoS requirements quantitatively. Assume there are N 
QoS indices R1, R2, …, RN, which may represent the throughput, 
the loss rate, and the delay, etc. An index Ri has a value scope of 
Ii = [MINi, MAXi]. All possible values of these indices form a N-
dimensional space S(R1, R2, …, RN). A particular QoS 
requirement ri is specified in the form ri = [mini, maxi], where 
[mini, maxi] ⊆ Ii is a valid sub-section of Ii. For example, we can 
require that the throughput should not be less than 80% by 
specifying r1 = [0.8, 1.0]. A QoS region Q(r1, r2, …, rN) is a N-
dimensional sub-area in S(R1, R2, …, RN) where all QoS 
requirements r1, r2, …, rN are satisfied at the same time. Since 
multiple QoS requirements compete limited network resources 
to get satisfied, Ri’s satisfaction means less resource available 
for Rj (j ≠ i). So it holds that Q(r1, r2, …, rN) ⊂ S(R1, R2, …, RN) 
for practical networks. 
   In this paper we focus on three most important QoS 
dimensions, the throughput ρ, the loss rate ϕ, and the delay π. 
In particular, we are most interested in the real-time services, 
which have strict requirements on all three dimensions. The 
principles in this paper generally apply to the best-effort and the 
elastic services as well. For the real-time services, the most 

critical QoS requirement is the delay. If the end-to-end delay of 
a packet goes beyond a deadline, the packet becomes useless. 
On the other hand, it is not necessary, though preferred, to take 
much effort to reduce the delay further when the deadline is 
satisfied. Because of this, we can first establish a basic 
condition to fulfill the delay requirement, and then examine 
factors that affect the throughput and the loss rate - it is always 
meaningful to improve the later two. This is a philosophy 
behind the approach we use to establish the conditions for 
multi-dimensional QoS in following Sections. 
   One QoS region of common interest is Q c = Q([ρc, 1.0], [0, 
ϕc], [0, πc]), meaning the throughput is not less than ρc, the loss 
rate is not greater than ϕc, and the delay is not beyond πc. It is 
simply denoted as Qc(ρc, ϕc, πc) provided there is no confusion. 
If only one point within a QoS region can be realized, the 
region is said to be reachable; otherwise, unreachable. When 
the delay requirement πc is configured as default, as for the real-
time services, the notation of Qc(ρc, ϕc, πc) is further simplified 
as Qc(ρc, ϕc). The QoS region Qc(ρM, ϕc) where ρM = max{ρ | ϕ 
≤ ϕc} is called the premium QoS region at loss rate ϕc, meaning 
it has the biggest throughput when the loss rate is no greater 
than ϕc. For comparison purposes, it is convenient to define 
QoS regions bounded with the loss rate ϕc = e-k, k = 0, 1, 2, …. 
We call Qc(0, e-k) the k-th QoS region, and denote it as Qk. The 
throughput ρk = max{ρ | ϕ ≤ e-k} can be used to measure the 
scope of the region, and is called the size of Qk. 
 

3. Relating Multiple QoS Dimensions 
 
   As we have suggested in Section 2, the three dimensions of 
QoS goals conflict with one another. We need to find out 
relations between them, and identify key factors to fulfill them 
altogether. This is through the theory of effective bandwidths. 
Before starting to establish the relations, we first introduce the 
traffic model assumed in the analysis. 
 
3.1. The Bursty Traffic Model 
 
   The traffic model we have in mind is a very general one. We 
view the traffic as a series of bursts, separated by idle periods. 
For simplicity, assume the burst arrivals are of a Poisson 



 

process with average rate ν, and the burst size is exponentially 
distributed with mean b. However, the principle in this paper 
can be easily extended to any bursty traffic model with explicit 
effective bandwidth (see Section 3.2). When passing through a 
link, the burst series appears to be a Markovian on-off process 
[2]. The sum of means of the on and the off periods is T = 1/ν. 
Assume the link speed is h. Then the means of the on and the 
off periods are the following: 
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A feature of this model is that it involves the burst size and the 
link speed. This turns out to be important in finding out the 
traffic and network constraints on multi-dimensional QoS, as 
we will show later. 
   We consider the network node in figure 1, in which traffic is 
fed from n links to a single-server infinite FIFO queue. 
Denoting the load on link i is ri, we represent the throughput of 
the node, ρ, as the system utility 
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where C is the queue service rate. It is also referred to as the 
network utility sometime in this paper. If the traffic on all input 
links is homogeneous, i.e., it has the same b and T for every link, 
then the throughput is 
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Given throughput ρ and burst size b, T can be represented as 
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So (3.1-2) becomes 
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In (3.1-6) the traffic parameter λ is expressed with link speed h, 
throughput ρ, and burst size b. This indicates the traffic and the 
network are correlated in one aspect. 

 
 
 
 
 
 
 
 
 
 
3.2. Effective Bandwidth 
 
   In this part we give some background information about the 
theory of effective bandwidths [5] [6] [8] [12] [21]. Let W(t) be 
the amount of traffic during the period [0, t]. The effective 
bandwidth is defined as the following 

     ∞<<=Α tseE
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ts tsW ,0][log1),( )(     (3.2-1) 

It turns out that for any fixed t, Α(s, t) is between the average 
traffic rate and the peak rate. Intuitively, if the traffic is 
furnished with the bandwidth equivalent to the peak rate, there 
would be a bandwidth waste. However, if the bandwidth just 
equals the average rate, the performance may be very bad 
because of the burstiness of the traffic. The effective bandwidth 
provides a good reference point for the bandwidth needed to 
realize certain performance level. The effective bandwidth has 
some good properties. One of them is the additivity. If n flows 
of traffic are independent, and the effective bandwidth of the i-
th low is αi(s, t), then the effective bandwidth of the aggregate 
traffic is 
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Extensive discussions and examples about the effective 
bandwidth can be found in [12]. 
  
3.3. Establishing Relations Between QoS Dimensions 
 
   In this part we establish relations between three most 
important QoS dimensions, the throughput, the delay, and the 
loss rate. Assume a network node dedicates bandwidth C to 

Fig. 1. A Network Node 



 

real-time services, and the nodal deadline for packets of the 
services is πc = D. We get a critical queue length 

DCqD ⋅=                 (3.3-1) 

All packets beyond this point in the queue violate their 
deadlines and can be dropped. In the following part of the paper, 
the violation rate and the loss rate are thought of as being 
equivalent. According to the theory of effective bandwidths, the 
probability that the queue length is greater than qD for 
Markovian traffic can be estimated as 

δϕ Dq
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where δ is a constant satisfying certain condition which we will 
explain shortly. (3.3-2) actually establishes the relation between 
deadline D and loss rate ϕ. Increase of D can make ϕ decrease 
exponentially. 
   We need to bring the throughput ρ into the senario. It turns out 
that ρ is implied in δ, and (3.3-2) is a unified formula involving 
three QoS dimensions. We will show this in the rest part of this 
Section. We are interested in the steady packet loss behavior 
when t → ∞. According to the effective bandwidth theory, δ 
satisfies the following condition when t → ∞: 
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where Α(s) is 
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We call the inequality within the curly bracket on the right hand 
side of (3.3-3) the effective bandwidth condition. It is a 
fundamental constraint that must be enforced to get statistical 
QoS. 
   It has been shown that for a Markovian traffic source with 
two states ON and OFF, the effective bandwidth is [12] 
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where µ and λ are the transition rates from ON state to OFF 
state and from OFF state to ON state respectively, and h is the 
traffic rate in the ON state. From the probability theory, this is 
equal to say that the means of the on and the off periods are 1/µ 
and 1/λ if they are exponentially distributed. So the (3.3-5) 
applies to the fluid bursty traffic model in Section 3.1 as well. h 

is just the speed of the link where the traffic is passing. With the 
additive property of the effective bandwidth, the aggregate of 
homogeneous traffic input to the node has the following 
effective bandwidth 

)()( sns αΑ =                 (3.3-6) 

where α(s) is the effective bandwidth of the traffic on one link. 
   Now we will find out how δ is related with ρ. From (3.3-3), δ 
is the maximum value of s satisfying the effective bandwidth 
condition. From formula (3.3-3), (3.3-5), and (3.3-6), we get 
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It is  
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Square both sides in above inequation, and we get 
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Developing the square on the right side, and moving the terms 
to the left side, we get 
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We know s > 0. So 
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Assume h ≥ C/n (Then h < C/n is trivial, in which no queue 
exists at all), the left side of the ineqation is non-negative. So 
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Rewrite it as 

)11(
11
µλ

µλµ
+

⋅−
−
+

≤
h

n
C

n
Ch

s              (3.3-13) 

From formula (3.1-1), (3.1-2), and (3.1-5) we know 
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From formula (3.1-1) we also know 
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Substituting for (3.3-14) and (3.3-15) in (3.3-13), we get 
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With formula (3.1-1) and (3.1-6) we have 
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Bring it into (3.3-16), and we finally get 
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Thus we get the relation between δ  and ρ.  
    (3.3-2) and (3.3-18) are key formulas in this paper. They 
establish the relation between three QoS dimensions, the loss 
rate ϕ, the throughput ρ, and the delay deadline D. This 
quantitative formulation clarifies the intuitive relations among 
conflicting QoS dimensions. It shows that while the increase of 
the deadline allows the loss rate to decrease exponentially, the 
relation between the loss rate and the throughput is more 
complex. As we see, the equation includes network parameter h 
and traffic parameter b in addition to the QoS indices. This 
indicates that the relations between QoS dimensions depends 
on network and traffic factors, and enables us to find out critical 
conditions for realizing multi-dimensional QoS goals, as we 
will do in next several Sections. 
 

4. Effects of the Burst Size 
 
   It has been well known that the burst size of the traffic affects 
the network performance significantly. In this Section we will 
analyze it from the prospective of multi-dimensional QoS and 
see what limitations it impose on the QoS behavior. Assume 

link speed h → ∞, thus every burst arrives immediately once it 
is generated. This is the worst case that produces the higher 
bound of the packet loss rate. 
 
4.1. Burst Size Constraints 
 
   Theorem 4.1: In a high-speed network (h → ∞), for given 
burst size b, the loss rate for the real-time services with 
deadline D can not be lower than the following limit 
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   Proof: When h → ∞, (3.3-18) becomes 
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From (3.3-2) the packet loss rate is 
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Obviously, 
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   Theorem 4.1 indicates b sets a lower bound for the loss rate; if 
b is big enough, almost all packets will get lost (ϕ → 1 when b 
→ ∞). However, when b → 0, ϕ → 0. This means if b is small 
enough, the packet loss rate can be arbitrarily low for any 
throughput. So b has critical affect on the QoS behavior of a 
node. 
   Let us represent b in terms of the size of qD and let 

b
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Figure 2 shows the relation between ϕ and ρ for different w. 
The curves mark the lower limits of ϕ in different ρ. The 
intersection points of the curves with the y-axis indicate the 
lower bounds of loss rates that can never been overcome. For 
example, if b ≥ qD/2 (or w ≤ 2), then there always be ϕ ≥ e-2 ≈ 
13.5%. It is disappointing that ϕ increases exponentially with 
the increase of ρ. This means the cost will be high if we want to 
improve throughput by allowing some packet loss rate.  
   The change of ϕ with b is directly shown in figure 3. We can 
see that the smaller the b is (or the bigger the w is), the lower 
the ϕ is. In another word, decreasing b can make ϕ decrease to 



 

an acceptable level. In general ϕ decreases quickly with the 
decrease of b (or the increase of w in the figure). Halving the 
burst size can significantly improve the QoS performance. 
   Theorem 4.2: In a high-speed network (h → ∞), for the real-
time services with deadline D, a QoS region Qc(ρc, ϕc) is 
reachable only if the burst size satisfies the following condition 
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   Proof: This is a direct result from (4.1-3). 
 
   Though simple, this burst size condition is physically 
important. For example, in figure 2 the area ABCD indicates a 
QoS region Qc(0.7, 0.3). This goal can not be realized if only b 

> qD/4, namely, w < 4. The condition sheds light on the design 
of the traffic shaper. 
 
4.2. Scaling QoS Regions 
 
   The curve l in figure 4 shows the relation between ϕ and ρ for 
certain burst size. The k-th QoS region Qk is an area in the up-
left part above l. For example, the whole area ABlCA is Q0, the 
area DElCD is Q1, and the area FGlCF is Q2. Q1 is also called 
the basic QoS region. As we mentioned in Section 2, the size of 
Qk can be measured with maximum throughput of the region, 
ρk. 
   For the k-th QoS region, from formula (4.1-3) we get 
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So the size of Qk is 
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As an example, for a given w, the basic QoS region can not be 
larger than 

w
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Formula (4.2-2) shows clearly that QoS regions shrink linearly 
with the increase of b, as illustrated in figure 5. Assume the k-th 
QoS region changes from ρk to ρ′k when the bust size changes 
from b to b′, from (4.2-1) we can get 
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   Formula (4.2-2) also suggests another form of the burst size 
condition. Given an arbitrary ρk as a pre-defined k-th region, we 
can get a higher bound of b to make it reachable:  
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4.3. Marginal Cost of Statistical QoS 
 
   We define the marginal cost of statistical QoS as the 
maximum increase of ϕ caused by unit increase of ρ in the k-th 
QoS region. From formula (4.1-3) we can get 
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When ρ = ρk we have 
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We see the cost becomes higher with the decrease of b, though 
the decrease enlarges the k-th QoS region. 
   For a predefined size of Qk, ρk, with formula (4.2-2) we have 
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As an example, for Q2 with ϕ = e-2 ≈ 0.135, we have  
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This means the cost of statistical QoS is generally very high for 
a reasonable QoS region. 
   Above analyses in this Section are based on the assumption of 
h → ∞. The change of h, however, also has impact on the QoS 
region. When h < ∞ a better performance can be expected, as 
we will analyze next. 
 

5. Effect of the Link Speed 
 
   Figure 6 illustrates the relation between ϕ and ρ for different h 
given other parameters. (The parameters are set as D = 4.8ms, 
C = 10Mbps, b = 600Bytes, and n = 10). We see that ϕ is much 
higher for large h than for small h. When h is comparable to C/n, 
ϕ is low even for a high throughput. This indicates that just 
lowering the input link speed to C/n may improve the QoS 
performance significantly. 
   Theorem 5.1: Given deadline D and burst size b, when h → ∞, 
the premium QoS region at loss rate e-k, k = 0, 1, 2, …, is Qc(1-
kb/qD, e-k); when h = C/n, it is Qc(1, e-k), i.e., any valid QoS 
region is reachable. 
   Proof: As we mentioned in Section 4, when h → ∞, (4.1-3) 
holds. Let ϕ  = e-k in it, we get ρ  = 1-kb/qD, which is also given 
in (4.2-2). It is easy to see that this value is the biggest one that 
ρ can expect when ϕ ≤ e-k, because from (4.1-3) ϕ is a 
monotonically increasing function of ρ. So Qc(1-kb/qD, e-k) is 
the premium QoS region at ϕ  = e-k. 
   When h = C/n, from (3.3-18) δ  = 0, then ϕ  = 0, ∀ρ ≤ 1.  So 
the premium QoS region at any ϕ  > 0 is Qc(1, ϕ). 
 
   Theorem 5.1 indicates that if the link speed is as low as C/n, 
the throughput can be arbitrarily high, and the loss rate can be 
arbitrarily low. The change of ϕ with h is shown directly in 
figure 7. We see the increase of input link speed from C/n 
quickly damages the QoS performance. The figure also shows 
that the higher the ρ is, the more sensitive the ϕ is to the change 
of h. 
   The reason why the link speed has critical effect on the node’s 



 

QoS behavior is this: the link can be viewed as a traffic shaper. 
If the link speed is too fast, it has no shaping effect at all, and 
the bursty traffic has a potential to “stuff” the node. By contrast, 
if the link is slow, it can smooth the burst traffic before it is fed 
into the node. When h is as low as C/n, all bursts are completely 
smoothed. If h is even lower than C/n, however, the system 
efficiency decreases because the node processing power is 
wasted. In summary, the matching between the link speed and 
the node processing power produces the biggest premium QoS 
region and highest system efficiency.  
    The traffic shaping effect of the link has impacts on the effect 
of b. Keeping ρ  = 0.98, figure 8 illustrates the how ϕ increases 
with h for different b. In the figure, b is given in the form of w, 
as defined in formula (4.1-4). We can see that the smaller the b 

is, the less the h affects on the ϕ. When b is small enough (w ∼ 
100), even big h does not worsen ϕ much. From the point of 
view of traffic shaping, a traffic shaper has a shaping region. It 
only smoothes the traffic that has a bursty level above a 
threshold. When b is small, the traffic is already smooth. So the 
shaping of the link does not make much sense. This conforms 
to the result in Section 4. 
   The shaping effect of the link also helps enlarge the QoS 
regions. Denote 

h
nC /

=η                    (5-1) 

Obviously,  

1≤η                     (5-2) 
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We call η the link utilization. When C/n is fixed, η can be used 
as an indicator of the link speed. The faster the link is, the lower 
η is. Rewrite formula (3.3-18) as 

b
ρ

ηρη
δ −

⋅
−−

=
1

)1)(1(
1

                 (5-3) 

Denote 
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We have 
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We call γ the shaping factor. It is a good indicator of the shaping 
effect of a link. γ → ∞ means the traffic is completely shaped; γ 
= 1 indicates there is no shaping effect. From (3.3-2), (5-3), and 
(5-4), we get 

)1( ρ
γ

ϕ
−−

≈
Dq

be     (5-6) 

Assume the k-th QoS region is ρ′k when the shaping factor is γ. 
So we get 

k
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Compare (5-7) with (4.2-1) we get 
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With this formula we can calculate the enlarged k-th QoS 
region. This formula applies to any order of QoS regions. As an 
example, when η = 0.2, if the old k-th QoS region has a size ρk

 

= 0.8 (whatever k is), then the new k-th region is ρ′k ≈ 0.87. 
Note that γ is ρ related when applying the formula. 
   Above we have shown the critical effect of the link speed on 
the QoS behavior. However, it should be pointed that in real 
networks the contribution of the link as a traffic shaper may be 
very limited. In fact, the shaping factor γ decreases very quickly 
with the increase of the link speed. Figure 9 shows the change 
of γ with h. We can see that for ρ = 0.84 γ decreases from ∞ to 
only 3.45 as the link speed doubles from C/n (or η decreases by 

half from 1.0). It is common that in core networks η is less than 
0.5. So the shaping effect of the link is not always visible, and 
the results for h → ∞ in Section 5 are generally good 
approximations in real networks. 
 

6. Effects of Traffic and Link Heterogeneities 
 
   In this Section we will see the QoS behavior for 
heterogeneous traffic and heterogeneous links.  
 
6.1. Load Imbalance 
 
   Theorem 6.1: If all input links have the same speed and their 
traffic has the same burst size, then load imbalance among the 
links does not change the QoS region of the node. 
   Proof: We consider the effect of load imbalance on QoS 
region by comparing it with the case of load balance. Denote 
the total traffic load as R. In the case of load balance, the load 
on each link is 

T
b

n
Rr ==                 (6.1-1)    

Thus 

R
nbT =                 (6.1-2)    

We know that the arrival of bursts on each link is a Poisson 
process. With the superposition property of the Poisson process 
[22], the superposition of n independent Poisson processes is 
still a Poisson process. The average interval between successive 
bursts in the overall traffic is  

R
b

n
TTall ==                 (6.1-3)    

In the case of load imbalance, we assume n1 links out of n each 
has a traffic load of r1, and the other n2 = n - n1 links each has a 
traffic load of r2, where r1 ≠ r2. But the total load is the same, 
namely, 

2
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1
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T
bnrnrnR +=+=              (6.1-4)    

Again, from the superposition property of Poisson process the 
overall traffic is a Poisson process. The inter-arrival time of the 
resulting traffic, T′all, satisfies the following relation 
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But from (6.1-4) we know 
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So 

allall T
R
bT ==′                 (6.1-7)    

This means that we can not really distinguish the overall input 
traffic in the load imbalance scenario from that in the load 
balance scenario. They are statistically identical (the traffic is 
fully characterized by b and T). Therefore, load imbalance 
between input links does not affect the system’s QoS region. 
 
 
6.2. Burst Size Heterogeneity 
 
   Assume the traffic on n1 links has a burst size of b1, and the 
traffic on the other n2 = n - n1 links has a burst size of b2. 
Without losing generality, suppose b1 > b2. We will analyze 
whether this burst size heterogeneity affects the QoS behavior. 
Assume all links have equal speed h and equal traffic load r.  
Denote 

n
n1=β                 (6.2-1)    

So  

βnn =1                 (6.2-2)    

)1(12 β−=−= nnnn                (6.2-3) 

Obviously, when β = 0 or 1, traffic on all links is homogeneous 
with burst size b2 or b1. It is easy to see that their k-th QoS 
regions have the following relation 
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More specifically, with (4.2-4), the Qk’s sizes have the 
following relation 
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For the same load, from (3.3-2) and (3.3-18) the loss rates differ 
in this way 
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When β increases from 0 to 1, the overall traffic is a mixture of 
bursts of size b1 and b2. The packet loss rate ϕ changes from 
ϕ|β=0 to ϕ|β=1. It turns out that the relation between ϕ and β 
when 0 < β < 1 is a very complex nonlinear one, which we will 
address elsewhere. In most practical cases, ϕ falls between ϕ|β=0 
and ϕ|β=1. Hence we can roughly evaluate the effect of burst 
size heterogeneity from ϕ|β=0 and ϕ|β=1. From (6.2-5) and (6.2-6) 
we can see that if b2 << b1, the difference between the two QoS 
regions are big. So the degree of heterogeneity has significant 
affect on the QoS behavior. If, however, b2 and b1 are both very 
small and comparable, the QoS behavior would be rather 
insensitive to the change of β. 
 
6.3. Link Heterogeneity 
 
   Suppose n1 links each has a speed of h1, and the other n2 = n - 
n1 links h2. Without losing generality, let h1 > h2. Assume the 
traffic is homogeneous on all links. Again, denote β = n1/n. 
Similarly, we get 

12
|||| 10 hhkkhhkk QQQQ ==== =⊃= ββ         (6.3-1) 

For the same load, from (3.3-2) and (3.3-18) the relations 
between the loss rates are not linear, but the following holds 

10 || == < ββ ϕϕ                 (6.3-2) 

When β increases from 0 to 1, ϕ changes from ϕ|β=0 to ϕ|β=1 in a 
very complex nonlinear way. But for practical cases, we can 
still view ϕ|β=0 and ϕ|β=1 as the bounds of ϕ. From figure 7 we 
can see that if h2 is small compared with C/n but h1 is very big, 
the difference between from ϕ|β=1 and ϕ|β=0 is large. Then the 
QoS behavior is sensitive to the change of β. If, however, both 
h1 and h2 are big, the heterogeneity does not matter much. The 
effect of link heterogeneity also depends on the throughput. It is 



 

important only when the traffic load is high. The burst size b 
modulates the effect of link heterogeneity, too. As we know 
from Section 3.1, if b is small enough, the loss rate ϕ is very 
low even for h → ∞. In that case the link heterogeneity is not 
important. 
 

7. An Example 
 
   Figure 10 shows a part of a backbone network where optical 
links of speed 2.5Gbps are connected to 100Mbps fast Ethernet 
networks through router A, B, and a link of 155Mbps. Assume 
there are ten 2.5Gbps links connected to router A. In general, 
router A is a communication bottleneck. Assume the network is 
DS-capable and router A implements two EF PHBs [11], one 
for the voice service and one for the video service. As defined 
in [11], an EF PHB is a router mechanism in the DS network to 
support real-time services. It ensures that the EF packets are 
serviced at a given output interface with a rate no less than their 
arrival rate. In this sample, the bandwidth shares of the voice 
and the video services are 10Mbps and 50Mbps, respectively. 
Each input optical link can collect up to 1Mbps voice traffic and 
5Mpbs video traffic. We now analyze the QoS behaviors of 
router A for these services with the theory in this paper, and 
compare them with the simulation results with the simulator 
NS-2 [23]. 
   It is reasonable to assign a nodal deadline D = 3 ms for the 
voice service, for normally the end-to-end deadline is in the 
range of 10 ms ~ 40 ms [3]. Set b = 60 bytes. From the network 
configuration we know C = 10 Mbps, h = 2.5 Gbps, and n = 10. 
From formula (3.3-1), the maximum allowable queue size is qD 

≈ 3840 bytes. With (3.3-2) and (3.3-18), we get the relation 
between ϕ and ρ for the voice service: 

ρ
ρ

ϕ 0004.01
)1(525.62

−
−

−

≈ e    (7-1) 

It is illustrated in figure 11. From (3.3-1) and (4.1-4) we can get 
w = 62.5. With formula (4.2-2) we know the size of the k-th 
QoS region is 

5.62
1 k

k −=ρ     (7-2) 

For example, ρ1 = 0.984, ρ2 = 0.968, ρ3 = 0.952, and ρ4 = 0.936. 
In particular, we notice that the premium QoS region at loss rate 
e-4 ≈ 1.83% is Qc(93.6%, 1.83%). So this system can provide 
very good QoS for the voice service.  
   Viewing a packet as a burst, with formula (4.2-4) we can see 
how different packet sizes affect the QoS. 
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Figure 12. shows the change of ρk with the burst size. We see 
that when the burst size is 300 bytes, ρ4 decreases to 68%. This 
suggests that the maximum packet size should not be above 300 
bytes to achieve reasonable QoS. 
   Now for the video service we choose the nodal deadline as D 
= 6 ms, and the average burst size b = 1 KB. The bandwidth 
share is C = 50 Mbps. In a similar way, we can get the QoS 
behavior for this service: 
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It is also illustrated in figure 11. The size of Qk is  

5.37
1 k

k −=ρ     (7-5) 

So we get ρ1 = 0.973, ρ2 = 0.947, ρ3 = 0.92, and ρ4 = 0.893. The 
premium QoS region at loss rate 1.83% is Qc(89.3%, 1.83%). 
Though smaller than that of the voice service, it is still 
satisfactory. The change of ρk with the burst size is 
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It is illustrated in figure 13. We see ρ4 can increase to 98.7% if 
the packet size decreases to 500 bytes, which is excellent. 
   To validate above analyses, we compare the QoS behaviors 
with the simulation results. In the simulations, we use a class-
based WFQ to share bandwidth among different services. There 

2.5G 

155M

100M 

A B

Fig. 10. Sample Network with EF PHBs for 
Voice and Video Services 



 

are totally three classes: the voice and the video services are 
two classes, and the rest traffic is viewed as the background 

traffic and holds another class. The weights among the classes 
are 2:10:19.  Figure 14 gives the results for the voice service. In 
this simulation, the throughputs of the video service and the 
background traffic are kept as 90% and 95%, respectively while 
we change that of the voice. Figure 15 is for the video service. 
The voice and the background traffic throughputs are kept as 
95% and 94% in this simulation. From these results we see that 
above QoS region analyses generally provide good higher 
bounds for the loss rates at a wide range of throughputs. The 
differences between the analyses and the simulation results at 
high loads are due to the processor-sharing gain of the WFQ 
[16]: the voice service in figure 14 and the video service in 
figure 15 get excess bandwidths from the rest services because 
they can not use up their shares. So the performance bound 
given by the analysis can be surely guaranteed in practice. This 
suggests that our theory gives a reliable tool for network 
dimensioning to provide multi-dimensional QoS. 
   As for this particular example, above analyses indicate that in 
a practical network setting the rate configuration of the EF PHB 
defined in [11] is generally sufficient for supplying good QoS 
for real-time services if the burst is well controlled. The extreme 
case mentioned in Section 1, which aroused much controversy 
and led to the redefinition of the EF PHB [24], can be tolerated 
by dropping the packets that violate their deadlines without 
affecting the multi-dimensional QoS satisfaction in general. 

 
8. Conclusions 
    
   In this paper, we study multiple QoS dimensions altogether, 
and formulate a theoretical framework to explore relations 
between different dimensions. The QoS region is used to 
quantify multi-dimensional QoS requirements. Based on the 
theory of effective bandwidths, we reach a uniform formula to 
connect the throughput, the delay, and the loss rate for 
Markovian traffic. Important traffic and network factors, i.e., 
the burst size and the link speed, are involved. With this 
framework, it is found that the burst size sets hard limit on the 
QoS region that can be achieved, and the matching between the 
link speed and the node processing power can greatly improve 
the limit. It is also made clear that while pure load imbalance 
among links does not affect the QoS region, the heterogeneities 
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of burst size or link speed may severely degrade the multi-
dimensional QoS performance. Applying the theory to real-time 
services in the DS architecture, we show that the analysis 
provides a useful tool for QoS prediction and network and 
traffic planning. 
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