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SUMMARY

Bluetooth is a suitable technology to support soft real-time applications like multimedia streams at the
personal area network level. In this paper, we analytically evaluate the worst-case deadline failure
probability of Bluetooth packets under co-channel interference as a way to provide statistical guarantees
when transmitting soft real-time traffic using ACL links. We consider the interference from independent
Bluetooth devices, as well as from other devices operating in the ISM band like 802.11b/g and Zigbee.
Finally, we show as an example how to use our model to obtain some results for the transmission of a voice
stream.
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1. INTRODUCTION

Bluetooth is currently one of the most successful standards for low-power, short-range wireless
personal area networks (WPAN). A wide range of devices are being introduced, with applications
supporting asynchronous and/or isochronous data transfers. The motivation of this work is that
more and more wireless devices are also introduced that operate in the same frequency bands
than Bluetooth devices (the so-called ISM-Industrial, Scientific & Medical bands), including
IEEE 802.11, IEEE 802.15.4, WirelessUSB, etc. Depending on the level of sensitivity to the
interference from other devices, some types of traffic may suffer from unpredictable delays or
packet losses due to these interferences. In this paper, we evaluate the real-time behaviour of
Bluetooth communications, and show how interferences from other ISM devices can be taken
into account.

A typical Bluetooth system is composed of a small number of devices that form a wireless
network called a piconet. Connections are established ad hoc by a Bluetooth unit that becomes a
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master so that the other units (slaves) synchronize with it. The Bluetooth channel is then divided
into slots of length 625 us so that time slots are alternatively used by master and slaves (time
division duplex). Any unit may function as a master or as a slave (this role is maintained only
for the duration of the piconet), but although it may participate as slave in multiple piconets,
it can only be a master in one piconet.

Two types of connections can be established in Bluetooth [1]: synchronous connection-
oriented (SCO) and asynchronous connectionless links (ACL). In ACL links, the master of the
piconet performs a polling among all the slaves, although the polling policy is not specified by
the current Bluetooth specification because the best policy depends on the application. Slave
devices can only transmit if the master has requested them in the preceding slot. ACL packets
require acknowledgement and they are retransmitted in case of errors using a fast automatic
repeat request (ARQ) scheme until they are successfully delivered. Several types of ACL packets
are defined depending on whether they use forward error correction (FEC) or not. Also, multi-
slot packet transmissions are allowed (three or five slots packets).

On the other hand, SCO links are based on a fixed and periodic pre-allocation of slots (every
two, four or six slots) for guaranteed transmission of continuous (audio—video) streams. SCO
packets are always one slot length and they are never retransmitted. If errors occur during
transmission (not corrected by FEC) they are ignored and the packet is delivered as it is
received. Finally, the master does not have to poll the slaves in SCO links, so a slave may
transmit an SCO packet without a previous request.

A typical use of Bluetooth would be the support of soft real-time applications like multimedia
streams. In these applications, the use of SCO links monopolizes bandwidth and leaves very
little room for other ACL links. Several authors [2, 3] have proposed that ACL links could be
used to carry voice and other isochronous traffic. These applications require QoS guarantees in
terms of delay, delay variation and loss rate [4], so several attempts have been made to provide
these guarantees in ACL links [5, 6]. However, these works ignore the possibility of interferences
from other devices. When using wireless connections we should always keep in mind that a
system with several interfering devices is probabilistic in nature. In the case of ACL links,
although the polling performed by the master provides determinism within a piconet, there is
always the possibility of a collision with other Bluetooth devices connected to different logical
channels, as well as with other interfering devices operating in the ISM band: WLANS like IEEE
802.11, IEEE 802.15.4 networks [7], WirelessUSB [§8], microwave ovens, etc.

The problem of coexistence with other devices has received considerable attention in the
literature [9—14]. However, these studies are limited to the computation of parameters like bit
error rates (BER) or the probability that a given packet suffers a collision. To the best of our
knowledge, they have not been used to provide real-time guarantees for Bluetooth connections
taking into account co-channel interferences. Maybe the only exception is [15] where the authors
compute the probability that a packet does not meet its deadline for two-way transactions under
interferences from other Bluetooth devices. However, they do not take into account the effect of
the polling algorithm or the interference between SCO and ACL packets. Furthermore, their
sources of interference are only other independent Bluetooth devices.

In this paper, we present an analysis that allows us to obtain the probability that a Bluetooth
packet exceeds its deadline, taking into account the effect of the polling within the piconet, the
presence of SCO links and the interferences from other ISM devices, including 802.11b/g,
Bluetooth and Zigbee. Our approach was outlined in a previous paper [16], where we proposed
the use of schedulability tests like those that have been used to provide guarantees on message



delays in distributed real-time systems [17]. These analyses use the worst-case transmission times
to bound message response times, and to assess the schedulability of the system. When packet
transmission times cannot be upper-bounded, as is the case with Bluetooth piconets under co-
channel interferences, then a probabilistic analysis is needed. One possibility is statistical rate
monotonic scheduling (SRMS) [18]. A simpler approach is the probabilistic time-demand
analysis used for single-processor systems with semi-periodic tasks (tasks released periodically
but with random computation times) in Reference [19]. However, any of these approaches are
difficult and computationally expensive. In this paper, we would rather evaluate the worst-case
deadline failure probability (WCDFP), considering collisions from other ISM devices in a
similar fashion to that used to take into account transmission errors in controller area network
(CAN)-based systems in Reference [20]. To illustrate our methodology, we show some results
for the transmission of a voice stream, °...one of the most sought-after applications for IEEE
802.15.1 [i.e. Bluetooth] devices, and they are most susceptible to interference’ [9]. However, our
approach is useful in any time-critical application.

The paper is organized as follows. In the next section, we first compute the worst-case
response times ignoring interferences. Then in Section 3 we discuss how to include the effect of
interferences, and in Section 4 we propose an unified model to include interferences from
different ISM devices, particularly 802.11b/g, Bluetooth and Zigbee. In Section 5, we evaluate as
an example the transmission of a voice stream through an ACL link under interferences. Finally,
we present our conclusions.

2. WORST-CASE RESPONSE TIME

Consider a piconet composed of a master and up to seven slaves, with several SCO and ACL
links. SCO packets have pre-assigned slots and always pre-empt ACL packets. Furthermore,
they are never delayed, so their response times remain constant regardless of possible
interferences. That is, the packet may be corrupted or not, but its response time is not affected
by possible interferences. Although the behaviour of SCO links could also be evaluated using
the probability that the packet is corrupted as a measure of performance, several reasons make
ACL links more interesting. In coexistence scenarios, that is, situations where the main reason
for packet drop is due to the interference from other devices and not due to noise or range, FEC
protection will cause the Bluetooth unit to send more packets for a given amount of data, and
this results in higher interferences [9]. DHx (Data High rate) ACL packets are therefore
preferred since they are not FEC encoded. On the other hand, it has been shown that if ACL
links are used for isochronous traffic (like voice) instead of SCO links, other ACL links like TCP
behave better, with the voice quality only slightly affected [3]. For these reasons, in this paper we
consider the use of ACL links to support real-time transmissions, and as a result we focus only
on the computation of worst-case response times of ACL packets, while SCO packets are
considered simply as a source of interference.

Therefore, consider N (N<7) slaves with active ACL links. In this paper, we assume for
simplicity that each ACL packet occupies a single slot. Only a single ACL link can exist between
the master and every slave [21], and the polling is performed only with slaves with ACL links.
Outgoing ACL packets are queued whenever they suffer delays from three possible sources:

® The polling mechanism. An ACL packet has to wait for the poll when it is the other
nodes’ turn.



® Pre-emption from SCO packets.
® Interferences from other ISM devices. These interferences may destroy the packets so they
introduce additional delays.

In this section, we present an analysis to compute worst-case response times of ACL packets
including the delays due to the first two sources of interferences, while in the following section
we extend this analysis to include interferences from other ISM devices.

In our model, an SCO packet j is characterized by its period (Tsco;) and its constant
transmission time (Csco). Although the Bluetooth channel is divided into slots of length
625 s, due to the time division duplex mechanism we should count two slots per trans-
mission. In other words, every transmission includes one slot for the packet and another one
for the acknowledgement. Therefore, we consider for our discrete-time model a time unit
d_slot = 2:%625 ps, so that Csco = 1 d_slot.

On the other hand, an ACL packet i is characterized by its period (7}),* deadline (D;) and
transmission time (C;). In what follows, we assume that ACL packets transmission times do not
depend on the priority level (the Bluetooth MAC layer does not support priorities except for the
priority of SCO over ACL packets). As a result, we write C; = C, for all i. We also assume that
packets must be received before the end of the period of the sending task (that is, D;<T;), to
avoid packets from successive invocations of the sending task to delay each other.

Several intra-piconet polling algorithms have been proposed [22]. In this paper, we consider a
pure round-robin (one packet per visit), because it is the most used in current Bluetooth
connections [5]. Furthermore, it has been shown that PRR has a good performance at high
loads [22]. Anyway, other polling schemes could also be considered in our model.

We are interested in the computation of the worst-case response time of an ACL packet that
may be delayed by other ACL/SCO packets. With the PRR algorithm, we can distinguish
between two cases:

® Packets queued at a given node. Since only a single ACL link can exist between the master
and every slave, there is no interference on a given ACL packet m due to local (within the
node) higher priority packets except for SCO packets.

® Packets queued at other nodes (ACL links between the master and the other slaves). While
our reference ACL packet m is waiting for the poll, these packets are being transmitted.
They can be modelled as a single ‘high priority packet’ with periodicity equal to the polling
period Tpory [17].

The interference due to packets in other nodes is given by the number of times this ‘higher
priority packet’ with period equal to Tpoy 1 is scheduled for transmission during the worst-case
packet response time:

where Q,, is the queuing time of our reference ACL packet m, that is, the time packet m spends
in the queue (time from being queued to the time transmission begins). In the PRR case, nodes
are only allowed to transmit a single packet per visit. Therefore, TpoLr. = N#%C. Every time this

*If the traffic in the ACL link is not isochronous, then the period should be interpreted as the minimum time between
successive packets.



‘packet’ interfere a given packet m, we have to wait Tporp — C = (N — 1)%C. Therefore, the
total interference on a given packet m is

Qm
[N*c] (N - 1)C

We also have to add the periodic and fixed interference from SCO packets, which does not
depend on the node they may be generated. The master can support up to three simultaneous
SCO links while slaves can support two or three SCO links. Therefore, the interference from
these packets can be found by calculating the number of times successive instances of SCO
packets could be scheduled for transmission in front of a given ACL packet m:

O w Csco

VjeSCOg [TSCOJ

where SCOy is the set of SCO links in the piconet. We assume that the jitter (the maximum time
variability between subsequent packets of an SCO link) is null. The queuing time can now be
found iteratively [17]:

oy = |2 w-nes 3 |2 e M)
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The total response time of a given ACL packet m in the worst case is then:
R, = Qm +C (2)

If interferences from other ISM devices are ignored, then whatever polling scheme is used
collisions do not occur within a piconet. Therefore, the packet transmission time is a constant.
Since we are considering single-slot packets, then C = ld_slot of 2:%625pus (time division
duplex).

3. CONSIDERING INTERFERENCES

If interferences are considered, we say that a collision occurs when the packet is received
incorrectly due to these interferences. The sender is notified of this error in the slot directly
following the unsuccessful transmission using a fast-ARQ scheme [1]. The packet is then
retransmitted at the next opportunity (in alternate slots) until it is successfully received.
Therefore, the transmission time C cannot be considered a constant anymore. Instead, it
becomes a (discrete) random variable, so C and Q,, are random variables. Therefore, a
probabilistic time-demand analysis should be used analogous to that used for single-processor
systems with semi-periodic tasks (tasks released periodically but with random computation
times) in Reference [19]. However, this approach is very difficult and computationally expensive
because we have to compute the probability density function of Q,, from the probability density
function of random variable C. Instead, since we are only interested in determining the
probability that a packet meets its deadline, we will use a different approach.

Let us denote by Pg the probability of successful transmission. In a piconet with ACL links,
the wasted time units due to collisions correspond to a sequence of Bernoulli trials with
probability of success Pg. The overhead for every collision is just a packet retransmission C.
Therefore, the effect of interferences can be included in our model of Section 2 by adding a



collision overhead E(X) that is a function of the number of collisions during a time period X. If
SCO packets are ignored, E(X) = kxC, with k being the number of collisions during any time
period X. However, we have to take into account that SCO packets are not retransmitted in case
of collisions (in that case, the packet is simply corrupted but delivered ‘as is’). Therefore, k
should be computed as the number of collisions occurring in any time period X excluding the
transmission period of SCO packets. We will take this into account in due course.

Anyway, considering co-channel interferences, Equation (1) becomes

Zf‘=E(Q21+C)+{N—j’CW(N—1)C+ > ’VQ:Z-‘CSCO

vjesCog | 1 SCOj
=kC + [i—‘ (N-1C+ Z [%—‘ Csco (3)
N#xC vjesCOg |+ SCOJ

Note that C is again a constant C = 1 d_slot = 2625 us (for single slot packets) because all
the effects of collisions are included in function E( ).

The response time of packet m with k collisions can now be computed iteratively. First
we iterate Equation (3) with £ = 0, obtaining a first result for Q,,, and through Equation (2)
for R,,. Then we increment k and repeat the iterative computation to obtain new results for Q,,
and R,,. We repeat this algorithm until R,,> D,, (or the iteration does not converge). In this
way we obtain K,,, which we define to be the maximum number of collisions for which
R,, <D, (since the final value ky makes R,, exceed the packet deadline, we have K, = ky — 1).
Let Omax be the last obtained value of Q,,, that is, the queuing time obtained through the
following iteration:

Qiiflzqn*m[—ﬂ(zvl)m ) {Qﬂcsco @
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and also let Ryax be the last obtained value of R,;:
Ryax = Omax + C (5)

so it represents the worst-case response time when the maximum tolerable number of collisions
K,,, occur.

Once K,,, and Ryiax are obtained, we are now able to calculate the worst-case deadline failure
probability (WCDFP) simply as the probability that more than K,, collisions occur during
Rmax. Since we assume that time is slotted, with a time unit d_slot = 2625 us, then the
probability that a collision occurs in a given time unit is 1—Pg (i.e. the probability that the
transmission is not successful). Therefore, we have that the probability that k collisions occur
during a time period X is

(i)(l ~ Ps)' Py (©)

In our case, the time period is Ryax but transmission of SCO packets should be excluded.
Therefore,

X = Rmax — M-‘ Csco (7

VjeSCO5 {TSCQ/



Now, the WCDFP for an ACL packet m is given by

Kin X
WCDFP,, =1-Y" < . )(1 — Py)kpik 8)
k=0

with X given by Equation (7).

4. PROBABILITY OF SUCCESSFUL TRANSMISSION

The analysis developed in Section 3 provides the WCDFP for an ACL packet as a function of
the probability of successful transmission. In this section, we show how this probability can be
obtained when there are different ISM devices interfering with our reference ACL packet.

We begin with the case of interferences due to other independent Bluetooth devices. In order
to reduce interferences (among other reasons), Bluetooth uses Frequency Hopping, with a
pseudo-random hopping sequence. We can then assume that a Bluetooth device transmits
using randomly chosen frequencies. Therefore, there is a possibility that several indepen-
dent (but interfering) Bluetooth devices coexist in the same area and that they choose the same
hop carrier.

We can assume that hops are evenly distributed over 79 different frequency bands [23]. It can
be shown that if Mz is the number of interfering piconets (including the reference piconet) and
r is the normalized load over every piconet (assuming a homogeneous traffic, so r is the same for
all the piconets) then the probability of successful transmission is [15]

, py 2] 2M5=D)
)11 (1 - —) 9

75) + o= D(1 -5 ] ©)
where o = 366/625 = 0.5856 is the ratio between the actual transmission time of a single slot
packet and the Bluetooth slot duration. Recall that this expression is based on the fact that a
successful transmission occurs if there are no collisions in two consecutive (and independent)
slots: one for the packet and the other one for the acknowledgement (ACK). If the ACK is not
received, the packet is retransmitted as if a collision had occurred in the packet itself. This
expression can be simplified if we neglect the term (r/79)*><0.00016:

Pslp 5= [2(1 o)1

r )2(/\//37])

Psly_p = (1 ~ 205 (10)

Since we are concerned with the worst-case behaviour (in order to provide QoS or real-time
guarantees), then this pessimistic approximation can be considered a lower bound on the
probability of successful transmission, and also the case of fully loaded piconets should be used,
that is, r = 1. Furthermore, although a time and frequency coincidence does not always destroy
the packet, depending on the strength of the interference signal arriving to the receiver [24, 25],
we also assume the worst-case: interference of just one bit is enough to destroy the whole packet.

This previous model can be easily interpreted as the probability that none of the other M z—1
piconets transmit with the same carrier than our reference piconet in two consecutive slots. The
facts that the actual packet transmission time is only of duration ¢ slots and that independent
piconets are not synchronized are taken into account through the factor 2o. We will use this
model to show how to include interferences from other independent Bluetooth devices in the
computation of the worst-case response time of ACL packets. However, many other more



complex (and not so pessimistic) interference models could also be used [25], including the multi-
slot case discussed in Reference [11].

Other non-Bluetooth devices may also produce interferences. The most important source of
interference are 802.11 devices, and their effect on Bluetooth transmissions are well studied in
the literature [10,12—14]. In this paper, we use the model described in Reference [14] which
assumes the worst case that a time and frequency coincidence always destroys the packet. Let H
and W be the transmission times of a single slot Bluetooth packet (H = 366 us) and of an IEEE
802.11 packet, respectively, and also let L be the dwell period of an IEEE 802.11 packet. Finally,
if we define G as

G=IH/LxL—W—H

then it can be shown that the probability of a successful Bluetooth transmission under
interferences from 802.11 devices is [14]°

[H/L] [H/L-G/|G| *Mw
L 79 L 79

My, is the number of interfering 802.11 devices, and B is the channel width of the 802.11
system, that is, B = 22 MHz for 802.11b and B = 16.5 MHz for 802.11g (we only consider direct
sequence spread spectrum—DSSS systems). Different from Reference [14], we take again into
account that a successful transmission occurs if there are no collisions in two consecutive (and
independent) Bluetooth slots. Also note that we ignore coexistence mechanisms like adaptive
frequency hopping (AFH), alternating wireless medium access (AWMA), etc. [10].

An interesting observation is that Equations (9) and (11) are essentially based on the same
reasoning. Particularly, although Equation (11) was obtained in Reference [14] only for the case
of interferences from 802.11 devices, in fact Equation (9) can be obtained as a particular case of
Equation (11). Indeed, if we take W = H (the interfering device is also a Bluetooth packet) and
6 =H/L<1 in Equation (11), we have G = (L —2H)<0. Finally, since for a Frequency
Hopping system like Bluetooth B = 1, we obtain Equation (9) for the case r = 1.

The same approach could also be used for other ISM devices. For instance, an IEEE 802.15.4
(Zigbee) transmission using the ISM band will interfere with Bluetooth in approximately 3 out
of the 79 hops [7, Annex E]. Usually, in a sensor network the probability of activity of every
node is very low, and also the transmission time of an 802.15.4 packet is much larger than the
duration of a Bluetooth slot, so we could use Equation (11) with B=3 and L> W > H. In this
case, G = (L — W — H) > 0. Therefore, the probability of a successful Bluetooth transmission
under interferences from 802.15.4 devices could be expressed as

3 2M5
Pslg_7 = 1—%0 (12)

where M, is the number of interfering 802.15.4 devices and v = (W + H)/L =~ W /L can be
interpreted as the probability of activity of an IEEE 802.15.4 node. Recall that in a typical
sensor network M,> and v<.

%1n case the M;;,802.11 devices have different values for W and L, that is, the traffic is not homogeneous, then obviously
Equation (11) becomes a product of M, terms.



To sum up, we have shown that Equation (11), originally developed only for the case of
interferences from 802.11 devices, provides us with a generic model that can be used to model
interferences from other ISM devices. Redefining parameters like B, H, L or W, we can obtain
the probability of a successful Bluetooth transmission under interferences from different ISM
devices. In the general case, the product of the Pgp_x terms should be used. For instance, if
802.11, Zigbee, and independent Bluetooth devices are present, then:

Ps= [ Psls-x)

X={B.W.Z}

An important consideration is that these models assume the worst case that a time and
frequency coincidence always destroys the packet. Although we think they are still useful for the
computation of worst-case, real-time guarantees, we should be careful because many of their
results may be too pessimistic. For instance, IEEE 802.15.4 networks are tailored for
applications with low power, so the probability of interferences due to these devices is relatively
low even in case of time and frequency coincidence. In other words, parameters M y should not
be interpreted as nodes operating in the same area, but as nodes that have sufficient power to
cause a collision.

5. EXAMPLE: VOICE OVER ACL LINKS UNDER CO-CHANNEL INTERFERENCE

The analysis developed in this paper is useful for any time-critical application. Only for
illustration purposes, let us consider as an example the transmission of a voice stream in several
configurations. First, consider a configuration composed of a piconet of 3 slaves, where 2 slaves
use ACL links. We also assume that the other node is using an SCO link in order to show how
our model is able to include this additional source of interference. However, in order not to
monopolize the bandwidth we assume that this SCO link uses HV3 packets, that is, one-slot
packets that are sent every six slots.

We assume that one of the ACL links is used to carry a voice stream. Voice can be
implemented as 8 kbps coded speech, with voice packets of 20 bytes every 20ms [3]. DHI
packets (28 bytes maximum) can be used when carrying this traffic over ACL links. We assume
that the deadline of these packets is equal to the time gap between arrival of two packets, that is,
T; = D; = 20 ms.

Now, let us apply the model described in Sections 2—4 to compute the WCDFP of these voice
packets in the presence of interferences from the other ACL and SCO links of the piconet, as
well as from other independent Bluetooth devices. In this configuration, 2 slaves use ACL links
so N = 2. Also, C = Csco = 1 d_slot because only DH1 and HV3 packets are used. Finally,
Tsco = 3 d_slots for HV3 packets, so Equation (3) becomes:

gy [ L 28
o = [+ [

We now iterate with k = 0, and obtain a final value Q,, = 2 d_slots, and using Equation (2)
R, = 3 d_slots = 3.75 ms, which is less than the deadline D,, = 20 ms. We then increase k, and
repeat the process. This way, we obtain a final value for K,, =2, Omax = 12 d_slots and
Rmax = 13 d_slots = 16.25ms, which meets the deadline D,, = 20ms. If more than two
collisions occur then this timing requirement is not met.



Now, X is given by Equation (7):

and Py is given by Equation (10) (with » = 1 in order to consider the worst case) since in this
example we only consider the interference of Bluetooth devices (note that if other ISM devices
are present, the product of Pg given by Equations (10)—(12) should be used):

F N 2AMp—1)
Pg — (1 - 26—)

= (0.985)*M»~D
Then, the WCDFP of the ACL link carrying voice can be obtained through Equation (8) as a
function of the number of interfering piconets M z:
2.(9
WCDFPocLisco =1- ) <k>(1 — (0.985)°Ms=Dyk((.985)*Ms=DO-R) (13)
k=0
Let us now consider another configuration with the only difference of using 3 ACL links
instead of 2 ACL links and 1 SCO link. Note that the comparison is fair since the bandwidth
used by the SCO link in the previous example and that used by our third ACL link in this case is
the same, that is, one packet every six Bluetooth slots. This comparison is interesting because
several authors have reported that SCO links are redundant since voice can be carried more
efficiently using ACL links [3, 5]. In this case, K, = 5, Omax = 15d_slots and Ryax = X =
16d_slots = 20 ms, which exactly meets the deadline. Therefore:
5. (16
WCDFPicL =1-) ( ) >(1 — (0.985)>Ms=Dyk((.985)2(Ms=D(16-H) (14)
k=0
Figure 1 compares the analytical results for the two cases (Equations (13) and (14)). As
expected, it can be observed that the probability of deadline failure of the ACL link carrying
voice increases as the number of independent but interfering piconets grows. If we assume that
an acceptable missed deadline ratio for voice traffic is 10% [26], then the maximum number of

WCDFP

number of interfering piconets

2ACL+1SCO - ---- 3ACL

Figure 1. WCDFP of an ACL link carrying voice in a piconet composed of 3 slaves. Two
configurations are shown: 2 ACL links and 1 SCO link (solid) and 3 ACL links (dashed).



WCDFP

40 60
number of interfering piconets
------ 2ACL — — — 3ACL — 4AL

Figure 2. WCDFP of an ACL link carrying voice in the presence of 2, 3 and 4 ACL links.

Table I. Data for Figure 2.

N Km RMAX

2 7 15d_slots
3 5 16d_slots
4 3 13d_slots

independent piconets coexisting in the same area should be lower than 6 (in case 2 ACL links
and 1 SCO link are used) or 9 (in the case of 3 ACL links). Note that the WCDFP of the ACL
link carrying voice degrades if another slave in the piconet uses an SCO link instead of an ACL
link, so that the maximum allowable number of interfering piconets decreases. This result
analytically confirms other results reported in the literature, obtained through simulation, in the
sense that ACL links behave better if SCO links are not used [3].

As a final example, we present in Figure 2 how the WCDFP of an ACL link carrying voice
behaves as the number of other ACL links in the piconet increases. In this case, no SCO links
are used. The configurations presented in Figure 2 and their corresponding data are shown in
Table I (N is the total number of ACL links).

It can be observed that when the number of active ACL links in the piconet increases, the
WCDFP of the ACL link carrying voice increases very rapidly. If we again assume an
acceptable missed deadline ratio of 10%, then the maximum allowable number of independent
piconets coexisting in the same area is 14 for N = 2,8 for N = 3 and 6 for N = 4.

6. CONCLUSIONS

In this paper, the worst-case delay of ACL packets is analytically derived including preemption
from SCO packets, the polling mechanism and the effect of interferences from other devices. The
probability that this delay exceeds the packet deadline (the so-called worst-case deadline failure
probability—WCDFP) is obtained as a function of the probability of successful transmission.



We then obtain a generic model for the computation of this probability under interferences from
different ISM devices. This approach allows us to evaluate the WCDFP as a function of the
number and type of interfering devices. Our model may be useful to analytically predict how
soft real-time applications behave when several active ISM devices are used in a common area,
including other nodes in the piconet, active SCO/ACL links and independent ISM devices
(Bluetooth, 802.11b/g and Zigbee devices).

As an example, we then show how to use our model to evaluate the behaviour of an ACL link
carrying voice in the presence of other active SCO/ACL links in the piconet and of a number of
independent but interfering Bluetooth devices. The maximum allowable number of interfering
devices is obtained for various configurations.
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