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Abstract

The bit error rate performance of broadband wireless fixed access (FWA) systems over multipath

fading channels is investigated in this paper. Linear MMSE equalization is examined theoretically for 16-

QAM and QPSK modulated FWA systems and shown to yield unsatisfactory performance. The theoretical

analysis is validated by Monte-Carlo simulations and proved to be reasonably accurate. It provides us

an insight into the physical limitations imposed by the FWA channels and suggest solutions to improve

the capacity and performance of future FWA systems.

Keywords: broadband fixed wireless access, multipath fading channels, equalization, performance anal-

ysis.

I. INTRODUCTION

It is becoming apparent that access to the Internet is of growing economic and political importance. It

is also clear that low bandwidth dial-up Internet access is restricting the services and applications that can

be offered. What is required is a quantum leap in access bandwidth to free up the Internet for innovative

applications. One possible solution is to use the existing local-loop. This approach requires the installation

of digital subscriber line (DSL) equipment at the exchange and customer premises. Unfortunately, even

with advances in DSL technology, the length and quality of the local-loop infrastructure will prevent

this service being offered universally. Another option for providing broadband access is via cable TV

networks. However, the availability of these services is far from universal. An alternative approach is

to deploy broadband fixed wireless access (FWA) technology. The advantage of such an approach is

that it enables operators in a competitive environment to roll-out broadband services in a rapid and cost
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efficient manner. It is especially suited to the less populated rural areas where a considerable number of

households are still beyond the reach of affordable mass-market broadband services, and laying cables

and setting up wireline infrastructure are cumbersome and costly. FWA has a significant role to play in

order to improve this situation. FWA networks generally employ a point-to-multi-point architecture [1],

where a single based station (BS) communicates with many subscriber units (SUs) placed at the user

locations. Standardization of FWA systems is currently being undertaken by the IEEE 802.16 working

group [2] and the ETSI HIPERMAN group [3].

One of the limiting factors in outdoor wireless transmission is the multipath channel between the

transmitter and the receiver giving rise to intersymbol interference (ISI), which degrades the system

performance and limits the maximum achievable data rate. The problem can be tackled by employing

OFDM technology [4], which transforms the frequency selective channel into a number of parallel flat

fading channels. Another effective remedy to combat the detrimental effects caused by ISI is the use

of equalization, which is the focus of this study. Various equalization algorithms for the FWA systems

have been examined previously, for example, in [5], [6]. The bit error rate (BER) performance is usually

measured by simulations in most existing literature (e.g., [5], [6]) for different equalization schemes.

Since the evaluation of the exact error probability with ISI is tedious and time-consuming, an upper bound

method based on the relationship between the minimum mean square error (MMSE) and the bound of

symbol error probability was employed in [7]. The bound is applicable to multilevel as well as binary

signals. In [8], a moment method was used to estimate the error rate of a finite-tap equalizer and found to

be more accurate than the Chernoff bound. A quasi-analytical moments approach was proposed in [9] to

calculate the bit error rate for various infinite-length MMSE equalizers, and shown to offer a substantial

performance improvement over the upper bound method. An approximate Fourier series method was

applied in [10] to evaluate the performance of finite-length linear equalizer and decision feedback equalizer

for QPSK transmission on static and quasi-static Rayleigh fading channels. The approximate Fourier

series performs an efficient averaging of the BER across the distribution of the residual ISI. However,

to our best knowledge, no results on the performance analysis of equalization for the FWA channels

are available in the existing literature. That is previous FWA studies have relied solely on the use of

simulation techniques. The FWA channels have either Ricean and Rayleigh distributions for the amplitude

of various channel taps, which differentiates them from other channels analyzed in the previous literature.

The main contribution of this paper is to provide a theoretical approach to analyze the effect of ISI on

the performance of the FWA systems, with an attempt to gain a deep insight into physical limitations

imposed by the FWA channels on conventional equalization techniques.

The baseband equivalent of the transmission system under study is shown in Figure 1. The information

bits {bn} are first mapped into QPSK/16-QAM symbols {sn}, which are subsequently transmitted over

the FWA multipath channel. The channel can be modelled by an equivalent baseband system where the

concatenation of the the transmit filter, the channel and the receive filter, is represented by a discrete-
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Fig. 1. Block diagram of the FWA transmission system.

time T -tap transversal filter with finite-length impulse response hn =
∑T−1

t=0 htδn−l where ht denotes the

complex channel coefficients. A set of 6 typical statistical channel models called the Stanford University

Interim (SUI) Channel Models were proposed in [11] for simulation, design, development and testing

of technologies suitable for the FWA applications. All of them are simulated using 3 taps, having either

Ricean or Rayleigh amplitude distributions. For the purpose of this study, we select the SUI-3 channel,

which fits the terrain conditions of UK rural areas, and also represents a worse case scenario compared

to other channel models. This channel model has a tap spacing of 500ns, and maximum tap delay at

1000ns. Under the assumption that the transmitted data rate is 4Mbps with QPSK modulation or 8Mbps

with 16-QAM modulation, the multipath fading can be modelled as a tapped-delay line with adjacent

taps equally spaced at the symbol rate. The received signal is formed as

rn = h0sn + h1sn−1 + h2sn−2 + vn, (1)

where the channel coefficients h0, h1, h2 are complex Gaussian distributed and assumed to remain constant

during the transmission of one block of data. They, however, vary from block to block. The amplitude of

the first tap |h0| is characterized by a Ricean distribution due to the presence of line of sight propagation.

The amplitudes of the taps |h1|, |h2| are Rayleigh distributed. The transmitted PSK/QAM symbol at time

instant n is denoted as sn = xn + jyn, and vn is the complex additive white Gaussian noise with zero

mean and variance N0.

II. AN APPROXIMATE MMSE EQUALIZER

The task of the receiver is to detect the transmitted symbols {sn} given the received observation {rn}.

From (1), we see that the desired symbol is corrupted with ISI and AWGN. An equalizer is needed to

combat ISI and to improve the error rate performance. The focus of this study concerns the use of linear

MMSE equalization. The equalizer coefficients are usually calculated by recursive adaptation or by direct

computation based on channel estimates. If the channel is perfectly estimated and if the sequence of step

sizes in the recursive algorithm is suitably chosen, the directly computed equalizer coefficients will be

equal to the steady-state value of the recursively adapted coefficients [10]. In this paper, we consider the

latter approach. The MMSE equalizer (with 2L + 1 taps and detection delay d) is illustrated in Fig. 2

and is designed to minimize the mean square error (MSE) between the equalizer output zn and symbol

sn−d [12]

εn = E{|zn − sn−d|2} = E{|c∗rn − sn−d|2},
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Fig. 2. MMSE equalizer with 2L+ 1 taps and detection delay d.

where E( ) denotes expectation (statistical averaging), and the superscript operator ( )∗ is the conjugate

transpose operation when applied to matrices and vectors, and simply the conjugate when applied to

scalars. The output zn is formed as

zn =
2L∑

k=0

c∗krn−k = c∗rn,

where rn =
[

rn rn−1 · · · rn−2L+1 rn−2L

]T
, and c =

[

c0 c1 · · · c2L−1 c2L

]T
, where T

stands for transpose operation. The coefficients vector is computed as

c = (E[rnr
∗
n])−1(E[r∗nsn−d])

∗ = R−1p∗.

where p = E[r∗nsn−d] is the crosscorrelation vector, and R−1 is the inverse of the autocorrelation matrix

R, which is derived as

R = E[rnr
∗
n] = E











rnr∗n rnr∗n−1 · · · rnr∗n−2L

rn−1r
∗
n rn−1r

∗
n−1 · · · rn−1r

∗
n−2L

... · · · . . .
...

rn−2Lr∗n rn−2Lr∗n−1 · · · rn−2Lr∗n−2L











.

Its diagonal elements are computed as

E[rnr∗n] = E[rn−1r
∗
n−1] = · · · = E[rn−2Lr∗n−2L]

= E[(h0sn + h1sn−1 + h2sn−2 + vn)(h0sn + h1sn−1 + h2sn−2 + vn)∗]

= (E[|h0|2] + E[|h1|2] + E[|h1|2])Es + N0 = (P0 + P1 + P2)Es + N0,

where Pi = E[|hi|2], i ∈ {0, 1, 2} represents the average power of each path, and Es is the average

symbol energy. For non-diagonal elements, e.g., E[rnr∗n−1], it can be shown that

E[rnr∗n−1] = E[(h0sn + h1sn−1 + h2sn−2 + vn)(h0sn−1 + h1sn−2 + h2sn−3 + vn−1)
∗] = 0.

The previous equation holds since E[hih
∗
j ] = E[hi] E[h∗

j ] = 0, if i 6= j (different paths are not

correlated) and E[s∗msn] = 0, if sm 6= sn. To illustrate this point, let us reform E[s∗msn] as

E[s∗msn] = E[e−jθmejθn ] = E[ej(θn−θm)] = E[ej∆θ],
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where θm(θn) is the phase of sm(sn), and ∆θ = θn − θm, which takes 4 possible values 0, π
2 , π, 3π

2 with

equal probability in the case of the QPSK constellation. Thus

E[s∗msn] = E[ej∆θ] = Pr{∆θ = 0}ej0 + Pr{∆θ = π/2}ejπ/2

+ Pr{∆θ = π}ejπ + Pr{∆θ = 3π/2}ej3π/2

=
1

4
ej0 +

1

4
ejπ/2 +

1

4
ejπ +

1

4
ej3π/2 = 0. (2)

The same result holds for the 16-QAM constellation. The proof is similar to (2), and is not presented

here. The autocorrelation matrix R can thus be simplified to R = [(P0 +P1 +P2)Es +N0]I2L+1, where

I2L+1 is a (2L + 1) × (2L + 1) identity matrix.

The crosscorrelation vector p for the 5-tap MMSE equalizer is formed as

p = E[r∗nsn−d] = E














r∗nsn−2

r∗n−1sn−2

r∗n−2sn−2

r∗n−3sn−2

r∗n−4sn−2














T

= E














(h0sn + h1sn−1 + h2sn−2 + vn)∗sn−2

(h0sn−1 + h1sn−2 + h2sn−3 + vn−1)
∗sn−2

(h0sn−2 + h1sn−3 + h2sn−4 + vn−2)
∗sn−2

(h0sn−3 + h1sn−4 + h2sn−5 + vn−3)
∗sn−2

(h0sn−4 + h1sn−5 + h2sn−6 + vn−4)
∗sn−2














T

=
[

h∗
2 h∗

1 h∗
0 0 0

]

Es. (3)

where the decision delay d is determined by the sum of the channel delay and equalizer delay. In the

derivation of (3), we use the fact that E[s∗msn] = 0, if sm 6= sn; and E[v∗n−isn−2] = E[v∗n−i] E[sn−2] = 0.

Since the first tap is usually the strongest tap in the FWA channels (although this may not be the case for

every particular channel realization, but statistically the first tap has the largest average power), therefore

there is no channel delay. For a 2L + 1 tap equalizer, the delay introduced by the equalizer is L. In the

case of a 5-tap MMSE equalizer, 2L + 1 = 5, d = L = 2.

The filter coefficients vector for the 5-tap MMSE equalizer can thereby calculated as

c = R−1p∗ = [(P0 + P1 + P2)Es + N0]
−1I5p

∗ =
Es

N ′
0

[

h2 h1 h0 0 0
]T

, (4)

where N ′
0 = (P0 +P1 +P2)Es +N0. In reality, the autocorrelation matrix R is not restrictly diagonal for

every channel realization. The equalizer coefficient vector will slightly deviate from the vector c derived

in (4). Therefore, we called the filter derived previously an approximate MMSE (AMMSE) equalizer.

The factor Es/N
′
0 in (4) can be left out since it is a common scaling factor for the desired signal and

ISI, as well as the noise. Therefore, it does not affect the final decision. The equalizer output can now
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be formed as

zn = c∗rn =
[

h∗
2 h∗

1 h∗
0 0 0

] [

rn rn−1 rn−2 rn−3 rn−4

]T

= (|h0|2 + |h1|2 + |h2|2)sn−2
︸ ︷︷ ︸

desired signal

+ h∗
2vn + h∗

1vn−1 + h∗
0vn−2

︸ ︷︷ ︸

noise

+ h∗
2h0sn + h∗

2h1sn−1 + h∗
1h0sn−1 + h∗

1h2sn−3 + h∗
0h1sn−3 + h∗

0h2sn−4
︸ ︷︷ ︸

ISI

= (|h0|2 + |h1|2 + |h2|2)sn−2 + wn = γsn−2 + wn, (5)

where γ = |h0|2 + |h1|2 + |h2|2 is the total channel gain, and

wn = h∗
2h0sn + h∗

2h1sn−1 + h∗
1h0sn−1 + h∗

1h2sn−3 + h∗
0h1sn−3 + h∗

0h2sn−4 + h∗
2vn + h∗

1vn−1 + h∗
0vn−2

(6)

represents the combined ISI and noise. It is a complex Guassian random variable, i.e., wn = wI +jwQ ∼
CN (0, Nw), where its components wI ∼ N (0, Nw/2) and wQ ∼ N (0, Nw/2) are independent Gaussian

random variables. The variance Nw can be obtained from (6) as

Nw = |h2|2(|h0|2 + |h1|2)Es + |h1|2(|h0|2 + |h2|2)Es + |h0|2(|h1|2 + |h2|2)Es + (|h0|2 + |h1|2 + |h2|2)N0.

(7)

A close examination of (5) reveals that the desired signal sn−2 available via different paths is effectively

combined using the maximum ratio combining (MRC) technique. Next, we analyze the performance of

the AMMSE equalizer with emphasis on the analysis of a 16-QAM modulated system. The 16-QAM

constellation and maximum likelihood decision regions are depicted in Fig. 3. The decision regions can

be squares (type A), squares with one open side (type B) or squares with two open sides (type C). To

compute the bit error probability, we first need to compute the conditional error probability for these

three types of regions. Conditioned on that we send a symbol having a decision region of type A,B, C,

and the probabilities of making a wrong bit decision are denoted by PA, PB, PC .

To simplify the calculation, we assume that a symbol error results in a maximum of two bit errors.

If the constellation is Gray coded, 1 bit error occurs when the symbol is erroneously decoded to the

the symbol in non-diagonal neighbouring regions; 2 bit errors occur when the symbol is erroneously

decoded to the symbol in diagonal neighbouring regions. The probability of these two events are denoted

as PA1, PB1, PC1 and PA2, PB2, PC2 for symbol with decision region of type A,B, C. Owing to the

symmetry of the constellation, PA1 = PB1 = PC1 = P1, and PA2 = PB2 = PC2 = P2. Given sn−2

is a symbol of type A (e.g., the symbol s0 = α + jα in Fig. 3), the output of the equalizer according

to (5) is zn = γsn−2 +wn = γ(α + jα)+wI + jwQ. The probability P1 represents the conditional error

probabilities

P1 = Pr(ŝn−2 = s1|sn−2 = s0) = Pr(ŝn−2 = s2|sn−2 = s0)

= Pr(ŝn−2 = s3|sn−2 = s0) = Pr(ŝn−2 = s4|sn−2 = s0), (8)
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are the possible amplitudes for both basis functions ψI(t) and ψQ(t) in the quadrature modulation. For instance, the signal

s0(t) is formed as s0(t) = αψI(t) + αψQ(t). For the symbol s0, its neighbouring symbols in the non-diagonal regions are

s1, s2, s3, s4; its neighbouring symbols in the diagonal regions are s5, s6, s7, s8.

where Pr(ŝn−2 = si|sn−2 = s0), i ∈ {1, 2, 3, 4} denotes the probability that the symbol sn−2 is

erroneously decoded as si given s0 is transmitted. The equalities in (8) hold since the symbol s0 has the

same distance to its non-diagonal neighbouring symbols s1, s2, s3, s4, It can be shown that

P1 = Pr(ŝn−2 = s3|sn−2 = s0) = Pr{Re(zn) < 0} = Pr{αγ + wI < 0}

= Pr

{

wI
√

Nw/2
<

−αγ
√

Nw/2

}

= Q

[

αγ
√

Nw/2

]

, (9)

where Q(x) is the complementary Gaussian cumulative distribution function [12]

Q(x) =

∫
∞

x

1√
2π

exp(−t2/2)dt = Pr{t > x} = Pr{t < −x}. (10)

Note that the Guassian random variable t in (10) has zero mean and unit variance. Therefore, we need

to normalize wI in (9) so that wI√
Nw/2

∼ N (0, 1) in order that Q-function defined in (10) can be directly

applied.

The probability P2 represents the conditional error probabilities

P2 = Pr(ŝn−2 = s5|sn−2 = s0) = Pr(ŝn−2 = s6|sn−2 = s0)

= Pr(ŝn−2 = s7|sn−2 = s0) = Pr(ŝn−2 = s8|sn−2 = s0). (11)

The equalities in (11) hold since the symbol s0 has the same distance to its diagonal neighbouring

symbols s5, s6, s7, s8. Using the fact that wI and wQ are independent Gaussian random variables, we
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have

P2 = Pr(ŝn−2 = s7|sn−2 = s0) = Pr{Re(zn) < 0, Im(zn) < 0}

= Pr{αγ + wI < 0} · Pr{αγ + wQ < 0}

= Pr

{

wI
√

Nw/2
<

−αγ
√

Nw/2

}

· Pr

{

wQ
√

Nw/2
<

−αγ
√

Nw/2

}

= Q2

[

αγ
√

Nw/2

]

.

The conditional bit error probability PA can now be computed as

PA =
1

4
[nA1 · 1 · P1 + nA2 · 2 · P2] =

1

4
[4P1 + 8P2] = Q

[

αγ
√

Nw/2

]

+ 2Q2

[

αγ
√

Nw/2

]

,

where the factor 1
4 is due to the fact that one 16-QAM symbol corresponds to 4 bits, and nA1, nA2 are

the number of neighbouring regions that differ in 1 and 2 bits, respectively, from the transmitted symbol

having a decision region of type A. Similarly,

PB =
1

4
[nB1 · 1 · P1 + nB2 · 2 · P2] =

1

4
[3P1 + 4P2] =

3

4
Q

[

αγ
√

Nw/2

]

+ Q2

[

αγ
√

Nw/2

]

;

PC =
1

4
[nC1 · 1 · P1 + nC2 · 2 · P2] =

1

4
[2P1 + 2P2] =

1

2
Q

[

αγ
√

Nw/2

]

+
1

2
Q2

[

αγ
√

Nw/2

]

,

where nB1, nB2 (nC1, nC2) are the number of neighbouring regions that differ in 1 and 2 bits, respectively,

from the transmitted symbol having a decision region of type B (C).

To simplify the notations, we denote x = |h0|2, y = |h1|2, z = |h2|2, and γ = |h0|2 + |h1|2 + |h2|2 =

x + y + z, the bit error probability can be expressed as

Pb(x, y, z) =
1

16
(nAPA + nBPB + nCPC) =

1

16
(4PA + 8PB + 4PC)

=
3

4
Q

(

αγ
√

Nw/2

)

+
9

8
Q2

(

αγ
√

Nw/2

)

=
3

4
Q

(√
2α(x + y + z)
√

Nw(x, y, z)

)

+
9

8
Q2

(√
2α(x + y + z)
√

Nw(x, y, z)

)

,

(12)

where Nw(x, y, z) = 4z(x + y)Eb + 4y(x + z)Eb + 4x(y + z)Eb + (x + y + z)N0 according to (7)

(note that the relationship between average symbol energy Es and average bit energy Eb for 16-QAM

is Es = 4Eb), and nA = 4, nB = 8, nC = 4 are the number of A,B, and C type regions, respectively,

in the constellation. For the 16-QAM constellation illustrated in Fig. 3, the average symbol energy is

Es = 4Eb = 1
16 [4(α2 + α2) + 8(α2 + 9α2) + 4(9α2 + 9α2)] = 10α2. Therefore, we have α =

√
2Eb

5 ,

and (12) can be reformed as

Pb(x, y, z) =
3

4
Q

[√

4Eb

5Nw(x, y, z)
(x + y + z)

]

+
9

8
Q2

[√

4Eb

5Nw(x, y, z)
(x + y + z)

]

. (13)

Random variable x is non-central chi-square distributed with 2 degrees of freedom and probablity

density function (PDF) [12]

p(x) =
1

2σ2
exp

(

−x + s2

2σ2

)

I0

(√
xs

σ2

)

, x ≥ 0 (14)
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where σ2 = var[Re(h0)] = var[Im(h0)] (var[x] denotes the variance of a random variable x), and the

noncentrality parameter s2 = (Re{E(h0)})2 + (Im{E(h0)})2. The operator Re(x)/ Im(x) denotes the

real (imaginary) part of a complex variable x. Random variables y, z have central chi-square distribution

with 2 degrees of freedom and PDFs

p(y) =
1

γ1
exp

(

− y

γ1

)

; y ≥ 0

p(z) =
1

γ2
exp

(

− z

γ2

)

, z ≥ 0 (15)

where γ1 = E[|h1|2], γ2 = E[|h2|2] stand for the average gain of the first and second path, respectively.

To obtain the error probability when x, y, z are random, we must average Pb(x, y, z) given in (13) over

the distribution of x, y, z (given in (14), (15)), i.e.,

P̄b =

∫
∞

0

∫
∞

0

∫
∞

0
Pb(x, y, z)p(z)p(y)p(x)dxdydz

=
1

2σ2γ1γ2

∫
∞

0

∫
∞

0

∫
∞

0
Pb(x, y, z) exp

(

−x + s2

2σ2

)

I0

(√
xs

σ2

)

exp

(

− y

γ1

)

exp

(

− z

γ2

)

dzdydx,

(16)

where the expression of Pb(x, y, z) is given in (13).

To conserve space, we omitted the detailed analysis for a QPSK modulated system. However, following

the procedure shown in [13] for coherent detection, the average bit error probability for the AMMSE

equalization can be derived similarly as

P̄b =

∫
∞

0

∫
∞

0

∫
∞

0
Pb(x, y, z)p(z)p(y)p(x)dxdydz

=
1

2σ2γ1γ2

∫
∞

0

∫
∞

0

∫
∞

0
Q

[√

2Eb

Nw(x, y, z)
(x + y + z)

]

· exp

(

−x + s2

2σ2

)

I0

(√
xs

σ2

)

exp

(

− y

γ1

)

exp

(

− z

γ2

)

dzdydx. (17)

The theoretical bit error probabilities calculated by (16) and (17) are compared with that produced

by the simulation results in the next section to validate their accuracy.

III. ANALYTICAL RESULTS AND PERFORMANCE COMPARISON

Comparison between analytical and simulation results is presented in this section in order to verify

the theoretical analysis conducted in the previous section. The simulation results are averaged over

1000 channel realizations. During each Monte-Carlo run, the block size is set to 10000 bits, which

corresponds to 5000 QPSK symbols or 2500 16-QAM symbols. The channel coefficients vary from one

block to another, however, they are assumed to remain constant during the transmission of one block of

data. In the simulations, we assume perfect channel state information (CSI), i.e., ĥ = h. The analytical

curves are derived by numerical integration of the equations (16), (17) where the parameters are set to

σ2 = 0.175, s2 = 0.36 and γ1 = 0.223, γ2 = 0.07.
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Fig. 4. Performance comparison: coherent detection vs. MMSE equalization.

In Fig. 4, we compare the performance of the MMSE equalization with that of the conventional coherent

detection using results from simulation. Obviously, the linear MMSE equalizer performs better in both

QPSK and 16-QAM modulated systems. The reason is simply that conventional coherent detection does

not take the ISI into account, and is consequently more vulnerable to the detrimental effects of ISI.

Employing equalization improves the performance, although the improvement in this context is rather

limited.

The performance of the linear MMSE equalizer is further examined in Fig. 5. We observe a slight

discrepancy between the theoretical analysis for 16-QAM modulation expressed by (16) and the simulation

results. However, the gap becomes smaller as SNR increases. The figure also shows that the theoretical

analysis for the QPSK modulated systems expressed by equation (17) is in close agreement with the

simulation results for Eb/N0 values between 4 and 6 dB. They, however, slightly deviate from each other

at other SNR values. Comparing these two modulation schemes, it is evident that the QPSK modulation

is more robust but supports a lower data rate, while 16-QAM supports a higher data rate but has much

worse performance. It is clear to see from Fig. 5 that the SUI-3 channel is a harsh channel, and a simple

MMSE equalizer is not sufficient to combat ISI.

IV. CONCLUSIONS

An approximate linear MMSE equalizer for the QPSK and 16-QAM modulated FWA systems with

SUI-3 channel model is theoretically analyzed in this paper. The analysis reveals that the MMSE algorithm
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Fig. 5. Performance of 5-tap AMMSE equalizer: analysis vs. simulations.

employs an MRC technique to combine the signals from different paths. Comparison with the simulation

results shows that the analysis is reasonably accurate. Both simulation and analysis indicate that the SUI-3

channel is very hostile, and consequently, traditional schemes such as linear MMSE equalization will

therefore not suffice. Combined channel coding and equalization are needed to remove the detrimental

effect of ISI and to improve the system performance. This will be the subject of future research by the

authors.
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