Ulysses. A Robust, Low-Diameter, Low-Latency
Peer-to-Peer Network

Abhishek Kumar Shashidhar Merugu Jun (Jim) Xu

College of Computing,
Georgia I nstitute of Technology,
Atlanta, GA 30032

{akumar, merugu, jx} @cc.gatech.edu

Abstract—

A number of Distributed Hash Table (DHT)-based protocols
have been proposed to address the issue of scalability in peer-to-
peer networks. However, it remains an open question whether
there exists a DHT scheme that can achieve the theoretical lower

bound of T:;olgog_n on network diameter when the average rout-

ing table size at nodes is no more than logn. In this paper, we
present Ulysses, a peer-to-peer network based on the butterfly
topology that matches this theoretical lower bound. Compared
to existing DHT-based schemes with similar routing table size,
Ulysses reduces the network diameter by a factor of loglogn,
which is 2-4 for typical configurations. This translates into the
same amount of reduction on query latency and average traffic
per link/node. In addition, Ulysses maintains the same level of
robustness in terms of routing in the face of faults and recover-
ing from graceful/ungraceful joins/departures, as provided by ex-
isting DHT-based schemes. The protocol is formally verified for
its correctness and robustness using techniques from distributed
computing. The performance of the protocol has been evaluated
using both analysis and simulation.

I. INTRODUCTION

Recent years have seen a considerable amount of research ef-
fort devoted to the development of distributed and coordinated
protocols for scalable peer-to-peer file sharing (e.g., [1], [2],
[31, [4], [5]). These protocols generally rely upon Distributed
Hash Tables (DHTS) to allow each node to maintain a relatively
small routing table, while taking a relatively small number of
overlay routing hops to route a query to the node responsible
for the particular DHT key. DHT-based protocols have great
potential to serve as the foundation for a wide-range of new
Internet services (e.g.,[6], [7]).

An important and fundamental question in the space of DHT-
based peer-to-peer protocols concerns the tradeoff between the
routing table size, i.e., number of neighbors a DHT node has to
maintain, and the network diameter, i.e., the number of hops
a query needs to travel in the worst case. The fundamental
nature of this question should be clear. It is further impor-
tant for two reasons. The number of nodes n in a peer-to-
peer network could be very large, hence differences in values
that are insignificant for small n have the potential to be im-
portant. Second, because each hop in a peer-to-peer network
is an application-layer overlay hop, a savings in query hops is
magnified when one considers the network layer impact.

It was observed in [8] that existing DHT schemes tend to
have either (1) a routing table of size O(log, n) and network

Xingxing Yu
School of Mathematics,
Georgia Institute of Technology,
Atlanta, GA 30032
yu@math.gatech.edu

diameter of O(log, n) (including [1], [2], [3], [4]), or (2) a rout-
ing table of size d and network diameter of O (dn'/?) (including
[5]). It was asked in [8] whether Q(log, n) and Q(dn'/?) are
the asymptotic lower bounds for the network diameter, when
the routing table sizes are O(log, n) and d, respectively. Re-
cent work [9] shows that neither is the lower bound: the actual
bounds are Q(252"—.) and Q(log, n) respectively.

An open question posed in [9] concerns the design of a DHT-
based scheme that achieves the lower bounds without causing
congestion, where congestion is defined informally as requiring
certain nodes and edges to forward traffic that is many times the
average, even under uniform load. The main contribution of this
paper is Ulysses, a DHT-based protocol based on a butterfly
topology that meets the theoretical lower bounds without con-
gestion. In particular, with a routing table size of about log, n,

Ulysses can reach the diameter of [bgl‘;‘fig;w] +1, as compared

to log, n in all existing schemes with similar routing table size®.
This represents a significant reduction in network diameter. For
example, in a network of 1 million (=~ 22°) nodes, the average
diameter of Chord? [1] is 20, but that of Ulysses is 6, with sim-
ilar average routing table sizes (20 for Chord and around 17 for
Ulysses). Since each link here is an application-layer hop, the
search time can be reduced considerably. For larger values of n,
the advantages of Ulysses become even more pronounced (e.g.,
30 hops versus 7 hops when n. = 10°).

Ulysses not only achieves a reduction in network diameter
(the worst-case query latency), by a factor of log, log, n, but
also achieves a reduction factor of % log, log, n on the average
query latency, compared to Chord [1]. By Little’s Law [10], this
reduction results in significant reduction in the overall network
traffic in the network as each query “travels less”. Therefore,
with the same number of nodes and links and the same offered
load (queries), each Ulysses link or node will have to carry less
traffic than in Chord.

Ulysses is based on the well-known butterfly network struc-
ture [11]. The desired properties do not come immediately,
however, and require adapting the butterfly structure for use in
practical peer-to-peer networks by meeting three primary chal-

L As will be described later, the actual routing table size may vary between
0.5logan and 2logan from node to node, with an average of no more than
log, n.

2 For comparison we have chosen Chord as arepresentative of the whole fam-
ily of DHT based protocols that have a network diameter of O(log n) and rout-
ing table size of O(log n).

lenges. First, the basic butterfly has edge congestion where
some edges carry significantly more traffic than average. To
address this, we add edges to the butterfly to avoid edge con-
gestion while maintaining small routing table size. Second, we
must embed the butterfly structure onto a dynamically changing
set of peers. Third, since peer-to-peer networks are subject to
considerable dynamics as nodes join and leave, we must pro-
vide for procedures that allow routing to stabilize upon joins
and leaves, as well as provide for correct routing while stabi-
lization is occurring.

The remainder of the paper is structured as follows. We
give an overview of our design objectives and the Ulysses so-
lution approach in Section Il. After introducing the static but-
terfly topology and its shortcomings in Section I11, we describe
Ulysses in detail in Section 1VV. We present a verification of our
design using formalism from distributed computing in Section
V. In Section VI, we discuss results of our performance evalua-
tion by simulation. Section VII has other related work followed
by concluding remarks in Section VIII.

Il. DESIGN OVERVIEW OF ULYSSES

In this section, we first describe three major design objec-
tives of Ulysses. Then we give a brief overview of how these
objectives are achieved in Ulysses.

A. Design Objectives

Low latency routing: Ulysses strives to achieve the lowest
possible network diameter with a routing table size of about
log n per node, without causing excessive “stress” at any over-
lay link or node. While the butterfly topology can help us
achieve this low diameter in theory, it remains a very challeng-
ing task to embed the butterfly structure in a real-world network
so that two important properties are satisfied. First, each query,
starting from any location, should be able to find its way to the
destination within the same small number of steps as in a but-
terfly network. Second, the routing table size should be about
log n at each node. Both properties need to be maintained de-
spite node joins and leaves.

Self-Stabilization: The system should be able to recover to a
“correct state” after joins and leaves temporarily “perturb” the
system. The recovery should not only be fast and inexpensive,
but also handle multiple concurrent faults that are possible in a
dynamic peer-to-peer environment.

Robustness: The protocol must include the ability to route
a query around faulty nodes to reach a non-faulty destina-
tion. This capability is orthogonal to self-stabilization: self-
stabilization says that the network will eventually recover from
faults whereas the robustness says that most of the network
should function despite the existence of transient faults. Also,
from the performance point of view, such “detours” should not
increase the query latency too much, even when a large percent-
age of nodes are faulty in the network.

B. How Ulysses achieves these objectives

The multidimensional static butterfly topology, described
in the next section, is known to have a diameter of

O(logn/loglogn) with an out-degree of logn at each node.
However, past attempts to use this topology in DHT based peer
to peer networks have only used the constant out-degree ver-
sion of this topology that achieves a diameter of O(logn) [12].
To the best of our knowledge, Ulysses is the first to propose
and use an enhanced version of this topology to achieve a di-
ameter of O(log n/ loglogn) with average out-degree no more
than logn. After proposing the enhanced version of the but-
terfly topology in the next section we concentrate our design
effort, described in section IV on embedding this topology in
a peer-to-peer network to achieve the objective of low latency
routing.

Ulysses has a set of self-stabilization mechanisms to handle
joins as well as graceful and ungraceful departures of nodes.
Our embedding of the enhanced butterfly topology, combined
with a “zoning” scheme that partitions the key-space among
different nodes is designed to accommodate such dynamics. We
describe these in sections IV-E and IV-F. In Section V, we show
that with its self-stabilization mechanisms, Ulysses will recover
to a correct state. A salient feature of Ulysses’ self-stabilization
mechanisms is their low cost, discussed further in section 1\V-G.

Ulysses protocol is designed to be robust. The routing mech-
anism contains an implicit “detour protocol” that redirects the
query to a different node when a fault is encountered on the
routing path. We also solve a “vicious cycle” problem associ-
ated with the naive detour protocol. With this refined detour
protocol, the system can continue to operate despite a large
number of faulty nodes. Our simulation result shows that even
under severe cases where 20% percent of nodes are rendered in-
operable, the system can still serve all the queries destined for
non-faulty nodes with very high probability.

I1l. THE STATIC BUTTERFLY TOPOLOGY

The Ulysses protocol creates a network whose structure is
inspired from the well known butterfly topology [11]. In this
section, we first describe the static butterfly which has low di-
ameter but is not a practical peer-to-peer network because it
requires a precise number of nodes at each level, functioning
correctly at all times for correct routing. Another problem with
this static butterfly is that some of the edges carry a dispropor-
tionately high amount of traffic as compared to the average, or
in other words, have a high edge stress. We then describe a
solution to this problem of high edge stress by adding shortcut
links. This solution is subsequently used in the Ulysses network
as explained in Section IV.

A. The static butterfly topology and its ““stress™ problem

The general static butterfly network can be defined as fol-
lows. A (k,r)-butterfly is a directed graph with n = kr*
vertices, where k£ and r are referred to as the diameter
and the degree, respectively. Each vertex is of the form

(0,21, ,2k—1;%), where 0 < ¢ < k—1and 0 <
Lo, %1, ", Tp—1 < r —1,1.e. xg,r1,---,2r_1 are base r
digits. For each vertex (zo,x1,---,zr—1;%), we refer to 4 as

its level® and (o, 21, ...,2x_1) as its row. From each vertex

3Throughout this paper, it is assumed that additive operations on level are
modulo k.

(a) Static Butterfly Topology

Dimension 1

(b) Alternative Representation

Fig. 1. (a) A (2,2) static butterfly topology with two levels and each node with degree = 2 illustrating rows, horizontal and cross links. It is “wrapped around”

with level 0 drawn twice. (b) An dternative representation of the same (2, 2) static butterfly topology, with nodes and their identifi ers. Solid edges from level 0 to
level 1 are along dimension 1 and dashed edges from level 1 to level 0 are along dimension 0. An 8-node peer-to-peer network can be represented by this (2, 2)
butterfly topology. The square around each node represents the zone of responsibility of the node. Thetotal area of all the squares in both the levels represents the

entire DHT space.

(zo,x1,- -+, xk—1;1), there is a directed edge to all vertices of
the form (zo,z1,- -, %, Y, Tita, -+, Tk—1;¢ + 1) when i #
k—1land (y,z1,...,2x—1;0) when i = k— 1. The routing from
vertex (zq,x1,- -, Tk—1;1) to vertex (yo, y1,- -, Yk—1;J) Pro-

ceeds in two phases. In the first phase, z;+1 successively
changes to y;+1 while going from level ¢ to level i + 1, z;42
t0 y;42 While going from level ¢ + 1 to level 4 + 2, and so on.
This process continues until all of the z’s have been changed
to y’s, and then in the second phase, we continue along row
(yOJ Y1, - ykfl) to level .7

Figures 1(a) and 1(b) show a (2, 2) static butterfly drawn in
two different ways. Notice that in Figure 1(b) the outgoing
edges fan out, first along dimension 1 while going from level
0to level 1, and then along dimension 0 while going from level
1to level 0.

In [9], the notion of edge congestion free is defined under the
assumption of uniform traffic load* between any two nodes in
the peer-to-peer network. To avoid confusion with the usage of
the term congestion in the context of transport layer congestion
control, we shall use the term edge stress free instead of edge
congestion free.

Definition 1: We say that a network is edge stress free if the
amount of traffic going through any edge in the network is no
more than ¢ times the average. Here ¢ > 1 is a small constant.

The static (k,r) butterfly is not edge-stress free. Con-
sider the edges going from a node (zg,z1,---,%k—1;%) tO
(zo, 21, -+, zk—1;¢ + 1), i.e. the edges between nodes with
same row identifier but different levels. We call such edges as
horizontal links. Non-horizontal links are called cross links. In
the static (k,r) butterfly, each node has exactly one horizontal
link and (r — 1) cross links. A query traverses k cross links on
average in the first phase of routing and % horizontal links in

4Since the hashing scheme in a DHT based network distributes the keys uni-
formly across the key space, the queries are uniformly distributed across nodes
in the network. If in addition, the sources of queries are themselves assumed to
be distributed uniformly, the resulting scenario is one of uniform traffi c load.

the second phase of routing as described above. Therefore, a
horizontal link carries about % times as much traffic as a cross
link.

B. Shortcut links to remove stress

We solve this stress problem by adding & — 2 “shortcut”
links from the node (zq,z1,---,zk—1;) at level ¢ to nodes
(:L'Oaxl; T 71'/6—1;.7') at level .7 ’VJ € {07 17 Ty k— 1}7.7 ;é
i,4+ 1. This way, in the aforementioned butterfly routing, once
2’s have all changed to y’s in the first phase of routing, only
one jump is needed in the second phase to reach the destination
through one of these “short-cut” links. This clearly has the ad-
ditional benefit of reducing the network diameter from 2k —1 to
k + 1. Recall that the number of nodes n is related to the num-
ber of levels & through the equation n = kr*. If we choose & to

be logn/loglogn, we get r = (n/lolgoﬁ)”n)l/ml;l% < logn.
Thus the increase in the routing table size due to the shortcut
links is fromr =log, ntor+k—2 = log2n+mgl;’317§:w -2.
For example, when there are 229 nodes in the network, this rep-
resents an increase from 20 to 23 entries in the routing table.
Note that this topology is not yet suitable for a peer to peer
network because it requires a precise number of nodes at each
level, functioning correctly at all times for correct routing. The
Ulysses network uses a modified version of this topology which
can accommodate the dynamics of a peer-to-peer network while

preserving the desirable properties of this topology.

IV. DESIGN OF THE ULYSSES PROTOCOL

In this section we present the detailed design of Ulysses that
achieves the objectives outlined in Section Il. We first present
a novel naming and zoning scheme, and a description of the
allocation of different portions of the DHT to nodes. We then
describe the topology of the Ulysses network and the details
of routing, including robustness. We end this section with

a description of the self-stabilization mechanism of Ulysses,
that handles node joins and departures, and enhancements that
achieve better topology control without any increase in over-
heads.

A. Naming and zoning in the Ulysses network

In Ulysses, we use a naming convention that is different from
the one used above in the static butterfly. This naming conven-
tion retains the essential notions of row and level while provid-
ing a description that flexibly captures the details of allocation
of portions of the hash table to different nodes as well as the
dynamics of node joins and departures.

1) Naming convention: In the Ulysses network with & lev-
els and n nodes, each DHT node represents a zone in the name-
space, and is identified by a tuple (P,[). Here P is a binary
string, also known as the row identifier and [is the level, where
0 <1 < k — 1. The correspondence between the row identi-
fier P of a Ulysses node and the k-dimensional row identifier
(zo,z1, ..., Tx—1) in a static butterfly is as follows : The bits at
location ¢, i+ k, i+ 2k... in P represent z; in (xg, 1, .., Tp—1)-
Thus if (zg, 1, ..., 2x—1) IS seen as the location of a node in
a k-dimensional cuboid® at level , the bits in P at locations
{j|j mod k = i}, taken in their order of appearance in P,
together form a binary number that corresponds to the loca-
tion of the node (P, 1) in the it" dimension at the level 1. In
other words, the coordinate of the node (P,1) in the i** di-
mension, is given by the concatenation of every kt" bit in the
string P starting at the it location. For example if £ = 5
and P = apaj...aia, then asara;s is the coordinate of P in
274 dimension. The expected length of row identifier P of a
node in a Ulysses network with n nodes and k levels is log, %
But the length of P for individual nodes changes due to dy-
namic arrival and departure of nodes, as explained later in this
section. In Ulysses, the search key is also mapped to a tuple
(a, 1) using one or more uniform hash functions. Again, ! cor-
responds to the level. The row identifier « is m bits long, where
m is a constant chosen such that &£ x 2™ is large enough to as-
sign unique keys for all objects stored in the DHT. In particular,
k x 2™ >> n, which is an assumption implicit in all DHT
based schemes (e.g. [1], [2], [3], [4], [5]).

2) Distributing the Hash Table: The structure of the Ulysses
topology is closely related to the way different nodes are al-
located different portions of the DHT. A node with identifier
(P,1) stores all keys («, 1) such that P is a prefix of «; in this
manner the key-space is partitioned into disjoint zones of re-
sponsibility (P, 1), with one DHT node handling each zone. A
key (a,1) belongs to a zone (P, 1) if and only if P is a prefix of
a. For example, the keys (1011001, 3) and (1011100, 3) would
belong to the zone (1011, 3). This notion can be extended fur-
ther by thinking of any binary string P as the set of all binary
strings of length m for which P is a prefix. Informally this is
equivalent to a partial order on binary strings in which a small
string P is a superset of a longer string P’ if P is a prefix of
P'. From the description of node joins and departures, to come
later in this section, it will become clear that no two nodes P
and P’ exist in the same level [such that P is a prefix of P’.

5A cuboid is the generalization of arectangle in higher dimensions.

o o =»
“ 00 T o
5 :?O\E oo o S
.g o | 10 L 10 010
£ 010 | &4) ———
a 011 o011 — 1
o o \\%
N u n
’7797&‘
o 0
Level O Level 1 Level O
Fig. 2. A Ulysses butterfly with 2 levels and 11 nodes. Unlike Figure 1(b)

where al zones of responsibility are homogenous, the arrival and departure
dynamics of nodes in the peer-to-peer network cause non-uniformity in the size
of the zones of responsibility (areas of regions around the nodes). Links from
only 2 nodes in each level are shown for clarity. It is “wrapped around” with
level 0 shown twice. If we project the zone of node {011,0} on level 1 and
dlide its “shadow” along the vertical direction (dimension 1), it overlaps with
zones {011,1} and {00,1}. This explains why node {011, 0} has links to
nodes {011,1} and {00,1}.

Intuitively, the key-space of a Ulysses k-butterfly can be seen
as k different k-dimensional level-cuboids, one level-cuboid
corresponding to each level. Each level-cuboid is of size 2m/*
in each dimension. A search key («,) maps to a specific point
in the Ith level-cuboid. A zone P is said to be a subset of an-
other zone P' if P’ is a prefix of P. Note that larger zones have
smaller identifiers and vice versa.

B. Topology of the Ulysses network

Having specified the zones of responsibility for nodes in the
Ulysses network, we proceed to define the links between these
nodes. The topology of the Ulysses network captures the link
structure of the static butterfly described earlier in I1I-A. In
particular, we wish to retain the property that links from nodes
in level ¢ to those in level ¢ + 1 fan-out along the dimension
1 + 1. The shortcut links that were introduced in 111-B to make
the network edge stress free and reduce its diameter, are also
retained in Ulysses.

Geometrically, the links can be imagined as follows: each
zone-cuboid (P, 1) in the level I has links to all those zone-
cuboids (P’,1+1) inthe level ({+1) such that P’ has an overlap
with P in all dimensions other than the dimension ¢ + 1. Since
we do not place the requirement of an overlap in the dimension
i + 1, the links fan-out along this dimension.

For example, in Figure 2, the node 00 at level 0 has links to
the three nodes 00,010 and 011 in level 1, because their zones
have an overlap with the zone of node 00 along all dimensions
other than dimension 1. Thus the links from node 00 at level 0
fan out along dimension 1.

Another way visualize this process is the following : Project
the “shadow” zone of the node (P, 1) on level [41 and stretch it
along the dimension /+1. (P, 1) has links to all nodes (P’,[+1)
whose zones overlap with this stretched shadow. These fan-out
links correspond to the horizontal and cross links in the butterfly
topology.

Additionally, each node (P,%) also has links to all nodes
(P',7) such that either P is a prefix of P’ or vice versa, ir-
respective of the value of j. These correspond to the “shortcut”
links in the butterfly topology. The geometric intuition here is

that a zone/node will have a link to all zones overlapping with
its “shadow” at all levels.

C. Routing in a Ulysses butterfly

Routing in the Ulysses network can be visualized as follows.
A query for the key («, 7) originates at some random node (P, [)
in the network. In the first step, (P, 1) forwards this query to the
node (P',1 + 1) such that the location of a in dimension{ + 1
matches the range of the zone P’ in dimension [+ 1. We say
that (P',{+1) “locks” on the destination « along the dimension
[4+1. Thenode (P',1+1) forwards this query to (P", I+2) such
that the location of « in dimensions I 4+ 1 and I 4 2 lies within
the range of the zone P’ in dimension [+ 1 and [+ 2. Thus
in each step, the query gets locked in one additional dimension,
and after the first k steps the query reaches a node (@, 1) such
that « lies within the zone @) in all the &£ dimensions. If the level
[is the same as the level ¢ of the key that is being searched, then
(2 must contain «, and the routing is done. Otherwise the node
(Q,1) forwards the query on its shortcut link to node (Q, 1),
which must be responsible for the key (a, 7).

The pseudo-code for the forwarding operation at a node is
shown in Figure 3. At an individual node (P,1) in the Ulysses
network, routing of a query for the key («, %) proceeds as fol-
lows. First the set S of dimensions in which the query has al-
ready been locked is computed locally by examining the bits of
P and « (line 5). If the query has been locked in all dimensions
and the level of this node is the same as the level of the key
that is being queried for, then the routing is done (line 7). If all
the dimensions have been locked but the levels do not match,
the query is forwarded on the shortcut link to the correct level
(line 8). If one or more dimensions do not match, the query
is forwarded to the next level locking dimension [+ 1, while
maintaining the lock on the dimensions in S (line 9). Since the
forwarding operation at any node depends only on the destina-
tion node address it is stateless, (i.e., “markovian”). We present
a formal proof of the correctness and complexity analysis of
routing in section V-A.

D. Robustness

To add robustness to the routing mechanism, we add an ex-
tra phase to the routing algorithm to handle the situation where
a neighbor (P’,1 + 1) has been identified as the correct next
hop for a query but this neighbor does not respond to attempts
to forward the query to it. In such a situation the current node
(P, 1) needs to “route around” this failed neighbor. If this failed
node was the node responsible for the key being queried then
the query should be treated as failed temporarily until the repair
mechanism kicks in. Otherwise the current node should try to
circumvent this failed neighbor by forwarding the query to any
of its neighbors while maintaining the condition that the dimen-
sions in S that have been locked already remain locked after this
step. Usually there are many such neighbors and the query is
forwarded to one of them randomly, thus giving a “random off-
set” to the query along the next dimension instead of locking it
in (line 15). The query will get locked in the remaining dimen-
sions and reach back to the current level at another node (Q, 1),
after additional & — 1 steps. Note that because the query has

been locked in other dimensions, both (Q, 1) and the next-hop
calculated by it are different from (P,1) and(P’,1 + 1) respec-
tively. Thus the dimension { + 1 will be locked correctly on the
“second attempt”.

A special case arises when the current node (P, 1) is at level I,
and all dimensions other than [+ 1 have been locked. The node
(P',141) in next level, to which this query would be forwarded
in normal course has failed. Attempts to route around this failed
node result in a “vicious cycle”. After (P,[) gives the query a
random offset in dimension [+ 1, the query simply propagates
back on k — 1 horizontal links to some other node (Q,) in the
level I. Although (Q, 1) is different from (P, 1), it independently
calculates the next hop neighbor as (P’,l + 1) again. Thus
the query continues to fail to get locked even after receiving
multiple random offsets along dimension [+ 1. To avoids this
“vicious cycle”, a node whose next-hop neighbor for a query
is faulty, first checks if the query has been locked in all other
dimensions. If so, it forwards this query to a random neighbor,
requesting this neighbor to provide a random offset in some
dimension j other than [+ 1. This effectively avoids the vicious
cycle problem.

1) An Optimization : Shortcut links can also be used in
cases where the query is already locked in the next two or more
dimensions, thus reducing the latency in some cases. In this
case, a node can directly forward the query on its shortcut link
to the level j such that j + 1 is the first level (in a cyclic man-
ner) that needs to be locked. Although this optimization does
not reduce the worst case diameter, it does reduce the average
diameter, especially for queries that have to be re-routed due to
failures on their paths.

E. Self-stabilization on join of a new node

1) Findingarow: A new node N that would like to join the
network first randomly generates a key («, 1) and sends a query
for this key, through a node X that is already in the Ulysses
network. To find such an X, the new node can use any of
the discovery mechanisms proposed in the literature, like [13].
This query, routed through the Ulysses network, will eventu-
ally reach the node O with identifier (P, 1) currently responsible
for the key («,1). Node O then splits its zone of responsibil-
ity in two and assigns one half to the new node A\ as follows.
O changes its own row identifier to “P[|0”® and assigns the
new node A the row identifier “P||1”. Both nodes remain in
level I. The keys that are stored at the node O but are better
matched now with the new node A’s identifier are handed over
to V. The nodes AV and O are referred to as buddies. Formally
P = buddy(P") if and only if P and P’ differ in only their last
bit. This simple mechanism to choose a zone that should be
split to accommodate the new node, produces a remarkably sta-
ble distribution of zone sizes. An ideal mechanism would allow
all the nodes to have the same zone-size of % where & is the
number of levels, n the total number of nodes in the network
and 2™ is the key-space at each level.

2) Updating the routing tables: The node O also informs
the node A about its “original” neighbors in its routing table.
Since the new zones of the nodes A and O are subsets of the

6|| refers to the concatenation operation.

Routing algorithmat a node (P,:)
input: a query key (a,j)
output: a ‘‘next-hop’’
begin

deci si on

if (S==20) then /* all

COoNoOE®WNE

if (the ‘‘next-hop’’
if (S==Q—-{i+1}) then

if (¢4+1==y7) then nothing can be done;

else trigger the

Compute the set of dinensions S on which P has | ocked «
di mensi ons have been | ocked */

if (¢==j) then destination has been reached,

ese forward the packet through a shortcut link to the destination,
dse forward the packet to a neighbor (P’,i+1) that has |ocked a in on the set S|J{i+1};
/* existence of such a neighbor guaranteed by Lenma 2 */
is faulty inline 8 or line 9)

‘*vicious cycle avoidance protocol '’ ;
else forward the packet to a random nei ghbor (P’,i+1) that |ocks a on S;

at level j;

/* the destination is faulty */

/* described in Sec. 1V-D*/

Fig. 3. Algorithm for routing at a node, without the optimization in Sec. 1V-D.1.

original zone of responsibility of the node O, their routing ta-
bles are also going to be subsets of O’s original routing table.
Hence the routing table of the new node N can be computed lo-
cally, after a single message exchange from node O that informs
N of the contents of the original routing table of ©. However,
the nodes in the preceding level [—1 that consider O as a neigh-
bor (referred to as “predecessors™), should be informed of this
split”. In the next section, we define this set of “predecessors”
formally and show through analysis that the complexity of in-
forming the members of this set about the newly joining node
is O(logn).

Another option is not to inform the predecessors through up-
dates at the time of join. A predecessor detects this change
when it first tries to route a query through node O based on
its original identifier (P, 1), but which should be sent through
N, because its identifier (P||1,1) has a better match with the
query. The node O detects this error and returns the query to
the predecessor with a routing update. This amortizes the cost
of routing updates caused by a join, by distributing the updates
across queries, thus reducing the message complexity of a join
from O(log n) to constant.

F. Self-stabilization on Node Departures

Nodes can depart a Ulysses network at will at any point in
time. Ideally, a departing node should do so gracefully, clean-
ing up the routing tables of its predecessors and handing over
the keys that it holds before departing. But the Ulysses network
can robustly handle ungraceful departures too, where nodes
stop communicating abruptly and drop out without performing
any housekeeping operations.

1) Graceful departures: When a node with identifier (P, 1)
leaves the network, it needs to explicitly hand over its keys, to
another node at the same level. If its buddy has not been split,
the two nodes must have zones of equal size. These zones can
be merged to create a zone of twice this size and taken over by
the buddy.

There is a small probability that, due to joins of new nodes in
the meantime, the zone of departing node’s original buddy may
be split into multiple zones as shown in figure 4. In this case,

71t isworth noting at this point that the neighbor relation in a Ulysses butterfly
is not symmetric.

A® — D®

Before After

Fig. 4. When buddy of a departing node (A) is split into multiple zones. the
node with smallest zone (B) is promoted to take over departing node's zone and
C merges with B's zone.

the departing node searches for a smallest node whose zone is a
subset of its buddy zone. There are at least a pair of such nodes
who are buddies of each other. One of these small nodes will be
“promoted” to take over the departing node’s zone and the other
node will merge with its original buddy. This can be done by
logically emulating a depth-first search (DFS) within the buddy
zone of the departing node. Each step in this logical DFS is a
query for a key, issued by the departing node, and held by one
of the smaller nodes in the buddy zone.

Like in the case of join, the nodes in the previous level that
consider the departing node as a neighbor should also be in-
formed of the departure. This can again be done through ex-
plicit updates with a message complexity of O(logn) as dis-
cussed next in section IV-G. The newly “promoted” node
should do the same thing about its own departure from its orig-
inal zone, thus increasing the total expected complexity of a
departure by a factor of 2.

2) Ungraceful departures: Nodes in peer-to-peer networks
might abruptly stop communicating due to a host of reasons,
ranging from connectivity loss or power failures to large catas-
trophic events that might affect a significant part of the Internet.
We classify as ungraceful all departures that fail to complete
the housekeeping operations required for a graceful departure.
Handling an ungraceful departure consists of two phases - a
detection phase and a repair/housekeeping phase. The detec-
tion itself might occur either by a time-out of periodic keep-
alive messages or through an asynchronous mechanism where
a node detects that its successor has failed when a query for-
warding operation to that successor is unsuccessful. Time-out
based detection has higher overheads due to the periodic mes-

sage exchange and does not seem to offer any clear advantage
over the low overhead asynchronous detection in the context of
peer-to-peer networks. We thus feel that asynchronous detec-
tion is the more suitable candidate for detection of ungraceful
departures in a Ulysses network.

Once a node has detected the ungraceful departure of one of
its neighbors, it initiates and carries through all the housekeep-
ing operations on the behalf of the ungracefully departed node.
The housekeeping operations themselves are the same as in the
case of graceful departure. Note that the keys held by the un-
gracefully departed node itself cannot be recovered unless there
is some kind of replication or redundancy built into the storage
scheme. Such schemes are crucial to the operation of a DHT
based peer-to-peer network that expects to accommodate un-
graceful departures, but are orthogonal to the design objectives
of Ulysses and are thus not addressed in this paper.

G. Cost of self-stabilization

The self-stabilization cost in Ulysses is O(logn) per
join/leave, while in Chord it is O(log?n). The constant fac-
tor in O(logn) is about three for a join or about six for a de-
parture. The intuitive reason for this improvement is the fol-
lowing. In both Chord and Ulysses, each join/departure affects
about logn other nodes that have a link to the nodes affected
by the join/leave, and they all need to be notified. In Ulysses,
because the “coordinates” of these neighbors are very close to
the affected nodes, a property of butterfly topology, each “noti-
fication” only travels three hops. In Chord, on the other hand,
each notification will travel O(log n) hops. This results in the
difference in message complexity of self-stabilization between
Ulysses and Chord, as a consequence of the Little’s Law [10].

H. Heuristics to make the zones of responsibility uniform

The size of routing table of a Ulysses node is proportional to
the size (volume) of the portion of the DHT held by it. Thus
there is a two-fold motivation for making such zones of respon-
sibility uniform in size: (a) the load of storing DHT entries and
answering queries is balanced across the network and (b) the
routing tables become more uniform in size. We designed and
evaluated two optimization heuristics that augment the default
join procedure described in section IV-E.1 to achieve more uni-
formity in sizes of zones of responsibility. These two heuristics
differ in handling the join request issued by a new node. While
one approach checks for existence of a larger zone among the
neighbors of the destination node, the other approach examines
all zones along the path traversed by the join request. Neither
approach requires any extra cost of storage or communication
than the default join procedure. Our simulation experiments
with dynamic arrivals and departures indicate that over 90%
of the nodes end up with routing tables of size around log, n,
while the routing table sizes of rest of the nodes are within the
interval [% log, n, 2log, n] [14].

I. Choice of number of levels

One of the design parameters in the Ulysses network is the
number of levels k. The total number of nodes n in the network

and number of levels k& determine the average degree (routing
table size (r)) of nodes in the network, according to the equa-
tion: n = kr*. On the other hand, the diameter of Ulysses
is exactly &k + 1. Therefore, the different tradeoff points be-
tween the size of the routing tables and the diameter of the
network can be obtained by varying k. For fair comparisons
with other DHT-based protocols [1], [2], [3], [4], we configure
k such that the routing table size of Ulysses is no more than
log, n. Given a network size n, we define (n) as the smallest
k value that results in a routing table size no more than log, n,
i.e., n < k(logyn)¥. In other words, given the routing table
size of no more than log, n, setting k to X(n) allows Ulysses to
achieve minimum diameter. The following formula shows the
values of C(n) on various ranges of n.

n < 26

26 < <212
212 < p < 218
218<TL5224

T LN

K(n) =

Although ideally the number of levels should be K(n) when
the network size is n, we do not expect Ulysses to have to adapt
k to the changing values of n dynamically. Instead, a value
for k would be chosen a priori based on off-line information
regarding the approximate size ranges of the peer-to-peer net-
work. Such a fixed & will not cause problem for Ulysses for
two reasons. First, the above formula shows that a given value
of k can be optimal for a wide range of values of n (e.g., from
n = 256K ton = 16M when k = 5). Second, even if n
changes drastically so that the current number of levels is not
optimal, the performance of Ulysses in terms of diameter or
latency will not be affected, and only the average routing ta-
ble size will increase and decrease slightly. In other words, the
performance of a Ulysses network with n nodes is quite insen-
sitive to the choice of number of levels and even non-optimal
choices do not impact performance significantly®. In all our ex-
periments reported in Section VI, we select the number of levels
of Ulysses network to be K(n).

V. CORRECTNESS PROOFS OF ULYSSES PROTOCOLS

In this section, we formally specify the protocols for rout-
ing queries and handling joins/leaves in Ulysses, prove their
correctness using techniques from distributed computing, and
analyze their asymptotic message complexity. It consists of the
following steps. First, we define terminology and state the key
topology invariants that Ulysses maintains. We show that under
these invariants any query will terminate in a correct fashion,
i.e., routed to the correct destination. This termination state-
ment is proved by defining a notion of progress and showing
that the protocol guarantees such progress under these topology
invariants. Second, we formally characterize the level of robust-
ness that Ulysses routing achieves. Finally, we show that when
a join or departure temporarily compromises these invariants

8Fixing k corresponds to the tradeoff of constant diameter (k + 1) and a
routing table size of n'/*. The choice of k = logn/ loglogn causes the
routing table size to become n'oglog 7/ log 2 — Jog p,

the self-stabilization mechanism of Ulysses will restore them
locally. We also show that the complexity of such “repair” is
O(logn) as compared to O(log” n) in Chord.

We introduce some definitions and notation that will be used
in later expositions. In a k level Ulysses network, for a node
(P,1) where P = aga;...a;, AP(P, {i}), is defined as the string
formed by concatenating all a; such that j € the arithmetic pro-
gression {i,i + k,i + 2k...}. AP°(P,{i}) is also called the
coordinate of the node (P,1) in the it* dimension. The AP
function can be similarly defined on a search key mapped to a
tuple (a,1). In a more general form, the function AP(a, S),
where o is any binary string and S = {41, %2, ...,%4} IS a set
of indices, can be defined as the string formed by taking those
bits in « that appear at locations j, such that 5 is in one of the
arithmetic progressions {i1, i1 + k, i1 + 2k...}, {i2, iz + k,i2 +
2k...}..., {ig,iq+k,iq+2k...}. Theset S is asubset of Q which
is the set of dimensions {0, 1, ..., k—1} ina k level Ulysses net-
work. The function AP(a, S) retains the same order of bits as
in the string a.. For example, if @ = aga;...a12 and k = 5, then
AP(a,{0,2,3}) = apazasasarasaigai2. Itis not hard to ver-
ify that AP(a,) = a. We define AP(«a, () as the empty set ()
by convention. We define merge(a, S, 3) as a “hybrid” of two
keys a = agay - - Gm—1 and B = bgby - - - b1 as follows. It
takes i'th coordinate from « if ¢ € S and from 3 otherwise.
For example, when m = 13 and k = 5, merge(«, {0, 2, 3}, 5)
is equal t0 agbiasasbsasbgaragbgaigbiiara. With this def-
inition of the function AP(.), we can define the links of
the Ulysses network: a node (P,l) has a link to the node
(P',1+ 1) if and only if AP(P,{l +1}) C AP(P',{l + 1})
or AP(P',{l+1}) C AP(P,{l+1}). Here, {I+1} =
Q-{l+1}={0,1,...,0,1+2,...k — 1}.

The correctness statements of Ulysses can be summarized as
follows:

1) Zoning invariant. Each level cuboid is partitioned into
disjoint zones (prefixes). So for each key («,), there is
a unique zone that handles it. We denote this zone as
R(a,1).

2) Connectivity invariant. We let N(P,i) denote the
set of neighbors of a zone (P,%) at the level ¢ + 1,
and let H(P,i,j) denote its set of shortcut neighbors
at level j,57 # 4,5 + 1. The connectivity invari-
ants are, for all (P,%) in the network, (1) N(P,i) =
{R(a,i + 1)|AP(a,{i+1}) € AP(P,{i+ 1})} for
normal neighbors, and (2) H(P,i,j) = {R(a,j)|a €
P},0<j<k-1,j+#1i,i+ 1. Here we simply formal-
ize our intuitive characterization of Ulysses’ connectivity
in Section IV-B and Fig. 2.

3) Progress statement. Assume that both the zoning and the
connectivity invariants hold. Then our routing algorithm
(shown in Fig. 3) can always progress: it can always find
a “next-hop” unless the termination condition has already
been met, and this “next-hop” will lock the row of the
query key («, i) at the level that the “next-hop” lies in.
This statement is formalized and proved in Theorem 1.

4) Termination statement. Assume that both the zoning and
the connectivity invariants hold. Any key (a,) will be

9 APfor its relation to an arithmetic progression.

eventually routed to its destination in no more than k + 1
steps. This statement is formalized and proved in Theo-
rem 2.

5) Self-stabilization statement. The self-stabilization mech-
anisms of Ulysses can restore the zoning and connectivity
invariants when a join and departure (graceful or ungrace-
ful) operation compromises them. The message complex-
ity of the repair is O(logn). This is shown in Section
V-C.

6) Robustness statement. Even when a large percentage of
the nodes in the network is faulty (say 20%), the queries
can still be routed to the non-faulty destination using our
“randomized detour” algorithm, also shown in Fig. 3,
with high probability. This property is formally stated in
Theorem 3.

A. Progress and Termination

We first introduce a lemma that will be used in several later
proofs. It states that if a key « is locked by a zone P at two sets
of levels S; and S, then it is locked by P at the set Sy | Sa.

Lemma l: If AP(«,S1) € AP(P,S:) and AP(a,S2) €
AP(P, Sz) then AP(a, S1 U Sz) S AP(P, S1 U SQ)

Proof: Since AP(a,S1) € AP(P,S;), by the defi-
nition of AP, there exists 81 € P such that AP(51,S51) =
AP(a,S;). Since AP(a,S2) € AP(P,S:), there ex-
ists B2 € P such that AP(82,52) = AP(«a,S>). Then
let v = merge(B1,S1,0=2). It is not hard to verify that
v € Pand AP(vy,S51JS2) = AP(a,S1|JS2). Therefore
AP(OC,SlLJSQ) EAP(P,51USQ) |

Suppose that a query for («, j) reaches a node (P,4). We
prove that the routing of the query at the current node P satisfies
the progress statement above. We denote as L(a, P) the set
of dimensions that P has “locked” on the destination «, i.e.,
L(a, P) = {i|AP(a,i) € AP(P,i),i € Q}. We will show
that (1) the appropriate next-hop node P’ always exists, and (2)
upon the delivery of the query to P’, one additional dimension
((i 4 1)th) gets locked.

Theorem 1—Progress Statement: Suppose « ¢ P and
L(a, P) # 9, the message will be routed from P at level i
to some P’ at the level ¢ + 1 such that AP(a, L(a, P')) D
AP(a,L(a, P)) U{i + 1}.

Proof: The existence of such a P’ is from a more general
lemma below. Note that the algorithm will route the packet to
one of such P’ (line 9 in Fig. 3) at the level 7 + 1.]

Lemma 2: Suppose AP(a,S) € AP(P,S). Then (P,i)
must have a link to some (P’,¢ + 1) such that AP(a, S J{i +
1}) e AP(P',SU{i + 1}).

Proof: ~ Choose an arbitrary point 5 € P. Lety =
merge(a, S| J{i + 1}, 8). From the definition of merge and
the assumption, we know that AP(y,S) = AP(a,S) €
AP(P,S). Also, we know that AP(y,SU{i+1}) =
AP(B,S\J{i+1}) € AP(P,SU{i+1}). By lemma 1,
AP(v,{i+1}) € AP(P, {i + 1}). Therefore, by the connec-
tivity invariant, R(v, {i + 1}) =€ N(P,i). Now we find such
a(P',i+1),whichis R(v,{i + 1}). [|

This theorem leads to the following corollary stating that af-
ter [forwarding operations, [< k, at least [dimensions have
been locked.

Corollary 1: Ifaquery for key a has been forwarded [times
(I < k) and reaches a block P, then |L(«, P)| > 1.

From the above proposition and corollaries, it can be con-
cluded that the routing algorithm correctly routes a query for
(e, §) originating at any random node to some node (D, i), such
that « € D. From here, the query is forwarded to the destina-
tion through a shortcut link Thus the routing algorithm correctly
routes any query to its destination in at most k£ + 1 steps. This
intuition is captured in the following theorem and proof.

Theorem 2—Termination Statement: A query will be routed
to the destination after no more than k£ + 1 statements.

Proof: If the query has been routed to the destination
within & steps, then we are done. Otherwise, suppose the query
reaches a node P which is not the destination, in k steps. Then
we know that L(a, P) = Q since |L(a, P)| = k by Corollary
1. Soa = AP(a, L(a, P)) € AP(P,L(, P)) = P. Soall
coordinates have been locked and the only the level is different.
Then according to our routing algorithm (line 8 in Fig. 3), the
query will follow a shortcut link to the destination, the existence
of which is due to the connectivity invariant. |

B. Robustness

Our randomized detour algorithm minimizes the penalty of
detour. After the “detour”, at most 0, or when “vicious cycle
avoiding” is needed 1, previously locked dimensions become
unlocked in order to route around the problem. If faults are not
encountered after the detour, then the progress and termination
statements above guarantee that the query reaches the destina-
tion in at most three to three additional hops. The following
theorem captures this intuition. We omit its proof since it is
quite straightforward from our description in Section 1V-D.

Theorem 3—Robustness Statement: Suppose a query for key
« reaches a node P. Suppose the next hop P’, as specified in
Theorem 1, is faulty at the momentand P’ is not the destination.
Then the following are true: (1) If L(a, P) = Q—{i+ 1}, then
after two randomized steps as specified in the routing algorithm
IV-D, it will land on a P such that L(a, P") = Q—{i+1,i +
2}, thereby avoiding the vicious cycle as discussed in IV-D (2)
Otherwise, after on one randomized step, it will land on a node
P" such that L(a, P") = L(a, P).

C. Self-stabilization and its message complexity

Theorem 4—Self-Stabilization Statement: Suppose the con-
nectivity invariants concerning the links that point to or from
a region P | Jbuddy(P), and the zoning invariant concerning
P buddy(P) are satisfied, before a join/departure occurs (to
P). Then after the execution of the join and leave protocol as
specified in Sec. IV-E and IV-F, the aforementioned invariants
remain satisfied for the region P | buddy(P).

A join or departure will temporarily compromise the afore-
mentioned topology invariants at certain places. As stated in
the above theorem, our self-stabilization mechanism will repair
such “faults” and restore these invariants. Like in other DHT
schemes, Ulysses can recover from multiple concurrent faults
simultaneously due to its distributed nature.

Additionally Ulysses has a salient feature that the complex-
ity of the repair, in terms of messages transmitted between DHT

nodes, are O(logn) per fault, compared to O(log® n) per fault
in Chord. In Ulysses, the constant factor for this O(logn) is
approximately three in the case of join and six in the case de-
parture. The reason we can achieve this remarkable saving,
as mentioned before, is the following. In Ulysses, same as in
Chord and other DHT schemes, O(log n) nodes need to be no-
tified about this join or departure. However, each such notifi-
cation travels about O(logn) overlay hops in Chord, but only
travels three overlay hops in Ulysses, as described below.

1) Join: A new node joining the network needs to obtain
its own routing table and notify its predecessors so that the
connectivity invariant is maintained. Without loss of general-
ity, assume that the new node joins a node (@Q,) in the net-
work. One message exchange is needed between the new and
old nodes to “split” the routing table. Also, the old node should
notify the set of nodes in level 7 — 1, that maintains a link to it,

about the split. This set is equal to {R(«a, i — 1)|AP(a, {i}) €
AP(Q,{i})}, which we denote as Pred(Q,i). The expected
size of Pred(Q,1) is about logn by the symmetry of butterfly
topology. Also, any predecessor of (Q,) overlaps with it in all
but one dimension. Formally, V(Q',i— 1) € Pred(Q,1), either
AP(Q',Q—{i}) isasubstring of AP(Q, ¢) or vice versa. Since
the members of the set Pred(Q,) have identifiers that differ
from @ only in the bits that belong to AP(Q, %), the notifica-
tion being delivered needs to be locked only in the dimension 4.
Using the optimized version of our routing algorithm described
in Section 1V-D.1, exactly three hops - one to lock the query in
dimension 4, and two over shortcut links to get to the correct
level before and after locking the query in this dimension - are
needed to deliver a notification to a predecessor.

2) Departure: The only difference between the graceful and
ungraceful departures is that in the former case, the node initi-
ating the updates is the departing node itself, while in the latter
case it is one of the predecessors that has asynchronously de-
tected the ungraceful departure. In both cases, the set of nodes
that need to be notified is exactly the same: the set of nodes
that have a link to the nodes affected by the departure. It can be
shown that the average number of notifications is about 2 log n,
since departure usually results in a larger region than join. The
expected number of hops that each notification travels is 3, for
the same reason explained above.

V1. PERFORMANCE EVALUATION

We have carefully evaluated various aspects of Ulysses per-
formance using simulation. The findings of our simulation
study can be summarized as follows:

« In Section VI-A, we show that the worse-case and aver-
age path lengths of routes taken by queries, are far less
for Ulysses than for other DHT-based protocols. This re-
duction is achieved while keeping the routing table size
similar to that of the other protocols.

« In Section VI-B, we show that given the same offered
query load and network size, the average query traffic go-
ing through an overlay link or node is much lower for
Ulysses than for other protocols, as expected from the Lit-
tle’s Law. The same is true for nodes and links in the un-
derlying physical network.

« In Section VI-C, we show that Ulysses is very robust.
Even when a large percentage of nodes become faulty,
most (99.95%) of the queries destined for non-faulty nodes
can still reach the destination, along a path only slightly
longer than in fault-free routing.

We choose Chord [1] as the benchmark for our experiments,
since Chord represents the whole family of DHT based pro-
tocols that have a network diameter of O(logn) and routing
table size of O(log n). Among others, this family includes Pas-
try[3] and Tapestry[2] which use a base of 2° instead of 2, hence
achieving a diameter of logs: n = log, n/b, but with a larger
routing table of size (2°/b)logan. Ulysses can also attain sim-
ilar gain of smaller diameter and larger routing table by using
a larger base. However, for objectivity of evaluation, we work
with base 2 only keeping in mind that our results can be ex-
tended to larger bases as well. Therefore, we compare Ulysses
against Chord with both protocols having the same routing ta-
ble size of logn. Similarly, we do not consider the class of
protocols (e.g. CAN [5]) that achieve a network diameter of
O(dn'/?) with a routing table of size O(d) because these pro-
tocols achieve their optimum diameter at d = logn, which re-
duces them to the same family as Chord. Since the primary
design objectivel® of Ulysses is to achieve a low diameter, such
protocols would show poorly against Ulysses for other choices
of d.

We implemented an event-driven simulator for evaluating
different DHT-based protocols. It simulates node arrivals and
departures as well routing queries. It is written in C/C++ and
executes as a single process. The number of nodes in the peer-
to-peer network is varied from 256 to 4 million. Our imple-
mentation of the Chord protocol is from the description given
in [1]. The following sections describe our experiments and
analysis of the results.

A. Query path length

Our simulation results verify our expectation from the theo-
retical analysis that Ulysses achieves significantly lower worst-
case and average query latency than Chord. The query path la-
tency is measured in terms of overlay network hops. We assume
a simple model for the offered query load: queries are generated
randomly and uniformly at each node, destined for keys that are
uniformly distributed in the key-space. As discussed in IV-I, we
tune the number of levels k such that the average routing table
size is below log n, where n is total number of nodes.

We have simulated the worst-case and average path lengths
for both Ulysses and Chord, as a function of the number of
nodes n (x-axis, in the log scale). The results are plotted in
Fig. 5. Two curves are plotted for both Ulysses and Chord, de-
noting the worst-case and the average query path lengths mea-
sured in the number of overlay hops, respectively. The “steps”
on both Ulysses curves are due to the increase of parameter
k when n becomes larger, as discussed in 1V-I. As expected,

10proposed enhancements to protocols like CAN [5], Pastry [15] etc. take
network proximity into account during node joins to construct overlays that
have a good correspondence between the topology of the overlay and that of
the underlying network. Similar enhancements could be proposed for Ulysses
too, but we focus on achieving the optimum tradeoff in the overlay, and leave
the exploration of such enhancements to future work.

10

20 Ulysses: average —+— a
Ulysses: maximum ----x--- o
18 Chord: average - a
Chord: maximum ---a a
16 | o
&
14 +

number of overlay hops

256 1k 4k 16k 64k 256k 1M 4M
number of nodes in the network

Fig. 5. The average and maximum number of hops required for a query to be
routed correctly to its destination in an overlay network with n nodes.

0.8 T T T
Ulysses: 4 Million nodes —+—
Chord: 4 Million nodes ----x----

0.7 1

0.6
<
11
S 05 ¢
o
=
S 04t
o
=N
g 03 r
a

0.2 r -

el \X
x ,
01 A X\X
o
0 + T2 k- N
0 10 15 20 25 30

number of overlay hops

Fig. 6. Theprobability density function of number of hopsrequired for aquery
to be routed correctly to its destination in an overlay network with 222 nodes.

curves for Chord coincide with functions log, n for the worst-
case and %logz n for the average case. They look “linear” in
the figure since the x-axis is in log scale. We can see from
Fig. 5 that both the average and maximum number of hops
required by Ulysses are less than the average number of hops
required by Chord. The difference is more pronounced at a
larger network size. These differences highlight the better scal-
ing properties'* of Ulysses compared to Chord. Figure 6 shows
the probability distribution function of overlay path lengths in
Ulysses and Chord for a network size of 222 (4 million) nodes.
We can see from the figure that the mean number of overlay
hops for Ulysses is less than that of Chord. The sharp peak of
the Ulysses curve, and hence its low variance, indicate that the
length of most of its paths is very close to the mean.

B. Reduction in traffic load

By Little’s Law, given the same offered load of DHT queries
and same network size, Ulysses is expected to generate much
less overall network traffic than Chord, since each query travels
(i.e., “stays in the network”) for less number of overlay hops.

1 gince neither Ulysses nor Chord optimizes the mapping of the overlay net-
work to the underlying physical topology, we observed similar reduction in the
query path length when measured in underlying network link latencies [14].

700 T T
Ulysses —— ;

Chord -+
600 -

500 -
400
300

200

Mean traffic on a link in underlying topology

100

,,,,,,,,,,,,,,,,,
¥

0 - . . .
256 512 1k 2k 4k 16k 32k 64k 128k
Number of nodes in the network

Fig. 7. Variation of traffi ¢ density with different sizes of overlay networks.

In this section, we demonstrate this advantage through simula-
tions. As a consequence, the amount of traffic that goes through
each link and node also goes down proportionally.

We define the traffic intensity as the number of queries that
traverse a link or node in the underlying physical topology. A
network topology comprising of 10, 320 routers with an average
degree of 3.92 is generated using the Transit-Stub graph model
from the GT-ITM topology generator [16]. We attach a set of
end-hosts to each of the stub routers. The number of end-hosts
attached to a stub router is chosen from a normal distribution
with mean 14.0 and standard deviation 4.0. The resulting graph
has approximately 141, 000 end-hosts. In each experiment, we
uniformly and randomly pick end-hosts of the underlying net-
work topology to construct the overlay network. Thus a single
hop in the overlay network corresponds to a path of routers be-
tween end-hosts in the underlying topology. The total number
of queries simulated in each run is equal to the size of the over-
lay network. We generate one query from each overlay node
to a random destination uniformly drawn from the key space.
Therefore, the offered load increases linearly with the network
size. Figure 7 plots the average traffic intensity on links in the
underlying physical topology, as a function of the size of the
overlay network. We can see that, as the network size increases
and the offered load increases in the same proportion, the traffic
intensity increases for both Chord and Ulysses. However, both
the absolute value of traffic intensity and its rate of increase are
higher for Chord than for Ulysses. This confirms our expecta-
tion since the path length grows faster in Chord than in Ulysses
with increasing network size.

C. Robustness

In this section, we demonstrate the robustness of Ulysses
through extensive simulation study. We evaluate the success
rate for a query to detour around node failures (due to ungrace-
ful departures) and the penalty, in terms of additional overlay
hops in path length, for such detours. The robustness of Ulysses
is evaluated in comparison with Chord by simulating sudden
ungraceful departures of a fraction of the node population (e.g.,
due to a massive earthquake or power outage). The fraction
of nodes that are “switched off” are chosen randomly and uni-
formly from an overlay network of 4 million nodes. The per-
centage of nodes that fail is varied from 1% to 20%. A simple

1

query traffic model with random source and destination as de-
scribed in section VI-A is simulated here. The probabilities
reported in these plots on robustness are computed from the re-
sults of simulating 10° queries in each case.

0.9 : ‘
Ulysses ——
0.8 | Chord -
0.7 r
0.6
0.5
04|) o
03 .
0.2 r

01t ¥

Probability of a query encountering a failed on its path

0 5 10 15 20
% of nodes that are faulty

Fig. 8. Probability that a query encounters a node failure as we vary the
percentage of node failures in a4 million node overlay network.

Figure 8 plots the probability that a query encounters a node
failure while following a path to its destination using the for-
warding algorithm of corresponding protocol. For the same
percentage of node failures, the probability that a query in a
Chord network encounters a failure on its path is higher than
in Ulysses network because of the longer paths (hence, more
nodes visited per query) in Chord. Although encountering a
node failure on the path taken by a query does not impact the
reachability to its final destination as we can route around the
node failure, this phenomenon can have ramifications that af-
fect other “in-band” mechanisms, like asynchronous detection
of failures etc.

13

Avg no. of hops per query
©

Ulysses ——
Chord -

0 5 10 15 20
% of nodes that have failed

Fig. 9. Average number of hops required to route a query vs. percentage of
failed nodesin a4 million node network.

Routing a query around a node failure will inevitably in-
crease the path length for routing. For Chord, routing around
a failure involves forwarding the query to a node preceding
the failed node in the finger table, thus adding one extra hop
to the path of the query. In Ulysses, as shown in theorem 3,
the penalty incurred is usually two extra hops, but can be up
to three in the worst case of “vicious cycle” as described in

IV-D. Figure 9 plots the average number of hops required to
route a query to its destination against the percentage of failed
nodes. Both Chord and Ulysses show an increase in the average
number of hops per query with increasing percentage of failed
nodes. However, this increase is sharper for Ulysses than for
Chord in spite of the higher probability of queries in the Chord
network encountering a node failure on their path. The larger
slope for Ulysses is due to the aforementioned higher penalty
for routing around failures in a Ulysses network. Even with its
slightly higher slope, the curve for Ulysses lies below that for
Chord throughout the range (1% - 20%) of node failures that
was simulated.

VIl. OTHER RELATED WORK

The Viceroy network [12], also based on the butterfly topol-
ogy, has been proposed to achieve O(log, n) network diame-
ter with constant routing table size. Viceroy achieves this by
mapping a butterfly topology onto a basic Chord ring [1] with
only the successor and predecessor links. Routing in Viceroy
consists of taking the butterfly links in two phases to reach
within a distance of O(logn)/n from the destination and then
taking the successor or predecessor links of the Chord ring to
reach the destination in the third phase. The minimum diameter
of Viceroy is 3log, n and is O(log, n) with high probability.
However, the random distribution of nodes on the Chord ring
imply that the worst case diameter can be much larger. For
similar reasons, the worst case congestion at nodes and edges is
O(log, m) times the average in Viceroy while it is only a con-
stant times the average in Ulysses.

Koorde, proposed in a contemporaneous work [17], uses the
de Bruijn graph to achieve a diameter of O(logn/loglogn)
with O(logn) neighbors per node. However this bound is
achieved by Koorde only in the expectation and with a larger
constant in the “big O” notation. It is also not known whether
Koorde can self-stabilize like Chord or Ulysses. Koorde and
Ulysses can be seen as two parallel ways of achieving the
degree-diameter tradeoff, with Koorde achieving a determinis-
tic bound on the number of neighbors and a probabilistic bound
on the diameter while Ulysses achieves a deterministic bound
on the diameter with a probabilistic bound on the routing table
size.

Naor and Wieder [18] propose a similar mechanism to use
the de Bruijn graph to achieve a diameter of O(log n/ loglogn)
with O(logn) neighbors per node. Like Koorde, this mech-
anism too achieves only a probabilistic bound on the diame-
ter. Further, they require cooperation among logn nodes for
storing a key. Since keys stored in the DHT are more numer-
ous than nodes, this requires a large amount of state at nodes.
Both Koorde and Naor et al. require the number of neighbors
to be logn. This requires an a priori knowledge of the loga-
rithm of network size (n). Ulysses on the other hand requires
a knowledge of “logn/ loglogn” which is much less sensitive
to changes in network size.

VIIl. CONCLUDING REMARKS

We have presented the design and analysis of Ulysses, a peer-
to-peer protocol that meets the theoretical lower bounds for the

12

tradeoff between routing table size and network diameter. In
addition to reducing the diameter (i.e., worst cast query routing
length), Ulysses also reduces the average query routing length
as compared to other protocols with similar routing table sizes.
The reduction in query routing length implies a number of addi-
tional advantages, including reduced traffic at nodes and links.

Ulysses is based on a butterfly topology with significant
adaptations to achieve the aforementioned properties. In brief,
Ulysses includes shortcut links to remove stress on certain
edges, a novel method for assigning peers to locations in the
butterfly, a buddy-based protocol for assigning responsibility
for portions of the key space and handling self-stabilization,
and a collection of robustness techniques to allow efficient and
correct operation under network dynamics.

Our future work will focus on two directions. First, Ulysses
is particularly well suited for efficient multicast using wild-
cards in the node addresses. Such a multicast operation has im-
portance in the housekeeping operations associated with main-
taining the overlay, and may also be useful as an overlay ser-
vice. Second, we plan to implement and test Ulysses in wide-
area emulation and testbed environments.

REFERENCES

[1] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-
tions,” in Proc. of ACM SSIGCOMM ' 01, 2001.

[2] B.Y.Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An Infrastructure
for Fault-tolerant Wide-area Location and Routing,” Tech. Rep., U.C.
Berkeley Tech. Report UCB/CSD-01-1141, 2001.

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems,” in IFIP/ACM In-
ternational Conference on Distributed Systems Platforms (Middleware),
2001.

[4] C.G.Plaxton, R. Rgjaraman, and A. W. Richa, “Accessing Nearby Copies
of Replicated Objects in a Distributed Environment,” in Proc. of ACM
Symposium on Parallel Algorithms and Architectures, 1997.

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scal-
able Content-Addressable Network,” in Proc. of ACM SGCOMM '01,
2001.

[6] I. Stoica, D. Adkins, S. Zhaung, S. Shenker, and S. Surana, “Internet
Indirection Infrastructure,” in Proc. of ACM SSGCOMM ' 02, 2002.

[7] “IRIS: Infrastructure for Resilient Internet Systems,” http://www.project-
iris.net.

[8] S. Ratnasamy, S. Shenker, and |. Stoica, “Routing Algorithms for DHTS:
Some Open Questions,” in Proc. of 1st Workshop on Peer-to-Peer Systems
(IPTPS’02), 2002.

[9] J. Xu, “On the Fundamental Tradeoffs between Routing Table Size and
Network Diameter in Peer-to-Peer Networks,” in to appear in Proc. of
| EEE Infocom 2003, 2003.

[10] L.Kleinrock, Queueing Systems, vol. | and I1, J. Wiley and Sons, 1975.

[11] H.J. Siegel, “Interconnection networks for SIMD machines,” Computer,
val. 12, no. 6, 1979.

[12] D. Makhi, M. Naor, and D. Ratgjczak, “Viceroy: A Scalable and Dy-
namic Emulation of the Butterfly,” in Proc. of ACM PODC, 2002.

[13] P Francis, “Yoid: Extending the Internet Multicast Architecture,” Unref-
ereed report, 38 pages, Apr 2000.

[14] A. Kumar, S. Merugu, J. Xu, E. Zegura, and X. Yu, “Ulysses: A Robust,
Low-Diameter, Low-Latency Peer-to-Peer Network,” Tech. Rep. GIT-
CC-03-30, College of Computing, Georgia I nstitute of Technology, 2003.

[15] M. Castro, P. Druschel, Y. Hu, and A. Rowstron, “Exploiting Network
Proximity in Distributed Hash Tables,” in International Workshop on
Future Directions in Distributed Computing, 2002.

[16] E. Zegura, K. Cavert, and M. J. Donahoo, “A Quantitative Comparison
of Graph-based Models for Internet Topology,” |EEE/ACM Transactions
on Networking, vol. 5, no. 6, Dec 1997.

[17] M. F. Kaashoek and D. R. Krager, “Koorde: A simple degree-optimal
distributed hash table” in IPTPS, Feb 2003.

[18] M. Naor and U. Wieder, “A Simple Fault Tolerant Distributed Hash Ta
ble” in IPTPS, Feb 2003.

