
1

Efficient Search in Unstructured
Peer-to-Peer Networks

Vicent Cholvi
Universitat Jaume I

Castelĺo (Spain)

Email: vicent.cholvi@uji.es

Pascal Felber∗

University of Neucĥatel

Neucĥatel (Switzerland)

Email: pascal.felber@unine.ch

Ernst Biersack
Institut EURECOM

Sophia-Antipolis (France)

Email: ernst.biersack@eurecom.fr

Abstract—The huge popularity of recent peer-to-peer (P2P) file
sharing systems has been mainly driven by the scalability of their
architectures and the flexibility of their search facilities. Such sys-
tems are usually designed asunstructuredP2P networks, because
they impose few constraints on topology and data placement and
support highly versatile search mechanisms. A major limitation
of unstructured P2P networks lies, however, in the inefficiency of
their search algorithms, which are usually based on simple flood-
ing schemes.

In this paper, we propose novel mechanisms for improving
search efficiency in unstructured P2P networks. Unlike other ap-
proaches, we do not rely on specialized search algorithms; instead,
the peers perform local dynamic topology adaptations, based on
the query traffic patterns, in order to spontaneously create com-
munities of peers that share similar interests. The basic premise of
such semantic communities is that file requests have a high proba-
bility of being fulfilled within the community they originate from,
therefore increasing the search efficiency. We propose further ex-
tensions to balance the load among the peers and reduce the query
traffic. Extensive simulations under realistic operating conditions
substantiate that our techniques significantly improve the search
efficiency and reduce the network load.

I. I NTRODUCTION

A. Motivations

The last few years have witnessed the appearance of a grow-
ing number of peer-to-peer (P2P) file sharing systems. Such
systems make it possible to harness the resources of large pop-
ulations of networked computers in a cost-effective manner, and
are characterized by their high scalability.

P2P file sharing systems mainly differ by their search facil-
ities. The first hugely successful P2P data exchange system,
Napster [1], incorporates a centralized search facility that keeps
track of files and peer nodes; queries are executed by the cen-
tral server, while the resource-demanding file transfers are per-
formed using P2P communication. This hybrid architecture of-
fers powerful and responsive query processing, while still scal-
ing well to large peer populations. The central server needs,
however, to be properly dimensioned to support the user query
load. In addition, it constitutes a single point of failure and can
easily be brought down in the face of a legal challenge, as was
the case for Napster. Consequently, most recent P2P file sharing
systems have adopted more decentralized architectures.

Roughly speaking, the P2P networks that do not rely on a
centralized directory can be classified as eitherstructuredor un-
structured. Structured P2P networks (e.g., Chord [2], CAN [3],

∗This work was performed while the author was at Institut EURECOM.

Pastry [4], and Tapestry [5]) use specialized placement algo-
rithms to assign responsibility for each file to specific peers,
as well as “directed search” protocols to efficiently locate files.
In contrast, unstructured P2P networks (e.g., Gnutella [6] and
Freenet [7]) have no precise control over the file placement and
generally use “flooding” search protocols.

Directed search protocols are particularly efficient, because
they accurately route queries toward the peers responsible for
a given file. They require few communication steps, generate
little traffic, and do not produce false negatives (i.e., the search
fails only if there is no matching file in the system). Flooding
protocols are less efficient, because queries are generally broad-
cast indiscriminately in a whole neighborhood and may yield
false negatives. They have, however, very little management
overhead, adapt well to the transient activity of P2P clients,
take advantage of the spontaneous replication of popular con-
tent, and allow users to perform more elaborate queries than
with directed search protocols, which only support exact match
queries. These properties make unstructured P2P systems more
suitable for mass-market distributed file sharing.

The main objective of this work is to develop techniques to
render the search process in unstructured P2P file sharing sys-
tems more efficient and scalable, by taking advantage of the
common interests of the peer nodes and effectively implement
a “directed flooding” search protocol. It is meant to extend
and improve Gnutella-like networks; not to propose a complete,
novel file sharing system.

B. Overview and Contributions

In this paper we proposeAcquaintances, an extension to
Gnutella-like unstructured P2P networks that uses dynamic
topology adaptation to improve search efficiency. As in
Gnutella, our search mechanism uses TTL-limited flooding to
broadcast queries in a neighborhood. By associating a TTL
(time to live) value to the query messages, one can restrict the
search diameter, i.e., the size of the flooded neighborhood, and
limit the adverse effects of exponential message generation on
the network links. However, the probability of finding a file that
does exist in the network strongly depends on the chosen TTL
value: bigger values increase the success rate but may quickly
lead to network congestion.

To minimize this problem, we propose novel techniques to
build self-organized communities of peer nodes that share sim-
ilar interests. These communities are maintained by dynami-
cally adapting the topology of the P2P overlay network based



2

on the query patterns and the results of preceding searches.
Some of the neighbor links are explicitly reserved for building
semantic communities and are continuously updated according
to some link replacement algorithm; these links allow peers to
quickly locate files that match their interests. The other links
are mostly static and random; they help maintain global con-
nectivity and locate more marginal content.

Semantic communities can have the adverse effect of creat-
ing hot-spots with well-connected peers. To address this prob-
lem, we introduce a load-balancing mechanism that delegates,
whenever possible, the responsibility to answer a query to less-
loaded peer nodes. Finally, we propose a dynamic TTL up-
date scheme to further limit network congestion without signif-
icantly degrading the query success rate.

To evaluate the effectiveness of our techniques, we have built
a network simulator and conducted extensive simulations under
realistic operating conditions. Results demonstrate that, when
extending a basic Gnutella-like network withAcquaintances,
one can significantly improve the search efficiency and reduce
the network load.

C. Paper Organization

The rest of this paper is organized as follows: In Sec-
tion II, we discuss related work, and we introduce the design
of Acquaintances in Section III. Section IV describes the
methodology used for the evaluation ofAcquaintances, and
the simulation results are presented in Section V. Finally, Sec-
tion VI concludes the paper.

II. RELATED WORK

Our system builds on top of unstructured P2P networks, such
as Gnutella [6], but dynamically adapt the network topology
to build semantic communities. Several alternative approaches
have been proposed to improve search efficiency by taking ad-
vantage of the common interests of the peer nodes.

In [8], the authors propose the use ofshortcutsto exploit
interest-based locality: peers that share similar interests create
shortcuts to each other. Queries are first disseminated through
shortcuts and, if the search fails, they are flooded through the
underlying P2P overlay. In contrast, our approach does not cre-
ate additional links, nor does it require a specialized search pro-
cess; it rather dynamically modifies the topology of the overlay
network to reflect the shared interests of the peers, and can thus
be incorporated seamlessly into existing Gnutella-like P2P net-
works.

In [9], the authors propose techniques to reduce the number
of nodes that process a query, with the premise that by intel-
ligently selecting subsets of peers to send queries to, one can
quickly obtain relevant results. This work focuses on the peer
selection algorithms, which yield various performance gains,
but does not consider the dynamic evolution of the structure
and connectivity of the P2P overlay.

In [10], the authors propose a query algorithm based on mul-
tiple random walks. This technique reduces message overhead
compared with flooding, but at the expense of an increase in the
number of hops necessary to find the requested file.

Gia [11] is a P2P file sharing system that extends Gnutella
with one-hop replication. Each peer maintains an index of the
files stored on its neighbors, and can thus process queries on
their behalf for increased scalability.Local indices[9] imple-
ment the same concept, but extend the scope of indexes to all the
peers located within a predefined hop distance. We also rely on
similar techniques to increase search efficiency, but we further
use them for load balancing purposes and we show that they are
effective even when indexes have stringent size limitations.

Yang and Garcia-Molina [12] examine super-peer networks
in detail, and present practical guidelines and a general proce-
dure for the design of an efficient super-peer network. Whereas
we do not explicitely use super-peers, the dynamic topology
adaptation feature of our system makes it spontaneously or-
ganize as a super-peer network, with peers that have more
resources being better connected. Furthermore, our dynamic
topology adaption mechanisms allow quick adaptation to vari-
ations of the workload and peer population.

In [13], Crespo and Garcia-Molina propose to explicitly clas-
sify files into semantic groups associated with distinct (possibly
overlapping) overlay networks. A file is then requested from the
overlay(s) to which it belongs. In our approach, semantic rela-
tions are discovered spontaneously at runtime, based on the user
queries, without having to explicitely classify the files—which
is know to be a difficult task in practice [13].

In [14], the authors propose to use file associations to build a
so-calledassociative overlayand present various algorithms to
steer the search process to peers that are more likely to have an
answer to the query. In contrast, our approach does not require
specialized searching rules; it rather drives the search process
by dynamically adapting the network topology.

III. Acquaintances DESIGN

In this section, we introduce the basic principles of
Acquaintances and we present the key components and al-
gorithms used in its design.

A. Definitions and Terminology

Each peer is connected to a set of other peers in the network
via uni-directionallinks, that is, each peer can locally select the
other peers it wishes to link to. We distinguish between two
types of links:
• Neighbor linksconnect a peerp to a set of other peers (p’s

neighbors) chosen at random, as in typical Gnutella-like
networks.

• Acquaintance linksconnect a peerp to a set of other peers
(p’s acquaintances) chosen based on common interests.

Each peer has a bounded number of neighbor and acquain-
tance links. We callp’s friends the set of peers that havep
among their acquaintances. The number of friends of a peer is
its in-degree(which is unbounded, let alone by the size of the
network).

A peer can make some of its local files accessible to other
peers. Peers that do not share any file are calledfree-riders.
Non-free-ridersor serving peersare those peers that contribute
files to the community. A successful request yields a list of
peers that have a file matching the original query. We assume



3

pi

p1

p2

p3

p4

p5

p6

p7

p8

p9

Acquaintance
Neighbor Peer

n files
sharingi

#n

#99

#53

#68

#42

#31
#50

#0

#27

#0

Fig. 1. Sample minimal network, with a single neighbor and acquaintance link
per peer.

that, when several peers have the desired file, the peer that is
closest to the requester (in number of hops) is chosen. We call
that peer theanswerer. Note that answering a query typically
implies sending a file to the requester.

Some of the mechanisms that we will introduce shortly re-
quire peers to maintain state information about their friends.
Thestateof a peer consists of the list of the names of its shared
files. For load-balancing purposes, peers also need to know the
in-degree of their friends.

To illustrate these definitions, consider the sample network
depicted in Fig. 1, in which each peer has a single neighbor
and acquaintance link. Peerp1 shares99 files and its state con-
sists of the names of all these files. It hasp9 as random neigh-
bor; p4 as acquaintance; andp2, p3, p4, p6, andp8 as friends,
which corresponds to an in-degree of5. Peersp7 andp9 are
free-riders and have no friends. As we will see later, a high
in-degree generally indicates that a peer shares many files, or is
well-connected to peers that share many files; in contrast, free-
riders typically have a null in-degree. Pair-wise acquaintance
relationships between serving peers that have similar interests
(e.g., betweenp1 andp4) are also common in practice, and ef-
fectively yield bi-directional links.

B. Dynamic Topology Adaptation

The basic principle ofAcquaintances consists in dynam-
ically adapting the topology of the P2P network so that the
peers that share common interests spontaneously form “well-
connected” semantic communities. It has been shown that users
are generally interested in only some specific types of con-
tent [13], therefore being part of a community that shares com-
mon interests is likely to increase search efficiency and success
rate.

2p

3p

p1

?

?

Query

? ?

?

?

?

?

(a)

2p

3p

p1

!

Result

(b)

2p

3p

p1

Promotion 

(c)

Fig. 2. Basic principle of dynamic topology adaptation: (a)p1 issues a query.
(b) p3 returns a positive response. (c)p1 promotesp3 as acquaintance.

Dynamic topology adaptation is implemented by directing
acquaintance links toward the peers that have returned relevant
results in the past (see Fig. 2). Indeed, a peer that consistently
returns good results is likely to have common interests with the
requesting peer and/or to serve a large number of files. A con-
sequence of this scheme is that selfish peers and free-riders are
likely to be acquainted with almost no other peer.

Each peer maintains an bounded list of acquaintances. The
decision of replacing a peer from this list, i.e., promoting a peer
as acquaintance, depends on the history of the responses to pre-
vious requests issued by each peer (note that this decision is
local). In this paper, we evaluate two acquaintance replacement
policies.

Algorithm 1 LRU replacement policy at requesterpr

Variables:
AcqList: Ordered list ofN acquaintances, initially chosen at random

Upon successful query answered bypa:
if pa ∈ AcqListthen

removepa from AcqList
else

remove last element fromAcqList
end if
addpa to front ofAcqList

TheLeast Recently Used (LRU)policy is the simplest. After
a successful request, a peer adds the answering peer in front of
its list, and drops the last peer of the list (see Algorithm 1). If
the answering peer is already an acquaintance, it is moved to the
front. This scheme guarantees that a promoted peer always re-
places the peer that was promoted least recently, and that a peer
that regularly answers queries can remain an acquaintance for a
long duration. However, when peers have diverse interests and
have only few acquaintance links at their disposal, the composi-
tion of the acquaintance list may well change after every query;
this volatility can yield non-negligible connection management
costs.

To alleviate this problem, we use theMost Often Used
(MOU) policy, which maintains rankings of the peers and elects
as acquaintances those that have the highest rankings. A peer
has a high ranking if it answers to many queries, or (to a lesser
extent) if it is close to peers that have answered many queries,
i.e., it is well connected and could thus be a valuable acquain-
tance. After each successful query, each peer on the path fol-
lowed by the query, in reverse order from the answerer to the
requester, has its rank increased by an exponentially decreasing
value (see Algorithm 2). To better adapt to the dynamics of the



4

Algorithm 2 MOU replacement policy at requesterpr

Variables:
AcqList: Ordered list ofN acquaintances, initially chosen at random
CandList: List of {peer; ranking} pairs, ordered by ranking,

initially filled with peers fromAcqListand null rankings
α: Aging factor, with value in(0; 1]

Upon successful query answered bypa, reached via(pr, p1, · · · , pn−1, pn = pa):
for all {p; r} ∈ CandListdo
{p; r} ← {p; αr}

end for
i← 1.0
for j from n downto 1 do

if {pj ; r} ∈ CandListthen
{pj ; r} ← {pj ; r + i}

else
insert{pj ; i} in CandList

end if
i← i/2

end for
AcqList← first N peers ofCandList

peer population and shared content, we also introduce an aging
factor that gives more weight to recent answers by decreasing
the rankings over time. This scheme clearly yields acquaintance
lists with low volatility, which give preference to peers that stay
longer in the system and are expected to be more stable.

To best illustrate the effect of dynamic topology adaptation
in Acquaintances, we have represented in Fig. 3(a) and 3(b)
the acquaintance links of a small P2P network, before and after
running a simulation (as described in Section IV). The network
evolves from a random configuration toward a graph with well-
connected communities.

We note that, currently, several unstructured networks
are based on the “super-peer” concept (e.g., Gnutella [6],
Kazaa [15], iMesh [16]), which distinguishes between two
classes of nodes: “regular clients” and “super-nodes”. A super-
node is a host that acts as a hub for a large number of reg-
ular clients. If super-nodes are well connected, their may
vastly reduce the number of peers involved in message rout-
ing. However, if super-nodes are not well connected, they may
constitute a performance and scalability bottleneck. Whereas
Acquaintances does not explicitely use super-nodes, its dy-
namic topology adaptation feature makes it spontaneously or-
ganize as a super-peer network (see Fig. 3(b) for an illustrative
example).

C. Search

As previously mentioned,Acquaintances does not require
complex or specialized search algorithms. It uses the same
TTL-limited flooding scheme as in Gnutella-like P2P networks,
and yet exhibits much improved search efficiency.

First, by organizing peers in communities that share common
interests, we improve response time by increasing the chances
that matching files are found inside the community, i.e., within
a short distance, of the requester. We can therefore use smaller
TTL values for queries and thus reduce the network traffic,
without significant impact on the success rate.

Second, peers can be configured to maintain a (partial) index
of the files stored on their friends. Using this state information,
a peer can explore several other peers with similar interests at
no communication cost. Clearly, this also increases the success
rate and reduces the network traffic.

Semantic communities also have some drawbacks. First, the
network can quickly become divided in several disconnected
subnetworks with disjoint interests. Second, peers searching
for unpopular or marginal content (not part of their interests)
may experience very low success rates. For these reasons, we
enforce some random connectivity by means of the neighbor
links. Searches are performed by forwarding queries on both
the acquaintance and neighbor links.

D. Load Balancing

Flooding algorithms naturally direct much of the traffic to-
ward highly connected peers. In our system, a peer that has
many friends can quickly become a hot-spot, not only because it
receives more queries, but also because it typically sends more
files to requesting peers. Although we do not explicitely ad-
dress the issue of file transfers in this paper, it is a large source
of overhead in P2P file-sharing networks and should not be
overlooked.

We therefore use the following mechanism to better balance
the file traffic. Before successfully answering a query, a peer
p first checks if any of its friends also has the requested file. If
so, it delegates the responsability for answering the query to the
peer among those serving the file that has thesmallest in-degree
(note that this peer may bep). Otherwise,p sends the file itself.

The rationale behind this approach is that well-acquainted
peers are likely to be more loaded, i.e., receive more requests
and serve more files, than peers with fewer friends. Further,
there is a good probability that some of the friends of a peer
also have the same files. Therefore, we force the less loaded
peer to assume part of the load.

E. Dynamic TTL

To further reduce the query traffic generated by the flooding
algorithm, we propose an extension for the case where peers
are “conscious” of the sematic communities and can check if
a requested file falls within their interests. Intuitively, a query
that enters a community of peers to which the requested file
belongs, is likely to be answered by a peer of that community
within a few hops. Conversely, a query for a file that does not
match the interests of the community is likely to traverse more
peers before being satisfied. Therefore, we propose decrement-
ing the TTL value twice (i.e., by2 instead of1) when a received
query falls within the interests of the traversed peer. Clearly,
this mechanism reduces the number of messages sent by the
flooding algorithm. Our basic premise, which we substantiate
later, is that this extension significantly reduces network traffic
without affecting much the success rate.

IV. EXPERIMENTAL SETUP

We now present the experimental setup and methodology
used for the evaluation ofAcquaintances. All results were
obtained from simulations, with extra care taken at reproducing
realistic operating conditions.



5

(a) At the begin of the simulation. (b) At the end of the simulation.

Fig. 3. Graphical representation of the effect of dynamic topology adaptation on a200-peers network, with one acquaintance link per peer (neighbor links are
not shown for clarity).

A. System Model

a) Network: Similarly to Gnutella, we consider a system
model where peers are organized in an overlay network. Each
peer has a set of neighbors with which it communicates by mes-
sage passing. Links are directed: a peerp may have another
peerp′ as neighbor withoutp′ consideringp as its neighbor.
Traffic can however flow in both directions on the links. As
we are mostly interested in studying (low volume) query traffic
and hop distances, we do not explicitely take into account the
bandwidth and delay of the links.

We consider a peer-to-peer network made of20, 000 peers,
which corresponds to an average-size Gnutella network [17].1

Each peer has6 of outgoing links. Some of them are chosen
randomly (neighbor links), and others adapt dynamically based
on the query traffic (acquaintance links). The number of ac-
quaintance links varies between0 and5 in our experiments (the
remaining links being neighbor links). As we need to main-
tain global network connectivity during the whole simulation to
obtain consistent results, we make sure that the network is ini-
tially fully connected through the peers’ neighbors links (which
do not change over time). The number of incoming links is un-
bounded and varies over time as acquaintance links get updated.

Our study considers a system in steady mode, for which we
observe significant improvements, and does not explicitely con-
sider the issue of “churn” (nodes coming and living rapidly). In-
deed, other studies [18] have shown that the peers that have a lot
of contents are usually much more stable than free-riders, and
changes in the free-rider population should not impact the effec-
tiveness of our techniques (free-riders are typically acquainted
with no other peer). We therefore expect our system to be
mostly insensitive to churn.

1Note that, whereas current estimates of Gnutella’s size are around100, 000
peers, only20, 000 are active at a given time.

b) Content: It has been observed [13] that users are gen-
erally interested in a subset of the content available in a peer-to-
peer network. Furthermore, they are interested in only a limited
number of “content categories” (e.g., music styles, literature
genres). Among these categories, some are more popular and
contain more content than others; for instance, pop music files
are more widely held than jazz or classical music files. Simi-
larly, within each category, some files are much more popular
than others. It has been shown that the Gnutella content and
queries follow a Zipf distribution, with a skew factor between
0.63 and1.24 [19]; thus, in the rest of this paper, unless men-
tioned otherwise, we use a Zipf distribution with a skew of1.0
for all our experiments. We note that most of the related stud-
ies have used the Zipf assumption (e.g., [10], [20], [21]), with
the notable exception of a recent evaluation [22] of Kazaa [15]
that tends to indicate that the content popularity does not always
follow a Zipf distribution.

We model content by creating50 distinct categories. Each
category has an associated popularity index, chosen according
to a Zipf distribution. We then create200, 000 distinct files and
assign each of them to exactly one category chosen according
to the categories’ popularities: the more popular a category is,
the more files it contains. We also associate a Zipf popularity
to the files inside each category. Finally, each peer is assigned a
random number (uniformly distributed between1 and6) of cat-
egories of interest, that it chooses according to their popularity
index. The categories of interest of a peer are ranked using a
Zipf distribution: the peer is more interested in (i.e., requests
and shares more files from) the first chosen category than the
second one. This behavior models the few peers that are highly
interested in marginal content.

c) Cooperation: All peers do not share the same number
of files and do not exhibit the same “social behavior”. As ob-
served in [23], a large proportion of the user population is made



6

Parameter Value
Active peers 20, 000

70% share 0 file ≡ free-riders
20% share [1 . . . 100] files (uniform)
7% share [101 . . . 1000] files (uniform)
3% share [1001 . . . 2000] files (uniform)

Distinct files 200, 000
Categories 50
Categories per peer [1 . . . 6] (uniform)
Links per peer 6

Acquaintance links {0, 1, 3, 5}
Query TTL 6
Query rate 10%

TABLE I
PARAMETERS USED IN THE SIMULATIONS.

of so-called free-riders, who do not make any file accessible to
other users and essentially behave as clients. On the other hand,
a small proportion of the users (less than5%) contribute more
than two thirds of the files shared in the system and essentially
behave as servers. Based on the study in [23], we assign the
following storage capacity to the peers in the network:70% of
the peers do not share any file (free-riders);20% share100 files
or less;7% share between101 and1, 000 files; finally, 3% of
the peers share between1, 001 and2, 000 files (actual storage
capacities are chosen uniformly at random). With this distribu-
tion, we have observed in our experiments a total storage ca-
pacity of more than1, 600, 000 files, with more than150, 000
distinct files being shared.

In this work, we do not explicitely analyze thefree-riders
phenomenon (i.e., selfish individuals who opt out of a voluntary
contribution to a group’s common welfare and, consequently,
do not add value to the network). Other studies (e.g., [24]) focus
on that problem and propose mechanisms that can be used to
encourage file sharing.

B. Simulation Methodology

Our simulator proceeds in a sequence of synchronous rounds.
In each round, a subset of the peers (10% in our experiments)
issue requests. Similarly to Gnutella, searches are conducted
using TTL-limited flooding. Each request is assigned a time-
to-live (TTL) value and is disseminated via neighbor and ac-
quaintance links. When receiving a request for the first time, a
peer decreases the TTL value and, if it is strictly positive, prop-
agates the request further.

To generate a request, a peer first selects one category among
its categories of interest based on their rankings. Then, it selects
a file (that it does not already hold) from that category according
to the file popularities. The peer then issues a request for that
file. For simplicity, we always request individual files, i.e., we
do not consider broad queries that match several distinct files.

When a serving peer receives a positive response to his query
and it still has some storage capacity available, it creates a local
copy of the file and makes it accessible to other users. A posi-
tive response to a query can also result in an update of a peer’s
acquaintance links. We used an aging factor ofα = 1 for the
MOU acquaintance replacement policy (see Algorithm 2).

The simulation is made of two phases:

1

10

100

1000

10000

1 10 100 1000 10000 100000

N
um

be
r 

of
 r

eq
ue

st
s/

co
pi

es

Order of popularity

requests
copies

Fig. 4. The number of requests for, and copies of, each file strongly depends
on the file popularity.

1) During the first phase (bootstrap phase), we populate the
system and establish acquaintance link connectivity be-
tween the peers. To that end, serving peers issue queries,
at a rate proportional to their storage capacity, and create
local copies of the files they request. In case a file is not
found (e.g., because it does not yet exist in the system),
we “inject” it at the requesting peer; this models the be-
havior of peers joining the network with a pre-existing
set of files. Acquaintance links are dynamically updated
based on the query traffic and the acquaintance replace-
ment policy in use. The first phase ends when80% of the
storage capacity has been filled. At the end of the first
phase, the storage and acquaintance link connectivity of
the core network—composed on the serving peers that
actually contribute to the content of the system—have
been established. This corresponds to the expected state
of a pre-existing peer-to-peer network at the time a new
user connects.

2) During the second phase, we take measurements and ob-
serve the network’s behavior under traffic load from both
free-riders (which continue issuing queries as in the first
phase) and serving peers (which fill up the remaining
20% of their storage capacity). This phase allows us in
particular to observe the evolution of the connectivity of
the free-rider population with respect to the serving peers
in the core of the network.

We run the simulation for at least1, 000 rounds in the second
phase. Table I summarizes the main parameters used in our
simulations.

Based on the content and query models, it appears clearly
that the number of requests to each file, as well as the number
of copies held in the system, are strongly correlated with the
popularity of the file. Fig. 4 shows the number of requests and
copies observed for each file based on its order of popularity.
Fig. 5 further exhibits the strong correlation between the num-
ber of requests for a file and its number of copies.

V. Acquaintances EVALUATION

In this section, we present and analyze the results of the
experimental evaluation ofAcquaintances. We first start by



7

0

5000

10000

15000

20000

25000

0 500 1000 1500 2000 2500

N
um

be
r 

of
 r

eq
ue

st
s

Number of copies

Fig. 5. The number of requests for a file is correlated with its number of
copies.

studying the overall impact of acquaintances on our system.
We then analyze search and load balancing improvements when
each peer knows the state of some of its friends. Finally, we
evaluate the effect of the dynamic TTL optimization. Further
experiments, conducted in real Gnutella [6] and Limewire [17]
networks, confirm the results that we have obtained from simu-
lation [25].

Note that we did not explicitely compare our approach
against other sophisticated search algorithms and architectures
based on super-peers ([8], [9], [10], [11], [12], [13], [14]) for a
number of reasons. First, we could not obtain enough informa-
tion on some of these algorithms so as to support them in our
simulator. Second, some of the proposed architectures make
specific assumptions about the system (in particular when deal-
ing with super-nodes), which would not allow for a fair compar-
ison. Third, a major contribution and original property of our
algorithms is that they work by peforming only local and dy-
namic topology adaptations. They are extremely simple to im-
plement and do not require global or a priori knowledge about
the peers, files, or query workload. We believe that this last
point is extremely important and easily compensate for the bet-
ter efficiency that other specialized search algorithms might of-
fer in specific deployment scenarios.

A. Acquaintance Links

For all the experiments in this section, we assume that the
peers have no knowledge of the state of their friends. This case
corresponds to a traditional Gnutella-like network with no extra
information being transmitted between peers.

1) Hops: The first metric used in our evaluation is thenum-
ber of hopsnecessary to reach the first peer that serves the re-
quested file. We compute the average over all successful re-
quests issued during each round. The number of hops is a mea-
sure of the response time and allows us to choose adequate TTL
values to experience a good query success rate without over-
loading the network.

Fig. 6 shows that the system, initially with random connec-
tivity, needs only a few rounds to set up acquaintance links and
stabilize in an efficient configuration. Regardless of the ac-
quaintance replacement policy, the number of hops is reduced

1

2

3

4

5

0 200 400 600 800 1000

H
op

s

Number of rounds

0 acq
1 acq LRU
1 acq MOU
3 acq LRU
3 acq MOU
5 acq LRU
5 acq MOU

Fig. 6. Number of hops to the closest peer that serves the requested file.

by around30% with 1 acquaintance, by60% with 3 acquain-
tances, and by80% with 5 acquaintances. Note that the mini-
mum number of hops necessary to reach a file is1, as peers do
not search for files that they already have. We have observed
that more popular files are generally found closer to the re-
quester; this behavior can be explained by the fact that popular
files have more copies (see Fig. 4).

2) In-degree: The in-degreeof a peerp is defined as the
number of other peers that have chosenp as acquaintance. We
have computed the maximum over all peers at the end of each
round. As the number of queries received by a peer is clearly
proportional to its in-degree, it is important to keep this value
within reasonable bounds.

0

200

400

600

800

1000

0 200 400 600 800 1000

In
-d

eg
re

e

Number of rounds

1 acq LRU
1 acq MOU
3 acq LRU
3 acq MOU
5 acq LRU
5 acq MOU

Fig. 7. Maximum in-degree over all the peers in the network.

Fig. 7 shows that, by introducing acquaintances, we increase
the maximum in-degree in the network. This is not surpris-
ing as the peers that serve many files are more likely to be
chosen as acquaintances by the other peers. Conversely, free-
riders should be acquainted with almost no other peer. TheLRU
acquaintance replacement policy exhibits more volatility than
MOU.

3) Promotions: To quantify the stability of links, we use the
percentage of promotions, i.e., the proportion of successful re-
quests that have induced a dynamic topology adaptation (update
of the requester’s acquaintance list). We compute the average



8

Coefficient of # requests answered
variation of by the busiest peer

answered requests
# acq LRU MOU LRU MOU

0 2.3 2.3 5.5 5.5
1 3.1 3.0 10.0 9.7
3 3.7 3.6 11.5 12.7
5 4.1 3.8 13.8 13.5

TABLE II
EFFECT OF ACQUAINTANCES ON THE LOAD DISTRIBUTION.

over all successful requests issued during each round. A small
value means that the connectivity of the system is stable.

0.5

1

5

10

50

100

0 200 400 600 800 1000

P
ro

m
ot

io
ns

Number of rounds

1 acq LRU
1 acq MOU
3 acq LRU

3 acq MOU
5 acq LRU

5 acq MOU

Fig. 8. Percentage of successful requests that yield an acquaintance promotion.

Fig. 8 shows that theLRU acquaintance replacement policy
introduces much volatility, while theMOU policy yields a very
stable network after a few rounds. Stability is particularly im-
portant when updates to acquaintance links have a significant
connection management cost, or require extra messages to be
transmitted between peers (e.g., to transfer state).

4) Load distribution: In order to analyze how the introduc-
tion of acquaintances affects the load distribution of the system,
we have computed thecoefficient of variationof the number of
requests answered by each peer (i.e., the standard deviation of
the values divided by their mean). This metric shows how the
file transfer load, which is a bandwidth- and time-consuming
operation, is distributed among the peers. Small values indicate
that the load is well balanced among the peers. Table II shows
that acquaintances have a relatively small influence on the co-
efficient of variation, and consequently do not significantly de-
grade the load distribution of the system (when compared to
a basic Gnutella-like network). The acquaintance replacement
policy has no noticeable impact on the load distribution.

We also represent thenumber of requests answered by the
busiest peer, computed over all peers during each round (re-
member that the query rate is10%, which means that approxi-
mately2, 000 requests are issued during each round). This met-
ric helps us to identify hot-spots. Table II shows that, while
the introduction of acquaintances leads to a higher request load
on the busiest peer, this increase remains quite moderate and
does not indicate the creation of hot-spots. The values show not
influence from the acquaintance replacement policy.

5) TTL values: With TTL-limited flooding, the success rate
of queries strongly depends on the chosen TTL value. Con-
sequently, it is very important to choose a value that simulta-
neously provides a high success rate and limits the number of
messages sent over the network.

0

0.2

0.4

0.6

0.8

1

 1 2 3 4 5 6 7  1 2 3 4 5 6 7  1 2 3 4 5 6 7  1 2 3 4 5 6 7  

C
um

ul
at

iv
e 

su
cc

es
s 

ra
te

TTL value

0 acq 1 acq 3 acq 5 acq

Fig. 9. Cumulative success rate, averaged over the last800 rounds of the
simulation, with aMOU acquaintance replacement policy.

The metric used to study the effect of the TTL value is the
cumulative success rate, i.e., the cumulative probability of suc-
cess in the TTL-limited neighborhood of the requester. High
success rates for small TTL values indicate that search is more
efficient. Fig. 9 shows the results for various number of ac-
quaintances. We can observe that more acquaintances leads to
higher success rates for any TTL value. Without acquaintance,
we need a TTL value of5 to have a90% success rate. With5
acquaintances, we only need a TTL of3 to get the same success
rate, and a TTL of2 still provides better than80% success rate.

We have also measured thecumulative number of hits, i.e.,
the cumulative number of positive responses to a query in the
TTL-limited neighborhood of the requester. We have com-
puted the average over all successful requests issued during
each round. Having several positive responses can reduce the
download times as we can request a file from the least loaded
or topologically-closest peer, or even use multi-source parallel
download techniques [26].

0.1

1

10

100

 1 2 3 4 5 6  1 2 3 4 5 6  1 2 3 4 5 6  1 2 3 4 5 6  

# 
H

its

TTL value

0 acq 1 acq 3 acq 5 acq

Fig. 10. Cumulative number of hits, averaged over the last800 rounds of the
simulation, with aMOU acquaintance replacement policy.



9

Fig. 10 shows that, for small TTL values, the number of
hits increases with the number of acquaintances. This behav-
ior results from the fact that acquaintance links are explicitly
designed to connect to peers that have a high probability of
serving the requested files. However, for high TTL values we
observe an opposite behavior: the number of hits is higher when
using less acquaintances. This can be explained by the fact that,
when using more acquaintance links, we have less randomness
and it becomes harder to find the extra copies of a file that are
located outside of the requester’s semantic communities. This
problem is more severe when a peer searches for marginal con-
tent that does not belong to its semantic communities. There-
fore, it is desirable to maintain a good balance of acquaintance
and random links.

B. Friends Awareness

We now consider the case where each peer maintains an in-
dex of the files stored on its friends and uses this knowledge to
answer to queries on their behalf, when possible. Our experi-
ments show that, even with a single acquaintance, the number
of hops needed to reach the first peer that serves, or has a friend
that serves, the requested file drops to the optimal value1 af-
ter a few rounds. This occurs regardless of the acquaintance
replacement policy (LRU or MOU). As almost all requests are
satisfied after a single hop, peers have no incentive to change
their acquaintances; we have indeed observed that the number
of promotions with both theLRU andMOU acquaintance re-
placement policies is almost null.

The experiments also show that the in-degree of the busiest
peer grows quickly to almost attain the total number of peers in
the system. This indicates that one peer acts as a central hub that
all other peers choose as acquaintance; it is chosen initially be-
cause it serves many files, and later because it has many friends
and consequently can answer to almost all queries. This snow-
ball effect leads the system to spontaneously self-configure as
a system with a central “index” peer, like Napster. The major
difference with a centralized system is that, if the central index
fails or leaves, the system quickly reconfigures and chooses an-
other index peer.

A configuration with a central index has the major drawback
of overloading the index peer (experiments show a significant
degradation of the load distribution). In addition, the index
peer must have enough resources to maintain the state of all
its friends, i.e., the list of almost all the files served by all the
peers in the P2P network.

To overcome these drawbacks, we adopt a less extreme ap-
proach and we bound the maximum number of friends that a
peer needs to keep track of. We have run simulations with this
limit set to 25. Fig. 11 shows the improvement of the num-
ber of hops needed to reach the first peer that answers a query,
with respect to the case where peers keep no state. We observe
gains ranging from8% to 16% with theLRU acquaintance re-
placement policy, and from25% to 35% with MOU. The lower
performance ofLRU can be explained by the higher volatility
of the network connectivity, which leads peers to only perform
short-term optimizations.

Fig. 12 shows the increase of the maximum in-degree result-
ing from the introduction of friend state knowledge. This in-

0

10

20

30

40

50

60

0 200 400 600 800 1000

%
 R

ed
uc

tio
n

Number of rounds

1 acq LRU
1 acq MOU
3 acq LRU
3 acq MOU
5 acq LRU
5 acq MOU

Fig. 11. Improvement of the average number of hops per request when main-
taining the state of25 friends (w.r.t. maintaining no state).

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

%
 In

cr
ea

se

Number of rounds

1 acq LRU
1 acq MOU
3 acq LRU
3 acq MOU
5 acq LRU
5 acq MOU

Fig. 12. Increase of the maximum in-degree when maintaining the state of25
friends (w.r.t. maintaining no state).

crease is pretty important withMOU (between80% and95%)
but, as we shall see shortly, moderate enough to not cause hot-
spots. WithLRU, the increase is almost negligible. The evo-
lution of the number of promotions is not shown, as it follows
the very same trend observed in Fig. 8 (except for values being
approximately15% lower withLRU).

Table III shows that the load distribution of the system is not
much affected by (compare with Table II). The increase of the
number of requests answered by the busiest peer is moderate
even with theMOU acquaintance replacement policy, which
confirms that friends awareness does not cause hot-spots.

We have also analyzed the effectiveness of the load balancing

Coefficient of variation # requests answered
of answered requests (# files sent)

(sent files) by the busiest peer
# acq LRU MOU LRU MOU

0 2.4 2.4 5.8 5.8
1 3.0 (2.5) 4.1 (3.2) 9.7 (7.2) 30.9 (13.8)
3 3.4 (2.6) 4.3 (3.1) 11.8 (7.6) 36.7 (14.7)
5 3.9 (2.7) 4.7 (2.9) 14.7 (8.4) 27.5 (11.3)

TABLE III
EFFECT OF ACQUAINTANCES ON THE LOAD DISTRIBUTION WHEN

MAINTAINING THE STATE OF 25 FRIENDS.



10

# messages % faults

# acq
static

(TTL=6)
dyn

(TTL=6)
static
dyn

dyn7
(TTL=7)

static
dyn7 static dyn dyn7

0 41312 4953 8.3 22524 1.8 0.27 10.47 0.03
1 33624 4217 7.9 18559 1.8 0.14 6.64 0.02
3 17613 2883 6.1 10267 1.7 0.36 4.76 0.02
5 6765 1709 3.9 4474 1.5 0.90 4.48 0.02

TABLE IV
NUMBER OF MESSAGES AND PERCENTAGE OF FAULTS PER REQUEST,

AVERAGED OVER THE LAST800 ROUNDS OF THE SIMULATION, WITH A

MOU ACQUAINTANCE REPLACEMENT POLICY.

technique described in Section III-D. The distribution of the
file traffic in the system with the load balancing optimization is
also shown in Table III (values are in parentheses). Note that,
in that case, the peer that answers a query is not necessarily
the one that sends the requested file. We observe low variation
and moderate load on the busiest peer, which indicates that our
techniques balance effectively the file traffic load.

C. Dynamic TTL

We finally evaluate the effectiveness of the dynamic TTL
mechanism described in Section III-E, which decrements the
TTL value twice when a query falls within the interests of the
peer being traversed during query flooding. As queries require
fewer hops to be satisfied within the scope of a semantic com-
munity, we expect this optimization to have little impact on the
success rate while significantly decreasing the query traffic.

We have measured thetotal number of query messagessent
across the network, and computed the average over all requests
(successful or not) issued during the last800 round of the sim-
ulation, after the network topology has stabilized. Table IV
shows a important reduction of the query traffic when using the
dynamic TTL optimization, by factors of4 to more than8. Note
that adding acquaintances has the effect of decreasing the num-
ber of messages sent in the network, because well acquainted
peers receive higher query traffic but forward each query only
once. We have also performed experiments with the dynamic
TTL optimization and a TTL value of7 (instead of6). Results
show that query traffic is still reduced by factors of1.5 to 1.8.

We have also measured thequery failure rate, i.e., the pro-
portion of requests that yield a negative result although the re-
quested file is available in the system. Unsurprisingly, the per-
centage of failures with the dynamic TTL optimization is high
(10%) with no acquaintances, because it is designed to take ad-
vantage of the semantic communities that are created by the
acquaintance links. When using acquaintances, the failure rate
decreases (4% to6%) but remains significantly higher than with
a static TTL value. In contrast, when increasing the TTL value
to 7, the dynamic TTL optimization exhibits much lower failure
rates (less than0.1%). This optimization can thus at the same
time improve the success rate and reduce the query traffic, when
using an adequate TTL value.

VI. CONCLUSION

Acquaintances is a novel approach for improving search
efficiency in unstructured P2P network. Its fundamental design

principle lies in the dynamic adaptation of the network topol-
ogy, driven by the history of successful requests, and achieved
by having each peer maintain a list of acquaintances that are
likely to best answer queries. Acquaintance links connect peers
that share similar interests and spontaneously build semantic
communities. They provide a short path to content that belongs
to the core interests of a requesting peer. To guarantee some
diversity and help find more marginal content, each peer also
maintains a set of random neighbors. This combination of se-
mantic and random links provides efficient, yet robust, search
facilities to unstructured P2P networks.

Query forwarding is implemented by the same TTL-limited
flooding mechanism found in Gnutella-like P2P file sharing
systems. Acquaintances does therefore represent a non-
intrusive extension to legacy P2P networks, where each peer
modifies the network topology by locally optimizing its con-
nectivity. It also incorporates load-balancing mechanisms that
offload potential hot-spots in popular semantic communities, as
well as a dynamic TTL optimization that further reduces the
network traffic. Experimental evaluation has shown that our
techniques are effective at improving search efficiency. Op-
timizations to the actual search algorithm, such as random
walks [10], are orthogonal to our techniques and could thus be
used to further improve the efficiency ofAcquaintances.

REFERENCES

[1] “Napster,”http://www.napster.com .
[2] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,

“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of SIGCOMM, Aug. 2001.

[3] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “A scalable content-
addressable network,” inProceedings of SIGCOMM, Aug. 2001.

[4] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object lo-
cation and routing for large-scale peer-to-peer systems,” inProceedings
of the IFIP/ACM International Conference on Distributed Systems Plat-
forms (Middleware), Nov. 2001.

[5] B.Y. Zhao, J. Kubiatowicz, and A.D. Joseph, “Tapestry: An infrastructure
for fault-tolerant wide-area location and routing,” Tech. Rep. UCB/CSD-
01-1141, Computer Science Division, University of California, Berkeley,
Apr. 2001.

[6] “Gnutella,” http://gnutella.wego.com .
[7] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong, “Freenet: A distributed

anonymous information storage retrieval system,” inProceedings of the
Workshop on Design Issues in Anonymity and Unobservability, July 2000.

[8] K. Sripanidkulchai, B. Maggs, and H. Zhang, “Efficient content location
using interest-based locality in peer-to-peer systems,” inProceedings of
INFOCOM, Apr. 2003.

[9] B. Yang and H. Garcia-Molina, “Improving search in peer-to-peer sys-
tems,” in Proceedings of the International Conference on Distributed
Computing Systems (ICDCS), July 2002.

[10] C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replica-
tion in unstructured peer-to-peer networks,” inProceedings of the ACM
International Conference on Supercomputing (ICS), June 2002.

[11] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and L. Breslau,
“Making Gnutella-like P2P systems scalable,” inProceedings of SIG-
COMM, Aug. 2003.

[12] B. Yang and H. Garcia-Molina, “Designing a super-peer network,” in
InProceedings of the 19th International Conference on Data Engineering
(ICDE), Mar. 2003.

[13] A. Crespo and H. Garcia-Molina, “Semantic overlay networks for P2P
systems,” Tech. Rep., Computer Science Department, Stanford Univer-
sity, 2003.

[14] E. Cohen, H. Kaplan, and A. Fiat, “Associative search in peer-to-peer
networks: Harnessing latent semantics,” inProceedings of INFOCOM,
Apr. 2003.

[15] “Kazaa,”http://www.kazaa.com .
[16] “iMesh,” http://www.imesh.org .
[17] “Limewire,” http://www.limewire.org .



11

[18] S. Saroiu, K.P. Gummadi, and S.D. Gribble, “A measurement study of
peer-to-peer file sharing systems,” inProceedings of Multimedia Com-
puting and Networking (MMCN), Jan. 2002.

[19] K. Sripanidkulchai, “The popularity of Gnutella queries and its implica-
tions on scalability (http://www.openp2p.com),” Feb. 2001.

[20] M.T. Schlosser, T.E. Condie, and S.D. Kamvar, “Simulating a file–sharing
network,” in Proceedings of the 1st Workshop on Semantics in Peer-to-
Peer and Grid Computing, May 2003.

[21] A. Iamnitchi, M. Ripeanu, and I. Foster, “Small-world file-sharing com-
munities,” inProceedings of INFOCOM, Mar. 2004.

[22] K.P. Gummadi, R.J. Dunn, S. Saroiu, S.D. Gribble, H.M. Levy, and J. Za-
horjan, “Measurement, modeling, and analysis of a peer-to-peer file-
sharing workload,” inProceedings of the 19th ACM Symposium on Op-
erating Systems Principles (SOSP), Oct. 2003, pp. 314–329.

[23] E. Adar and B.A. Huberman, “Free riding on Gnutella,”First Monday,
Sept. 2000.

[24] P. Golle, K. Leyton-Brown, and I. Mironov, “Incentives for sharing in
peer-to-peer networks,” inProceedings of the 3rd ACM Conference on
Electronic Commerce, Oct. 2001, pp. 264–267.

[25] F. Pianese and V. Impagliazzo, “Building semantic communities on the
Gnutella network,” Tech. Rep., EURECOM Institute, Dec. 2003.

[26] P. Rodriguez and E.W. Biersack, “Dynamic parallel-access to replicated
content in the internet,”IEEE/ACM Transactions on Networking, vol. 10,
no. 4, 2002.

PLACE
PHOTO
HERE

Vicent Cholvi graduated in Physics from the Univer-
sity of Valencia, Spain and received his doctorate in
Computer Science in 1994 from the Polytechnic Uni-
versity of Valencia. In 1995, he joined the Jaume I
University in Castelĺo, Spain where he is currently an
Associate Professor. His interests are in distributed
and communication systems.

PLACE
PHOTO
HERE

Pascal Felberreceived his M.Sc. and Ph.D. degrees
degree in Computer Science from the Swiss Federal
Institute of Technology. From 1998 to 2004, he has
worked at Oracle Corporation and Bell-Labs in the
USA, and at Institut EURECOM in France. He is
now a Professor of Computer Science at the Univer-
sity of Neucĥatel, Switzerland. His main research in-
terests are in the area of object-based and dependable
distributed systems.

PLACE
PHOTO
HERE

Ernst Biersack received his M.Sc. and Ph.D. de-
grees in Computer Science from the Technische Uni-
versiẗat München, Germany and his habilitation from
the University of Nice, France. From 1989 to 1992 he
was a Member of Technical Staff with the Computer
Communications Research District of Bell Commu-
nications Research, USA. Since March 1992 he has
been a Professor in Telecommunications at Institut
EURECOM in Sophia Antipolis, France. His inter-
ests are in networking and communication systems.


