Efficient Search in Unstructured
Peer-to-Peer Networks

Vicent Cholvi Pascal Felber Ernst Biersack
Universitat Jaume | University of Neuchtel Institut EURECOM
Castelb (Spain) Neuclatel (Switzerland) Sophia-Antipolis (France)
Email: vicent.cholvi@uji.es Email: pascal.felber@unine.ch Email: ernst.biersack@eurecom.fr

Abstract—The huge popularity of recent peer-to-peer (P2P) file Pastry [4], and Tapestry [5]) use specialized placement algo-
sharing systems has been mainly driven by the scalability of their rithms to assign responsibility for each file to specific peers,
architectures and the flexibility of their search facilities. Such sys- as well as “directed search” protocols to efficiently locate files.

tems are usually designed aanstructured P2P networks, because
they impose few constraints on topology and data placement and In contrast, unstructured P2P networks (e.g., Gnutella [6] and

support highly versatile search mechanisms. A major limitation Freenet [7]) have no precise control over the file placement and
of unstructured P2P networks lies, however, in the inefficiency of generally use “flooding” search protocols.

their search algorithms, which are usually based on simple flood-  Directed search protocols are particularly efficient, because
ing schemes. they accurately route queries toward the peers responsible for

In this paper, we propose novel mechanisms for improving a given file. Thev require few communication ste enerate
search efficiency in unstructured P2P networks. Unlike other ap- g le. y requir w unication steps, g r

proaches, we do not rely on specialized search algorithms; instead, little traffic, and do not produce false negatives (i.e., the search
the peers perform local dynamic topology adaptations, based on fails only if there is no matching file in the system). Flooding

the query traffic patterns, in order to spontaneously create com- protocols are less efficient, because queries are generally broad-
munities of peers that share similar interests. The basic premise of cast indiscriminately in a whole neighborhood and may yield

such semantic communities is that file requests have a high proba- fal fi Thev h h littl t
bility of being fulfilled within the community they originate from, ~ '2'S€ N€galives. “Ihey have, however, very litlie managemen

therefore increasing the search efficiency. We propose further ex- Overhead, adapt well to the transient activity of P2P clients,
tensions to balance the load among the peers and reduce the querytake advantage of the spontaneous replication of popular con-
traffic. Extensive simulations under realistic operating conditions  tent, and allow users to perform more elaborate queries than
sups_,tantiate that our techniques significantly improve the search with directed search protocols, which only support exact match
efficiency and reduce the network load. . .

queries. These properties make unstructured P2P systems more

suitable for mass-market distributed file sharing.

|. INTRODUCTION The main objective of this work is to develop techniques to

render the search process in unstructured P2P file sharing sys-
tems more efficient and scalable, by taking advantage of the
Wmmon interests of the peer nodes and effectively implement
Y directed flooding” search protocol. It is meant to extend
improve Gnutella-like networks; not to propose a complete,
el file sharing system.

A. Motivations

ing number of peer-to-peer (P2P) file sharing systems. S
systems make it possible to harness the resources of large
ulations of networked computers in a cost-effective manner, an
are characterized by their high scalability.

P2P file sharing systems mainly differ by their search faciy 5y erview and Contributions
ities. The first hugely successful P2P data exchange syste h thi sd . tension t
Napster [1], incorporates a centralized search facility that kee IS paper we proposelcquaintances, an extension to

track of files and peer nodes; queries are executed by the C(f?lqytella-hke unstructured P2P networks that uses dynamic

tral server, while the resource-demanding file transfers are p I;_)ology adaptation to Improve search eff|C|.ency. 'A.‘S n
snutella, our search mechanism uses TTL-limited flooding to

formed using P2P communication. This hybrid architecture o ) L
using unicat 'S ybr! reciu roadcast queries in a neighborhood. By associating a TTL

fers powerful and responsive query processing, while still sc " e 1o live) value to th v m n n restrict th
ing well to large peer populations. The central server nee E € to live) value to the query messages, one can restrict the

however, to be properly dimensioned to support the user qu ﬁtﬁiﬁ d|a(1jmeter, "ﬁ" tthe ?'Ze of thetfl(ioded ne|ghborh0(z_d, and
load. In addition, it constitutes a single point of failure and ca] It the adverse eflects of exponential message generation on

. : network links. However, the probability of finding a file that
easily be brought down in the face of a legal challenge, as V\} § s exist in the network strongly depends on the chosen TTL

the case for Napster. Consequently, most recent P2P file shavlgfﬁI " bigger val incr th rate but m ik
systems have adopted more decentralized architectures. alue. bigger values increase the success rate but may quickly
I%ad to network congestion.

Roughly speaking, the P2P networks that do not rely on To minimize this problem, we propose novel techniques to

centralized directory can be classified as eigitmicturedor un- build self-organized communities of peer nodes that share sim-
structured Structured P2P networks (e.g., Chord [2], CAN [3], = " 9 €sofp oo :
flar interests. These communities are maintained by dynami-

*This work was performed while the author was at Institut EURECOM.  cally adapting the topology of the P2P overlay network based



on the query patterns and the results of preceding searchesia [11] is a P2P file sharing system that extends Gnutella
Some of the neighbor links are explicitly reserved for buildingiith one-hop replication Each peer maintains an index of the
semantic communities and are continuously updated accordfitgs stored on its neighbors, and can thus process queries on
to some link replacement algorithm; these links allow peers tioeir behalf for increased scalabiliti.ocal indices[9] imple-
quickly locate files that match their interests. The other linkment the same concept, but extend the scope of indexes to all the
are mostly static and random; they help maintain global copeers located within a predefined hop distance. We also rely on
nectivity and locate more marginal content. similar techniques to increase search efficiency, but we further
Semantic communities can have the adverse effect of creage them for load balancing purposes and we show that they are
ing hot-spots with well-connected peers. To address this praifective even when indexes have stringent size limitations.
lem, we introduce a load-balancing mechanism that delegatesyang and Garcia-Molina [12] examine super-peer networks
whenever possible, the responsibility to answer a query to legsdetail, and present practical guidelines and a general proce-
loaded peer nodes. Finally, we propose a dynamic TTL ugure for the design of an efficient super-peer network. Whereas
date scheme to further limit network congestion without signifve do not explicitely use super-peers, the dynamic topology
icantly degrading the query success rate. adaptation feature of our system makes it spontaneously or-
To evaluate the effectiveness of our technigques, we have bg#tnize as a super-peer network, with peers that have more
a network simulator and conducted extensive simulations undegources being better connected. Furthermore, our dynamic
realistic operating conditions. Results demonstrate that, wheyology adaption mechanisms allow quick adaptation to vari-
extending a basic Gnutella-like network witttquaintances, —ations of the workload and peer population.
one can significantly improve the search efficiency and reduceln [13], Crespo and Garcia-Molina propose to explicitly clas-
the network load. sify files into semantic groups associated with distinct (possibly
overlapping) overlay networks. Afile is then requested from the
overlay(s) to which it belongs. In our approach, semantic rela-
tions are discovered spontaneously at runtime, based on the user
The rest of this paper is organized as follows: In Secperies, without having to explicitely classify the files—which
tion Il, we discuss related work, and we introduce the desig;mknow to be a difficult task in practice [13].
of Acquaintances in Section Ill. Section IV describes the In [14], the authors propose to use file associations to build a
methodology used for the evaluation df-quaintances, and so-calledassociative overlagnd present various algorithms to
the simulation results are presented in Section V. Finally, Sesteer the search process to peers that are more likely to have an
tion VI concludes the paper. answer to the query. In contrast, our approach does not require
specialized searching rules; it rather drives the search process
by dynamically adapting the network topology.

C. Paper Organization

II. RELATED WORK

Our system builds on top of unstructured P2P networks, such . Acquaintances DESIGN
as G.””te”a [6]’. but dynam!cally adapt the netvyork topology In this section, we introduce the basic principles of
to build semantic commgmhes. Several aIt.ernatlve apprpach gquammmes and we present the key components and al-
have been proposed to improve search efficiency by taking rithms used in its design.
vantage of the common interests of the peer nodes.

In [8], the authors propose the use sifortcutsto exploit L i
interest-based locality: peers that share similar interests cre@teDef'mt'OnS and Terminology
shortcuts to each other. Queries are first disseminated througfach peer is connected to a set of other peers in the network
shortcuts and, if the search fails, they are flooded through tié@ uni-directionallinks, that is, each peer can locally select the
underlying P2P overlay. In contrast, our approach does not ceéher peers it wishes to link to. We distinguish between two
ate additional links, nor does it require a specialized search pfgPres of links:
cess; it rather dynamically modifies the topology of the overlay « Neighbor linksconnect a peey to a set of other peerg’s
network to reflect the shared interests of the peers, and can thus neighbors) chosen at random, as in typical Gnutella-like
be incorporated seamlessly into existing Gnutella-like P2P net- networks.
works. « Acquaintance linksonnect a peer to a set of other peers

In [9], the authors propose techniques to reduce the number (p's acquaintances) chosen based on common interests.
of nodes that process a query, with the premise that by intel-Each peer has a bounded number of neighbor and acquain-
ligently selecting subsets of peers to send queries to, one tamce links. We calp’s friendsthe set of peers that haye
quickly obtain relevant results. This work focuses on the peamong their acquaintances. The number of friends of a peer is
selection algorithms, which yield various performance gainiss in-degree(which is unbounded, let alone by the size of the
but does not consider the dynamic evolution of the structunetwork).
and connectivity of the P2P overlay. A peer can make some of its local files accessible to other

In [10], the authors propose a query algorithm based on mpkeers. Peers that do not share any file are cdikselriders
tiple random walks. This technique reduces message overhdexh-free-ridersor serving peersare those peers that contribute
compared with flooding, but at the expense of an increase in files to the community. A successful request yields a list of
number of hops necessary to find the requested file. peers that have a file matching the original query. We assume
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Fig. 2. Basic principle of dynamic topology adaptation: ga)issues a query.
(b) p3 returns a positive response. {g) promotegps as acquaintance.

Dynamic topology adaptation is implemented by directing
acquaintance links toward the peers that have returned relevant
results in the past (see Fig. 2). Indeed, a peer that consistently
returns good results is likely to have common interests with the
requesting peer and/or to serve a large number of files. A con-
sequence of this scheme is that selfish peers and free-riders are
—— Neighbor @ Peer i sharing likely to be acquainted with almost no other peer.

- - - - = Acquaintance nfiles Each peer maintains an bounded list of acquaintances. The
decision of replacing a peer from this list, i.e., promoting a peer
Fig. 1. Sample minimal network, with a single neighbor and acquaintance ligfg acquaintance, depends on the history of the responses to pre-
perpeet vious requests issued by each peer (note that this decision is
local). In this paper, we evaluate two acquaintance replacement

. , glicies.
that, when several peers have the desired file, the peer thaFt) Is

I he r r (in number of h is chosen. Wi H— -
closest to the requester (in number of hops) is chosen. We ‘Algorithm 1 LRU replacement policy at requesigr
that peer theinswerer Note that answering a query typically————
implies sending a file to the requester. AcqList Ordered list of N acquaintances, initially chosen at random
Some of the mechanisms that we will introduce shortly re- _
. . . . . . . pon successful query answered py:
quire peers to maintain state information about their friendsif p, e AcqListthen
Thestateof a peer consists of the list of the names of its sharedels':m‘“’e% from AcqList
files. For load-balancing purposes, peers also need to know theremove last element froscgList
in- i i end if
in degree of thelrfrlends.. N ' addp, to front of AcqList
To illustrate these definitions, consider the sample network

depicted in Fig. 1, in which each peer has a single neighbor o .
and acquaintance link. Pegr share®9 files and its state con- 1 neLeast Recently Used (LRiplicy is the simplest. After

sists of the names of all these files. It hasas random neigh- & successful request, a peer adds the answering peer in front of
bor: p, as acquaintance; and, ps, pa, p, andps as friends its list, and drops the last peer of the list (see Algorithm 1). If
which corresponds to an in-degree fof Peersp; and p, are the answering peer is already an acquaintance, itis moved to the
free-riders and have no friends. As we will see later, a hifPnt: This scheme guarantees that a promoted peer always re-
in-degree generally indicates that a peer shares many files, dices the peer that was promoted least recently, and that a peer
well-connected to peers that share many files; in contrast, fré@t regularly answers queries can remain an acquaintance for a
riders typically have a null in-degree. Pair-wise acquaintant@'g duration. However, when peers have diverse interests and
relationships between serving peers that have similar intere3®/€ only few acquaintance links at their disposal, the composi-
(e.g., betweep; andp,) are also common in practice, and efflon of the acquaintance list may well change after every query;

fectively yield bi-directional links. this volatility can yield non-negligible connection management
costs.
] ) To alleviate this problem, we use thHdost Often Used
B. Dynamic Topology Adaptation (MOU) policy, which maintains rankings of the peers and elects

The basic principle ofdcquaintances consists in dynam- as acquaintances those that have the highest rankings. A peer
ically adapting the topology of the P2P network so that theas a high ranking if it answers to many queries, or (to a lesser
peers that share common interests spontaneously form “welktent) if it is close to peers that have answered many queries,
connected” semantic communities. It has been shown that usegs it is well connected and could thus be a valuable acquain-
are generally interested in only some specific types of cotance. After each successful query, each peer on the path fol-
tent [13], therefore being part of a community that shares cotowed by the query, in reverse order from the answerer to the
mon interests is likely to increase search efficiency and succesguester, has its rank increased by an exponentially decreasing
rate. value (see Algorithm 2). To better adapt to the dynamics of the



Algorithm 2 MOU replacement policy at requester

Variables:
AcqList Ordered list of N acquaintances, initially chosen at random
CandList List of { peer, ranking} pairs, ordered by ranking,
initially filled with peers fromAcqListand null rankings
«: Aging factor, with value in(0; 1]

Upon successful query answered py, reached vidp,., p1,- -, Pn—1,Pn = Pa):

forall {p;r} € CandListdo
{p;r} — {p;aor}
end for
i+— 1.0
for j from n downto 1 do
if {p;;r} € CandListthen
{pisr} — {pi;r+i}
else
insert{p;; ¢} in CandList
end if
i—i/2
end for
AcqList« first N peers ofCandList

Semantic communities also have some drawbacks. First, the
network can quickly become divided in several disconnected
subnetworks with disjoint interests. Second, peers searching
for unpopular or marginal content (not part of their interests)
may experience very low success rates. For these reasons, we
enforce some random connectivity by means of the neighbor
links. Searches are performed by forwarding queries on both
the acquaintance and neighbor links.

D. Load Balancing

Flooding algorithms naturally direct much of the traffic to-
ward highly connected peers. In our system, a peer that has
many friends can quickly become a hot-spot, not only because it

receives more queries, but also because it typically sends more
files to requesting peers. Although we do not explicitely ad-
peer population and shared content, we also introduce an agiingss the issue of file transfers in this paper, it is a large source
factor that gives more weight to recent answers by decreaswfgoverhead in P2P file-sharing networks and should not be
the rankings over time. This scheme clearly yields acquaintar@gerlooked.
lists with low volatility, which give preference to peers that stay We therefore use the following mechanism to better balance
longer in the system and are expected to be more stable.  the file traffic. Before successfully answering a query, a peer
To best illustrate the effect of dynamic topology adaptatiopfirst checks if any of its friends also has the requested file. If
in Acquaintances, we have represented in Fig. 3(a) and 3(3o, it delegates the responsability for answering the query to the
the acquaintance links of a small P2P network, before and affgfer among those serving the file that hasstihallest in-degree
running a simulation (as described in Section 1V). The netwo(Kote that this peer may hg. Otherwisep sends the file itself.
evolves from a random configuration toward a graph with well- The rationale behind this approach is that well-acquainted
connected communities. peers are likely to be more loaded, i.e., receive more requests
We note that, currently, several unstructured networlgnd serve more files, than peers with fewer friends. Further,
are based on the “super-peer” concept (e.g., Gnutella [Elere is a good probability that some of the friends of a peer

Kazaa [15], iMesh [16]), which distinguishes between twgiso have the same files. Therefore, we force the less loaded
classes of nodes: “regular clients” and “super-nodes”. A sup@jeer to assume part of the load.

node is a host that acts as a hub for a large number of reg-

ular clients. If super-nodes are well connected, their may

vastly reduce the number of peers involved in message rogt- pynamic TTL

ing. However, if super-nodes are not well connected, they may

constitute a performance and scalability bottleneck. Whereasl© further reduce the query traffic generated by the flooding
Acquaintances does not explicitely use super-nodes, its dyalgorithm, we propose an extension for the case where peers
namic t0p0|ogy adaptation feature makes it Spontaneous]y are “conscious” of the sematic communities and can check if
ganize as a super-peer network (See F|g 3(b) for an i||ustratﬁéequested file falls within their interests. Intuitively, a query

example). that enters a community of peers to which the requested file
belongs, is likely to be answered by a peer of that community
C. Search within a few hops. Conversely, a query for a file that does not

match the interests of the community is likely to traverse more
As previously mentionedAcquaintances does not require peers before being satisfied. Therefore, we propose decrement-
complex or specialized search algorithms. It uses the sajAg the TTL value twice (i.e., bg instead ofl) when a received
TTL-limited flooding scheme as in Gnutella-like P2P networkguery falls within the interests of the traversed peer. Clearly,
and yet exhibits much improved search efficiency. this mechanism reduces the number of messages sent by the
First, by organizing peers in communities that share comm@goding algorithm. Our basic premise, which we substantiate

interests, we improve response time by increasing the changgsr, is that this extension significantly reduces network traffic
that matching files are found inside the Community, i.e., Wlthl\wnhout affecting much the success rate.

a short distance, of the requester. We can therefore use smaller
TTL values for queries and thus reduce the network traffic,
without significant impact on the success rate.

Second, peers can be configured to maintain a (partial) index
of the files stored on their friends. Using this state information, We now present the experimental setup and methodology
a peer can explore several other peers with similar interestauaed for the evaluation aflcquaintances. All results were
no communication cost. Clearly, this also increases the succebtained from simulations, with extra care taken at reproducing
rate and reduces the network traffic. realistic operating conditions.

IV. EXPERIMENTAL SETUP



(a) At the begin of the simulation. (b) At the end of the simulation.

Fig. 3. Graphical representation of the effect of dynamic topology adaptatior206-peers network, with one acquaintance link per peer (neighbor links are
not shown for clarity).

A. System Model b) Content: It has been observed [13] that users are gen-
erally interested in a subset of the content available in a peer-to-
er network. Furthermore, they are interested in only a limited

a) Network: Similarly to Gnutella, we consider a syste

sage E)assmg_. th;nks irhe dlrlected:_ da peenay htave gnr?tt)her contain more content than others; for instance, pop music files
peerp” as neignbor wi O.UP considenngp as s Negnbor. e more widely held than jazz or classical music files. Simi-
Traffic can however flow in both directions on the links. A§

v int ted in studvina (I | raff arly, within each category, some files are much more popular
we are mostly interested in studying (OW vo “”.‘e) query raflif, an others. It has been shown that the Gnutella content and
and hop distances, we do not explicitely take into account t

: . fieries follow a Zipf distribution, with a skew factor between
bandwidth gnd delay of the links. 0.63 and1.24 [19]; thus, in the rest of this paper, unless men-
We consider a peer-to-peer network made@f000 peers, sneq otherwise, we use a Zipf distribution with a skew df
which corresponds to an average-size Gnutella network'{17{, 4| our experiments. We note that most of the related stud-
Each peer hqé of ou.tgomg links. Some of them are choserﬂeS have used the Zipf assumption (e.g., [10], [20], [21]), with
randomly (neighbor links), and others adapt dynamically basggh notable exception of a recent evaluation [22] of Kazaa [15]

on t.he query traffic .(acquaintance Iinks). The r'1umber of afliat tends to indicate that the content popularity does not always
quaintance links varies betweermnd5 in our experiments (the ¢,,5 a Zipf distribution.

remaining links being neighbor links). As we need to main- We model content by creatirg distinct categories. Each

tain global network connectivity during the whole simulation toate orv has an associated popularity index. chosen accordin
obtain consistent results, we make sure that the network is iE|— gory pop y ' 9

tially fully connected through the peers’ neighbors links (whic P a_lef distribution. We then crea@80, 000 distinct files and .
do not change over time). The number of incoming links is ufe 9N each of them to exactly one category chosen according

bounded and varies over time as acquaintance links get updat%c}.he categories popylarmes: the more popular a category s,
e 'more files it contains. We also associate a Zipf popularity

Our study considers a system in steady mode, for which ¥G'the files inside each category. Finally, each peer is assigned a

O.b serve s_ignificant improvements, a‘?d does not expliqitely €P%ndom number (uniformly distributed betwekand6) of cat-
siderthe issue OT churn’ (nodes coming and living rapidly). Iné ogries of interest, that it chooses according to their popularity
deed, other studies [18] have shown that the peers that have Ex. The categories of interest of a peer are ranked using a
of contents are usually much more stable than free-riders, an

han in the free-rider lation should notimpact the eff f distribution: the peer is more interested in (i.e., requests
changes € free-rider population shouldnot Impacttn€ eeg opares more files from) the first chosen category than the

t|\(tehnisos (;)tfh(()el;r tgg:\nlq\lj\z N t(r]::aer?a-fro"rj:rs ar:CEyg'Cra!ysigmji')m%cond one. This behavior models the few peers that are highly
w peer). xp ur sy erested in marginal content.

mostly insensitive to churn. .
¢) Cooperation: All peers do not share the same number
I Note that, whereas current estimates of Gnutella’s size are ai®iyd00 of files _and do not exhibit the_ same “social bEha\”O_r : _AS ob-
peers, only20, 000 are active at a given time. served in [23], a large proportion of the user population is made



Parameter Value
Active peers 20,000 "requests |
70% share 0 file = free-riders 10000 F N e copies
20% share [1...100] files (uniform) 0
7% share [101...1000] files (uniform) 2 e,
3% share [1001 . .. 2000] files (uniform) 8 1000} e,
Distinct files 200, 000 o
Categories 50 o
Categories per peer | [1...6] (uniform) e 0l Ty
Links per peer 6 k3
Acquaintance links {0,1,3,5} g .
Query TTL 6 E 10l T
X
Query rate 10% z T
TABLE | 5
l L L L L L
PARAMETERS USED IN THE SIMULATIONS 1 10 100 1000 10000 100000

Order of popularity

Fig. 4. The number of requests for, and copies of, each file strongly depends
of so-called free-riders, who do not make any file accessible e file popularity.
other users and essentially behave as clients. On the other hand,
a small proportion of the users (less tH&i§) contribute more
than two thirds of the files shared in the system and essentiallyl) During the first phase (bootstrap phase), we populate the
behave as servers. Based on the study in [23], we assign the System and establish acquaintance link connectivity be-
following storage capacity to the peers in the netwdit% of tween the peers. To that end, serving peers issue queries,
the peers do not share any file (free-ride2g)% sharel00 files at a rate proportional to their storage capacity, and create
or less;7% share between01 and1, 000 files; finally, 3% of local copies of the files they request. In case a file is not
the peers share betwe@r001 and?2, 000 files (actual storage found (e.g., because it does not yet exist in the system),
capacities are chosen uniformly at random). With this distribu- ~ We “inject” it at the requesting peer; this models the be-
tion, we have observed in our experiments a total storage ca- havior of peers joining the network with a pre-existing

pacity of more thari, 600, 000 files, with more thari 50, 000
distinct files being shared.
In this work, we do not explicitely analyze tHeee-riders

set of files. Acquaintance links are dynamically updated
based on the query traffic and the acquaintance replace-
ment policy in use. The first phase ends wiBéf of the

phenomenon (i.e., selfish individuals who opt out of a voluntary ~ Storage capacity has been filled. At the end of the first

contribution to a group’s common welfare and, consequently, ~Phase, the storage and acquaintance link connectivity of
do not add value to the network). Other studies (e.g., [24]) focus ~ the core network—composed on the serving peers that

on that problem and propose mechanisms that can be used to actually contribute to the content of the system—have
encourage file sharing. been established. This corresponds to the expected state

of a pre-existing peer-to-peer network at the time a new
user connects.
B. Simulation Methodology 2) During the second phase, we take measurements and ob-
serve the network’s behavior under traffic load from both
free-riders (which continue issuing queries as in the first
phase) and serving peers (which fill up the remaining
20% of their storage capacity). This phase allows us in
particular to observe the evolution of the connectivity of
the free-rider population with respect to the serving peers
it o " in the core of the network.
Ifitis strictly positive, prop- We run the simulation for at lea$t 000 rounds in the second

agates the request further. . nPhase. Table | summarizes the main parameters used in our
To generate a request, a peer first selects one category a N9, ations

its categories of interest based on their rankings. Then, it selec Based on the content and query models, it appears clearly

afile (that itdoes n_(_)t already hold) from_that category accordlreﬁ?t the number of requests to each file, as well as the number
to the file popularities. The peer then issues a request for tla

) R o i ) ?co ies held in the system, are strongly correlated with the
file. For simplicity, we always request individual files, i.e., w b y gy

; . ) . popularity of the file. Fig. 4 shows the number of requests and
do not consider broad queries that match several distinct file opies observed for each file based on its order of popularity.

W_her! asServing peerreceives a posmv_e response to his AUl 5 further exhibits the strong correlation between the num-
and it still has some storage capacity available, it creates a |08@ of requests for a file and its number of copies

copy of the file and makes it accessible to other users. A posi-

tive response to a query can also result in an update of a peer’s

acquaintance links. We used an aging factorvof 1 for the

MOU acquaintance replacement policy (see Algorithm 2).
The simulation is made of two phases:

Our simulator proceeds in a sequence of synchronous rounds.
In each round, a subset of the peei% in our experiments)
issue requests. Similarly to Gnutella, searches are conducted
using TTL-limited flooding. Each request is assigned a time-
to-live (TTL) value and is disseminated via neighbor and ac-
quaintance links. When receiving a request for the first time, a
peer decreases the TTL value and,

V. Acquaintances EVALUATION

In this section, we present and analyze the results of the
experimental evaluation oflcquaintances. We first start by
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Fig. 5. The number of requests for a file is correlated with its number &ig. 6. Number of hops to the closest peer that serves the requested file.
copies.

. ) ) by around30% with 1 acquaintance, bg§0% with 3 acquain-
studying the overall impact of acquaintances on our syste{gnce& and b$0% with 5 acquaintances. Note that the mini-

We then analyze search and load balancing improvements Wlﬂ‘?unm number of hops necessary to reach a filk &s peers do
each peer knows the state of Some of its f.rle.nds_. Finally, YBt search for files that they already have. We have observed
evaluate the effect of the dynamic TTL optimization. Furthetrnat more popular files are generally found closer to the re-

experiments, conducted in real Gnutella [6] and Limewire [1¢}, oster: this behavior can be explained by the fact that popular
networks, confirm the results that we have obtained from SiMilas have more copies (see Fig. 4).

lation [25]. 2) In-degree: The in-degreeof a peerp is defined as the

Note that we did not explicitely compare our approacﬂumber of other peers that have chogeas acquaintance. We

against other sophisticated search algorithms and architectLHga3 computed the maximum over all peers at the end of each
based on SUperpeers (18], [9], [10], [11], [12_]' [13], [14_]) for Jound. As the number of queries received by a peer is clearly
number of reasons. First, we could not obtain enough mforn%—

. . . oportional to its in-degree, it is important to keep this value
tion on some of these algorithms so as to support them in fhin reasonable bounds
simulator. Second, some of the proposed architectures make '

specific assumptions about the system (in particular when deal- 1000

ing with super-nodes), which would not allow for a fair compar- ‘ ‘ e iggg LRY

ison. Third, a major contribution and original property of our - 3acq LRU

algorithms is that they work by peforming only local and dy- oy vl

namic topology adaptations. They are extremely simple to im- w5 acq MOU

plement and do not require global or a priori knowledge about § 6% ]

the peers, files, or query workload. We believe that this last §’

point is extremely important and easily compensate for the bet- = 400 |

ter efficiency that other specialized search algorithms might of-

fer in specific deployment scenarios. 200 £

A. Acquaintance Links 0 200 500 200 1000
For all the experiments in this section, we assume that the Number of rounds

peers have no knowledge of the state of their friends. This ca§g 7. maximum in-degree over all the peers in the network.
corresponds to a traditional Gnutella-like network with no extra
information being transmitted between peers.

1) Hops: The first metric used in our evaluation is tinem- Fig. 7 shows that, by introducing acquaintances, we increase
ber of hopsnecessary to reach the first peer that serves the fiee maximum in-degree in the network. This is not surpris-
quested file. We compute the average over all successful irg as the peers that serve many files are more likely to be
guests issued during each round. The number of hops is a mgwsen as acquaintances by the other peers. Conversely, free-
sure of the response time and allows us to choose adequate Titiers should be acquainted with almost no other peer. L Ri¢
values to experience a good query success rate without owgreuaintance replacement policy exhibits more volatility than
loading the network. MOU.

Fig. 6 shows that the system, initially with random connec- 3) Promotions: To quantify the stability of links, we use the
tivity, needs only a few rounds to set up acquaintance links apdrcentage of promotionge., the proportion of successful re-
stabilize in an efficient configuration. Regardless of the aquests that have induced a dynamic topology adaptation (update
quaintance replacement policy, the number of hops is reduagdhe requester’s acquaintance list). We compute the average



Coefficient of | # requests answere(l 5) TTL values: With TTL-limited flooding, the success rate
variation of by the busiest peer .
answered requests of queries strongly depends on the chosen TTL value. Con-
#acq | LRU MOU LRU MOU sequently, it is very important to choose a value that simulta-
2 gi’ gg 15650 g? neously provides a high success rate and limits the number of
3 57 36 115 157 messages sent over the network.
5 41 3.8 13.8 13.5
TABLE Il
EFFECT OF ACQUAINTANCES ON THE LOAD DISTRIBUTION Oacq lacq 3acq Sacq
1
i)
S
% 0.8
. . Q
over all successful requests issued during each round. A small 06
value means that the connectivity of the system is stable. g
g 0.4
3
""" - 0.2
1
1234567 1234567 1234567 1234567
@ TTL value
2 -~ lacqgLRU
g - 13a§§q“ﬁ3‘d Fig. 9. Cumulative success rate, averaged over theS@®trounds of the
g ------------ 3acqMOU | simulation, with aMOU acquaintance replacement policy.
5 acq LRU
+ 5 acq MOU
| The metric used to study the effect of the TTL value is the
cumulative success ratee., the cumulative probability of suc-
03 200 200 500 800 1000 cess in the TTL-limited neighborhood of the requester. High
Number of rounds success rates for small TTL values indicate that search is more

_ _ _ efficient. Fig. 9 shows the results for various number of ac-
Fig. 8. Percentage of successful requests that yield an acquaintance promo%intances_ We can observe that more acquaintances leads to
higher success rates for any TTL value. Without acquaintance,

Fig. 8 shows that theRU acquaintance replacement policyve need a TTL value 0f to have &0% success rate. With
introduces much volatility, while th®1OU policy yields a very acquaintances, we only need a TTL3db get the same success
stable network after a few rounds. Stability is particularly imrate, and a TTL of still provides better thaB0% success rate.
portant when updates to acquaintance links have a significantWe have also measured thamulative number of hits.e.,
connection management cost, or require extra messages tahgecumulative number of positive responses to a query in the
transmitted between peers (e.g., to transfer state). TTL-limited neighborhood of the requester. We have com-

4) Load distribution: In order to analyze how the introduc-puted the average over all successful requests issued during
tion of acquaintances affects the load distribution of the systeagch round. Having several positive responses can reduce the
we have computed thepefficient of variatiorof the number of download times as we can request a file from the least loaded
requests answered by each peer (i.e., the standard deviationrdbpologically-closest peer, or even use multi-source parallel
the values divided by their mean). This metric shows how tltwnload techniques [26].
file transfer load, which is a bandwidth- and time-consuming
operation, is distributed among the peers. Small values indicate
that the load is well balanced among the peers. Table Il shows 0acq 1 acq 3acq 5acq
that acquaintances have a relatively small influence on the co-
efficient of variation, and consequently do not significantly de-
grade the load distribution of the system (when compared to
a basic Gnutella-like network). The acquaintance replacement
policy has no noticeable impact on the load distribution.

We also represent theumber of requests answered by the
busiest pegrcomputed over all peers during each round (re-
member that the query rate i6%, which means that approxi-
mately2, 000 requests are issued during each round). This met- 0.1
ric helps us to identify hot-spots. Table Il shows that, while :23456 123456 123456 123456
the introduction of acquaintances leads to a higher request load TTL value
on the busiest peer, this increase remains quite moderate and
does not indicate the creation of hot-spots. The values show ft 10 Cumulative number of hits, averaged over thesastrounds of the
. _ ] simulation, with aMOU acquaintance replacement policy.
influence from the acquaintance replacement policy.
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Fig. 10 shows that, for small TTL values, the number of
hits increases with the number of acquaintances. This behav-
ior results from the fact that acquaintance links are explicitly
designed to connect to peers that have a high probability of
serving the requested files. However, for high TTL values we
observe an opposite behavior: the number of hits is higher when
using less acquaintances. This can be explained by the fact that,
when using more acquaintance links, we have less randomness &
and it becomes harder to find the extra copies of a file that are
located outside of the requester's semantic communities. This
problem is more severe when a peer searches for marginal con-
tent that does not belong to its semantic communities. There-
fore, it is desirable to maintain a good balance of acquaintance
and random links.

Reduction

Fig. 11.

B. Friends Awareness

We now consider the case where each peer maintains an in-
dex of the files stored on its friends and uses this knowledge to
answer to queries on their behalf, when possible. Our experi-
ments show that, even with a single acquaintance, the number
of hops needed to reach the first peer that serves, or has a friend
that serves, the requested file drops to the optimal valak
ter a few rounds. This occurs regardless of the acquaintance
replacement policyL(RU or MOU). As almost all requests are
satisfied after a single hop, peers have no incentive to change
their acquaintances; we have indeed observed that the number
of promotions with both th& RU and MOU acquaintance re-
placement policies is almost null.

The experiments also show that the in-degree of the busiest
peer grows quickly to almost attain the total number of peers in

% Increase
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the system. This indicates that one peer acts as a central hub#itat2. increase of the maximum in-degree when maintaining the stafe of
all other peers choose as acquaintance; it is chosen initially &nds (w.rt. maintaining no state).

cause it serves many files, and later because it has many friends
and consequently can answer to almost all queries. This snow-

ball effect leads the system to spontaneously self-configureGgase is pretty important witdOU (betweer80% and95%)

a system with a central “index” peer, like Napster. The maj&ut, as we shall see shortly, moderate enough to not cause hot-
difference with a centralized system is that, if the central ind&Rots. WithLRU, the increase is almost negligible. The evo-
fails or leaves, the system quickly reconfigures and chooses B#ilon of the number of promotions is not shown, as it follows

other index peer.

A configuration with a central index has the major drawbackPproximatelyl5% lower with LRU).
of 0\/er|0ading the index peer (experimentg show a SignificantTab|e 11l shows that the load distribution of the syStem is not
degradation of the load distribution). In addition, the indefouch affected by (compare with Table Il). The increase of the
peer must have enough resources to maintain the state offéimber of requests answered by the busiest peer is moderate
its friends, i.e., the list of almost all the files served by all theven with theMOU acquaintance replacement policy, which

peers in the P2P network.

the very same trend observed in Fig. 8 (except for values being

confirms that friends awareness does not cause hot-spots.

To overcome these drawbacks, we adopt a less extreme apie have also analyzed the effectiveness of the load balancing

proach and we bound the maximum number of friends that a

peer needs to keep track of. We have run simulations with this
limit set to 25. Fig. 11 shows the improvement of the num-

ber of hops needed to reach the first peer that answers a query,

with respect to the case where peers keep no state. We observe

gains ranging fron3% to 16% with the LRU acquaintance re-

placement policy, and fror25% to 35% with MOU. The lower

performance of.RU can be explained by the higher volatility
of the network connectivity, which leads peers to only perform
short-term optimizations.

Fig. 12 shows the increase of the maximum in-degree result-
ing from the introduction of friend state knowledge. This in-

Coefficient of variation # requests answered
of answered requests (# files sent)
(sent files) by the busiest peer
# acq LRU MOU LRU MOU
0 2.4 2.4 5.8 5.8
1 30(25)| 41(32) | 9.7(7.2) | 30.9(13.8)
3 34(26)| 43(31) | 11.8(7.6)| 36.7 (14.7)
5 3927 | 4729 | 147(84) | 275(11.3)
TABLE IlI

EFFECT OF ACQUAINTANCES ON THE LOAD DISTRIBUTION WHEN
MAINTAINING THE STATE OF 25 FRIENDS.
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. # messages % faults principle lies in the dynamic adaptation of the network topol-
#acq SUC | dyn |static| dyn7 | static| el gyn | dyn7 dri by the hist f ful t d achieved
9 (rL=6)| (TTL=6)| dyn |(TTL=7)| dyn? yn | dy ogy, driven by the history of successful requests, and achieve
0 | 41312] 4953 | 8.3 | 22524 1.8 | 0.27]10.47| 0.03 by having each peer maintain a list of acquaintances that are
1 ]33624] 4217 | 7.9 | 18559] 1.8 | 0.14] 6.64 ] 0.02 likely to best answer queries. Acquaintance links connect peers
3 | 17613| 2883 | 6.1 | 10267| 1.7 | 0.36| 4.76 | 0.02 that sh imilar interests and . v build i
5T 70930107415 5.00 a5 0.5 at share similar interests and spontaneously build semantic

communities. They provide a short path to content that belongs

to the core interests of a requesting peer. To guarantee some
diversity and help find more marginal content, each peer also

maintains a set of random neighbors. This combination of se-

mantic and random links provides efficient, yet robust, search

facilities to unstructured P2P networks.

Query forwarding is implemented by the same TTL-limited
technique described in Section IlI-D. The distribution of th#ooding mechanism found in Gnutella-like P2P file sharing
file traffic in the system with the load balancing optimization i§yStems. Acquaintances does therefore represent a non-
also shown in Table Ill (values are in parentheses). Note thiitrusive extension to legacy P2P networks, where each peer
in that case, the peer that answers a query is not necessdngdifies the network topology by locally optimizing its con-
the one that sends the requested file. We observe low variafitg¢tivity. It also incorporates load-balancing mechanisms that

and moderate load on the busiest peer, which indicates that 8fftoad potential hot-spots in popular semantic communities, as

network traffic. Experimental evaluation has shown that our
C. Dynamic TTL tfac_hnlques are effective at improving §earch efficiency. Op-
timizations to the actual search algorithm, such as random

We finally evaluate the effectiveness of the dynamic TTl,5)ks [10], are orthogonal to our techniques and could thus be
mechanism described in Section IlI-E, which decrements t{yge to further improve the efficiency diquaintances.
TTL value twice when a query falls within the interests of the
peer being traversed during query flooding. As queries require
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