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Abstract

Self-organized networks require some mechanism to ensure cooperation and fairness.

A promising approach is the use of decentralized reputation systems. However, their

vulnerability to liars has not yet been analyzed in detail.

In this paper, we provide a first step to the robustness analysis of a reputation

system based on a deviation test. Users accept second hand information only if

this does not differ too much from their reputation values. We simplify the original

system in order to obtain a one-dimensional formulation and show that it exhibits a

phase transition. In the subcritical regime, the reputation system is robust. In the

supercritical regime, lying has an impact. We obtain the critical values via a mean-

field approach and verify the results by explicit computation. Thus, we provide

conditions for the deviation test to make the reputation system robust as well as

quantitative results on what goes wrong in the supercritical regime.



1 Introduction

Decentralized systems such as Peer-to-Peer Resource Sharing Networks have recently

become more popular, both in practice and research. Novel communication systems

that are being considered, such as Mobile Ad-Hoc Networks, are designed to be

self-organized so as to achieve minimal administrative and operational costs.

In most applications users are individuals that are primarily interested in their

own benefit. However, for a decentralized network to function, its users need to

contribute in some form or other to the services of the system without getting any

immediate reward. Thus, there is a natural incentive for users to only consume, but

not contribute. Cooperation and fairness cannot be guaranteed. This behaviour

is called free-riding and is a well-known phenomenon in economics. In the context

of Peer-To-Peer Networks, for example, it has been demonstrated in a number of

measurement studies [1, 2, 3]. Network performance can be seriously deteriorated.

One possible approach to the free-rider problem is to introduce pricing schemes [4]

into the system in order to create the right incentives for the users. For example, see

[5] and [6]. Alternatively, contribution rules [7] and, more recently, artificial immune

systems are being considered [8].

Another idea is that of a reputation system. Here, users keep track of their peers’

behaviour and exchange this information with others. Each user merges his own first

hand information with the second hand information he receives in order to compute

a reputation value about each of his peers. Users with a good reputation are then

favoured. A popular example of a reputation mechanism is the rating used in EBAY

[9]. However, this is a centralized mechanism as the ratings are handled by the EBAY

server. By contrast, the applications we have in mind are fully decentralized and

self-organized. No trusted third party can be assumed. Reputation systems do not

distinguish between different causes for misbehaviour. By contrast, pricing or rules

mainly address selfish users, but not malicious or faulty behaviour.

The advantage of a reputation system over merely using first hand information is

two-fold. Firstly, an accurate estimate of some subject’s behaviour can be obtained

faster. Secondly, a user can have a reputation value about a subject without ever
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having interacted with it himself. However, an inherent problem with any such mech-

anism is the vulnerability to liars. Some user might have an interest in spreading

false information, so naively believing all second hand information is problematic.

Reputation values must be accurate at least to some degree.

A simple idea to address this problem was suggested originally in the context of

Mobile Ad-Hoc Networks by Buchegger and Le Boudec [10]. Here, a user believes

second hand information only if it does not differ too much from the user’s reputation

value. This is called the deviation test. In fact, the system considered in [10] is more

complex. It also allows for using second hand information from trusted peers. To

this end, each user maintains both a reputation and a trust value about each of

his peers. Both are updated using a modified Bayesian approach. As opposed to

reputation, trust values are based on compatibility and thus indicate agreement.

The system appears to work well. So far, however, performance has only been

evaluated through simulations of a Mobile Ad-Hoc Network with a particular set of

assumptions (e.g. on the routing protocol). In personal communication the authors

reported further simulations suggesting that the deviation test on its own without

the trust component nearly performs as well. It seems surprising that such a simple

idea works so well and we consider it worth analyzing in more detail and in a more

general context. This is the aim of our research.

In this paper, we provide the first step by analyzing a simplified model for the

case of 2 users, one honest and the other a liar. The model simplifies the reputation

counters in order to obtain a one-dimensional system which is easier to analyze. The

precise modeling assumptions are listed in Section 3.1 and the model is formulated

in Section 3.2. We provide mean-field results in Section 4 and verify them by means

of direct computation for certain parameter sets in Section 5. We thus show that

the system exhibits a phase transition. That is, there is a threshold rate of lying

below which the reputation value of the honest user remains unaffected. Above it,

the lying will have an impact and corrupt the reputation system.

Note that the idea of a deviation test is a very natural one. In a social network

of acquaintances humans are likely to disbelieve information that, to them, seem

2



highly unlikely. At least, if they have no means of verifying it themselves. As such,

the results are of interest in the context of social sciences also.

2 Related Work

A number of reputation mechanisms have been suggested and studied. However, to

the best of our knowledge, our work is the first analytical approach to evaluate a

reputation system.

A selection of references focusing on decentralized reputation systems is given below.

Further references can be found therein.

Michiardi and Molva propose the collaborative reputation mechanism CORE [11].

The CONFIDANT Protocol was introduced by Buchegger and Le Boudec [12].

Aberer and Despotovic [13] suggest a mechanism for P-Grid, a Peer-To-Peer system,

that spreads negative information only. Collaboration enforcement in Peer-To-Peer

systems has also been considered by Moreton and Twigg [14]. Carbone et al. [15]

introduce a formal model for trust in dynamic networks. Jurca and Faltings [16]

and Fernandes et al. [17] consider incentives for truthful reporting itself. The reader

is referred to [18] for the EigenTrust algorithm, a method to compute global trust

values in the presence of pre-trusted peers.

3 Model

3.1 Modeling Assumptions

Subject Behaviour

We study the case when there is a single subject whose reputation is considered. Its

actual behaviour is assumed to be either positive or negative with probabilities θ and

1 − θ respectively. Thus, when a user interacts with the subject itself it observes

positive behaviour with probability θ and negative behaviour otherwise. This is

assumed to be independent of all other observations. Hence the actual behaviour is

represented by the parameter θ, a real number in [0, 1].
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Note that this subject is not necessarily one of the N users themselves. Alternatively,

users of the network might be interested in the behaviour of some external subject.

In the context of a Mobile Ad-Hoc Network, for example, this might be the provider

of an external service such as Internet access. Our model captures this case as well.

The more practical case when there are M subjects of interest can be decomposed

into M instances of our model. The M sets of reputation values do not interfere

with each other and can be considered independently. In particular, if we take N

subjects, one for each user, the model corresponds to the scenario described in the

introduction.

Reputation

There are N users 1, 2, . . . , N , with corresponding reputation values Ri(t) about the

subject. These are also real numbers in [0, 1] and reflect the belief that user i has

about θ at time t. This opinion might change with new observations, arising either

from interactions with the subject itself or with a peer.

A direct observation is an observation of the subject’s behaviour. The collection

of direct observations constitutes a user’s first hand information. An indirect ob-

servation arises from interactions with peers who report about their own direct

observations. The collection of indirect observations is the second hand information

available to the user.

Direct observations are always accepted and the reputation values updated accord-

ingly. Indirect observations are only accepted if the reported observation does not

deviate too far from the current opinion Ri(t). This deviation test is controlled by

the parameter ∆ in (0, 1).

Interaction Model

The interaction model describes how users interact with the subject and their peers.

We shall assume that each user i makes direct observations at the points of a Poisson

process in time, at rate µi. Interactions of user i with j (such that i receives second

hand information from j) occur according to a Poisson process with rate λij. All
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processes are assumed to be independent.

In all applications the interaction pattern is influenced by the call model or some

model of the users activity. In mobile applications, it is further influenced by the

mobility model. Although the interaction pattern might differ between applications,

the model above is a natural one to examine.

Adversary Model

One needs to make precise assumptions on the adversary’s abilities in order to give

performance guarantees. We shall assume that liars follow the plain strategy to

always lie maximally, i.e. they will always report either extremely negative or ex-

tremely positive behaviour about the subject when interacting with their peers.

They do so in attempt to achieve maximal impact. It suffices to focus on the ex-

tremely negative part, as the other one is similar by symmetry. The adversary model

can be gradually extended to capture more sophisticated attacks on the reputation

system.

Performance

A reputation system works well if good nodes in the network benefit from it and bad

nodes do not, or at least not as much. We claim that this can be achieved by suitable

reaction mechanisms based on the reputation values, provided that these values are

accurate. The faster users can obtain accurate estimates, the better the system will

work, but there is a fundamental trade-off between robustness and speed. We shall

assess robustness in detail. It will then be possible to choose parameters such that

the system will be as fast as possible subject to being accurate.

Further Assumptions

We first consider the case of one honest user and one liar. The honest user makes

direct observations at rate µ = µ1 = 1 and indirect ones originating from the liar

at rate λ = λ12 > 0. Define p = µ/(µ + λ) = 1/(1 + λ). Then, at each step, the

observation is direct with probability p and indirect with probability 1−p. Notation

is summarized in Table 1.
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Note that there is a close relationship between the case of two peers only and the

general case. We can focus on one out of the honest users by symmetry. Several

liars can be considered as one by aggregating their influence. This can be accounted

for by increasing λ for the one liar. In fact, it looks like ignoring the other honest

ones could be accounted for by increasing µ, but this will have to be investigated in

more detail (cf. Section 6).

3.2 Model Formulation

A natural scheme, motivated by the reputation system suggested in [10] and other

proposals, is to keep a history of prior events, that is a count of positive and negative

observations. Thus we are led to consider the following two-dimensional process

zn = (xn, yn) for n ≥ 0.

(xn+1, yn+1) = ρ(xn, yn) +



























(1, 0) w.p. pθ

(0, 1) w.p. p(1 − θ)

(0, ω)1{xn/(xn+yn)≤∆} w.p. 1 − p

(1)

Essentially, the first component keeps track of positive observations and the second

component keeps track of negative observations. Direct observations are counted

with 1, indirect observations are weighted by ω > 0. Moreover, we discount both

components individually with a discount factor 0 < ρ < 1, typically very close to

1. We want discounting in the model to be able to track changing behaviour. The

initial conditions are z0 = (x0, y0).

The quantity we are interested in is Rn = xn/(xn + yn), the proportion of positive

observations of the total number of observations that the honest peer collects during

the first n events. We examine how well this compares to the true θ, that is the

actual proportion of positive behaviour of the subject in question.

Rewriting the two-dimensional formulation above in terms of Rn gives an expression

that depends on the unknown xn + yn. However, assuming ω = 1 and replacing the

neutral increment (0, 0) with the also neutral (xn/(xn +yn), yn/(xn +yn)) in the case

of a rejection from the deviation test, the sum xn + yn increases deterministically
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by 1 at each step and xn + yn can be determined from the starting value (x0, y0).

Rn+1 = Rn +
1

ρ(xn + yn) + 1



























(1 − Rn) w.p. pθ

−Rn w.p. p(1 − θ)

−Rn1{Rn≤∆} w.p. 1 − p

(2)

Taking (x0, y0) with x0 + y0 = 1/(1− ρ) we know that xn + yn = 1/(1− ρ) for all n.

Hence we have the following, simpler formulation for Rn = R1(tn) where tn is the

time of the nth interaction.

Rn+1 = Rn + (1 − ρ)



























(1 − Rn) w.p. pθ

−Rn w.p. p(1 − θ)

−Rn1{Rn≤∆} w.p. 1 − p

(3)

Starting with such a value is in fact reasonable. We would like to account for the case

when behaviour might change over time. But then, if such a change occurs after the

system has been running for some time, we would start from a state (x, y) that nearly

satisfies x + y = 1/(1 − ρ). However, there would be no a priori knowledge of the

change, so we could not simply reset the system to an arbitrary starting value. So,

we take the state at time 0 to be a ‘fully converged’ state with x0 + y0 = 1/(1− ρ).

We can thus describe it by r0, meaning 1
1−ρ

(r0, 1 − r0). Again, see Table 1 for a

summary of the notation.

The process is a homogeneous Markov Chain with the state space a subset of the

interval [0, 1]. For rational parameters, it will take rational values only and the state

space is countable, although, complicated.

Note that we have lost a degree of freedom by assuming ω = 1. It is reasonable to

expect, however, that the important quantity is the product ωλ, so in this respect

we do not lose generality. Moreover, one can consider a generalization of (3) which

corresponds to a certain projection onto the line {(x, y) : x + y = 1/(1 − ρ)} in (1).

The advantage of formulation (3) is that it is one-dimensional, so computing the

distribution of Rn is tractable (cf. Section 5).

Although we have defined the process in order to estimate θ it does not converge

to a constant. Neither with probability 1, nor in Lp, nor in probability. This is
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because, for all times n, there is positive probability that the next state takes either

one of two values which differ by a constant. However, for convergence, we would

need this difference to become arbitrarily small. This lack of convergence is due to

the discounting which we require to allow for tracking of behaviour that changes

over time. Another advantage will become apparent later on (cf. Section 5). So,

we assess convergence (in distribution) to some limiting distribution from which we

infer θ.

4 Mean-Field Approach

4.1 Zero Drift Values

We shall first determine the values of R satisfying R = ER′. These ‘zero drift values’

are solutions to

R = R + (1 − ρ)











pθ − pR if R > ∆

pθ − pR − (1 − p)R if R ≤ ∆.

(4)

Thus, R = θ is a solution if and only if θ > ∆. R = pθ is a solution if and only if

pθ ≤ ∆.

Phrased in terms of λ we obtain the following: If θ > ∆, there is the truthful zero

drift value R = θ. For λ < λc = (θ − ∆)/∆ it is unique. Otherwise, there exists a

second, false value R = pθ. If θ ≤ ∆ then the latter, false zero drift value is unique.

Furthermore, it is easy to check that the drift at other values is towards these zero

drift values. The further away, the stronger the drift. In the case of two zero drift

values, the change of drift occurs at R = ∆. A graphical interpretation of the results

is thus that θ and pθ are zero drift values only if they are above and below of ∆

respectively.

Comparison with the invariant distribution of a Birth-and-Death chain (cf. [19])

with suitably chosen transition probabilities suggests that a single zero drift value

maximizes the distribution, i.e. is the most likely state. Thus, what we can expect is
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convergence of Rn (in distribution) to a limiting distribution which exhibits a phase

transition in terms of the number of modes.

4.2 Mean Ordinary Differential Equation

Our formulation (3) can be written in stochastic approximation form. For a com-

prehensive reference see Kushner and Yin [20]. The basic paradigm is a stochastic

difference equation where one recursively adjusts the parameter so that some goal

is met asymptotically. The main concept used is to show that noise effects average

out so that the actual behaviour is determined by that of a ‘mean’ ordinary differen-

tial equation (ODE). This has been applied in diverse areas, in particular in signal

processing and communications.

In the stochastic approximation framework, our discounting corresponds to a con-

stant step size parameter. This class of algorithms has been developed to allow for

tracking changing parameters. The type of results is that the process spends nearly

all of its time in a neighbourhood of the limit point or set. The size of the neigh-

bourhood depends on the constant step size. Thus, results are of weak convergence

type (i.e. convergence in distribution).

We will now study the deterministic mean ODE. Instead of showing that the process

Rn is governed by it, we will then compute the distribution of Rn explicitly (cf.

Section 5) and thus show that the process behaves as predicted from the ODE.

From (3), averaging the dynamics in the stochastic approximation form, we obtain

the following ODE.

˙R(t) = (1 − ρ)[pθ − pR(t) − (1 − p)R(t)1{R(t)≤∆}] (5)

Note that the ODE is discontinuous in R(t). We can solve this separately for R(t) ≤

∆ and R(t) > ∆ to obtain the solution

R(t) =











(r0 − pθ)e−(1−ρ)t + pθ if R(t) ≤ ∆

(r0 − θ)e−p(1−ρ)t + θ if R(t) > ∆ .

(6)
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Thus there are two possible solutions: θ and pθ, the zero drift values from the

previous section which have also been obtained by means of averaging. In addition,

we can now assess stability of the deterministic system.

The condition for θ to be a solution is θ > ∆. The condition for pθ to be a solution

is pθ ≤ ∆. Both are globally asymptotically stable on their respective region. If

only one exists then the trajectories in the other region also converge to it. So all

trajectories converge to the solution and in this sense it is globally asymptotically

stable for the whole system. Note that usually one would take global stability

to imply smoothness. This is not the case here. Otherwise, both are globally

asymptotically stable on their respective region only and in this sense, they are

both locally stable overall.

Theorem 1 If θ > ∆, then R = θ is a solution of the mean ODE (5). For λ <

λc = (θ − ∆)/∆ it is globally asymptotically stable (in the sense explained above).

Otherwise, there exists a second, false solution R = pθ and both are locally stable.

If θ ≤ ∆ then the latter, false one is globally asymptotically stable.

Assuming ∆ < θ, the reputation system exhibits a phase transition behaviour. In

the subcritical regime, that is, for lying rates below the non-zero critical value λc,

the true reputation value θ is the unique solution. In the supercritical regime where

the lying rate is above the critical rate there is a second, false value.

In practical terms, this suggests that the reputation system works and that the liar

cannot achieve anything if ∆ < θ and λ < λc. However, the liar does have an impact

otherwise.

As for the latter condition, it is intuitively clear that the deviation test can filter

out extreme lies only if they do not occur too often. As for the former condition,

it is clear that if the true θ is too close to the extreme 0 behaviour, the deviation

test will not filter out the lies and the liar will have an impact. In conclusion, the

deviation test cannot protect a ‘very bad’ subject behaviour to be pushed by the

liar to an ‘extremely bad’ perception by the honest user. However, there is a range

of parameters for which the deviation test does protect the reputation system.
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As mentioned in Section 3.1, the analysis can be repeated symmetrically to show

that the reputation system protects against extremely positive reports rather than

extremely negative ones. Combining the two, we obtain the following conditions

for the true solution to be unique if both, positive and negative lying is permitted:

min{θ, 1 − θ} > ∆ and λ < (min{θ, 1 − θ} − ∆) /∆.

5 Distribution of Rn

Given R0 we can compute the distribution of Rn analytically. We will use this now

to confirm the mean-field predictions from the previous section.

The state space of our process is complicated and large, making the theoretical

study hard and direct computation infeasible. So, instead we compute the exact

distribution of Rn for a finite state space. For a real-world reputation system we

are interested in considering only finitely many states anyway, as it is not possible

to store arbitrary precision values on a finite device. Alternatively, the process can

be simulated, but the explicit computation of the distribution is more powerful.

The results below are obtained when the unit interval is split into G = 1000 boxes

of size g = 0.001 each. We first compute the transition matrix for the 1000 state

chain. Then, with starting value r0, we repeatedly compute the distribution at the

next step until this remains unchanged (in double precision, i.e. 64 bits, i.e. to

sixteen significant digits). This suggests that we have converged.

In fact, taking the midpoint of intervals as the corresponding state gives rise to

very non-smooth distributions due to approximation errors which do not seem to

go away with increasing grid size G. So, instead, we choose the corresponding state

uniformly from the interval. This amounts to the following: Let x denote the left

endpoint of the interval, then the right one is x + g. The possible new states from

x are ρx + (1 − ρ), ρx and x. The ones from x + g are ρx + (1 − ρ) + ρg, ρx + ρg

and x+ g which differ from the previous one by at most g. All other states that can

be reached from within the interval lie in between due to monotonicity. Thus the

new states lie in at most two neighbouring intervals. We split the probability flow

into these two intervals according to the proportions corresponding to a uniform
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distribution over the interval rather than a point mass in the middle. The effect of

this is demonstrated in Figure 1, where we plot a typical distribution first with a

point mass and then with a uniform distribution.

The graphs in Figure 2 show the distributions obtained for θ = 0.8, ∆ = 0.4,

ρ = 0.99, r0 = 0.4 (= ∆), a typical set of parameters, and various values of p. Thus,

from the previous section, the predicted critical value is λc = (θ−∆)/∆ = 1, that is

pc = ∆/θ = 0.5. Since some of the values are smaller by several orders of magnitude

than others, the features are obscured. So we also plot them in log-scale in Figure

3.

From the log-scale plots in Figure 3 we note that the distribution is unimodal for

p > pc = 0.5 with a mode at θ = 0.8. It is bimodal for p < 0.5 with a second mode

at a lower value pθ, i.e. at 0.16 and 0.32 respectively. This is all as predicted from

the previous section. In fact, consulting the output for p = 0.45 and 0.55, we find

that the predicted critical value of pc = 0.5 is confirmed further. Moreover, with

a different choice of parameters the prediction of only one mode at pθ for the case

θ ≤ ∆ can also be confirmed.

In addition, the graphs in Figure 2 give us good idea of the total mass near the

false pθ compared to the total mass near the true θ. The latter decreases in the

lying rate. Still, even for p = 0.2, the process is more likely to be right than wrong

asymptotically. Only for very small p it becomes significant.

The lightly coloured distributions in Figure 2 are obtained for a different choice

of ρ = 0.9. The discount factor controls the variability around the solutions. The

further it is from 1, the less the probability mass is concentrated near these values. In

the supercritical case, if there was no discounting, we would converge to one value

or the other with certain probabilities and then remain there forever. However,

with the discounting, this does not happen. There is always a small but positive

probability of moving from one solution to the other. The proportion of the time the

process spends around the true solution corresponds to the probability of converging

to the true solution in the case of no discounting.

So far, with the parameter set above, we have only considered the case r0 = ∆.
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However, the corresponding distributions obtained for the two extreme cases r0 = 0

and r0 = 1 are essentially the same as the ones for r0 = ∆ = 0.4. This is shown in

Figure 4. For p = 0.4, 0.6 and 0.8 they agree at least to within 10−14 for each state.

For p = 0.2 they differ, however, distributions had not converged fully here before

the computations were stopped after 5 × 106 iterations. We expect them to agree

when computations are allowed to run until completion.

This suggests that the process is independent of its initial state, which is as expected

for a unique attractor. Moreover, if there are two attractors, there is positive proba-

bility of moving from one to the other for all times and we start in a fully converged

state. Thus, in this case, too, the initial state should not matter.

6 Conclusions and Further Work

We have seen that the reputation system exhibits a phase transition. Via a mean-

field approach, we have derived a closed form expression for the critical lying rate

λc. We have verified the mean-field results by direct computation.

In the subcritical regime, when the lying rate is sufficiently small, the liar has no

impact on the honest user. In the supercritical regime, the liar does have an impact.

Thus we can give precise conditions under which the deviation test makes the rep-

utation system robust. We can further predict the false reputation value and with

what probability this will be obtained rather than the true value in the supercritical

regime.

The reputation system will be most robust against lying if ∆ is chosen very small. We

have quantified the effect on the robustness due to a change in ∆. This is important

for the fundamental trade-off, because smaller ∆ means less use of second hand

information. We have been interested in a system that is as fast a possible subject

to being accurate. In practical terms, we have seen that there is a reasonable range

of parameters for which the deviation test will protect the reputation systems from

liars.

Given a cost function with arbitrary weights on accuracy and speed, we could com-
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pute the optimal choice of the system parameter ∆. One might also want to think

about individually controlled ∆i, i = 1, 2, . . . , N , based on the users’ current infor-

mation.

We have illustrated the effect of the discount parameter. The closer it is to 1, the

more accurate the process can estimate the parameter. However, it takes longer to

track changing behaviour.

The scenario of two peers that we have considered thus far can also be viewed

as an extreme case. Even if all other users are malicious so that all second hand

information is manipulated, the reputation systems protects against the lying if

the aggregate lying rate is below a threshold. In a real-world scenario one would

typically be able to assume that at least some if not most users are honest. To

examine this in more detail, the next step is to consider the case of three peers: one

honest user making direct observations at rate µ = 1, indirect ones originating from

the liar at rate λ > 0 and indirect ones originating from the honest peer at rate

ν > 0.

We have assumed independent subject behaviour. It might be interesting to consider

the case when direct observations are correlated.

The next extension is then to consider strategic lying. This deals with the case

when adversaries do not simply lie maximally, but attempt something more subtle.

It would also be interesting to consider random noise instead of fake reports. This

would model random failures in components or transmission.
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Figure 1: Effect of smoothing for θ = 0.8, ∆ = 0.4, ρ = 0.99, r0 = 0.4. The

distribution in the top graph has been obtained with a point mass, the bottom one

with a uniform distribution.
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Figure 2: Distribution of Rn for p = 0.2, 0.4, 0.6 and 0.8 respectively. The lightly

coloured graphs are obtained when ρ = 0.99 is replaced by ρ = 0.9.

18



Figure 3: Log-scale plots of the distributions shown in Figure 2. There are two

modes for p = 0.2 and 0.4 and there is only one for p = 0.6 and 0.8.
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Figure 4: Log-scale plots with r0 = 0.4 as in Figure 3 (medium) together with the

corresponding distribution for r0 = 1 (dark) and r0 = 0 (light). They coincide

except in the first plot for p = 0.2 where they are still close.
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θ probability of positive subject behaviour Section 3.1

µ direct observation rate of honest user Section 3.1

λ indirect observation rate of honest user, i.e. lying rate Section 3.1

p probability of an observation being direct Section 3.1

Rn reputation value of honest user after nth interaction Section 3.2

r0 initial reputation value Section 3.2

∆ deviation test parameter Section 3.1

ω weighting factor attached to indirect observations Section 3.2

ρ discount factor Section 3.2

Table 1: Notation
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