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SUMMARY

We model the goodput of a single TCP source on a wireless link experiencing sudden increases in RTT, i.e.,
delay spikes. Such spikes trigger spurious timeouts that reduce the TCP goodput. Renewal reward theory is
used to derive a straightforward expression for TCP goodput that takes into account limited sending rates
(limited window size), lost packets due to congestion and the delay spike properties such as the average
spike duration and distribution of the spike intervals. The basic model is for i.i.d. spike intervals, and
correlated spike intervals are modeled by using a modulating background Markov chain. Validation by
ns2 simulations shows excellent agreement for lossless scenarios and good accuracy for moderate loss
scenarios (for packet loss probabilities less than 5%). Numerical studies have also been performed to assess
the impact of different spike interval distributions on TCP performance.
Keywords: TCP performance, wireless networks, spurious timeouts, delay spikes, renewal reward theory,
semi-regenerative processes Copyright c© 0000 AEIT

1. Introduction

TCP is the most widely used transport protocol for reliable
data transmission over the Internet. In addition to offering
a reliable packet delivery service, TCP also includes
functionality for controlling the packet sending rate to
avoid congesting the network. However, this functionality
has been originally designed based on the characteristics
of the fixed network. There the basic operational principle
of TCP rate control is roughly that TCP increases its rate
as long it is receiving acknowledgements correctly from
the receiver, and as soon as a packet loss is detected, it
is interpreted to indicate that there is congestion in the
network and hence the sending rate should be reduced
considerably. As a result of a loss the sending rate is
either halved or it can even be reduced back to an initial
small value, as happens in the case when the loss is
detected via a timeout. To set the value of the timeout
timer TCP relies on an adaptive estimation algorithm of
the RTT (Round Trip Time). The underlying assumption in

the estimation is that changes in the RTT due to random
fluctuations of the traffic in the Internet can be tracked but
sudden unexpected considerable increases are interpreted
as a sign of congestion and hence the timer will expire,
triggering TCP’s Go-Back-N retransmission scheme, and
the sending rate is initialized according to the configured
initial window size.

When considering the operation of TCP over a relatively
low bandwidth wireless link, the delays in the observed
RTTs of TCP can be highly variable. Moreover, the
pattern of variability can be such that the measured RTTs
contain very sharp spikes which can be even an order
of magnitude larger than the typical measured RTT, see
the measurement studies in GPRS networks [9],[14] and
[11]. Furthermore, the magnitude of the observed RTTs are
typically hundreds of milliseconds or even seconds, see [7]
and [13]. The RTT estimation algorithm of TCP can not
track such sudden considerable increases in the measured
RTTs. These sudden increases in RTTs are called delay
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spikes and potential reasons for their occurrence can be for
example [10]: handovers typically result in delay spikes
of several seconds occurring at a time scale of minutes
in urban environment; link layer error recovery (reliable
link layer protocols are usually used in modern cellular
systems, such as EDGE/GPRS and UMTS) may also cause
delay spikes, especially when the radio channel conditions
change abruptly due to the mobile’s movement, e.g., when
entering a tunnel; scheduling of radio resources between
circuit switched calls and data (as in GPRS) can cause
delay spikes. These delay spikes trigger so called spurious
timeouts and result in unnecessary retransmissions and
congestion control actions on the part of TCP, as the
packets are not lost, they are simply delayed. To enable
TCP to handle RTT spikes, some experimental algorithms
have been proposed, namely the Eifel algorithm [10],[17],
or F-RTO algorithm [24], but even they can not completely
remove the effect of delay spikes, and hence evaluating
their impact is necessary.

In this paper, we consider a relatively low bandwidth
wireless link, e.g., in a GPRS network, with the radio
link operating in the reliable mode. A simple modeling
framework is provided to study the impact of spurious
timeout events on the long run (steady state) goodput
of TCP, i.e., on the amount of successfully sent traffic
per time unit. In addition to the detrimental impact of
spurious timeouts on TCP goodput, we also include the
impact of congestion related losses in our model, whereas
in our earlier paper [16] a lossless low bandwidth GPRS
wireless link was considered. On a lossless wireless
link a realization of the evolution of TCP sending rate
is determined by the following: An RTT spike creates
a period of silence during which there is a (spurious)
timeout. Then the source starts increasing its sending rate
exponentially (slow start) until it reaches a window size
corresponding to the maximum sending rate of the physical
link given the RTT. The source keeps sending at the
maximum rate until there is an RTT spike again and the
process repeats. The impact of congestion losses occurring
elsewhere along the route of the TCP flow (for example,
in the fixed network) is that the sending rate evolution
must also account for the characteristic sawtooth pattern
and possible congestion related timeouts.

In modeling, the first observation is that these spurious
timeouts are caused by random events occurring in the
mobile’s environment, which are also independent of
TCP’s packet sending characteristics. Therefore, we model
these events as an outside disturbance with various levels
of generality regarding the inter-occurrence time of the
RTT spikes which trigger spurious timeouts. Initially,

the impact of the length of the RTT spike is taken
into account by considering only the mean value of
these spikes. In between RTT spikes, we incorporate
the above aspects of the sending rate evolution by
approximating the exact stochastic sample path behavior
by sample path averages assuming that packet losses
occur independently with a given probability. First the
case of i.i.d. (independent and identically distributed)
times between RTT spikes is considered in the framework
of renewal reward processes. Then a generalization by
using Markov renewal reward theory is given, where the
distributions between RTT spikes can be modulated by a
background discrete time Markov chain (thus producing
correlated times between the RTT spikes). The models
are validated through ns2 simulations. The results show
excellent agreement for lossless scenarios. Congestion
losses have a noticeable impact on performance already
when packet loss probability is comparably low, say 2%,
and in such circumstances the accuracy of our model is
still good, but for higher loss probabilities, say higher than
5%, our models underestimate the performance somewhat.
Additionally, we show how the model can be further
generalized to include the distribution of the lengths of the
RTT spikes (and not only its mean).

The paper is organized as follows: The renewal reward
theory and models without and with congestion losses
are described in Section 2 in the i.i.d. case. Then several
extensions, e.g., non-i.i.d. spike intervals, are outlined
in Section 3. In Section 4 results are compared to ns2
simulations and sensitivity on the RTT spike process is
studied. Finally, conclusions are given in Section 5.

1.1. Related work

TCP modeling philosophies can be roughly categorized in
two: TCP modeling from the point of view of a single
TCP connection and TCP bandwidth sharing modeling
with multiple flows. We first discuss the modeling of
TCP bandwidth sharing, which mostly focuses on fixed
networks. In fixed networks, fluid models have been
applied extensively for modeling multiple TCP flows
sharing the network resources under a static number of
flows. In fluid models, the behavior of TCP’s sending
rate evolution is modeled by differential equations and
the impact of losses depends on the packet level model,
see, e.g., [20]. It is commonly assumed that during a loss
epoch all flows are affected equally. When RED (or any
other AQM method) is used, this is a valid assumption
since RED will randomize the losses [20]. However, with
Drop Tail routers the assumption of all flows being equally
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affected may not hold, for example flows with higher
instantaneous windows will suffer more than flows with
small windows. Models including this kind of proportional
loss rates are given in [6] and [18]. Typically, fluid models
have been used to analyze the (control theoretic) stability
of the system. Finally, so called processor sharing models
have been applied to model the case where flows have a
finite length, they arrive randomly and TCP implements the
fair sharing of the resources, see, e.g., [23].

However, in this paper the modeling view point concerns
a single TCP flow. In this situation, the idea is to abstract
the influence of the network to the notion of the packet
loss process, and the interaction with other TCP flows
is not considered. A lot of research has been done in
modeling the steady state throughput of a single persistent
TCP flow in fixed networks with a given packet loss
process. The simple ‘square-root-p’ formula was derived,
e.g., in [19]. Using more complex assumptions on the
nature of the packet loss process more refined formulas
have also been derived, see, e.g., [22] and [3]. Notably,
in [3] the loss process can be an arbitrary point process
and the throughput of the congestion control phase can
be shown to depend on the correlations such that any
positive correlations between loss events actually improves
the throughput (deterministic loss process being the worst
case). Recent work on modeling the delay of non-persistent
TCP flows (i.e., the file transfer delay) in fixed networks
includes [4] and [5]. The authors in [4] model the rate
evolution of TCP for short files at a very detailed level.
The approach includes a packet level model of TCP to
determine the packet loss probability, which is based on
assuming that TCP flows share a single bottleneck link.
The work in [5] considers the throughput of a single
finite TCP flow in isolation experiencing random losses.
By using the properties of so called Mellin transforms,
results on the mean throughput and the distribution of the
throughput have been obtained.

In TCP models for wireless channels, the per packet
loss process is typically presented by a two-state Markov
process, representing the wireless channel’s alteration
between good/bad states, resulting in correlated packet
losses, see, e.g., [2],[15], [26]. However, these models do
not include spurious timeouts (RTT delay spikes).

Work related to modeling spurious timeouts has been
done in [8], where a model for TCP Reno experiencing
spurious timeouts has been given which very closely
follows the operation of the actual TCP Reno protocol. The
model is based on an extension of the well known model in
[22] and considers a large bandwidth delay product, with
no sending rate limitations (we include the sending rate

limit and congestion losses). The model takes into account
packet losses, but the effect of delay spikes are modeled
only through the mean length and mean time between the
spikes, whereas our model allows to distinguish between
different distributions and non-i.i.d. processes. In [1] the
measured RTT process has been modeled with a semi-
Markov process and from the dynamics of the model
the behavior of TCP has been deduced, including the
occurrence of spurious timeouts and spurious duplicate
ACKs (packets can also be reordered due to delay spikes
caused by handoffs). The model does not consider the
impact of congestion losses.

In comparison to [8] and [1], using a more abstract
representation of how the TCP’s goodput accumulates (and
not attempting to model the protocol itself), we obtain a
model that is straightforward to utilize and which allows
quite general RTT spike processes. Finally, in comparison
to our earlier paper [16], the present paper includes the
impact of congestion losses (i.e., a lossless scenario is
not assumed anymore). Also, we generalize the model to
allow the RTT spikes to have a distribution (instead of
representing the spike durations only through their mean).

2. Renewal model for TCP performance

In this section, the basic model for TCP goodput is
derived under the assumption of i.i.d. distributed times
between the RTT spikes. We first introduce the theoretical
framework, and subsequently give the models without and
with congestion losses, respectively.

2.1. Preliminaries and the renewal reward theorem

We model the TCP goodput (amount of successfully
sent traffic per time unit) of one persistent source on
a wireless link that represents the joint maximum rate
of the time slots reserved for a given user in a GPRS
system. The modeling abstraction here is that the impact
of the wireless interferences is experienced by TCP as
unexpectedly long RTT spikes. Typically, TCP models are
discrete and consider the behavior per packet or per RTT
round, as in [22]. Our abstraction is a continuous-time
model describing the actual TCP sending rate that produces
goodput. Similar continuous time approximations have
been applied in fixed networks in [12] and [21]. However,
common to [22], [12] and many other papers is the use of
renewal theory.

In this scenario, the goodput of TCP is determined
by an external stochastic process that generates the RTT
spikes that lead to TCP timeouts, and possible congestion
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related loss events. The intervals between the spikes are
random and the duration of the spike is modeled using its
mean duration, denoted by SD. The evolution of TCP’s
(successful) sending rate is described by a) a silence for
time SD due to the RTT spike, and b) sending rate
evolution according to TCP’s rate control algorithms.

Remark 1: During the RTT spike the TCP protocol is
likely to perform an exponential back-off (depending on
the length of the spike compared to the RTT). If the RTT
spike duration is short (< 10 seconds), it is convenient
to model the time when no packets get through as the
duration of the RTT spike. In this case the times when TCP
attempts to send packets is close to the time when the link
becomes capable of delivering packets again. If the RTT
spike duration is long (15 sec or more) the TCP exponential
back-off determines when sending becomes possible.

We model the long term average goodput of the TCP
connection by applying the framework of renewal models.
Let Zn denote the nth RTT spike, and take Z0 = 0. These
are the renewal times. The length of the nth renewal period
is denoted by Tn = Zn − Zn−1. Consider as the reward
the number of packets sent during the nth renewal cycle,
denoted by An. By denoting with Xn(t) the sending rate
at time t during the nth cycle, An equals

An =
∫ Tn

0

Xn(t) dt.

Assume that the Tns are i.i.d. random variables with
finite mean E(T ) and probability density function fT .
According to the well-known renewal reward theorem
(see, e.g., [25]), the time-averaged total reward, i.e., TCP
goodput GTCP, converges to cycle averaged rewards,

GTCP =
E(A)
E(T )

. (1)

2.2. Basic model without congestion losses

To derive more explicit forms for the TCP goodput formula
we first assume a lossless scenario. In this case, the
evolution of TCP’s (successful) sending rate is described
entirely by a) a silence for time SD due to the RTT spike,
b) an exponential increase in the sending rate (the slow start
phase), and c) reaching an upper bound on the sending rate
due to the low bandwidth of the wireless link. As defined
above, the time between the nth and (n + 1)th RTT spike
represents the nth renewal period in our model and its
length is denoted by Tn.

The evolution of the time derivative of the TCP’s actual
sending rate during nth renewal period, Xn, is modeled

X
n
(t)

Cmax

SD

A1

T1

tSD SD

A2

A3

SD

A4

SD

A5

T2 T3 T4 T5

Figure 1: Notation for the renewal model.

according to the phases described earlier

Ẋn(t) =





0, t < SD,
ln 2
R Xn(t)dt, SD ≤ t ≤ L + SD,

0, t > L + SD,

(2)

where

Xn = TCP sending rate, with Xn(SD) = 1,

R = TCP’s RTT,

SD = RTT spike duration (no goodput increase),

L = time to reach maximum sending rate Cmax.

For simplicity we have taken Xn(SD) = 1. Also note
that in (2) the term ln 2

R implies that the rate doubles for
every RTT (slow start). The notation introduced above is
illustrated in Figure 1. The solution of (2) is

Xn(t) =





0, t < SD,

2
t−SD

R , SD ≤ t ≤ L + SD,

Cmax, t > L + SD,

(3)

where L = R
ln 2 ln Cmax.

Our reward An, the number of packets sent during the
nth renewal cycle, is then given by

An =
∫ Tn

0

Xn(t)dt

=





0, Tn < SD,
R

ln 2 (2
Tn−SD

R − 1), SD ≤ Tn ≤ L + SD,
R

ln 2 (2
L
R − 1)+

Cmax(Tn − L− SD), Tn > L + SD.

(4)
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To compute E(A) needed in (1), we integrate (4) over
the distribution of the delay spikes, fT ,

E(A) = E

(∫ T

0

X(t)dt

)

=
R

ln 2

(∫ L+SD

SD

(2
y−SD

R − 1)fT (y)dy

+(Cmax − 1)
∫ ∞

L+SD

fT (y)dy

)

+ Cmax

∫ ∞

L+SD

(y − L− SD)fT (y)dy.

and then the TCP goodput is given by (1), i.e., GTCP =
E(A)/E(T ). The parameters in the formula are the round
trip time R, the bandwidth limitation Cmax, the RTT spike
duration SD and the distribution of the spikes.

Example with exponential distribution: The expression
for the expected reward simplifies considerably if we
assume that the intervals between RTT spikes follow the
exponential distribution with parameter 1/E(T ). In that
case the goodput becomes

GTCP =
E(A)
E(T )

=
e−SD/E(T )

(
R

E(T ) − ln 2C
1−R/(E(T ) ln 2)
max

)

R/E(T )− ln 2
.

Observe that here the goodput actually depends on the time
ratios SD/E(T ) and R/E(T ), in addition to the bandwidth
limitation Cmax.

2.3. Model including congestion losses

In this section the model is generalized such that the impact
of congestion related losses, timeouts and slow starts are
approximately included in the model. Even though the
wireless link is assumed to be lossless, congestion related
packet losses can occur elsewhere along the path of the
TCP connection, e.g., in the fixed part of the network.

Essentially, congestion losses make the sending rate of
the TCP connection fluctuate according to the familiar
sawtooth pattern with randomly varying intervals between
the rate drops. Our model does not try to exactly model
this stochastic behavior. Instead, our approach is to replace
the exact stochastic behavior with a model where the time
between losses is a constant representing the mean time
between losses. We use the term congestion cycle to refer
to the rate evolution during the time between loss events.

X(t)

Mode 1 : pure sawtooth

X(t)

Mode 2 : cutted sawtooth

X(t)

Mode 3 : rate limited

Cmax

Cmax

Cmax

Figure 2: The three different operation modes of TCP
under congestion avoidance.

To be more precise, it is assumed that packet losses
occur with a probability p > 0 per packet. Each congestion
cycle begins with the retransmission of the packet that
was lost at the end of the previous congestion cycle, and
after that 1/p− 1 packets are sent until a new loss occurs
(number of packets sent before packet loss is geometrically
distributed). Thus, altogether 1/p packets are sent in each
cycle. We assume that the typical operation of TCP under
congestion losses obeys the so called congestion avoidance
rules (linear increase, multiplicative decrease by factor
1/2, no timeouts or slow starts). Depending on p, the round
trip time R and the rate limit Cmax, we distinguish between
three different operation modes for TCP in congestion
avoidance: (1) pure sawtooth, (2) cutted sawtooth, and (3)
rate limited. Pure sawtooth refers to a situation, where
the system parameters are such that TCP rate fluctuates
according to a perfect saw tooth pattern with slope equal
to (1/R). Cutted sawtooth is a situation, where the rate
evolution has a linear increase component with the same
slope as in pure sawtooth, but rate increase is limited to
the physical rate limit Cmax. Finally, rate limited refers
naturally to the case where the sending rate evolution is
only limited by the physical limit Cmax. These different
modes are illustrated in Figure 2.

The idea is then to compute the time it takes to send
1/p packets assuming the above three possible operation
modes. This is denoted by τCA, with τCA depending on the
system parameters Cmax, p and R. However, just capturing
the congestion avoidance behavior of TCP is not enough.
To include the impact of congestion related timeouts and
slow starts in the model, we also compute τSS, which
denotes the time it takes to send 1/p packets assuming the
same operation mode as used in τCA with an idle period
of length TO (modeling the mean length of a timeout
period), an exponential increase of rate up to a threshold
value (which equals the starting value of the corresponding
τCA cycle), and the same rate evolution mode as in the
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corresponding cycles of length τCA. Associated with each
cycle is a probability, β, that the cycle is a timeout-
slow start cycle or a congestion avoidance cycle, with
probability (1− β). The probability of a timeout cycle
is taken from [22], where a formula is given for the
probability of a timeout given the window size w just prior
to the loss event and the packet loss probability p,

β(w, p) = min
(

1,
(1− q3)(1 + q3(1− qw−3))

1− qw

)
, (5)

where q = 1− p. Figure 3 illustrates the above by showing
the assumed rate evolution of TCP during a congestion
cycle (with length τCA) followed by a slow start cycle (with
length τSS) for the three TCP operation modes.

To keep the presentation at this point succinct we leave
the exact derivation of τCA and τSS until later as it involves
lengthy, but straightforward calculations (also heuristics
for fixing w in (5) are discussed later). The details can
be found in Appendix. It suffices at this point to recall
that depending on the parameters p, R and Cmax, we fix
the TCP mode and compute τCA. Associated with this we
compute the length of the timeout-slow start cycle, τSS, and
its probability β. Observe that, in the lossless model in the
previous section, we assumed a slowstart after each RTT
spike. In contrast to this, now we have slowstarts related to
congestion loss timeouts with probability β, but there is no
slowstart after each RTT spike.

2.3.1. Computation of the reward By conditioning on T ,
the random variable for the time between delay spikes, we

X(t)

Mode 1 : pure sawtooth

X(t)

Mode 2 : cutted sawtooth

X(t)

Mode 3 : rate limited

Cmax

Cmax

Cmax

CAτ

TO

SSτ

TO

CAτ SSτ

TO

CAτ SSτ

Figure 3: Illustration of τCA and τSS for the three TCP
modes.

can express E(A) needed in (1) as,

E(A) = E(E(A |T ))

=
∫ ∞

SD

E(A | t− SD)fT (t)dt. (6)

The problem is now to determine E(A |T ′), where T ′ =
T − SD. The rate evolution between delay spikes is
represented in our model by two types of cycles with
different lengths, τCA and τSS, each with probabilities
(1− β) and β, respectively. Note that τCA < τSS for each
mode, as both cycles send 1/p packets. We assume that
when computing E(A |T ′), the contribution from the last
cycle before T ′ is reached can, without loss of accuracy,
be approximately taken into account by assuming that
the number of sent packets during the remainder equals
(1/p) · t̃/τ , where t̃ is the remaining time until T ′ and τ
equals τCA or τSS depending on whether the last cycle is of
type τCA or τSS. This implies that it is assumed that during
the last unfinished cycle, packets are sent at a constant rate.

Let n denote the number of complete τCA cycles and m
the number of complete τSS cycles in a sequence which is
stopped right after T ′ is exceeded. The probability of such
a sequence obeys the binomial distribution,

Bin(n,m, β) =
(

n + m

m

)
βm(1− β)n.

To compute E(A |T ′) we need to consider whether
exceeding is caused by a short (τCA) or long cycle (τSS). If
it is caused by a short cycle (with probability (1− β)), the
set of admissible pairs of integer numbers (n,m), denoted
by S1, is defined as

S1 = {(n, m) :
nτCA + mτSS < T ′ ∧ (n + 1)τCA + mτSS ≥ T ′},

and the number of sent packets equals (1/p) · (n + m +
(T ′ − nτCA −mτSS)/τCA). If it is a long cycle (with
probability β) that results in exceeding T ′, the set of
admissible pairs of integer numbers (n,m), denoted by S2,
is defined as,

S2 = {(n, m) :
nτCA + mτSS < T ′ ∧ nτCA + (m + 1)τSS ≥ T ′},

and the number of sent packets equals (1/p) · (n +
m + (T ′ − nτCA −mτSS)/τSS). Thus, E(A |T ′) can be
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expressed as

E(A |T ′) =
1
p
·


 ∑

(n,m)∈S1

g1(n,m, β) +
∑

(n,m)∈S2

g2(n,m, β)


 , (7)

where the functions g1 and g2 are given by

g1(n,m, β) =

Bin(n,m, β)(1− β)
(

n + m +
T ′ − nτCA −mτSS

τCA

)
,

g2(n,m, β) =

Bin(n,m, β)β
(

n + m +
T ′ − nτCA −mτSS

τSS

)
.

Given (7), E(A) is computed as in (6) and TCP goodput is
given by (1).

2.3.2. Approximation using Wald’s equation It is also
possible to derive an accurate approximation for E(A |T ′)
by applying Wald’s equation (see [25]). The benefit of
the approximation is that it is more explicit than the
above exact formula. Wald’s equation states that, given a
sequence of i.i.d. distributed random variables Y1, Y2, . . .
and a stopping time N for the Yn, then

E

(
N∑

n=1

Yn

)
= E(N)E(Y ).

In our case, Yn is defined as

Yn =
{

τSS, with probability β,
τCA, with probability (1− β),

and
E(Y ) = βτSS + (1− β)τCA.

The stopping time N can be defined as the time when T ′ is
exceeded upon completion of the N th cycle. Using Wald’s
equation, E(A |T ′) can be bounded by first noting that

(1/p)E(N − 1) < E(A |T ′) < (1/p)E(N),

from which it follows

(1/p)
E(PN−1

n=1 Yn)
E(Y ) < E(A |T ′) < (1/p)

E(PN
n=1 Yn)

E(Y ) .

Because T ′ − τSS ≤ E
(∑N−1

n=1 Yn

)
and additionally

T ′ + τSS ≥ E
(∑N

n=1 Yn

)
, the above can be further

bounded

(1/p) · T ′ − τSS

E(Y )
< E(A |T ′) < (1/p) · T ′ + τSS

E(Y )
. (8)

Numerically we have observed that a very good
approximation of E(A |T ′) is given by taking the average
of the upper and lower bounds in (8),

E(A |T ′) ≈ (1/p) · T ′

E(Y )
. (9)

Note that the above approximation T ′/E(Y ) for the mean
number of cycles, can be also interpreted as following from
assuming that we have Poisson arrivals with rate 1/E(Y ).
Thus, by (6) and (1), TCP goodput is given by

GTCP =
1

E(T )

∫ ∞

SD

E(A | t− SD) fT (t)dt

≈ 1
p E(T )E(Y )

∫ ∞

SD

(t− SD) fT (t) dt. (10)

Example with exponential distribution: If we assume that
the RTT spikes obey an exponential distribution with mean
1/E(T ),

∫∞
SD

(t− SD)fT (t)dt = E(T ) · e−SD/E(T ) and
(10) simplifies to

GTCP ≈ e−SD/E(T )

p · E(Y )
.

Note that above E(Y ) depends on R, p and Cmax.
Accuracy of the approximation: Next we illustrate the

accuracy of (9) compared to the exact solution (7) when
computing the conditional reward E(A |T ′). To this end
let us here denote by a the value of E(A |T ′) as given
by (7) and by â the approximate value of E(A |T ′) as
given by (9). We are interested in the relative error of
the approximation (9), given by (a− â)/a, as a function
of T . The relevant dependencies in the error are that for
small T the error is bigger (especially if T < τSS) and for
large T the error is close to zero. For a given value of T
the bigger the difference in the value of τSS and τCA the
bigger the error. Also, the value of β affects the accuracy.
Note that the error does not decrease monotonously for
increasing T . These issues are illustrated in Figure 4, where
we plot the relative error as a function of T with τSS = 1
for β = 0.1 (left figure) and β = 0.5 (right figure) with
τCA = 0.1 or τCA = 0.5. Due to the accuracy and simplicity
of (9), in the numerical results of Section 4, we have used
the approximation (9) in the computations.
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Figure 4: The relative error of (9) compared with (7) as a
function of T for β = 0.1 (left) and β = 0.5 (right) with
τSS = 1 and τCA = 0.1 or τCA = 0.5.
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Figure 5: Illustration of the Markov renewal model in the
lossless case with slow start.

3. Extensions to the model

3.1. Non-i.i.d RTT spike intervals

In the previous model the intervals between RTT spikes,
Tns, were required to be i.i.d. Next we show how we
can introduce correlation between Tns by considering
the time-averages of semi-regenerative processes. In such
processes the cycles are no longer i.i.d, but periods are
“modulated” by an embedded Markov chain Bn, whose
invariant distribution is denoted by π. We assume that the
time scale of the modulating process is slower than the RTT
spike process.

To illustrate the model in a simple setting we assume that
the modulating discrete time Markov process has two states
0 and 1, with transition probabilities p00, p01, p10 and p11,
and hence the equilibrium probabilities are simply π0 =
p10/(p01 + p10) and π1 = p01/(p01 + p10). Furthermore,
the possible state transition times in the modulating process
are only the times when an RTT spike occurs. Thus, the
state transition times of the embedded process are complete
regeneration times of the joint process. This is illustrated
for the lossless situation with slow start and rate limitation
in Figure 5.

In this case the sequence (Bn, (An, Tn)) is a Markov
marked chain and (Bn, An, Tn) is called a Markov renewal
sequence. Then if Eπ(A) < ∞ and Eπ(T ) < ∞, the

renewal reward theorem can be applied by averaging
the reward also over the steady state distribution of the
modulating Markov process [25],

GTCP =
Eπ(A)
Eπ(T )

.

3.1.1. Model without congestion losses If the RTT spike
intervals have a probability density function f0(t) at state
0 and f1(t) at state 1, the goodput formula becomes

GTCP =
Eπ

(∫ T

0
X(u)du

)

Eπ(T )

=
π0

∫∞
0

f0(t)
∫ t

0
X(u)du dt

π0

∫∞
0

f0(t)tdt + π1

∫∞
0

f1(t)tdt

+
π1

∫∞
0

f1(t)
∫ t

0
X(u)du dt

π0

∫∞
0

f0(t)tdt + π1

∫∞
0

f1(t)tdt
.

Example with exponential distribution: If we assume
exponential probability densities f0(t) = 1/µ0e

−t/µ0 and
f1(t) = 1/µ1e

−t/µ1 , the goodput formula simplifies to

GTCP =
π0e

−SD/µ0µ0
R−µ0 ln 2C

1− R
µ0 ln 2

max
R−µ0 ln 2

π0µ0 + π1µ1

+
π1e

−SD/µ1µ1
R−µ1 ln 2C

1− R
µ1 ln 2

max
R−µ1 ln 2

π0µ0 + π1µ1
. (11)

3.1.2. Model with congestion losses Using the above
notation we briefly state how (10) translates into the
Markov modulated renewal setting. For general RTT spike
distributions we get

GTCP =
π0

∫∞
SD E(A | t− SD) f0(t)dt

π0

∫∞
0

f0(t)tdt + π1

∫∞
0

f1(t)tdt
(12)

+
π1

∫∞
SD E(A | t− SD) f1(t)dt

π0

∫∞
0

f0(t)tdt + π1

∫∞
0

f1(t)tdt

≈ π0

∫∞
SD (t− SD) f0(t)dt

pE(Y )
(
π0

∫∞
0

f0(t)tdt + π1

∫∞
0

f1(t)tdt
)

+
π1

∫∞
SD (t− SD) f1(t)dt

pE(Y )
(
π0

∫∞
0

f0(t)tdt + π1

∫∞
0

f1(t)tdt
) .

Example with exponential distribution: Again, if we
assume exponential probability densities f0(t) and f1(t),
as above, we get

GTCP ≈ π0µ0e
−SD/µ0 + π1µ1e

−SD/µ1

(π0µ0 + π1µ1) pE(Y )
. (13)
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3.2. Including the distribution of delay spike lengths

Thus far we have assumed that the length of the RTT
spikes is constant, denoted by SD. As mentioned before,
SD can be interpreted as modeling the mean length of the
RTT spikes. The model can, however, be easily modified
to allow a distribution for the RTT spikes. To this end,
consider the case where the length of the RTT spikes are
random variables denoted by SD and have a common
distribution with density fSD(·). Thus, associated with the
nth renewal period Zn we have SDn. We assume that the
value of SDn is independent of Zn. If Tn+1 = Zn+1 −
Zn < SDn, i.e., the next renewal epoch occurs before the
nth spike is over, the reward from such realizations equals
zero. With this, (6) can be expressed as

E(A) =
∫ ∞

0

fSD(τ)
∫ ∞

τ

E(A | t− τ) fT (t) dt dτ.

4. Numerical results

4.1. Validation of the models

To validate our models we have used the ns2 simulator
equipped with the RTT spike generator contributed by
Andrei Gurtov∗. The simulation scenario that is used to
estimate the goodput consists of transmitting TCP data
over a single link having a constant service rate, but
which can be turned on/off for random periods of time (to
generate the RTT spikes). The TCP source type used in
the simulations is TCP SACK. To estimate the goodput,
we simply send a large file (3 · 106 packets) over the link
and measure the time it took for TCP to send the given
number of packets. To enforce the sending rate limit on
TCP we have set the maximum window to be equal to the
bandwidth delay product of the simulated system.

The accuracy of our model is evaluated for a small
and larger bandwidth delay product scenario. To this
end, we fix the packet size at 576 bytes and link one-
way propagation delay equals 100 ms and we experiment
with a low bandwidth link with rate 40 kbps and a
higher bandwidth link with rate 100 kbps. These link
speeds are comparable to those achieved with present day
EDGE/GPRS systems. In the models, we also take here R
to include the packet transmission time (in addition to the
propagation delay), i.e., R = 2 · link propagation delay +
packet transmission time ≈ 315 ms. This represents the
average value of the RTT when RTT spikes are excluded,

∗Patches are available from http://www.cs.helsinki.fi/u/
gurtov/ns/

and it is comparable with measurement results on RTTs in
GPRS systems, see, e.g., [9, 14, 11, 7, 13]. Additionally,
we vary the length of the RTT spikes (long/medium/short
spikes) and also study the impact of congestion losses.

First the case of long RTT spikes is considered; in the
simulations the spike durations were uniformly distributed
in the range [5, 10] s, i.e., SD = 7.5 s in our models.
The goodput is evaluated as a function of the mean time
between RTT spikes, E(T ). In the simulations for each
E(T ), the spikes are uniformly distributed in the range
[10, 2 · E(T )− 10] s. This range of delays is reasonable
when the spikes are triggered, e.g., by hand overs and
dynamic resource allocation at the link layer, see [10]. The
results are in Figure 6 for three different loss scenarios: 0%
loss (square), 2% loss (diamond), and 5% loss (triangle).
The simulation results are always shown in dashed lines
and the analytical results from the models in solid lines.

We see that in the low bandwidth lossless case the
model and the simulations match exactly. In the low
bandwidth case when packet losses are present, the model
typically overestimates the goodput, but the agreement is
very good. When the bandwidth is increased to 100 kbps,
the lossless model overestimates the goodput, which is
natural as we allow exponential increase of the bandwidth
up to the bandwidth limitation (whereas in reality TCP
switches to a linear increase after slowstart threshold is
reached). In the model with packet losses the congestion
avoidance behavior is incorporated in the model. There
we overestimate the goodput for low packet loss and
underestimate it for higher packet loss. The accuracy up
to 2% packet losses is very good.

In the above, the spike process produces rather long
spikes (with a mean SD = 7.5 s), whereas the typical RTT
equals roughly 300 ms. Then it can be anticipated that
the spikes are indeed dramatic enough such that TCP’s
RTT estimator mechanism can not learn the properties
of the spike process. Hence, our assumption that every
spike results in a timeout and slow start is mostly valid.
However, if the duration of the spikes is shortened, this
may not necessarily be the case anymore. To check this,
same simulations as earlier (with low/high bandwidth)
were performed where the spike durations were generated
from a uniform distribution in the range [1, 5] (with a mean
SD = 3 s) and in the range [1, 2] (with mean SD = 1.5 s).
The results are shown in Figure 7 and Figure 8.

Similar observations as made for SD = 7.5 s in Figure 6
apply to the case here when SD = 3 s in Figure 7,
i.e., the spikes are long enough so that TCP’s timer
mechanism can not adapt to the spikes. However, the
results for the case where SD = 1.5 s reveal that now
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Figure 6: Comparison of model (solid lines) and simulations (dashed lines) in low (left) and higher (right) bandwidth
delay product scenarios when delay spikes have long durations (SD = 7.5 s).
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Figure 7: Comparison of model (solid lines) and simulations (dashed lines) in low (left) and higher (right) bandwidth
delay product scenarios when delay spikes have somewhat shorter durations (SD = 3 s).
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Figure 8: Comparison of model (solid lines) and simulations (dashed lines) in low (left) and higher (right) bandwidth
delay product scenarios when delay spikes have short durations (SD = 1.5 s).

TCP’s timer mechanism has indeed adapted to the spikes.
This can be seen in Figure 8 especially clearly for
the low bandwidth case for the lossless model (the
topmost pair of lines). In earlier scenarios our model
predicted the performance very accurately. Now the model
underestimates the performance and this underestimation
is due to that now in the simulation TCP does not have
a slow start (causing loss of goodput) after every RTT
spike (as is assumed in the model). This is especially
clear when the spikes occur frequently with E(T ) < 7.
There the impact of the assumed slowstart after each RTT
spike causes the goodput to drop quickly and the predicted

performance even becomes worse than for scenarios where
we have congestion losses (remember that in the model
with congestion losses there is no slowstart after an RTT
spike). In fact, a better approximation in this case would
be given by the model with congestion losses where
loss probability p is given a value that is numerically
close to zero (say, p = 10−6). On the other hand, for
the lossy cases our model behaves again as earlier, i.e.,
the model slightly overestimates the performance. For
high bandwidth scenario without packet losses we either
overestimate or underestimate the goodput depending on
the mean time between the RTT spikes. When packet
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losses are present, the model underestimates the goodput,
especially for the 5% loss case.

4.2. Sensitivity of performance to RTT spike distribution

Now we illustrate in Figure 9 the effect of the RTT spike
distribution on the TCP goodput in the lossless model (left
figure) and the model with packet losses (right figure). The
x-axis is the mean of the given distribution and the y-axis
is the corresponding estimate for the TCP goodput in bps
obtained from the exact result for the lossless case or the
approximation (10) for the case with packet losses.

In the Pareto distribution the shape parameter equals
1.5; the uniform distribution is located at the interval
[E(T )−min(E(T ), 5), E(T ) + min(E(T ), 5)]. Markov
modulating process is illustrated by using exponential
distributions with π0 = π1 = 1/2 and µ0 = 0.25E(T ) and
µ1 = 1.75E(T ), i.e., in state 0 RTT spikes are more
frequent than in state 1. The curves are calculated from
(11) and (13). The RTT spike duration is SD = 5 and the
other parameters are: maximum rate 40 kbps, packet size
576 bytes, propagation delay 0.6 sec, which give rise to
R = 720 ms and Cmax = 8.68 pkts/s. In the model with
packet losses the loss probability p = 0.02 is illustrated.

For the TCP goodput the worst case of RTT spikes
in both models is the uniform distribution. This is
because n bursty spikes yield a better goodput than
n uniformly distributed spikes on a time interval of
the same length. The benefit of bursts can be seen
by comparing the Pareto and exponential distributions.
Moreover, the exponential distribution and the Markov
modulated exponential distribution have the same mean,
but in the Markov modulated version spikes arrive
frequently in state 0 and very seldom in state 1. Thus
the modulated RTT process yields throughout a higher
goodput. The impact of correlation in RTT spikes on the
goodput is in agreement with the result on the TCP AIMD-
component analyzed in [3].

In the model with congestion losses the packet loss
probability in the range of 1–10% does not change
appreciably how the different RTT spike distributions
compare to each other. Only the general level of the
goodput is lowered when the packet loss probability
increases, as p is a scale factor in formula (10).

5. Conclusions

On a wireless link, the observed RTTs of TCP can
be highly variable and the pattern of variability may
contain sharp spikes, called delay spikes. These result in

spurious timeouts that lower the TCP performance. We
have provided a facile modeling framework to study the
impact of such RTT spikes on the goodput of a TCP source.

Delay spikes, or RTT spikes, are triggered by random
events occurring in the mobile’s environment. Hence we
have modeled the delay spikes as an outside disturbance.
First, the case of i.i.d. spike intervals was considered in
the framework of renewal reward theory and we derived
an expression for the TCP goodput. In the modeling,
we have first considered a lossless low bandwidth link
on which the rate of successfully sent TCP packets is
described by a) a silence for the mean duration of the delay
spike, b) exponential increase (the slow start phase) and
c) reaching the maximum rate due to bandwidth (window)
limitation. Then a model has been presented that includes
also congestion related packet losses by approximately
taking into account the usual sawtooth pattern in the TCP
sending rate, possible slow starts and congestion related
timeouts between the RTT spikes, as well as a limited
sending rate. Correlation between RTT spike intervals has
been incorporated using a modulating embedded discrete
time Markov chain and Markov renewal reward results.

Validation with ns2 showed that our models closely
approximate the TCP goodput in the presence of
RTT spikes. In the lossless modeling scenario with
a low bandwidth link the agreement with simulation
is excellent. For a higher bandwidth link our model
slightly overestimates the lossless goodput (as we allow
exponential increase up to the bandwidth limitation). For
the cases with congestion losses, the accuracy of the model
is still very good for the low bandwidth case, but for
the higher bandwidth case accuracy is still good up to
5% losses but with even higher loss rates our model is
underestimating the performance somewhat. Finally, by
studying the sensitivity of the goodput on the RTT spike
interval distribution, we observed that in both models
bursty spikes give higher goodput. This is similar to the
result in [3] that studied the congestion control component
of the TCP.

Currently the model is for a greedy TCP source, i.e.,
we assume that the TCP source has always data to send.
One interesting direction for future research is to include
a session structure in the model with thinking times and
finite file sizes with random lengths.
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Appendix: Derivation of τCA, τSS and β

In the pure sawtooth case, the rate evolution during τCA

is determined by a linear increase from x
(1)
0 to 2x

(1)
0 with

a slope 1/R (see Figure 10), i.e., rate is halved upon
each loss. Thus, we have that 2x

(1)
0 = x

(1)
0 + τCA/R and

the area under the curve should equal 1/p. In the cutted
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sawtooth case (see Figure 10), the rate increases linearly
from x

(2)
0 to Cmax after which the congestion window still

increases linearly (the dashed line) but packets are sent
only at the rate Cmax. We again have the relations that
2x

(2)
0 = x

(2)
0 + τCA/R and the area under the curve equals

1/p (number of sent packets), and τCA can be deduced from
these. In the rate limited case, τCA simply equals the time
it takes to send 1/p packets with rate Cmax. After some
algebraic manipulations, we arrive at

τCA =





τ
(1)
CA =

√
2R
3p ,

if 0 ≤ x
(1)
0 < Cmax

2 ,

τ
(2)
CA = R

(
2Cmax −

√
3C2

max − 2
pR

)
,

if Cmax
2 ≤ x

(2)
0 ≤ Cmax

τ
(3)
CA = 1/p

Cmax
, otherwise,

(14)

where
{

x
(1)
0 =

√
2R/(3p),

x
(2)
0 = 2Cmax −

√
3C2

max − 2/(pR).
(15)

Note that when x
(1)
0 = Cmax/2 then x

(2)
0 = Cmax/2, i.e.,

the limits in (14) are continuous.

X(t)

x0
(1)

2x0
(1)

X(t)

x0
(2)

2x0
(2)

Cmax

CA
τ

CA
τ

Mode 1 : pure sawtooth Mode 2 : cutted sawtooth

X(t)

Cmax

CA
τ

Mode 3 : rate limited

Figure 10: Illustration and notation for different τCA cycles.

As discussed earlier, associated with each τCA is τSS,
the time it takes to send 1/p packets assuming a constant
silence period, TO, a slow start and, after that, the same
rate evolution as in the corresponding τCA cycle. Let

us consider fist the case that τCA = τ
(1)
CA , i.e., the pure

sawtooth case. The corresponding timeout-slow start cycle
is determined by a constant silence period of length TO,
an exponential rate increase obeying x(t) = 2t/R up to
x

(1)
0 as given by (15), a linear increase with slope 1/R

until x′ at which point 1/p packets have been sent (see
Figure 11). In this case, τSS = TO + t1 + t2, where t1 is
the length of the slow start period and t2 the length of
the linear increase period. The time t1 = R log2 x

(1)
0 and

during this time a1 = R(x(1)
0 − 1)/ ln 2 packets are sent.

During t2, a2 = t2x
(1)
0 + t22/(2R) packets are sent. During

t1 + t2 altogether 1/p packets are sent, which results in a
second order equation for t2, whose only positive solution
equals

t2 = −R


x

(1)
0 −

√
(
x

(1)
0

)2

− 2(x(1)
0 − 1)
ln 2

− 2
pR


 .

If a1 ≥ 1/p, then the cycle ends during slow start and
t1 = R log2(ln 2/(pR) + 1). Thus, τ

(1)
SS is given by

τ
(1)
SS =





TO + R

(
log2 x

(1)
0 − x

(1)
0 +

√(
x

(1)
0

)2

− 2(x
(1)
0 −1)
ln 2 − 2

pR

)
,

if R(x
(1)
0 −1)
ln 2 ≤ 1

p ,

TO + R log2

(
ln 2
pR + 1

)
,

otherwise.

(16)

Next consider the cutted sawtooth case. The slow
start cycle is determined by a silence of length TO,
an exponential increase up to x

(2)
0 as given by (15), a

linear increase with slope 1/R until Cmax and after that
a constant rate until 1/p packets have been sent (see
Figure 11). As earlier, the length of the slow start phase
is t1 = R log2 x

(2)
0 and during this time a1 = R(x(2)

0 −
1)/ ln 2 packets are sent. The length of the linear increase
part is t2 = R(Cmax − x

(2)
0 ) and during this time a2 =

R(C2
max − (x(2)

0 )2)/2 packets are sent. Thus, if a1 +
a2 < 1/p, the length of the constant rate period is given
by t3 = (1/p− a1 − a2)/Cmax, and the length of the
cycle equals TO + t1 + t2 + t3. If a1 < 1/p ≤ a1 + a2,
the cycle stops during the linear increase part. Thus, the
total time equals the same as in the pure sawtooth case,
as given in (16). If a1 ≥ 1/p, the cycle ends during slow
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Figure 11: Illustration and notation for different τSS cycles.

start, which was also already considered earlier in the pure
sawtooth case. Thus, τ

(2)
SS can be expressed as

τ
(2)
SS =





TO + R log2 x
(2)
0 + R(Cmax − x

(2)
0 )+

1
pCmax

− R(x
(2)
0 −1)

Cmax ln 2 − RCmax
2 +

R
�

x
(2)
0

�2

2Cmax
,

if 1
p >

R(x
(2)
0 −1)
ln 2 + R

2

(
C2

max −
(
x

(2)
0

)2
)

,

TO + R

(
log2 x

(2)
0 − x

(2)
0 +

√(
x

(2)
0

)2

− 2(x
(2)
0 −1)
ln 2 − 2

pR

)
,

if R(x
(2)
0 −1)
ln 2 < 1

p ≤
R(x

(2)
0 −1)
ln 2 +

R
2

(
C2

max −
(
x

(2)
0

)2
)

,

TO + R log2

(
ln 2
pR + 1

)
, otherwise.

(17)

Finally, we consider the rate limited case. The slow start
cycle is now determined by an exponential increase up
to Cmax, after which packets are sent at a constant rate
Cmax until 1/p packets have been sent (see Figure 11).
The length of the slow start phase is t1 = R log2 Cmax

and during this time a1 = R(Cmax − 1)/ ln 2 packets are
sent. The remaining packets a2 = (1/p− a1) are sent at
the rate Cmax, and t2 = a2/Cmax. If 1/p < a1, the cycle
ends during slow start (as discussed earlier). Thus, τ (3)

SS can

Table 1: Summary of τCA, τSS and β.
TCP mode τCA τSS β

0 ≤ x
(1)
0 < Cmax

2
τ
(1)
CA in (14) τ

(1)
SS in (16) β(2x

(1)
0 R, p)

Cmax
2

≤ x
(2)
0 < Cmax τ

(2)
CA in (14) τ

(2)
SS in (17) β(CmaxR, p)

otherwise τ
(3)
CA in (14) τ

(3)
SS in (18) β(CmaxR, p)

be expressed as

τ
(3)
SS =





TO + R log2 Cmax + 1
pCmax

− R(Cmax−1)
Cmax ln 2 ,

if R(Cmax−1)
ln 2 ≤ 1

p ,

TO + R log2

(
ln 2
pR + 1

)
,

otherwise.
(18)

To fix the value of β, the probability of a slow start

cycle, we approximate the window size w needed in (5)

by the window size at the end of the corresponding τCA

cycle. Given a rate r, the window size is obtained by the

familiar relation w = rR. Thus, in the pure sawtooth case
we have that β ≈ β(2x

(1)
0 R, p). For the cutted sawtooth

case, β ≈ β(CmaxR, p), and similarly for the rate limited

case β ≈ β(CmaxR, p).

In Table 1 we have summarized the results for obtaining

τCA, τSS and β. Finally, note that the actual condition for
the “otherwise” in the table is that the discriminant of x

(2)
0

in (17) becomes negative, i.e., 3C2
max − 2/(pR) < 0.
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