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The Two-User Gaussian Interference Channel: A
Deterministic View

Guy Bresler∗ David Tse†‡

Abstract

This paper explores the two-user Gaussian interference channel through the lens of a nat-
ural deterministic channel model. The main result is that the deterministic channel uniformly
approximates the Gaussian channel, the capacity regions differing by a universal constant. The
problem of finding the capacity of the Gaussian channel to within a constant error is therefore
reduced to that of finding the capacity of the far simpler deterministic channel. Thus, the paper
provides an alternative derivation of the recent constant gap capacity characterization of Etkin,
Tse, and Wang [8]. Additionally, the deterministic model gives significant insight towards the
Gaussian channel.

1 Introduction

One of the longest outstanding problems in multiuser information theory is the capacity region of
the two-user Gaussian interference channel. This multiuser channel consists of two point-to-point
links with additive white Gaussian noise, interfering witheach other through crosstalk (Figure 1).
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Figure 1:Two-user Gaussian interference channel.

Each transmitter has an independent message intended only for the corresponding receiver. The
capacity region of this channel is the set of all simultaneously achievable rate pairs(R1, R2) in the
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two interfering links, and characterizes the fundamental tradeoff between the performance achiev-
able in the links in the face of interference. Unfortunately, the problem of characterizing this region
has been open for over thirty years. The capacity region is known in thestrong interference case,
where each receiver has a better reception of the other user’s signal than the intended receiver [10, 5].
The best known strategy for the other cases is due to Han and Kobayashi [10]. This strategy is a
natural one and involves splitting the transmitted information of both users into two parts: private
information to be decoded only at own receiver and common information that can be decoded at
both receivers. By decoding the common information, part ofthe interference can be canceled off,
while the remaining private information from the other useris treated as noise. The Han-Kobayashi
strategy allows arbitrary splits of each user’s transmit power into the private and common informa-
tion portions as well as time sharing between multiple such splits. Unfortunately, the optimization
among such myriads of possibilities is not well-understood, and it is also not clear how close to
capacity can such a scheme get and whether there will be otherstrategies that can do significantly
better.

Significant progress on this problem has been made recently.In [8], it was shown that a very
simple Han-Kobayashi type scheme can in fact achieve rates within 1 bits/s/Hz of the capacity of
the channel forall values of the channel parameters. That is, this scheme can achieve the rate
pair (R1 − 1, R2 − 1) for any (R1, R2) in the interference channel capacity region. This result is
particularly relevant in the high signal-to-noise ratio (SNR) regime, where the achievable rates are
high and grow unbounded as the noise level goes to zero. The high SNR regime is the interference-
limited scenario: when the noise is small, interference from one link will have a significant impact
on the performance of the other. Progress has also been made towards finding the exact capacity
region; by extending one of the converse arguments in [8], the authors of [13] and [1] show that
treating interference as noise is sum-rate optimal when theinterference is sufficiently weak.

The purpose of the present paper is to show that the high SNR behavior of the Gaussian in-
terference channel characterized in [8] can in fact be fullycaptured by a natural underlyingdeter-
ministic interference channel. This type of deterministic channel model was first proposed by [2]
in the analysis of Gaussian relay networks. Applying this model to the interference scenario, we
show that the capacity of the resulting deterministic interference channel isthe same—to within a
constant number of bits—as the corresponding Gaussian interference channel. Combined with the
capacity result for the two-user deterministic interference channel, the paper therefore provides an
alternative derivation of the constant gap result of [8] (albeit with a larger gap).

Because of the simplicity of the deterministic channel model, it provides a lot of insight to the
structure of the various near-optimal schemes for the Gaussian interference channel in the different
parameter ranges. Where certain approximate statements and intuitions can be made regarding the
Gaussian interference channel, these statements are made precise in the deterministic setting. The
near-optimality for the Gaussian channel of the simple Han-Kobayashi scheme as shown in [8] is
made transparent in the deterministic channel: the derivation of the achievable strategy is completed
in a series of steps, each shown to be without loss of optimality. As an added benefit, the relatively
complicated genie-aided converse arguments are avoided.

The close connection between the deterministic and Gaussian channels, as demonstrated in
the example of the two-user interference channel discussedin this paper, suggests a new general
approach to attack multiuser information theory problems.Given a Gaussian network, one can
attempt toreducethe Gaussian problem to a deterministic one by proving a constant gap between
the capacity regions of the two models. It then remains only to find the capacity of the presumably
simpler deterministic channel. In [4], the less direct approach of transferring proof techniques from
the deterministic to Gaussian channel has been used successfully in approximating the capacity of
the Gaussian many-to-one interference channel, where there is an arbitrary number of users but
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interference only happens at a single receiver. The approach used in [4] is therefore taken a step
further in this work.

2 Generalized Degrees of Freedom and Deterministic Model for the
MAC

2.1 Generalized Degrees of Freedom

Before the one-bit gap result [8], very little was known about the structure of the capacity region of
the two-user Gaussian interference channel. The investigation of thegeneralized degrees of freedom,
a concept introduced in [8], provided the first and crucial insight into the problem. In this section
we motivate this idea through the MAC, as well as provide a more abstract look into what makes the
generalized degrees of freedom so useful towards understanding the Gaussian interference channel.

Let us start with the point-to-point AWGN channel. The output is equal to

y =
√

SNRx+ z ,

wherez ∈ CN (0, 1) and the input satisfies an average power constraint

1

N

N
∑

k=1

E[x2k] ≤ 1 .

The capacity is equal to
C(SNR) = log(1 + SNR) .

In an attempt to capture the rough behavior of the capacity, one may calculate the limit

lim
SNR→∞

C(SNR)

logSNR
= 1 . (1)

The limit in (1), the so-called degrees of freedom of the channel, measures how the capacity scales
with SNR. The degrees of freedom is thus a rough measure of capacity, with unit equal to a single
AWGN channel with appropriate SNR.

We now attempt a similar understanding for the MAC. The channel output is

y = h1x1 + h2x2 + z1

whereh1, h2 ∈ C, zi ∼ CN (0, 1), and each input satisfies an average power constraint

1

N

N
∑

k=1

E[x2i,k] ≤ Pi , i = 1, 2 .

The channel is parameterized by the signal-to-noise ratiosSNR1 = P1|h1|2 andSNR2 = P2|h2|2,
and we assume without loss of generality thatSNR1 ≥ SNR2. The capacity region of the MAC is
(see Figure 3):

R1 ≤ log(1 + SNR1)

R2 ≤ log(1 + SNR2)

R1 +R2 ≤ log(1 + SNR1 + SNR2) .

(2)
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Figure 2: The classical degrees of freedom region for the MAC.

Seeking simplification, a reasonable strategy is to attemptto compute a limit similar to (1).
However, there is not a clear choice of limit: the point-to-point channel had only one parameter and
thus no ambiguity arose, but in the MAC there are two parameters SNR1 andSNR2 and therefore
many ways of taking limits. LetC(h1, h2, P ) denote the capacity region of the MAC (2) with
channel gainsh1, h2 and power constraintP for both users. One standard way of taking the limit of
the region is to let the power constraintP tend to infinity, scaling bylog P :

lim
P→∞

C(h1, h2, P )

log P
.

Calculating the limit, one finds that the resulting region (see Figure 2)

d1 ≤ 1

d2 ≤ 1

d1 + d2 ≤ 1

(3)

is altogether independent of the channel gains. More troubling, the limiting region (3) is misleading
from an operational viewpoint. The region seems to suggest that for high transmit powers, the
optimal scheme is time-sharing between the two rate points in which only one user transmits at a
time. But this is far from the truth, as a corner point of the capacity region has an arbitrarily greater
sum-rate as channel parameters are varied, for each fixed power constraint. This limit, therefore,
does not reveal any dynamic range between users, a quality that is relevant at finite SNR.

A closer look at the capacity region itself leads to a different limit. Notice that the capacity
region can be approximated to within one bit per user as (see Figure 3)

R1 ≤ log(1 + SNR1) ≈ logSNR1

R2 ≤ log(1 + SNR2) ≈ logSNR2

R1 +R2 ≤ log(1 + SNR1 + SNR2) ≈ logSNR1 .

(4)

In order to roughly preserve the shape of the capacity regionin the limit, equation (4) suggests to
fix the relationship between the two individual rate constraints, i.e.

logSNR2 = α logSNR1 .

In other words, the ratio of SNRs is fixed in the dB scale. This is precisely the generalized degrees
of freedom limit,

D(α) := lim
SNR→∞

C(SNR,SNRα)

log(SNR)
,
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Figure 3: The solid line shows the MAC capacity region. The dashed line shows the approximate
region as given in (4), and is within one bit per user of the capacity region.

d2

d1

α

1

Figure 4: The MAC generalized degrees of freedom region. Theregion is exactly the same as the
approximate region in Figure 3, normalized bylogSNR1.

whereC(SNR1,SNR2) denotes the capacity region of the MAC with signal-to-noiseratiosSNR1,SNR2.
The resulting region (Figure 4) is

d1 ≤ 1

d2 ≤ α

d1 + d2 ≤ 1 .

(5)

Qualitatively, the generalized degrees of freedom limit preserves the dynamic range feature of
the finite-SNR channel. However, a more precise statement istrue as well: because the approxima-
tion to the region (4) is to within one bit, independent of thechannel gains, it follows that the degrees
of freedom region itself, when scaled bylogSNR1, is within one bit of the true region. Thus, vary-
ing α, the limiting regions (5)uniformly coverthe entire collection of finite signal-to-noise ratio
channels. In other words, to find the approximate capacity ofany MAC with (finite) signal-to-noise
ratiosSNR1,SNR2, one simply needs to compute the generalized degrees of freedom limit for the
valueα = logSNR2

logSNR1
.

In the MAC, we observed that the generalized degrees of freedom limit correctly expresses the
finite-SNR behavior. We now reflect on what properties, more abstractly, constitute a useful limit.
Visually, a limit corresponds to a choice of path,(SNR, f(SNR)) in the (SNR1,SNR2) plane
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SNR2

SNR1

f

Figure 5: An example limit path in the(SNR1,SNR2) plane.

SNR2

SNR1
∞

(s1, s2)
f D(f)

Figure 6: The figure illustrates the notion of a limit region uniformly approximating the capacity
region. Suppose the capacity, scaled bylogSNR1, is constant along the limit paths. The dashed
lines show several example limit paths. Then, to find the capacity region at any point(s1, s2) in the
(SNR1,SNR2) plane, one may simply follow the path (denoted byf ) to the infinite arc, resulting
in D(f).
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(Figure 5). Thus, a first requirement is to choose a functionf such that the limit exists:

lim
SNR→∞

C(SNR, f(SNR))

logSNR
= D(f) . (6)

Although many trajectories are possible, if the goal is a better understanding of the capacity
region forfinitepower-to-noise ratios, some limit paths are better than others. Suppose, for example,
that it was possible to choosef such that

C(SNR, f(SNR))

logSNR
= constant(f) (7)

for the entire rangeSNR > 0. In words, the scaled capacity in (7) is constant along the path f . In
this case, the problem of finding the limit (6) is precisely the same as that of finding the capacity
region for each point along the entire trajectory! Moreover, if after computing the limit one could
vary f so as to cover all points(SNR, INR), the problem of finding the capacity of the channel is
completely solved.

Figure 6 further explains this idea. We consider the scaled (by logSNR) capacity region. After
taking a limit, one has the scaled capacity region at each point on an arc of infinite radius. Now,
upon choosing an arbitrary point(s1, s2) in the(SNR1,SNR2) plane, a good limit should allow to
deduce, from the scaled capacities on the infinite-radius arc, the (approximate) scaled capacity at
(s1, s2). Hence the significance of (7), which allows to equate the scaled capacity at finite SNRs
with the limiting regions: if condition (7) is satisfied, onemay simply choose the pathf containing
the point(s1, s2), which gives

C(s1, s2) = C(s1, f(s1)) = log s1 · D(f) .

For the MAC, the set of trajectories defining the generalizeddegrees of freedom limit satisfies
(7) to within a universal constant, independent ofSNR. The generalized degrees of freedom of the
Gaussian MAC (5) is the limit (6) along the path

f(s) = sα .

The generalized degrees of freedom of the MAC is intimately connected to, and captured by, a cer-
tain deterministic channel model. In fact, the capacity region of the deterministic channel is, when
properly scaled,equalto the generalized degrees of freedom region. Equivalently, the deterministic
channel satisfies (7) exactly.

2.2 Deterministic Channel

In this section we introduce a deterministic channel model analogous to the Gaussian channel. This
channel was first introduced in [2]. We begin by describing the deterministic channel model for the
point-to-point AWGN channel, and then the two-user multiple-access channel. After understanding
these examples, we present the deterministic interferencechannel.

Consider first the model for the point-to-point channel (seeFigure 7). The real-valued channel
input is written in base 2; the signal—a vector of bits—is interpreted as occupying a succession of
levels:

x = 0.b1b2b3b4b5 . . . .

The most significant bit coincides with the highest level, the least significant bit with the lowest
level. The levels attempt to capture the notion ofsignal scale; a level corresponds to a unit of power
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b1

b4

b3

b2

b1

Tx Rx

noise

Figure 7: The deterministic model for the point-to-point Gaussian channel. Each bit of the input
occupies a signal level. Bits of lower significance are lost due to noise.

in the Gaussian channel, measured on the dB scale. Noise is modeled in the deterministic channel
by truncation. Bits of smaller order than the noise are lost.The channel may be written as

y = ⌊2nx⌋ ,

with the correspondencen = ⌊logSNR⌋.
The deterministic multiple-access channel is constructedsimilarly to the point-to-point channel

(Figure 8), withn1 andn2 bits received above the noise level from users1 and2, respectively. To
model the superposition of signals at the receiver, the bitsreceived on each level are addedmodulo
two. Addition modulo two, rather than normal integer addition,is chosen to make the model more
tractable. As a result, the levels do not interact with one another.

If the inputsxi(t) are written in binary, the channel output can be written as

y = ⌊2n1x1⌋ ⊕ ⌊2n2x2⌋ , (8)

where addition is performed on each bit (modulo two) and⌊ · ⌋ is the integer-part function. The
channel can be written in an alternative form, which we will not use in the present paper but leads to
a slightly different interpretation. The input and output arex1, x2, y ∈ F

q
2, whereq = max(n1, n2).

The signal from transmitteri is scaled by a nonnegative integer gain2ni (equivalently, the input
column vector is shifted up byni). The channel output is given by

y = S
q−n1x1 ⊕ S

q−n2x2, (9)

where summation and multiplication are inF2 andS is aq × q shift matrix,

S =















0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

.. .
...

0 · · · 0 1 0















. (10)

The capacity region of the deterministic MAC is

r1 ≤ n1

r2 ≤ n2

r1 + r2 ≤ max(n1, n2) .

(11)

Comparing with (4), we make the correspondence

n1 = ⌊logSNR1⌋, n2 = ⌊logSNR2⌋ .
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Tx1

Rx

Tx2

Figure 8: The deterministic model for the Gaussian multiple-access channel. Incoming bits on the
same level are added modulo two at the receiver.

Evidently, the capacity region of the deterministic MAC is constant when normalized byn1 and the
ratio α = n1

n2
is held fixed. Thus, the deterministic MAC satisfies (7) exactly when the gains are

integer-valued; the normalized capacity along any point inthe limit path is equal to the degrees of
freedom of the deterministic MAC, which is in turn equal to the degrees of freedom of the Gaussian
MAC.

3 Deterministic Interference Channel

In Section 2 we motivated the generalized degrees of freedomlimit and saw how it led to a simple
deterministic model. The generalized degrees of freedom, and the equivalent deterministic model,
was seen to uniformly approximate the MAC. With this successin explaining the MAC, a logical
next step is to apply the deterministic model to the Gaussianinterference channel.

The Gaussian interference channel is given by

y1 = h11x1 + h12x2 + z1

y2 = h21x1 + h22x2 + z2 ,

wherezi ∼ CN (0, 1) and the channel inputs satisfy an average power constraint

1

N

N
∑

k=1

E[x2i,k] ≤ Pi, i = 1, 2 .

The channel is parameterized by the power-to-noise ratiosSNR1 = |h11|2P1, SNR2 = |h22|2P2,
INR1 = |h21|2P1, INR2 = |h12|2P2.

We proceed with the deterministic interference channel model (Figure 9). Note that the model is
completely determined by the model for the MAC. There are twotransmitter-receiver pairs (links),
and as in the Gaussian case, each transmitter wants to communicate only with its corresponding
receiver. The signal from transmitterj, as observed at receiveri, is scaled by a nonnegative integer
gain2nij (equivalently, the input column vector is shifted up bynij). At each timet, the input and
output, respectively, at linki arexi(t), yi(t) ∈ F

q
2, whereq = maxij nij.

The channel output at receiveri is given by

yi(t) = S
q−ni1x1(t)⊕ S

q−ni2x2(t), (12)

9



Tx2 Rx2

Tx1 Rx1

1 2 1 2
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n12

n21

n22

Rx1 Rx2

Figure 9: At left is a deterministic interference channel. The more compact figure at right shows
only the signals as observed at the receivers.

where summation and multiplication are inF2 andS is defined in (10).
If the inputsxi are written in binary, the channel can equivalently be written as

y1 = ⌊2n11x1⌋ ⊕ ⌊2n12x2⌋
y2 = ⌊2n21x1⌋ ⊕ ⌊2n22x2⌋ ,

where addition is performed on each bit (modulo two) and⌊ · ⌋ is the integer-part function. We will
use the latter representation in this paper.

In the analysis of the deterministic interference channel,it will be helpful to consult a different
style of figure. The left-hand side of Figure 9 depicts a deterministic interference channel, and the
right-hand side shows only the perspective of each receiver. Each incoming signal is shown as a
column vector, with the highest element corresponding to the most significant bit and the portion
below the noise level truncated. The observed signal at eachreceiver is the modulo 2 sum of the
elements on each level. In the sequel, the dashed lines indicating the position of each entry of the
vector will be omitted.

Just as in the discussion of the MAC, the deterministic interference channeluniformly approxi-
matesthe Gaussian channel. In finding the capacity of the Gaussianinterference channel to within
a constant number of bits, it therefore suffices to find the capacity of the far simpler deterministic
channel.

Theorem 1. The capacity of the two-user Gaussian interference channelwith signal and interfer-
ence to noise ratiosSNR1,SNR2, INR1, INR2 is within 42 bits per user of the capacity of a deter-
ministic interference channel with gains2n11 = 2⌊logSNR1⌋, 2n12 = 2⌊log INR2⌋, 2n21 = 2⌊log INR1⌋,
and2n22 = 2⌊logSNR2⌋.

Proof. The capacity of the two-user Gaussian interference channelhas been characterized to within
one bit by Etkin, Tse, and Wang [8]; thus, we could prove the theorem by following the approach
used for the MAC in Section 2, comparing the capacity regionsof the deterministic and Gaussian
channels. We instead choose to prove the Theorem with no a priori knowledge of the result for the
Gaussian channel. This approach provides insight into the deep connection between the determin-
istic and Gaussian channels, and also gives an alternative derivation of the constant-bit characteri-
zation of [8] (but with a significantly larger gap). The proofis deferred to the appendix.

Theorem 1 gives as a corollary that the generalized degrees of freedom of the two-user Gaussian
interference channel is exactly equal to the scaled capacity of the corresponding deterministic chan-
nel. This explains why the degrees of freedom limit characterizes, up to a constant, the capacity of
the Gaussian channel.
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4 Structure of Optimal Strategy for Deterministic Channel

El Gamal and Costa’s characterization of the capacity region for a class of deterministic interference
channels [9] applies to this particular deterministic channel. Moreover, it is not difficult to determine
the optimal input distribution from their expression. But it is not immediately apparent why this
region is in fact optimal.

The goal of this section is to derive from the beginning, using only the most basic tools of infor-
mation theory, the (arguably) natural optimal achievable strategy. Although the resulting strategy
coincides with a specific Han and Kobayashi strategy, by proceeding in this way we hope to de-
mystify the structure of the achievable strategy. In particular, we will see how common and private
messages arise inevitably, quickly giving the capacity region of the channel. It is noteworthy that
no separate outer bounds are required. Thus, the intuitive appeal of this approach is bolstered by it
not requiring the side-information converse proofs of [8] and [9].

The natural decomposition of messages into common and private parts was motivated at an
intuitive level for the Gaussian interference channel in Sections 6 and 7 of [8]. In the setting of the
deterministic channel, the arguments of this section make those ideas precise.

The following standard definitions and notation will be used. Denote byM1 = {1, . . . ,M1}
andM2 = {1, . . . ,M2} the message sets of users 1 and 2. Let the encoding functionsfi : Mi →
Xi with fi(j) = xi(j) map the messagej generated at useri into the lengthN codewordxi(j). Let
the decoding functionsgi(yi) map the received signalyi to the messagej if yi ∈ Dij , whereDij is
the decoding set of messagej for useri. An (N,M1,M2, µ) code consists ofMi codewordsxi(j)
andMi decoding setsDij such that the average probability of decoding error satisfies

1

M1M2

∑

jk

P(D1j |x1(j), x2(k)) ≥ 1− µ ,

1

M1M2

∑

jk

P(D2k|x1(j), x2(k)) ≥ 1− µ .

A pair of nonnegative real numbers(r1, r2) is called anachievable ratefor the deterministic in-
terference channel if for anyǫ > 0, 0 < µ < 1, and for any sufficiently largeN , there exists an
(N,M1,M2, µ) code such that

1

N
logMi ≥ ri − ǫ .

The first lemma is a simple analogue of Shannon’s point-to-point channel coding theorem, stat-
ing that the mutual information between input and output determines the capacity region.

Lemma 1. The rate point(r1, r2) is achievable if and only if for everyǫ > 0 there exists a block
lengthn and a factorized joint distributionp(xN1 )p(xN2 ) with

r1 − ǫ ≤ 1

N
I(xN1 ; yN1 )

r2 − ǫ ≤ 1

N
I(xN2 ; yN2 ) .

(13)

Proof. Fix a block lengthN and joint distributionp(xN1 )p(xN2 ). Each useri = 1, 2 will use the
distribution overp(xNi ) as an inner code, usingk blocks of lengthN . The codebooks are constructed
using random coding, and the achievability of(r1, r2) follows by the random coding argument (with
joint typicality decoding) for the point-to-point discrete memoryless channel.

11
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Figure 10: The figure depicts the received signal at each receiver. Notice that the private signals (as
defined in Lemma 2),x1p, x2p, are not observed at the other receiver.

As in the point-to-point case, the converse is a straightforward application of Fano’s inequality:

nri = H(Wi) = H(Wi|yNi ) + I(Wi; y
N
i )

≤ 1 + P (N)
e nri + I(xNi ; yNi ), i = 1, 2 .

It is assumed thatP (N)
e → 0 asN → ∞. Dividing by N and takingN sufficiently large gives the

desired result.

The next two lemmas are the most important of this section; they show the optimality of sepa-
rating each message into a private and common message (the terms common and private are to be
justified later, and for now to be regarded simply as labels).

Lemma 2. Given any achievable rate point(r1, r2), this rate-point is achievable using a code with
the following decomposition.
1. The channel inputs,xN1 and xN2 , are separated into components consisting of common and
private information:

xN1 = (xN1p, x
N
1c), xN2 = (xN2p, x

N
2c) .

2. The message sets are separated into private and common messages, i.e.Mi = Mic × Mip

for usersi = 1, 2, with the common signalxNic = f c
i (mic) a function only of the common message

mic ∈ Mic and the private signalxNip = fp
i (mip,mic) a function of both the private and common

message(mip,mic) ∈ Mip ×Mic.
3. The common rate is less than the entropy of the common signal, that isrci <

1
N
H(xNic ).

Proof. Consider an achievable rate point(r1, r2). The proof follows by converting an arbitrary
achievable strategy to one that satisfies the desired properties. Fixǫ > 0, a block lengthN ′, and an
arbitrary distributionp(xN

′

1 )p(xN
′

2 ) such that (13) is satisfied withǫ/2. Write the input asxN
′

i =
(xN

′

ip , xN
′

ic ), wherexN
′

1p is the inputxN
′

1 restricted to the lowest(n11 − n21)
+ levels,xN

′

1c is the

restriction to the highestn21 levels, and similarly forxN
′

2c , x
N ′

2p (see Figure 10). Note that ifn21 ≥
n11 (n12 ≥ n22) then the private signalxN

′

1p (xN
′

2p ) is empty.
It must now be verified that transmitteri can separate the message setMi into the direct product

of two message setsMip ×Mic. The scheme uses a superposition code, as used for the degraded
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x2c

x2p Rx2

y2
z2

Figure 11: Lemma 2 shows that we may view the common signal andprivate signal of each user as
coming from two separate users, with the private user havingaccess to the signal from the common
user.

broadcast channel (see e.g. [7]), withxic serving as the cloud centers andxip as the clouds. To see
that this is possible, put fori = 1, 2,

rci =
1

N ′
I(xN

′

ic ; yN
′

i )− ǫ

4

rpi =
1

N ′
I(xN

′

ip ; yN
′

i |xN ′

1c )−
ǫ

4
.

(14)

Then from the chain rule we have

ric + rip =
1

N ′
I(xN

′

ic ; yN
′

i )− ǫ

4
+

1

N ′
I(xN

′

ip ; yN
′

i |xN ′

1c )−
ǫ

4

=
1

N ′
I(xN

′

i ; yN
′

i )− ǫ

2
≥ ri − ǫ .

For some sufficiently large super-block lengthk, generate fori = 1, 2, 2kN
′ric independent code-

words of lengthN ′k, xkN
′

ic (mic) according to
∏k

t=1 p(x
N ′

ic,t). The block-lengthN in the statement of

the lemma is given byN = N ′k. Now, for each codewordxkN
′

ic (mic), generate2kN
′rip codewords

of lengthN ′k, xkN
′

ip (mic,mip), according to the conditional distribution
∏k

t=1 p(x
N ′

ip,t|xN
′

ic,t(mic)).
Decoding is accomplished using joint typicality, and the probability of error may be taken as small
as desired by choosingk large. Sinceǫ was arbitrary, this proves the lemma.

The previous lemma shows that we may consider the deterministic interference channel as a
channel with four senders and two decoders, as in Figure 11. This interpretation motivates the next
lemma, which shows that each user is able to decode the commoninformation of the interfering
user. The lemma makes use of facts concerning the multiple access channel. For background on
the multiple access channel see e.g. [11, 7]. The lemma can essentially be deduced from the result
by Costa and El Gamal on discrete memoryless interference channels with strong interference [6].
The result itself is analogous to Sato’s result for the Gaussian interference channel in the strong
interference regime [12]; however, because Lemma 2 shows that the signal ought to be separated
into common and private components, the argument applies tothe entire parameter range.

By the MAC at receiver1 we mean the MAC formed by the two users transmitting signals
(x1p, x1c) andx2c at ratesrp1 + rc1 andrc2, respectively, with receiver1 required to reliably decode
both signals, and similarly for the MAC at receiver2.

13



Lemma 3. The region is exactly described by the compound MAC formed bythe MAC at each of the
two receivers, along with constraints on the private rate. Furthermore, the region has a single-letter
representation.

Proof. Suppose the rate-point(r1, r2) is achievable. By Lemma 2, we may assume that each user’s
common signal is a function only of the common message, and that

rc1 =
1

N
I(xN1c; y

N
1 )− ǫ ≤ 1

N
H(xN1c)− ǫ

rc2 =
1

N
I(xN2c; y

N
2 )− ǫ ≤ 1

N
H(xN2c)− ǫ .

(15)

Then each user, upon successfully decoding their own signaland subtracting it off, has a clear view
of the other user’s common signalxNic . But, since the common rate is smaller than the entropy of
the common signal (15), it is possible to recover the common messagemic with arbitrarily small
probability of error whenN is taken to be large enough; in other words, each user can reliably
decode the other user’s common message.

The joint distribution of the channel is

p(yN1 |xN1c, xN1p, xN2c)p(yN2 |xN2c, xN2p, xN1c)
p(xN1p|xN1c)p(xN1c)p(xN2p|xN2c)p(xN2c) .

(16)

The fact that each receiver can decode the common message of the other user implies, by Fano’s
inequality, that

1

N
H(m1c,m1p,m2c|yN1 ) → 0

and
1

N
H(m1c,m2p,m2c|yN2 ) → 0

asN → ∞.
Proceeding as in the converse argument for the MAC (see e.g. [7]), one can show that for any

joint distribution (16) the rate point(rc1, r
p
1 , r

c
2, r

p
2) satisfies a number of constraints. First, the rate

point (rc1 + rp1, r
c
2) must lie within the MAC at receiver 1 and the rate point(rc1, r

c
2 + rp2) must lie

within the MAC at receiver 2. Additionally, there are constraints on the private ratesrp1 , r
p
2 and the

ratesrp1+rc2 andrp2+rc1. More precisely, there exists a distributionp(x1p|x1c, q)p(x1c|q)p(x2p|x2c, q)p(x2c|q)p(q)
such that

r1 + rc2 = rc1 + rp1 + rc2 ≤ I(x1c, x1p, x2c; y1|Q)

r1 = rc1 + rp1 ≤ I(x1c, x1p; y1|x2c, Q)

rc2 ≤ I(x2c; y1|x1c, x1p, Q)

rp1 + rc2 ≤ I(x1p, x2c; y1|x1c, Q)

rp1 ≤ I(x1p; y1|x2c, x1c, Q)

rc1 + r2 = rc1 + rp2 + rc2 ≤ I(x2c, x2p, x1c; y2|Q)

r2 = rc2 + rp2 ≤ I(x2p, x2c; y2|x1c, Q)

rc1 ≤ I(x1c; y2|x2c, x2p, Q)

rp2 + rc1 ≤ I(x2p, x1c; y2|x2c, Q)

rp2 ≤ I(x2p; y2|x1c, x2c, Q) .

(17)

Conversely, if the rate tuple(rc1 + rp1 , r
c
2) is within the MAC at receiver 1, and(rc1, r

c
2 + rp2) is

within the MAC at receiver 2, and the additional constraintsonrp1, r
p
2 are satisfied, then the rate point

14
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n11
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n21

n22

x1p

x2c
x1c

x2p

x1c
x2c

n11 − n21

n22 − n12

Figure 12: From the figure it is possible to understand the constraints (18) as areas of rectangles.

(rc1, r
p
1, r

c
2, r

p
2) is achievable using a superposition random code as in Lemma 2and joint typicality

decoding.

The next lemma makes the region in equation (17) explicit.

Lemma 4. Observe that the optimizing (simultaneously for each of theconstraints in(17)) input
distribution is uniform for each signal. This allows us to write the region as

rc1 + rp1 + rc2 ≤ n11 +min(n22, (n12 − n11)
+)

rc1 + rp1 ≤ n11

rc2 ≤ min(n12, n22)

rp1 + rc2 ≤ min(n22 + (n11 − n21)
+, n12)

rp1 ≤ n11 − n21

rc2 + rp2 + rc1 ≤ n22 +min(n11, (n21 − n22)
+)

rc2 + rp2 ≤ n22

rc1 ≤ min(n21, n11)

rp2 + rc1 ≤ min(n11 + (n22 − n12)
+, n21)

rp2 ≤ n22 − n12 .

(18)

Proof. Intuitively, the private signal should be uniform because it helps the intended receiver decode
and does not cause interference, and the common signal should be uniform because it helps both
receivers decode.

Fix a joint distribution and consider a rate point satisfying the constraints of the previous lemma.
From the equations of the previous lemma, it is easy to see that p(xip) should be uniform in any
optimal distribution, since this increases the mutual information terms wherexip appears. Similarly,
p(xic) should be uniform. This allows to evaluate the mutual information expressions in equation
(17), resulting in the stated region.

Remark 1. The constraints of Lemma 4 admit a simple interpretation in terms of the areas of the
relevant rectangles in Figure 12.

The constraints (18) determine the capacity region of the deterministic channel; using Fourier-
Motzkin elimination one can solve for the region in terms of constraints onr1 andr2. Alternatively,
note that the deterministic interference channel of this paper falls within the class of more general
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Figure 13: The sum-rate capacity of the deterministic interference channel, normalized byn. The
dotted line continuing downwards from the point(1/2, 1/2) is the rate achievable by treating inter-
ference as noise.

deterministic channels whose capacity is given in Theorem 1of [9]. Applying this theorem, the
deterministic channel capacity region is the set of nonnegative rates satisfying

ri ≤ nii, i = 1, 2

r1 + r2 ≤ (n11 − n12)
+ +max(n22, n12)

r1 + r2 ≤ (n22 − n21)
+ +max(n11, n21)

r1 + r2 ≤ max(n21, (n11 − n12)
+) + max(n12, (n22 − n21)

+)

2r1 + r2 ≤ max(n11, n21) + (n11 − n12)
+ +max(n12, (n22 − n21)

+)

r1 + 2r2 ≤ max(n22, n12) + (n22 − n21)
+ +max(n21, (n11 − n12)

+) .

5 Examples

It is instructive to consider a few examples of capacity-achieving schemes for the deterministic
channel. For simplicity, we restrict attention to the symmetric case, i.e.n := n11 = n22 and
n21 = n12 = nα, whereα := n12

n11
. Most of the achievable schemes presented admit simple

interpretations in the Gaussian channel. Figure 13 depictsthe sum-rate capacity of the symmetric
channel, indexed byα.

Consider first the caseα = 1/3. One option is to use the strategy described in Section 4,
making the entire signal private information (Figure 14). In the deterministic model the signal does
not appear at the unintended receiver. This corresponds to transmitting below the noise level in the
Gaussian channel, in which case the additional noise from the interference causes a loss of only one
bit for each user. A second option is for each transmitter to use the full available power, transmitting
on the highest2/3 of the levels (Figure 15). The lower1/3 of the levels are unusable on the direct
link due to the presence of interference. This strategy corresponds to treating interference as noise
in the Gaussian channel. The valueα = 1/3 is representative of the entire rangeα ∈ [0, 12 ], where
both of these strategies are optimal.

For α = 2/3 there are again a few options. One possibility is to use the capacity achieving
scheme of Section 4, with the lowest1/3 of the levels consisting of private information, and the
remaining2/3 of the levels as common information (see Figure 16). The rateachieved isr1 = r2 =
2n/3 bits per channel use per user. Alternatively, imagine continuously varyingα from the value
α = 1/3 toα = 2/3, while using the scheme of treating interference as noise (Figure 15). The used
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Rx1 Rx2

Figure 14:α = 1/3. Two-thirds of the signal is private information, with no common information.
This scheme corresponds to transmitting below the noise level.

1 2 1 2

n

n
3

n
3

n

x1p

x1c

x2c x1c

x2p

x2c

Rx1 Rx2

Figure 15:α = 1/3. The top third of the levels are common information, and the middle third are
private information. This scheme corresponds to treating interference as noise.

power range will shrink to the range between2n/3 andn. However, a gap appears, and the range of
levels between1 andn/3 can be used as well (Figure 17). The gap in the corresponding Gaussian
setting is because of the structure of the interference: theinterference contains information, and can
be decoded. After decoding the interference it can be subtracted off, and additional information
can be transmitted. This phenomenon is the reason why treating interference as noise is no longer
optimal beyondα = 1/2.

The caseα = 3L/4 is different than the previous examples: here coding is necessary. The
random code of Section 4 has the lowest1/4 of the levels containing private information and the
highest3/4 of the levels contain common information (Figure 18). The symmetric rate achieved
is 5n/8 bits per channel use per user. As in the previous examples, using only one time-slot is
possible, but forα > 2/3, using one time-slot requires coding overlevels. The scheme in [3],
shown in Figure 19, achieves the rate point(3n/4, n/2) by repeating a symbol on two different
levels; the symmetric point(5n/8, 5n/8) is achieved by time-sharing.

Appendix: Proof of Deterministic Approximation Theorem

In this appendix we prove Theorem 1, which states that the capacity region of the 2-user Gaus-
sian interference channel is within42 bits per user of the deterministic interference channel. More
specifically, for each choice of channel parameters in the Gaussian channel, the corresponding de-
terministic channel has approximately the same capacity region. The focus is not on optimizing the
size of the gap; several of the estimates are weakened in favor of a simpler argument. Rather, the
significance is that the gap isconstant, independent of the channel gains. Moreover, the proof uses
no knowledge of the Gaussian channel. Thus, the approach used here, along with the deterministic
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Figure 16: α = 2/3. One-third of the signal is private information, and two-thirds is common
information, but the common rate equals the private rate:rp1 = rp2 = rc1 = rc2 = n/3.

1 2 1 2

n
2n
3

2n
3

n

x1p

x1c

x2c x1c

x2p

x2c

Rx1 Rx2

Figure 17:α = 2/3. As α is increased from1/3 to 2/3, a gap appears in the bottom 1/3 of the
levels. This gap can be used to transmit private information.
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Figure 18:α = 3/4. This scheme is essentially the same as in Figure 16. One-quarter of the signal is
private information and three-quarters is common information. The common rate isrc1 = rc2 = 3n/8
and the private rate isrp1 = rp2 = n/4.
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Figure 19:α = 3/4. Coding over levels is performed by repeating the vector of bits b1.18



capacity region from Section 4, gives an alternative derivation of the constant gap capacity result of
Etkin, Tse, and Wang [8].

We first prove Theorem 2, which is the same as Theorem 1 but for thereal Gaussian interference
channel, where the inputs, channel gains, and noise are real-valued. The complex-valued case is
discussed afterwards. The main ingredients used in the proof of Theorem 1 for the complex-valued
channel are the same as those introduced in the proof of the real-valued channel.

Theorem 2. The capacity of thereal-valued2-user Gaussian interference channel with signal and
interference to noise ratiosSNR1,SNR2, INR1, INR2 is within18.6 bits per user of the capacity of
a deterministic interference channel with gains2n11 := 2⌊

1

2
logSNR1⌋, 2n12 := 2⌊

1

2
log INR2⌋, 2n21 :=

2⌊
1

2
log INR1⌋, and2n22 := 2⌊

1

2
logSNR2⌋.

The factor of12 in front of the logarithm is due to the channel being real-valued.
Recall that the real-valued Gaussian interference channelis given by

y1 = h11x1 + h12x2 + z1

y2 = h21x1 + h22x2 + z2
(19)

wherezi ∼ N (0, 1), hij ∈ R, and the input signalsx1, x2 satisfy an average power constraint

1

N

n
∑

k=1

E[x2i,k] ≤ Pi .

By scaling the channel gains, we may assume without loss of generality that the average power
constraints of the Gaussian channel are equal to 1, i.e.P1 = P2 = 1.

The corresponding deterministic channel, introduced in Section 3, is

y1 = ⌊2n11x1⌋ ⊕ ⌊2n12x2⌋
y2 = ⌊2n21x1⌋ ⊕ ⌊2n22x2⌋ ,

(20)

wherenij = ⌊log |hij |⌋ andxi, i = 1, 2 are real numbers,0 ≤ xi ≤ 1. Addition is modulo 2 in
each position in the binary expansion.

The proof of Theorem 2 requires two directions, namely

CGaussian ⊆ Cdet + constant

and
Cdet ⊆ CGaussian + constant.

Each direction will be completed in a sequence of steps, eachstep comparing the capacity region
of a new channel to that of the previous step. The first and lastchannels will be the Gaussian and
deterministic channels under our consideration.

A1. Cdet ⊆ CGaussian + (5, 5)

We now show that the capacity achieving input of the deterministic channel (20) can be transferred
over to the Gaussian channel (19) with a loss of at most 5 bits per user. This specifies an achievable
region for the Gaussian channel. As mentioned above, the argument is based on comparing mutual
information in a sequence of steps.

The first step shows that the capacity region does not decrease if the modulo 2 addition of
the deterministic channel is replaced by real addition; Step 2 shows that the capacity region of
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the deterministic channel (20) is the same if the gain2nij is replaced by a real-valuedhij with
nij = ⌊log |hij |⌋; Step 3 adds Gaussian noise; Step 4 removes the truncation ofreceived signals at
the noise level.

The following easy lemma bounds the effect of a change to the channel output when the original
output can be restored using a small amount of side information, and will be used several times.

Lemma 5. Fix a block-lengthN . If the signalyN is determined by the pair̃yN , sN , then

I(xN ; ỹN ) ≥ I(xN ; yN )−H(sN ) .

Proof. The assumption thatyN is determined bỹyN , sN implies that

H(xN |ỹN , sN ) ≤ H(xN |yN ) .

This inequality together with the chain rule gives

I(xN ; ỹN ) = H(xN )−H(xN |ỹN )

≥ H(xN )−H(xN , sN |ỹN )

≥ H(xN )−H(sN )−H(xN |ỹN , sN )

≥ H(xN )−H(sN )−H(xN |yN )

= I(xN ; yN )−H(sN ) .

This proves the lemma.

Step 1: Real addition (lose zero bits). For simplicity, only the outputy1 is discussed. The corre-
sponding statements fory2 follow similarly.

We may write the inputs as

xi =

∞
∑

k=1

xi(k)2
−k, xi(k) ∈ {0, 1} . (21)

In the deterministic channel (20), we have

⌊2n11

∞
∑

k=1

x1(k)2
−k⌋ =

n11
∑

k=1

2n11−kx1(k)

and

⌊2n12

∞
∑

k=1

x2(k)2
−k⌋ =

n12
∑

k=1

2n12−kx2(k) .

Thus, the common signal from user 2 is

x2c = {x2(1), . . . , x2(n12)} .

Step 1 replaces the modulo 2 addition of the deterministic channel with real addition. Using the
two previous equations, we define (the output at receiver 1 of) Channel 1 as

y1 =

n11
∑

k=1

2n11−kx1(k) +

n12
∑

k=1

2n12−kx2(k) .
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We claim that the capacity region of this new channel contains that of the original deterministic
channel. Any rate point within the region (17) given by Lemma3 is achievable for Channel 1:

rc1 + rp1 + rc2 ≤ I(x1c, x1p, x2c; y1) = H(y1)

rc1 + rp1 ≤ I(x1c, x1p; y1|x2c) = H(x1)

rc2 ≤ I(x2c; y1|x1c, x1p) = H(x2c)

rp1 + rc2 ≤ I(x1p, x2c; y1|x1c) = H(y1|x1c)
rp1 ≤ I(x1p; y1|x2c, x1c) = H(x1p)

rc1 + rp2 + rc2 ≤ I(x2c, x2p, x1c; y2) = H(y2)

rc2 + rp2 ≤ I(x2p, x2c; y2|x1c) = H(x2)

rc1 ≤ I(x1c; y2|x2c, x2p) = H(x1c)

rp2 + rc1 ≤ I(x2p, x1c; y2|x2c) = H(y2|x2c)
rp2 ≤ I(x2p; y2|x1c, x2c) = H(x2p) .

(22)

Thus, it suffices to show that each of the mutual information constraints is made looser when using
the (optimal) uniform input distribution of the deterministic channel. Note that only the first, fourth,
sixth, and ninth constraints are affected by the change to real addition.

Now, in the deterministic channel (20), the outputy1 is uniformly distributed; alternatively,
each bit in the binary expansion ofy1 that is random is independent of the other bits and has equal
probability of being zero or one. The distribution of these bits in the binary expansion ofy1 does
not change in passing to real addition, because each bit is the sum modulo two of a carry bit and a
fresh random bit. It follows that the entropyH(y1) does not decrease. The entropiesH(y1|x1c) and
H(y2|x2c) behave similarly.

Step 2: Real-valued gains (lose log 3 bits). In this step we compare the achievable rate under a
uniform input distribution of a channel with real-valued gains to the achievable rate in Step 1, losing
at mostlog 3 bits per user. The result is an achievable region that is within log 3 bits per user of the
capacity region of the original deterministic channel.

To allow real-valued gains, we first allow negative cross gains. It is sufficient to consider only
the case of cross gains, rather than any of the gains, being negative, since each transmitter can
negate its input to ensure a positive signal on the direct link. Viewing each input as coming from
a contiguous subset of integers in the real line, it is clear that the entropy constraints in (22) are
invariant to negating a cross gain when the distribution is uniform.

Next, replace2nij with the gainhij having binary expansion

hij = sign(hij)

∞
∑

k=−nij

2−khij(k) .

Accordingly, Channel 2 is given by

y1 =









( ∞
∑

k=−n11

2−kh11(k)

)( n11
∑

k=1

2−kx1(k)

)









+sign(h12)









( ∞
∑

k=−n12

2−kh12(k)

)( n22
∑

k=1

2−kx2(k)

)







 ,

(23)

and analogously fory2. We continue by comparing the mutual information constraints in (22),
noting that any rate in the intersection of the MACs at each receiver is achievable by coding for
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Figure 20: Making the gains real-valued creates gaps in the support without changing its cardinality.
In this examplen = 3 andh = 1.4(23) = 11.2.

the MACs. To begin, we may view the first term in (23) as starting with the random variable
2n11

∑n11

k=1 2
−kx1(k), which is uniformly distributed on{0, . . . , 2n11 − 1}, scaled by h11

2n11
≥ 1,

and retaining the integer part⌊ · ⌋. Upon scaling, any two points in the support are at least distance
1 apart, so the integer part is at least distance 1 as well. Thus, the first term in (23) is uniformly
distributed with support a subset of the integers having cardinality 2n11 ; the support now has gaps,
and is no longer the set of integers between0 and2n11 − 1 (see Figure 20).

The second term in (23) is similar, but the the argument must be modified to account for the part
of the signal below the noise level. We have









( ∞
∑

k=−n12

2−kh12(k)

)( ∞
∑

k=1

2−kx2(k)

)









=







|h12|
n12
∑

k=1

2−kx2(k) + |h12|
∞
∑

k=n12+1

2−kx2(k)









:= ⌊A1 +A2⌋ (24)

The argument for the first term in (23) applies to the sumA1 in (24), giving thatA1 is distributed
uniformly with spacingh12/2n12 ≥ 1 and support set having cardinality2n12 . Now,A2 is bounded
as0 ≤ A2 ≤ 2, since|h12| ≤ 2n12+1. Hence, defining

s = ⌊A1 +A2⌋ − ⌊A1⌋ ,

we see thats can take on values0, 1, 2, giving

H(s) ≤ log 3 . (25)

NeglectingA2, let the modified output be

ỹ1 =









( ∞
∑

k=−n11

2−kh11(k)

)( n11
∑

k=1

2−kx1(k)

)









+sign(h12)









( ∞
∑

k=−n12

2kh12(k)

)( n12
∑

k=1

2−kx2(k)

)







 .

(26)
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Sincey1 can be recovered by the pairỹ1, s, Lemma 5 shows that

I(x1; ỹ1) ≥ I(x1; y1)− log 3 .

The argument is completed by using the fact that

H

(⌊

|h11|
n11
∑

k=1

2−kx1(k)

⌋

+

⌊

|h12|
n12
∑

k=1

2−kx2(k)

⌋)

≥ H

(

n11
∑

k=1

2n11−kx1(k) +

n12
∑

k=1

2n12−kx2(k)

)

.

This is seen to be true by directly comparing the distributions of the two random variables within
the entropies. Counting the number of pairs of integers thatsum to each integer, we see that the
distribution on the left-hand side can be achieved by shifting probability mass from more likely to
less likely values.

The argument applies to all the mutual information constraints of (22). Step 2 incurs a loss of
log 3 ≤ 1.6 bits.

Step 3: Additive Gaussian noise (lose 1.5 bits). Let Channel 3 be obtained from Channel 2 by
adding Gaussian noisezi ∼ N (0, 1) to outputi, where the outputs of Channel 2 are given by (26)

y1 =

⌊

|h11|
n11
∑

k=1

2−kx2(k)

⌋

+ sign(h12)

⌊

|h12|
n12
∑

k=1

2−kx2(k)

⌋

(27)

and similarly fory2.
Define the random variables = [z1], where[ · ] is the nearest integer function. Observe that it is

possible to recoveryN1 from the pair(yN1 + zN1 , sN ). Lemma 5 gives that

1

N
I(xN1 ; yN1 + zN1 ) ≥ 1

N
I(xN1 ; yN1 )−H(s) .

It remains only to derive a bound on the entropy ofs,

H(s) = −
∞
∑

k=−∞

P(s = k) log P(s = k)

= −2
∞
∑

k=1

P(s = k) log P(s = k)

− P(s = 0) log P (s = 0)

≤ 1.5 .

Step 4: Remove truncation at noise level (lose log 3 bits). Let Channel 4 be the Gaussian channel
(19)

y1 = h11x1 + h12x2 + z1

y2 = h21x1 + h22x2 + z2 .

The difference between Channels 3 and 4 is that signals received below the noise level are no longer
truncated at the receivers. The output at receiver 1 is

y1 = h11x1 + h12x2 + z1 = ỹ1 + x̂1 + sign(h12)x̂2,
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whereỹ1 is the output at receiver1 in Channel 3 (27) and̂x1, x̂2 are the magnitudes of the signals
received below the noise level at receiver 1.

The approach is similar to Step 3. Define the random variable

s = [x̂1 + sign(h12)x̂2] (28)

where[ · ] is the nearest integer function. Each ofx̂1, x̂2 is bounded between 0 and 1 (since they are
below the noise level), and so the random variables can take at most 3 values. Hence the entropy
of s is bounded as

H(s) ≤ log 3 .

It is possible to recover̃yN1 from the pair(yN1 , sN ). Therefore Lemma 5 gives

1

N
I(xN ; yN1 ) ≥ 1

N
I(xN1 ; ỹN1 )− log 3 .

This completes the first direction of the proof.

Remark 2. The above proof used the form of the capacity achieving inputdistribution. Thus, it
does not follow that any capacity achieving distribution for the deterministic channel can simply be
used with an outer code in the Gaussian channel.

Remark 3. The final achievable strategy uses only positive, peak-power constrained inputs to the
channel, which is obviously suboptimal.

A1. CGaussian ⊆ Cdet + (13.6, 13.6)

Here we begin with the Gaussian channel and finish with the deterministic channel. Most of the steps
are precisely the opposite as in the previous section. Thereis an important difference, however: the
inputs to the Gaussian channel satisfy the less stringent average power constraint whereas the inputs
to the deterministic channel must satisfy a peak power constraint. An extra step in the argument
accounts for this difference.

Step 1 removes the part of the input signals exceeding the peak power constraint; Step 2 trun-
cates the signals at the noise level and removes the noise; Step2′ derives a single-letter expression
for the capacity region of the channel in Step 2 and shows the near-optimality of uniformly dis-
tributed inputs; Step 3 restricts the inputs and channel gains to positive numbers; Step 4 makes
addition modulo 2; Step 5 quantizes the channel gains to the form 2nij .

Denote by Channel 0 the original Gaussian interference channel,

y1 = h11x1 + h12x2 + z1

y2 = h21x2 + h22x2 + z2 .
(29)

Recall that we assumed a unit average power constraint

1

N

n
∑

k=1

E[x2i,k] ≤ 1 . (30)

Step 1: Peak power constraint instead of average power constraint (lose 4 bits). The input-
output relationship of Channel 1 is the same as Channel 0 (29):

yi = hi1x1 + hi2x2 + zi . (31)
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The difference is that the inputs to Channel 1 satisfy a peak power constraint instead of an average
power constraint:

xi ≤ 1 .

Writing the binary expansion ofxi,

xi =
∞
∑

k=−∞

xi(k)2
−k ,

we see that in Channel 1,xi(k) ≡ 0 for k ≤ 0.
Let xi be an input to Channel 0, satisfying the average power constraint (30). Let the part of the

input that exceeds the peak power constraint be

x̂i = ⌊xi⌋ = sign(xi)

0
∑

k=−∞

xi(k)2
−k ,

and let

x̄i = xi − x̂i = sign(xi)

∞
∑

k=1

xi(k)2
−k

be the remaining signal. The signalx̄i is defined so as to satisfy the peak power constraint. Finally,
denote bȳyi the output at receiveri when the inputs are truncated to the peak power constraint,

ȳi = hi1x̄1 + hi2x̄2 + zi ,

and let
ŷi = yi − ȳi = hi1x̂1 + hi2x̂2 (32)

be the output due to the inputŝx1, x̂2.
To complete Step 1, we show that most of the mutual information I(xNi ; yNi ) is preserved when

the inputs are truncated to the peak power constraint. First, observe that sincex1 andx2 are inde-
pendent,̂xNi , x̄Ni , ȳNi form a Markov chain,̂xNi − x̄Ni − ȳNi . It follows that

I(x̂Ni ; ȳNi |x̄Ni ) = 0 .

Hence, from the data processing inequality and the mutual information chain rule we have

I(xNi ; yNi )

≤ I(x̄Ni , x̂Ni ; ȳNi , ŷNi )

= I(x̄Ni , x̂Ni ; ȳNi ) + I(x̄Ni , x̂Ni ; ŷNi |ȳNi )

≤ I(x̄Ni ; ȳNi ) + I(x̂Ni ; ȳNi |x̄Ni ) +H(ŷNi )

= I(x̄Ni ; ȳNi ) +H(ŷNi )

≤ I(x̄Ni ; ȳNi ) +H(x̂N1 ) +H(x̂N2 ) . (33)

The last inequality is a consequence of the fact thatx̂1, x̂2 determineŷi. It remains only to bound
each of the entropy terms in (33).

Lemma 6. The following bound on the entropy holds

H(x̂N1 ) ≤ 2N . (34)
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Proof. The proof is based on the requirement that the part ofxNi exceeding the peak power con-
straint, x̂Ni , itself must satisfy the average power constraint. Note that the entropyH(x̂Ni ) does
not depend on the channel gains at all. The part of the signal satisfying the peak power constraint,
x̄i, absorbs all the benefit from increasing the signal to noise ratio, as less significant bits from̄xi
appear above the noise level at the receiver.

Two approaches are possible. The simpler approach is to observe that any scheme in the point-
to-point deterministic channel with average power constraint can be used without modification in the
Gaussian channel with power constraintP = 1, with a loss of at most1.5 bits due to noise, by the
argument in Step 3 of the previous subsection. The result then follows from the fact that the capacity
of the point-to-point Gaussian channel with average power constraintP = 1 is 1

2 log(1 + 1) = 1
2 .

Thus,
H(x̂Ni ) ≤ 2N .

Alternatively, one may explicitly bound the number of possible values for̂xNi using a combi-
natorial argument. The first step is to notice that for each transmission at power2m, it must hold
that 2m − 1 other time slots are silent. By writing a recursion inm andN on the number of
possible signals of lengthN with peak power between2m and2m−1, it is possible to bound the
cardinality of the support of̂xni by poly(N)cN for a constantc and for allN , which shows that
lim sup 1

N
H(x̂Ni ) ≤ c.

Plugging in the estimate (34) from the Lemma into (33) shows that at most 4 bits per user are
lost in passing to a peak power constraint.

Step 2: Truncate signals at noise level, remove fractional part of channel gains, and remove
noise (lose 2.6 bits). The truncation at the noise level is not performed by solely taking the inte-
ger part of a real-valued signal; instead, thebinary expansionof each incoming signal is truncated
appropriately, and only then do we take the integer part of each signal. In the final deterministic
channel the two procedures are equivalent, so we choose thismore convenient option with regards
to the proof. The key benefit of this choice of truncation is the resulting clear distinction between
common and private information, with the unintended receiver able to decode the common infor-
mation. The derivation of the single-letter expression forthe deterministic channel in Section 4 can
then be applied without modification in Step2′.

We write the peak-power constrained channel inputs as

xi = sign(xi)
∞
∑

k=1

xi(k)2
−k, xi(k) ∈ {0, 1} . (35)

If ⌊log h⌋ = n, then we deem as being above the noise level the component ofhx arising from
then most significant bits in the binary expansion ofx:

h sign(x)
n
∑

k=1

2−kxi(k) . (36)

The magnitude of the part below the noise level can be boundedas

|h|
∞
∑

k=n+1

2−kxi(k) ≤ 2n+12−n = 2 . (37)

Channel 2 is defined by retaining only the part of the inputs above the noise level as described in
(36), taking the integer part of the channel gains, further taking the integer part of each observed
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signal, and removing the noise. More specifically, receiveri observes the signal

ȳi =

⌊

⌊hi1⌋
ni1
∑

k=1

2−kx1(k)

⌋

+

⌊

⌊hi2⌋
ni2
∑

k=1

2−kx2(k)

⌋

. (38)

Now, denote byεi the difference in the outputs relative to Channel 1, ignoring the additive
Gaussian noise:

εi : = yi − ȳi

=

{

hi1 sign(x1)

∞
∑

k=ni1+1

2−kx1(k)

+ (hi1 − ⌊hi1⌋) sign(x1)
ni1
∑

k=1

2−kx1(k)

+ frac

(

sign(x1)⌊hi1⌋
ni1
∑

k=1

2−kx1(k)

)

}

+

{

hi2 sign(x2)
∞
∑

k=ni2+1

2−kx2(k)

+ (hi2 − ⌊hi2⌋) sign(x2)
ni2
∑

k=1

2−kx2(k)

+ frac

(

sign(x2)⌊hi1⌋
ni2
∑

k=1

2−kx2(k)

)

}

+ zi

:= x̂1 + x̂2 + zi ,

wherefrac( · ) denotes the fractional part. Combining the estimate (37) and the fact that|(hij −
⌊hij⌋)xj | ≤ 1, we have

|x̂i| ≤ 4, i = 1, 2 . (39)

We will later use the observation thatx̂1, x̂2 7→ εi forms a Gaussian MAC, and from (39) the
signal-to-noise ratio is at most 16 for each user.

We show next that
1

N
I(xNi ; ȳNi ) + 5.1 ≥ 1

N
I(xNi ; yNi ) ,

whereyi is the output of Channel 1 defined in (31). Note thatȳi is independent ofzi. The data
processing inequality and the chain rule allow to separate the contribution to the mutual information
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I(xNi ; yNi ) from each termεNi , ȳNi :

I(xNi ; yNi ) = I(xNi ; ȳNi + εNi )

≤ I(xNi ; ȳni , ε
N
i )

= I(xNi ; ȳNi ) + I(xNi ; εNi |ȳNi )

≤ I(xNi ; ȳNi ) + I(xN1 , xN2 ; εNi |ȳNi )

= I(xNi ; ȳNi ) + h(εNi |ȳNi )− h(εNi |ȳNi , xN1 , xN2 )

≤ I(xNi ; ȳNi ) + h(εNi )− h(εNi |ȳNi , xN1 , xN2 )

= I(xNi ; ȳNi ) + h(εNi )− h(zNi )

= I(xNi ; ȳNi ) + I(x̂N1 , x̂N2 ; εNi )

≤ I(xNi ; ȳNi ) + 2.6N ,

where the last inequality holds for sufficiently largeN . In the last step we used the fact that
x̂1, x̂2 7→ εi forms a Gaussian MAC with signal-to-noise ratio at most 16 for each transmitter,
so 1

N
I(x̂1, x̂2; εi) ≤ 1

2 log(1 + 2(16)) + ǫN (with ǫN → 0). This completes Step 2.

Step 2′: Single letter expression and near optimality of uniform input distribution (lose 2 bits).
We now show that the derivation of Section 4, giving a single letter expression for the capacity region
of the deterministic channel (17), applies to the channel ofStep 2. Following this, we will prove that
using uniformly distributed inputs incurs a loss of at most two bits per user relative to the optimal
input distribution.

Define

x2c := sign(x2)

n12
∑

k=1

2−kx2(k) , (40)

and similarly forx1c. This is the part of the input that causes interference at theunintended receiver.
Consider the signal that remains at receiver 1 after successfully decoding and subtracting offx1.
From (38), the remaining signal is

f(x2c) := ⌊⌊h12⌋x2c⌋ =
⌊

sign(x2)⌊h12⌋
n12
∑

k=1

2−kx2(k)

⌋

. (41)

The statement thatf : supp(x2c) → Z is injective is equivalent to the claim that receiver 1 can
recoverx2c from f(x2c). Now, viewed as a real number, the support ofx2c has a spacing of2−n12 ,
and since

⌊h12⌋ ≥ 2n12 , (42)

the spacing of the support of⌊h12⌋x2c is greater than 1. Hence the integer part⌊ · ⌋ sends two
different values of⌊h12⌋x2c to two different integers, i.e.f is injective. An analogous argument
shows that receiver 2 can recoverx1c.

Since each receiver can recover the common portion of the interfering signal (40), the arguments
of Lemmas 2 and 3 in Section 4 apply without modification to thechannel under scrutiny. Thus, the
region is given by (22).

We now show that at most one bit per user is lost relative to thecapacity region when each of
the signalsx1c, x1p, x2c, x2p is uniformly distributed on its support. We first prove a comparable
result for random variables with support sets that are arithmetic progressions of integers.
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Lemma 7. LetA,B ∈ Z be two arithmetic progressions,

A = {0, a, 2a, . . . , (MA − 1)a} = [0,MA − 1] · a
B = {0, b, 2b, . . . , (MB − 1)b} = [0,MB − 1] · b .

If X andY are independent and distributed uniformly onA andB, respectively, then

H(X + Y ) + 1 ≥ H(X∗ + Y ∗) (43)

for any random variablesX∗, Y ∗ with support setsA,B.

Proof. Scaling the setsA andB by the same number does not change the relevant entropies, sowe
may assume without loss of generality thatgcd(a, b) = 1. We first estimate the cardinality of the
sumsetA+B = {a+ b : a ∈ A, b ∈ B}. Note that

A+B ⊆ {0, . . . , a(MA − 1) + b(MB − 1)} ,

from which it follows that
|A+B| ≤ aMA + bMB . (44)

Sincesupp(X∗ + Y ∗) ⊆ A+B, we therefore have the estimate

H(X∗ + Y ∗) ≤ log(aMA + bMB) . (45)

Next we calculate the maximum probability mass in the distribution ofX + Y ,

p̄ := max
x∈A+B

P(X + Y = x) . (46)

For eachk with 0 ≤ k ≤ MB − 1 let

Sk := A+ kb = [0,MA − 1] · a+ kb .

Fork outside the interval[0,MB −1], Sk is defined to be empty. A typical element ofSk ∩Sk′ with
k′ ≤ k can be written as

qa+ kb = q′a+ k′b,

for some0 ≤ q ≤ MA − 1 and0 ≤ q′ ≤ MB − 1. Rearranging, we have

(k − k′)b = (q′ − q)a ,

which by the assumptiongcd(a, b) = 1 implies

a|(k − k′) .

Thus
Sk ∩ Sk′ 6= ∅ implies k ≡ k′ mod a . (47)

Letting Ã andB̃ be shifts ofA andB so that a median point lies at the origin, the maximum in (46)
occurs atx = 0, and it can be seen from the condition (47) that

|{x, y : x+ y = 0, x ∈ A, y ∈ B}| ≤ min

(

MA

b
,
MB

a

)

.
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Since for eachx ∈ A, y ∈ B, P (X = x) = 1/MA andP (Y = y) = 1/MB , andX andY are
independent,

− log p̄ = − log
∑

x∈A,y∈B
x+y=0

P (X = x, Y = y)

= − log
|{x, y : x+ y = 0, x ∈ A, y ∈ B}|

MAMB

≥ log
MAMB

min(MA

b
, MB

a
)

= max(log(aMA), log(bMB)) .

Hence, from equation (45),

H(X + Y ) = −
∑

x∈A+B

p(x) log p(x)

≥ −
∑

x∈A+B

p(x) log p̄

≥ max(log(aMA), log(bMB))

≥ log(aMA + bMB)− 1

≥ H(X∗ + Y ∗)− 1 .

(48)

This proves the lemma.

It is not difficult to extend the proof of the Lemma to show the near optimality of uniformly
distributed inputs for the channel defined by (38). Let

U := ⌊hi1⌋
ni1
∑

k=1

2−kx1(k) (49)

and

V := ⌊hi2⌋
ni2
∑

k=1

2−kx2(k) , (50)

so that
y = ⌊U⌋+ ⌊V ⌋ .

Also, let

A : = supp(U) = {0, ⌊hi1⌋, . . . , ⌊hi1⌋(2ni1 − 1)} · 2−ni1 ,

B : = supp(V ) = {0, ⌊hi2⌋, . . . , ⌊hi2⌋(2ni2 − 1)} · 2−ni2 .

Assume without loss of generality (by symmetry of the definitions ofU andV ) thatni1 ≥ ni2.
We will work with scaled, integer-valued versions ofU andV : let

∆ := 2ni1

and
Ũ := ∆U, Ṽ := ∆V .
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LetMA = ∆ andMB = 2ni2 . The supports sets are

Ã = {0, 1, . . . , (MA − 1)} · ⌊hi1⌋

and
B̃ = {0, 1, . . . , (MB − 1)} ·∆(⌊hi2⌋2−ni2) .

Correspondingly, the integer part of a numbert is replaced by quantization to the greatest multiple
of ∆ less than or equal tot:

Q(t) := ∆

⌊

t

∆

⌋

.

In the notation of Lemma 7, the spacings in the setsÃ and B̃ are, respectively,a = ⌊hi1⌋ and
b = ∆(⌊hi2⌋2−ni2). Proving the equivalent of Lemma 7 forQ(Ũ) + Q(Ṽ ) will imply the same
result fory = ⌊U⌋+ ⌊V ⌋ by the scale-invariance of discrete entropy.

With this notation, we have analogously to (44) that

|Q(Ã) +Q(B̃)| ≤ aMA + bMB

∆
. (51)

The next step is to compute a bound on the maximum probabilitymass inQ(Ũ) +Q(Ṽ ),

p∗ := max
x

P(Q(Ũ ) +Q(Ṽ ) = x) .

For anyx, we have

{u ∈ Ũ , v ∈ Ṽ : Q(u) +Q(v) = x} ⊆ {u ∈ Ũ , v ∈ Ṽ : u+ v ∈ [x, x+ 2∆)}
=

⋃

x∗∈[x,x+2∆)

{u ∈ Ũ , v ∈ Ṽ : u+ v = x∗} .

Thus

p∗ ≤ max
x

∑

x∗∈[x,x+2∆)

P(Ũ + Ṽ = x∗)

≤ 2∆p̄ ,

(52)

wherep̄ is defined in (46). Combining (51) and (52), the desired result now follows exactly as in
equation (48) of Lemma 7, giving that

H(Ũ + Ṽ ) ≥ H(Ũ∗ + Ṽ ∗)− 2 .

The near optimality of the uniform distribution applies to each entropy constraint in (22), and
thus each user loses at most 2 bits as claimed.

Step 3: Positive inputs and channel gains (lose 2 bits). From Step2′, the uniform distribution is
nearly optimal for Channel 2. Viewing the inputs as coming from a constellation in the real line, it
is not hard to see that negating a cross gain does not change any of the output statistics, therefore
preserving the mutual information. Similarly, each of the output entropies in (22) is reduced by at
most 2 bits if the inputs are restricted to be positive.

Step 4: Addition over F2 (lose 2 bits). Consider the binary expansion of the output. In switching
to modulo 2 addition, every output bit that has some entropy when using real addition is uniformly
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random, except possibly the two most significant bits that arise due to carry-overs. Thus, at most
two bits are lost in each of the entropy constraints of (22).

Step 5: Channel gains of the form 2n (lose zero bits). Channel 5 is the deterministic channel
(20). The optimal input distribution is uniform and the mutual information is unchanged when the
gains are quantized to the nearest power of 2. In fact, the capacities of the channel in Step 4 and the
channel of Step 5 are identical.

A1. Complex Gaussian IC

The proof of Theorem 1 in the generality of complex-valued gains and signals is very similar to the
proof of Theorem 2 for the real-valued channel presented in Sections A1. and A1.. We focus on the
proof that

CGaussian⊆ Cdet+ constant;

the other direction follows by reversing the steps and usingthe argument for the real-valued channel,
and is omitted. The eventual gap is42 bits, roughly double that of the real-valued case.

The complex Gaussian interference channel is given by

y1 = h11x1 + h12x2 + z1

y2 = h21x1 + h22x2 + z2 ,

wherezi ∼ CN (0, 1) and the channel inputs satisfy an average power constraint

1

N

N
∑

k=1

E[x2i,k] ≤ Pi, i = 1, 2 .

By scaling the outputs, we may setPi = 2 andzi ∼ CN (0, 2). We assume without loss of generality
that the cross gains have zero phase, i.e. Im(h12) = Im(h21) = 0, since each of the receivers may
simply rotate the output appropriately. These assumptionsallow to write the output of the channel
as

(

y1R
y1I

)

=

(

hR11 −hI11
hI11 hR11

)(

x1R
x1I

)

+

(

hR12 0
0 hR12

)(

x2R
x2I

)

+

(

z1R
z1I

)

, (53)

and similarly fory2. HereR and I denote real and imaginary part, respectively, andziR, ziI ∼
N (0, 1).

Step 1: Peak power constraint instead of average power constraint (lose 8 bits). The argument
is almost identical to that of Step 1 in A1.. We truncate the inputs, letting the part of the inputxiR
that exceeds the peak power constraint be

x̂iR = ⌊xiR⌋ = sign(xiR)

0
∑

k=−∞

xiR(k)2
−k ,

and let

x̄iR = xiR − x̂iR = sign(xiR)

∞
∑

k=1

xiR(k)2
−k

be the remaining signal, with similar definitions forxiI with I replacingR. The signals̄xiR, x̄iI
are defined so that̄xi = x̄iR + jx̄iI satisfies the peak power constraint of2. Let ȳi be the output at
receiveri due to the truncated inputs. The development in Step 1 of A1. shows that

I(xNi ; yNi ) ≤ I(x̄Ni ; ȳNi ) +H(x̂N1 ) +H(x̂N2 ) . (54)
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The estimate
H(x̂Ni ) ≤ 4N

follows from the argument of Lemma 6, by translating an arbitrary strategy for a point-to-point
deterministic channel to a corresponding Gaussian channelwith SNR = 1, with a loss of at most 3
bits (1.5 bits per complex dimension). The point-to-point Gaussian channel has capacity 1, giving
the estimate.

Step 2: Truncate signals at noise level, remove fractional part of channel gains, and remove
noise (lose 5.1 bits). The argument repeats that of Step 2 in A1., and is omitted.

Step 2′: Single letter expression, decoupling of real and imaginary components, and near
optimality of uniform input distribution (lose 6 bits). After decoding the message of the intended
user, each receiver has a clear view of the common message of the interfering user. Thus, the
capacity region of the channel of Step 2 is given by (22).

Next, using a similar argument to that in Step2′ for the real-valued case, it can be shown that
i.i.d. uniformly distributed inputs are nearly optimal on amodified channel, with a loss of at most4
bits per user. The modified channel replaces the direct gainhRii with |hRii | + |hIii|, and setshIii = 0.
The support of the output is at least as large in the modified channel under uniformly distributed
inputs, and moreover, the output is independent over time. Thus, this step decouples the real and
imaginary components. The argument for the real-valued channel can now be applied to the real
and imaginary components of the complex channel.

Steps 3, 4, and 5: Positive inputs and channel gains (lose 4 bits), addition over F2 (lose 2 bits),
channel gains of the form 2n. Steps 3 and 4 are identical to the real-valued case. In Step 5 the
direct gains|hRii |+ |hIii| are replaced with2⌊log(|h

R
ii|+|hI

ii|)⌋. Similarly, the cross gains|hR12| and|hR21|
are replaced with2⌊log |h

R
12
|⌋ and2⌊log |h

R
21
|⌋, respectively.

Step 6: Combine real and imaginary parallel channels (lose 4 bits). Now, the resulting deter-
ministic channel from Step 5 is precisely the same as the deterministic channel in the real-valued
case, but with twice as many channel uses (one each for the real and imaginary part of the signal).
Hence the capacity region of the complex deterministic channel is the same as for the real-valued
channel, but scaled by two. Note that the capacity region forthe deterministic channel (18) exactly
doubles when all the channel gains are squared. We have

22⌊log(|h
R
ii|+|hI

ii|)⌋ ≤ 2⌊1+log(|hR
ii|

2+|hI
ii|

2)⌋ = 21+⌊log SNRi⌋ ,

which shows that changing the gain to2⌊log SNRi⌋ changes at most one bit of the output in each
complex dimension. Similarly, at most one bit of the output at receiver 1 is changed by changing
the cross gain22⌊log |h

R
12|⌋ to 2⌊log INR2⌋. Thus, at most 4 bits per user are lost in making this final

modification to the channel.
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