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The Two-User Gaussian Interference Channel: A
Deterministic View

Guy Breslef David Tse'*

Abstract

This paper explores the two-user Gaussian interferenaenethéhrough the lens of a nat-
ural deterministic channel model. The main result is thatdbterministic channel uniformly
approximates the Gaussian channel, the capacity regitieslj by a universal constant. The
problem of finding the capacity of the Gaussian channel thiwia constant error is therefore
reduced to that of finding the capacity of the far simpler dateistic channel. Thus, the paper
provides an alternative derivation of the recent constaptaapacity characterization of Etkin,
Tse, and Wand [8]. Additionally, the deterministic modeles significant insight towards the
Gaussian channel.

1 Introduction
One of the longest outstanding problems in multiuser infdrom theory is the capacity region of

the two-user Gaussian interference channel. This mutticisgnnel consists of two point-to-point
links with additive white Gaussian noise, interfering wéthich other through crosstalk (Figlite 1).
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Figure 1:Two-user Gaussian interference channel.

Each transmitter has an independent message intendedootihefcorresponding receiver. The
capacity region of this channel is the set of all simultarsipachievable rate paifs?;, R2) in the
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two interfering links, and characterizes the fundamemtaldoff between the performance achiev-
able in the links in the face of interference. Unfortunatéig problem of characterizing this region
has been open for over thirty years. The capacity regionasvknin thestronginterference case,
where each receiver has a better reception of the othesssgnal than the intended receiverl[10, 5].
The best known strategy for the other cases is due to Han ahdyéshi[[10]. This strategy is a
natural one and involves splitting the transmitted infalioraof both users into two parts: private
information to be decoded only at own receiver and commaorinétion that can be decoded at
both receivers. By decoding the common information, pathefinterference can be canceled off,
while the remaining private information from the other uisdreated as noise. The Han-Kobayashi
strategy allows arbitrary splits of each user’s transmivgrointo the private and common informa-
tion portions as well as time sharing between multiple syatiiss Unfortunately, the optimization
among such myriads of possibilities is not well-understamad it is also not clear how close to
capacity can such a scheme get and whether there will be sitfagegies that can do significantly
better.

Significant progress on this problem has been made recdnt[g@], it was shown that a very
simple Han-Kobayashi type scheme can in fact achieve rategw bits/s/Hz of the capacity of
the channel fomll values of the channel parameters. That is, this scheme ¢aevacthe rate
pair (Ry — 1, Rs — 1) for any (Ry, R») in the interference channel capacity region. This result is
particularly relevant in the high signal-to-noise ratiocN(®) regime, where the achievable rates are
high and grow unbounded as the noise level goes to zero. GheSNR regime is the interference-
limited scenario: when the noise is small, interferencenfame link will have a significant impact
on the performance of the other. Progress has also been madeds finding the exact capacity
region; by extending one of the converse argumentslin [&],atlthors of[[13] and_[1] show that
treating interference as noise is sum-rate optimal wheinteeference is sufficiently weak.

The purpose of the present paper is to show that the high SKHRvlme of the Gaussian in-
terference channel characterizedlinh [8] can in fact be ftdigtured by a natural underlyirdgter-
ministic interference channel. This type of deterministic channetieh was first proposed byl[2]
in the analysis of Gaussian relay networks. Applying thigdeldo the interference scenario, we
show that the capacity of the resulting deterministic fietemce channel ighe same-to within a
constant number of bits—as the corresponding Gaussiariereaace channel. Combined with the
capacity result for the two-user deterministic interfeehannel, the paper therefore provides an
alternative derivation of the constant gap result of [8pédtl with a larger gap).

Because of the simplicity of the deterministic channel nhoti@rovides a lot of insight to the
structure of the various near-optimal schemes for the Gaugsterference channel in the different
parameter ranges. Where certain approximate statemeshigtaitions can be made regarding the
Gaussian interference channel, these statements are meiedn the deterministic setting. The
near-optimality for the Gaussian channel of the simple Kahayashi scheme as shown lin [8] is
made transparent in the deterministic channel: the desivaf the achievable strategy is completed
in a series of steps, each shown to be without loss of optiyn@s an added benefit, the relatively
complicated genie-aided converse arguments are avoided.

The close connection between the deterministic and Gaus$iannels, as demonstrated in
the example of the two-user interference channel discuisstds paper, suggests a new general
approach to attack multiuser information theory problen@ven a Gaussian network, one can
attempt toreducethe Gaussian problem to a deterministic one by proving ataohgap between
the capacity regions of the two models. It then remains amfynd the capacity of the presumably
simpler deterministic channel. Inl[4], the less direct agoh of transferring proof techniques from
the deterministic to Gaussian channel has been used studlyessapproximating the capacity of
the Gaussian many-to-one interference channel, where than arbitrary number of users but



interference only happens at a single receiver. The approsed in[[4] is therefore taken a step
further in this work.

2 Generalized Degrees of Freedom and Deterministic Model for the
MAC

2.1 Generalized Degreesof Freedom

Before the one-bit gap result![8], very little was known abine structure of the capacity region of

the two-user Gaussian interference channel. The invéistigef thegeneralized degrees of freedpm

a concept introduced in[8], provided the first and cruciaight into the problem. In this section

we motivate this idea through the MAC, as well as provide agmadnstract look into what makes the

generalized degrees of freedom so useful towards unddistathe Gaussian interference channel.
Let us start with the point-to-point AWGN channel. The outsuequal to

y=VSNRz + 2,

wherez € CN (0, 1) and the input satisfies an average power constraint

1 N
NZE[:L%] <1.
k=1

The capacity is equal to
C(SNR) =log(1 + SNR).

In an attempt to capture the rough behavior of the capadaity,may calculate the limit

. C(SNR)
lim =
SNR—oo log SNR

(1)

The limit in (1), the so-called degrees of freedom of the clehnmeasures how the capacity scales
with SNR. The degrees of freedom is thus a rough measure atitgpwith unit equal to a single
AWGN channel with appropriate SNR.

We now attempt a similar understanding for the MAC. The clehontput is

y = hix1 + hoxo + 21

wherehq, hy € C, z; ~ CN(0, 1), and each input satisfies an average power constraint

N

1

NZE[xik] <P, i=12.
k=1

The channel is parameterized by the signal-to-noise r&iR, = P |hi|? andSNRy = P, |hs?,
and we assume without loss of generality tB&tR; > SNR,. The capacity region of the MAC is
(see Figuré&l3):

Ry <log(l+SNRy)
Ry <log(1+ SNRy) (2)
Ri+ Ry < log(l + SNR; + SNRQ) .
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Figure 2: The classical degrees of freedom region for the MAC

Seeking simplification, a reasonable strategy is to attemgbmpute a limit similar to[{1).
However, there is not a clear choice of limit: the point-tf channel had only one parameter and
thus no ambiguity arose, but in the MAC there are two parare&iR; andSNR, and therefore
many ways of taking limits. Le€(hq, hy, P) denote the capacity region of the MAC (2) with
channel gain&q, ho and power constrain® for both users. One standard way of taking the limit of
the region is to let the power constraiRttend to infinity, scaling byog P:

. C(h1,ha, P)
lim —————~.
P—oo logP

Calculating the limit, one finds that the resulting regioee(§iguré R2)

di <1
dy <1 ()
di+dy <1

is altogether independent of the channel gains. More timogibthe limiting region[(B) is misleading
from an operational viewpoint. The region seems to sugdegtfor high transmit powers, the
optimal scheme is time-sharing between the two rate pamtghich only one user transmits at a
time. But this is far from the truth, as a corner point of thpaty region has an arbitrarily greater
sum-rate as channel parameters are varied, for each fixeermmmstraint. This limit, therefore,
does not reveal any dynamic range between users, a qualttistielevant at finite SNR.

A closer look at the capacity region itself leads to a différiemit. Notice that the capacity
region can be approximated to within one bit per user as (Epedr3)

R; <log(1l+ SNR;) =~ log SNR;
Ry <log(1l+ SNR2) ~ log SNRy 4)
R; + Ry <log(1l+ SNR; + SNR3) ~ log SNR; .

In order to roughly preserve the shape of the capacity reigiche limit, equation[(4) suggests to
fix the relationship between the two individual rate constg i.e.

log SNRy = arlog SNR; .

In other words, the ratio of SNRs is fixed in the dB scale. Thigrecisely the generalized degrees

of freedom limit, N
D(a):= lim C(SNR, SNR®)

SNR—oo  log(SNR)
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Figure 3: The solid line shows the MAC capacity region. Thehgal line shows the approximate
region as given in(4), and is within one bit per user of theacity region.
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Figure 4. The MAC generalized degrees of freedom region. régmn is exactly the same as the
approximate region in Figuté 3, normalized by SNR;.

whereC(SNR7, SNRy) denotes the capacity region of the MAC with signal-to-no&®sSNR;, SNR,.
The resulting region (Figuig 4) is

d <1
ngO& (5)
di+ds <1.

Quialitatively, the generalized degrees of freedom limésgrrves the dynamic range feature of
the finite-SNR channel. However, a more precise stateméntdsas well: because the approxima-
tion to the region[(¥) is to within one bit, independent of thannel gains, it follows that the degrees
of freedom region itself, when scaled g SNR1, is within one bit of the true region. Thus, vary-
ing «, the limiting regions[(buniformly coverthe entire collection of finite signal-to-noise ratio
channels. In other words, to find the approximate capacigngfMAC with (finite) signal-to-noise
ratiosSNR1, SNRy, one simply needs to compute the generalized degrees dbfreémit for the
valuea = {25502

In the MAC, we observed that the generalized degrees of dredinit correctly expresses the
finite-SNR behavior. We now reflect on what properties, mdastractly, constitute a useful limit.

Visually, a limit corresponds to a choice of paft§NR, f(SNR)) in the (SNRy, SNR;) plane
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Figure 5: An example limit path in th€SNR;, SNRy) plane.

SNR2

© SNR;

Figure 6: The figure illustrates the notion of a limit regionifarmly approximating the capacity
region. Suppose the capacity, scaledldyySNRy, is constant along the limit paths. The dashed
lines show several example limit paths. Then, to find the cpeegion at any points;, s2) in the
(SNR1, SNR2) plane, one may simply follow the path (denoted fyto the infinite arc, resulting

inD(f).



(Figurel®). Thus, a first requirement is to choose a funcfisnch that the limit exists:

lim C(SNR, f(SNR))
SNR—00 log SNR

=D(f). (6)

Although many trajectories are possible, if the goal is @dbainderstanding of the capacity
region forfinite power-to-noise ratios, some limit paths are better thaarsttSuppose, for example,
that it was possible to choogesuch that

C(SNR, f(SNR))
log SNR

= constantf) (7)

for the entire rang&NR > 0. In words, the scaled capacity [ (7) is constant along tlle paln
this case, the problem of finding the linlif (6) is preciselg game as that of finding the capacity
region for each point along the entire trajectory! Moregvfeafter computing the limit one could
vary f so as to cover all point§SNR, INR), the problem of finding the capacity of the channel is
completely solved.

Figurel® further explains this idea. We consider the scdlgdog SNR) capacity region. After
taking a limit, one has the scaled capacity region at eacht poi an arc of infinite radius. Now,
upon choosing an arbitrary poif4;, s2) in the (SNR, SNR2) plane, a good limit should allow to
deduce, from the scaled capacities on the infinite-radiasthe (approximate) scaled capacity at
(s1,s2). Hence the significance dfl(7), which allows to equate théedceapacity at finite SNRs
with the limiting regions: if condition[(7) is satisfied, ongay simply choose the paghcontaining
the point(sy, s2), which gives

C(s1,82) = C(s1, f(s1)) = logs1 - D(f).

For the MAC, the set of trajectories defining the generalidegrees of freedom limit satisfies
(@) to within a universal constant, independenSdR. The generalized degrees of freedom of the
Gaussian MACI(b) is the limif {6) along the path

f(s) =s“.

The generalized degrees of freedom of the MAC is intimatelynected to, and captured by, a cer-
tain deterministic channel model. In fact, the capacityae®f the deterministic channel is, when
properly scaledequalto the generalized degrees of freedom region. Equivalahydeterministic
channel satisfie§(7) exactly.

2.2 Deterministic Channd

In this section we introduce a deterministic channel modelagous to the Gaussian channel. This
channel was first introduced inl/[2]. We begin by describirggdketerministic channel model for the
point-to-point AWGN channel, and then the two-user mudtiptcess channel. After understanding
these examples, we present the deterministic interfereimaenel.

Consider first the model for the point-to-point channel Begrire[T). The real-valued channel
input is written in base 2; the signal—a vector of bits—igmreted as occupying a succession of
levels:

T = O.blbgbgb4b5 cee s

The most significant bit coincides with the highest leveg thast significant bit with the lowest
level. The levels attempt to capture the notiorsigial scalea level corresponds to a unit of power
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Figure 7: The deterministic model for the point-to-pointuSsian channel. Each bit of the input
occupies a signal level. Bits of lower significance are last tb noise.

in the Gaussian channel, measured on the dB scale. Noisedisl@doin the deterministic channel
by truncation. Bits of smaller order than the noise are [dke channel may be written as

y=[2"z],

with the correspondence = |log SNR].

The deterministic multiple-access channel is construsidarly to the point-to-point channel
(Figure[8), withn; andns bits received above the noise level from useend?2, respectively. To
model the superposition of signals at the receiver, therbiisived on each level are addeddulo
two. Addition modulo two, rather than normal integer additiam¢hosen to make the model more
tractable. As a result, the levels do not interact with onstlaar.

If the inputsz; () are written in binary, the channel output can be written as

y=[2"z] @ [2"22], (8)

where addition is performed on each bit (modulo two) &ndl is the integer-part function. The
channel can be written in an alternative form, which we will nse in the present paper but leads to
a slightly different interpretation. The input and outpre &, 22,y € F3, whereq = max(nq, n2).
The signal from transmittet is scaled by a nonnegative integer gaih (equivalently, the input
column vector is shifted up by;). The channel output is given by

y =89""w &8Iy, 9)

where summation and multiplication arelip andS is ag x ¢ shift matrix,

0 0 0 --- 0
1 0 0 -~ 0

s=|0 1 0 - Of, (10)
0 -~ 0 1 0

The capacity region of the deterministic MAC is

ry < ng
ro < ng (11)

r1 + 7o < max(ni,ng).
Comparing with[(#), we make the correspondence

ny = Llog SNle, ng = Llog SNRQJ .
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Figure 8: The deterministic model for the Gaussian multggieess channel. Incoming bits on the
same level are added modulo two at the receiver.

Evidently, the capacity region of the deterministic MAC astant when normalized by, and the
ratioa = % is held fixed. Thus, the deterministic MAC satisfies (7) elyasthen the gains are
integer-valued; the normalized capacity along any poirthelimit path is equal to the degrees of
freedom of the deterministic MAC, which is in turn equal te ttegrees of freedom of the Gaussian
MAC.

3 Deterministic Interference Channel

In Sectior 2 we motivated the generalized degrees of freduoitnand saw how it led to a simple
deterministic model. The generalized degrees of freedoh tlee equivalent deterministic model,
was seen to uniformly approximate the MAC. With this sucdassxplaining the MAC, a logical
next step is to apply the deterministic model to the Gaussi&nference channel.

The Gaussian interference channel is given by

y1 = hi1x1 + hiezo + 21

Y2 = ho1x1 + hosxo + 22,

wherez; ~ CN(0,1) and the channel inputs satisfy an average power constraint

N

1

N § E[xz%k] <P, i=12.
k=1

The channel is parameterized by the power-to-noise r&R; = |h11|?P1, SNRy = |hos |2 P2,
INR;y = |h21|?P1, INRy = |h12|? Ps.

We proceed with the deterministic interference channeleh@gurd ). Note that the model is
completely determined by the model for the MAC. There are tr@osmitter-receiver pairs (links),
and as in the Gaussian case, each transmitter wants to cdoateuonly with its corresponding
receiver. The signal from transmittg¢ras observed at receivéris scaled by a nonnegative integer
gain2™4 (equivalently, the input column vector is shifted upsby). At each timet, the input and
output, respectively, at linkarex;(t),y;(t) € F3, whereq = max;; n;;.

The channel output at receivers given by

yi(t) = ST "tz (t) @ ST " 2xy(t), (12)
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Figure 9: At left is a deterministic interference channeheTmore compact figure at right shows
only the signals as observed at the receivers.

where summation and multiplication arelin andS is defined in[(ID).
If the inputsx; are written in binary, the channel can equivalently be emitas

y1 = 2"z | @ 2" 21|
y2 = [2" @] @ (2",

where addition is performed on each bit (modulo two) anglis the integer-part function. We will
use the latter representation in this paper.

In the analysis of the deterministic interference charibelill be helpful to consult a different
style of figure. The left-hand side of Figurke 9 depicts a drieistic interference channel, and the
right-hand side shows only the perspective of each recelzach incoming signal is shown as a
column vector, with the highest element corresponding ¢onttost significant bit and the portion
below the noise level truncated. The observed signal at eamiver is the modulo 2 sum of the
elements on each level. In the sequel, the dashed linesatiticthe position of each entry of the
vector will be omitted.

Just as in the discussion of the MAC, the deterministic fatence channealniformly approxi-
matesthe Gaussian channel. In finding the capacity of the Gaussiarference channel to within
a constant number of bits, it therefore suffices to find theaciyp of the far simpler deterministic
channel.

Theorem 1. The capacity of the two-user Gaussian interference chawitblsignal and interfer-
ence to noise ratioSNR1, SNRs, INR{, INR; is within 42 bits per user of the capacity of a deter-
ministic interference channel with gaigg! = 2l10gSNR1] gni2 — 9[logINR2] 9gna1 — 9llogINRy |
and2nz2 = 2llos SNRaJ,

Proof. The capacity of the two-user Gaussian interference chdrasgbeen characterized to within
one bit by Etkin, Tse, and Wangl[8]; thus, we could prove tlemtbm by following the approach
used for the MAC in Sectioh] 2, comparing the capacity regafrthe deterministic and Gaussian
channels. We instead choose to prove the Theorem with n@a kmniowledge of the result for the
Gaussian channel. This approach provides insight into ¢le@ donnection between the determin-
istic and Gaussian channels, and also gives an alternaiweation of the constant-bit characteri-
zation of [8] (but with a significantly larger gap). The prasfdeferred to the appendix. O

Theorent 1L gives as a corollary that the generalized degféeedom of the two-user Gaussian
interference channel is exactly equal to the scaled cgpakihe corresponding deterministic chan-
nel. This explains why the degrees of freedom limit charazgs, up to a constant, the capacity of
the Gaussian channel.
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4 Structure of Optimal Strategy for Deter ministic Channel

El Gamal and Costa’s characterization of the capacity reffipa class of deterministic interference
channels[9] applies to this particular deterministic eci&lnMoreover, it is not difficult to determine
the optimal input distribution from their expression. Buisi not immediately apparent why this
region is in fact optimal.

The goal of this section is to derive from the beginning, gginly the most basic tools of infor-
mation theory, the (arguably) natural optimal achievaliatsgy. Although the resulting strategy
coincides with a specific Han and Kobayashi strategy, bygedmg in this way we hope to de-
mystify the structure of the achievable strategy. In patéic we will see how common and private
messages arise inevitably, quickly giving the capacityore@f the channel. It is noteworthy that
no separate outer bounds are required. Thus, the intujipead of this approach is bolstered by it
not requiring the side-information converse proofs_of [i84 49].

The natural decomposition of messages into common andt@rparts was motivated at an
intuitive level for the Gaussian interference channel intteas 6 and 7 of [8]. In the setting of the
deterministic channel, the arguments of this section miadeet ideas precise.

The following standard definitions and notation will be us&knote byM; = {1,...,M;}

and My = {1,..., M>} the message sets of users 1 and 2. Let the encoding fungtionst; —
X; with f;(7) = z;(j) map the messagegenerated at uséiinto the lengthV codewordz; (). Let
the decoding functiong;(y;) map the received signa} to the messaggif y; € D;;, whereD;; is
the decoding set of messagéor useri. An (N, My, M,, 1) code consists ol/; codewordse; ()
andM; decoding set$);; such that the average probability of decoding error sasisfie

1
MM, %:P(D”‘xl(j)’xz(k)) >1—p,

1 .
M, %P(D%Wﬂ]),@(k)) >1l—p.

A pair of nonnegative real numbe(s;, ;) is called anachievable ratefor the deterministic in-
terference channel if for any > 0, 0 < p < 1, and for any sufficiently largeV, there exists an
(N, My, My, 1) code such that

1
Nlong-Zri—e.

The first lemma is a simple analogue of Shannon’s point-iatpzhannel coding theorem, stat-
ing that the mutual information between input and outpueeines the capacity region.

Lemma 1. The rate point(rq,r2) is achievable if and only if for every > 0 there exists a block
lengthn and a factorized joint distributiop(x )p(x) with

1
r—e< <Iarsyr)

A (13)
r—e < yldad).

Proof. Fix a block lengthN and joint distributionp(xY )p(z5’). Each usei = 1,2 will use the
distribution ovep(z2) as an inner code, usirigolocks of lengthV. The codebooks are constructed
using random coding, and the achievability(of, ;) follows by the random coding argument (with
joint typicality decoding) for the point-to-point discesinemoryless channel.
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Figure 10: The figure depicts the received signal at eaclivexrcdlotice that the private signals (as
defined in Lemmal2)y1,, z2,, are not observed at the other receiver.

As in the point-to-point case, the converse is a straightiiod application of Fano’s inequality:

nr; = HW;) = HWilylY) + I(Wis )
<14+ PWnr+I(zN;9)), i=1,2.
It is assumed thaPe(N) — 0asN — oo. Dividing by N and takingV sufficiently large gives the
desired result. O

The next two lemmas are the most important of this secticey #how the optimality of sepa-
rating each message into a private and common message rftiredemmon and private are to be
justified later, and for now to be regarded simply as labels).

Lemma 2. Given any achievable rate poifit;, r2), this rate-point is achievable using a code with
the following decomposition.
1. The channel inputsy)¥ and z’, are separated into components consisting of common and

private information:

N N _ N N N _ N
ry = (xlpv‘rlc)v Ty = (x2p7$20) .

2. The message sets are separated into private and commaagess i.e. M; = M. x M;,

for usersi = 1,2, with the common signal?) = f¢(m;.) a function only of the common message
m;. € M. and the private signai:% = fP(mp, m;.) a function of both the private and common
messagém;y,, mic) € M;, X M.

3. The common rate is less than the entropy of the commonl stgagisr{ < %H(mﬁ\c’).

Proof. Consider an achievable rate point, ;). The proof follows by converting an arbitrary
achievable strategy to one that satisfies the desired piegeFixec > 0, a block lengthV’, and an
arbitrary distributionp(z )p(z5") such that[(IB) is satisfied wity2. Write the input as: =
(z', z]Y"), wherex])’ is the inputz]’’ restricted to the lowestni; — nop)* levels, 21, is the
restriction to the highests, levels, and similarly for:2), /" (see Figuré10). Note thatify; >
n11 (12 > nas) then the private signall’ (z2))) is empty.

It must now be verified that transmittécan separate the message/sétinto the direct product
of two message set¥t;, x M;.. The scheme uses a superposition code, as used for the eegrad
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Figure 11: Lemmal2 shows that we may view the common signapeawate signal of each user as

coming from two separate users, with the private user haatngss to the signal from the common
user.

broadcast channel (see eld. [7]), with serving as the cloud centers angl as the clouds. To see
that this is possible, put far= 1, 2,

ré = i[( N, N,)_E

! N’ 4
D 1 N’ N’ N’ € (14)
T = ﬁf(%p Y e ) — 1
Then from the chain rule we have
/ / € 1 / / / €
Tic + Tip = WI(%]Z %yzN ) — 1 +W[(9€% ;%N ]mﬁ) T
1 ! ! €
zﬁl(wfv;yfv)—izm—e.

For some sufficiently large super-block lendthgenerate foi = 1,2, 2¥V'"ic independent code-
words of length\'k, 2N (m;.) according td [, p(z1Y,). The block-lengthV in the statement of
the lemma is given byV = N’k. Now, for each codeword*™’ (m;,.), generat@*N'"» codewords
of length Nk, 2N’ (mje, msy,), according to the conditional distributid}_, p(zL) [z, (mic)).
Decoding is accomplished using joint typicality, and thelyability of error may be taken as small
as desired by choosinglarge. Since: was arbitrary, this proves the lemma. O

The previous lemma shows that we may consider the detetiniimgerference channel as a
channel with four senders and two decoders, as in Flgure Hi%.ifiterpretation motivates the next
lemma, which shows that each user is able to decode the cormfurmation of the interfering
user. The lemma makes use of facts concerning the multiglesaachannel. For background on
the multiple access channel see €.gl [11, 7]. The lemma camtEdly be deduced from the result
by Costa and ElI Gamal on discrete memoryless interfereraengts with strong interferencel [6].
The result itself is analogous to Sato’s result for the Gaunsmterference channel in the strong
interference regime [12]; however, because Lerhina 2 shoaishbk signal ought to be separated
into common and private components, the argument applig®tentire parameter range.

By the MAC at receiverl we mean the MAC formed by the two users transmitting signals
(z1p, x1) andxo,. at rates) + 7§ andr§, respectively, with receiver required to reliably decode
both signals, and similarly for the MAC at receingr
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Lemma 3. The region is exactly described by the compound MAC forméaeoyIAC at each of the
two receivers, along with constraints on the private ratartRermore, the region has a single-letter
representation.

Proof. Suppose the rate-poifit;, r2) is achievable. By Lemnid 2, we may assume that each user’s
common signal is a function only of the common message, atd th

i = laliyl) — e < SH@EY) — o

N v (15)
ry = N[(xé\i;yév) —e< NH(DC%) —€.
Then each user, upon successfully decoding their own sagrthsubtracting it off, has a clear view
of the other user's common signaj'. But, since the common rate is smaller than the entropy of
the common signal(15), it is possible to recover the commessagen;. with arbitrarily small
probability of error whenN is taken to be large enough; in other words, each user cabkeli
decode the other user's common message.

The joint distribution of the channel is

N|,.,N . N _ N N N N
p(y1 ‘xlc7x1p7x20)p(y2 ‘x207w2p7'x10)

plafy|ei)p(ai)p(ehlede)p(ese)
The fact that each receiver can decode the common message ather user implies, by Fano’s
inequality, that

(16)

1
NH(mlca mip, m20|y{V) —0

and 1
NH(mlca map, m20|yév) —0

asN — oo.

Proceeding as in the converse argument for the MAC (seel#])y.ohe can show that for any
joint distribution [16) the rate poir(t$, 7, r5, r%) satisfies a number of constraints. First, the rate
point (r§ + 77, r5) must lie within the MAC at receiver 1 and the rate pairg, 7§ + r5) must lie
within the MAC at receiver 2. Additionally, there are cométits on the private rateg, 7 and the
ratesr+r§ andrb+r¢. More precisely, there exists a distributipfe1, |z 1¢, ¢)p(z1¢|q)p(z2p|Tac, Q) p(@2cq)p(q)
such that

r 415 =15+ ) +r§ < I(@1e, T1p, Toc; 1]Q)
ri=r{+r] <1, 1p; y1 |22, Q)
rs < I(2ac; y1|21e, T1p, Q)
415 < I(1p, Toc; y1]T1e, Q)
< I(@1p; y1]@ac, T1e, Q) (17)
r$ 4+ 1o =1 + b + 1§ < I(wae, T2p, T1c5 Y2|Q)
ro =15+ 15 < I(@2p, Toc; Y2|T 16, Q)
1 < I(@1e; y2|T2e, T2p, Q)
rh + ¢ < I(xap, T1c; y2|T2e, Q)
5 < I(xap; y2|@1c, Tac, Q)

Conversely, if the rate tuple-{ + 77, rS) is within the MAC at receiver 1, angr$, r5 + rb) is
within the MAC at receiver 2, and the additional constraons?, r} are satisfied, then the rate point
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Figure 12: From the figure it is possible to understand thetraimts [[18) as areas of rectangles.

(r¢,rl, rs,rb) is achievable using a superposition random code as in Lemhamal oint typicality
decoding. O

The next lemma makes the region in equatfod (17) explicit.

Lemma 4. Observe that the optimizing (simultaneously for each ofctivestraints in(17)) input
distribution is uniform for each signal. This allows us toit@rthe region as

r$ +r +r§ < nqp + min(nag, (n12 — n11)t)
r{ 4+l <np
r5 < min(nia, na2)
r? + 7§ < min(ngg + (n11 — n21) ™, n2)
P <ni1—n
C P 1 < gy i ; a8)
r5 + 15 + 1] < ngg + min(ny1, (n21 — na2)™)
rs 418 < ngo
r{ < min(nay,n11)
b +r$ <min(nyy + (n22 — ni2) ", n91)

D
ro < Moo — N2 .

Proof. Intuitively, the private signal should be uniform becaud®lps the intended receiver decode
and does not cause interference, and the common signaldsheuwiniform because it helps both
receivers decode.

Fix a joint distribution and consider a rate point satis§ythe constraints of the previous lemma.
From the equations of the previous lemma, it is easy to seepthg,) should be uniform in any
optimal distribution, since this increases the mutualnmfation terms where;, appears. Similarly,
p(z;.) should be uniform. This allows to evaluate the mutual infation expressions in equation
(d72), resulting in the stated region. O

Remark 1. The constraints of Lemnia 4 admit a simple interpretatiorenms of the areas of the
relevant rectangles in Figufe 12.

The constraintd (18) determine the capacity region of therdenistic channel; using Fourier-
Motzkin elimination one can solve for the region in terms @fistraints onr; andr,. Alternatively,
note that the deterministic interference channel of thigepdalls within the class of more general
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Figure 13: The sum-rate capacity of the deterministic fetence channel, normalized by The
dotted line continuing downwards from the poii{/2, 1/2) is the rate achievable by treating inter-
ference as noise.

deterministic channels whose capacity is given in Theoreofi [8]. Applying this theorem, the
deterministic channel capacity region is the set of nontageaates satisfying

ri <mng, t=1,2
1+ 72 < (n11 — n12)t 4 max(ngg, ni12)
1+ 72 < (n2e — n91)t 4 max(ni1, not)
r1 4 ro < max(not, (n11 — n12) ") + max(ni2, (n22 — no1) ™)
2r1 + ro < max(ni1,no1) + (11 — n12) " + max(nia, (nea — nap) )

71 + 2r9 < max(nag, n12) + (na2 — n21)t + max(nar, (n11 —n12) ™).

5 Examples

It is instructive to consider a few examples of capacityiedhg schemes for the deterministic
channel. For simplicity, we restrict attention to the syntmigecase, i.e.n := ny; = nqo and

n91 = ni2 = no, Wherea = Z—ij Most of the achievable schemes presented admit simple
interpretations in the Gaussian channel. Figurde 13 deflietsum-rate capacity of the symmetric
channel, indexed by.

Consider first the case = 1/3. One option is to use the strategy described in Secfion 4,
making the entire signal private information (Figlre 14)the deterministic model the signal does
not appear at the unintended receiver. This correspondartsritting below the noise level in the
Gaussian channel, in which case the additional noise frenmtierference causes a loss of only one
bit for each user. A second option is for each transmittestotbe full available power, transmitting
on the highes2/3 of the levels (Figuré15). The loweér/3 of the levels are unusable on the direct
link due to the presence of interference. This strategyespionds to treating interference as noise
in the Gaussian channel. The value= 1/3 is representative of the entire rangec [0, 3], where
both of these strategies are optimal.

For o« = 2/3 there are again a few options. One possibility is to use tipaaty achieving
scheme of Sectionl 4, with the lowekt3 of the levels consisting of private information, and the
remaining2/3 of the levels as common information (see Fidurk 16). Theaeltgeved is = ro =
2n/3 bits per channel use per user. Alternatively, imagine oowtiisly varyinge from the value
a = 1/3toa = 2/3, while using the scheme of treating interference as noiggi(€[15). The used
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Figure 14:a = 1/3. Two-thirds of the signal is private information, with nonamon information.
This scheme corresponds to transmitting below the noisd.lev

RX; RX,
n n
9l T2c
T1p " n L2p
T2c 3 3 Tlc
1 2 1 2

Figure 15:a = 1/3. The top third of the levels are common information, and thedhe third are
private information. This scheme corresponds to treatitgrference as noise.

power range will shrink to the range betwery3 andn. However, a gap appears, and the range of
levels betweenl andn/3 can be used as well (Figure]17). The gap in the correspondaugsian
setting is because of the structure of the interferenceintegference contains information, and can
be decoded. After decoding the interference it can be sutbtteoff, and additional information
can be transmitted. This phenomenon is the reason whyrtgemtierference as noise is no longer
optimal beyondy = 1/2.

The casex = 3L/4 is different than the previous examples: here coding is sssug. The
random code of Sectidd 4 has the lowggt of the levels containing private information and the
highest3/4 of the levels contain common information (Figlird 18). Thmmetric rate achieved
is 5n/8 bits per channel use per user. As in the previous examplégy osly one time-slot is
possible, but fore > 2/3, using one time-slot requires coding ovevels The scheme in [3],
shown in Figuré 19, achieves the rate pdidi/4,n/2) by repeating a symbol on two different
levels; the symmetric poir{bn/8, 5n/8) is achieved by time-sharing.

Appendix:  Proof of Deterministic Approximation Theorem

In this appendix we prove Theorem 1, which states that thadgpregion of the 2-user Gaus-
sian interference channel is withi2 bits per user of the deterministic interference channelréMo
specifically, for each choice of channel parameters in thes&an channel, the corresponding de-
terministic channel has approximately the same capadjipme The focus is not on optimizing the
size of the gap; several of the estimates are weakened in é&esimpler argument. Rather, the
significance is that the gap é®nstant independent of the channel gains. Moreover, the proof uses
no knowledge of the Gaussian channel. Thus, the approachhase, along with the deterministic
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Figure 16: « = 2/3. One-third of the signal is private information, and twdrdls is common
information, but the common rate equals the private rdtes r5 = r§ = r§ = n/3.
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Figure 17:a = 2/3. As « is increased from /3 to 2/3, a gap appears in the bottom 1/3 of the
levels. This gap can be used to transmit private information

Rx; RX,
n n
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Figure 18:« = 3/4. This scheme is essentially the same as in Figure 16. Ormteqoéthe signal is
private information and three-quarters is common infofomatThe common rate i = r§ = 3n/8
and the private rate ig) = = n/4.

Rx; RX,

n

Figure 19:a = 3/4. Coding over levels &&erformed by repeating the vectoritsfiy.



capacity region from Sectidn 4, gives an alternative déoweof the constant gap capacity result of
Etkin, Tse, and Wang [8].

We first prove Theorem 2, which is the same as Thedlem 1 buidoeal Gaussian interference
channel, where the inputs, channel gains, and noise arealksd. The complex-valued case is
discussed afterwards. The main ingredients used in thd pfddeorenil for the complex-valued
channel are the same as those introduced in the proof ofdhe@akied channel.

Theorem 2. The capacity of theeal-valued2-user Gaussian interference channel with signal and
interference to noise raticsSNR{, SNRs, INR{, INR; is within 18.6 bits per user of the capacity of
a deterministic interference channel with gaiis! := 213 108SNRi| oniz . 9l 3 1ogINR2] ona1 .
QL%loglNle, and2nz2 .— 2|_%logSNR2J.

The factor of% in front of the logarithm is due to the channel being realiedl
Recall that the real-valued Gaussian interference chasg@len by

= h1121 + h12z2 + 2
1 1121 1272 1 (19)
Yo = ho11 + hooxo + 29

wherez; ~ N (0,1), h;j € R, and the input signals; , z, satisfy an average power constraint

1 n
N Y Elf] <P
k=1

By scaling the channel gains, we may assume without loss rérgéty that the average power
constraints of the Gaussian channel are equal to 1Pj.e- P, = 1.
The corresponding deterministic channel, introduced ictiSe(3, is

yr= 2" | © |22y

20
g = 2701 | @ 27y (20)

wheren;; = |log|h;;|] andz;,i = 1,2 are real numbers) < z; < 1. Addition is modulo 2 in
each position in the binary expansion.
The proof of Theorerml2 requires two directions, namely

CGaussian C Caer + CcOnstant

and
Cdet g CGaussian + constant

Each direction will be completed in a sequence of steps, seghcomparing the capacity region
of a new channel to that of the previous step. The first andclzatinels will be the Gaussian and
deterministic channels under our consideration.

Al Cdet Q CGaussian + (57 5)

We now show that the capacity achieving input of the deteistimchannel[(20) can be transferred
over to the Gaussian channiel{19) with a loss of at most 5 bitsiger. This specifies an achievable
region for the Gaussian channel. As mentioned above, tharegt is based on comparing mutual
information in a sequence of steps.

The first step shows that the capacity region does not dexiédlse modulo 2 addition of
the deterministic channel is replaced by real additionp S&eshows that the capacity region of
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the deterministic channel (R0) is the same if the gaiin is replaced by a real-valuel;; with
ni; = |log |hi;|]; Step 3 adds Gaussian noise; Step 4 removes the truncatieneied signals at

the noise level.
The following easy lemma bounds the effect of a change toliharmel output when the original
output can be restored using a small amount of side infoomagind will be used several times.

Lemma5. Fix a block-lengthV. If the signaly” is determined by the paif¥, sV, then
1@V gN) > 15 y™) — H(s").
Proof. The assumption that" is determined by/", s’V implies that
H(zNgN, sV) < H(@V|y™).

This inequality together with the chain rule gives

1N 5™) = H(z") — H(N[g")
> H(z") — H(z", " [7™)
> H(z") = H(s") = H@a" ", s")
> H(z") — H(s™) — H(z"|y")
= I(zN;yN) — H(sV)
This proves the lemma. O

Step 1. Real addition (lose zero bits). For simplicity, only the outpuf; is discussed. The corre-
sponding statements fgs follow similarly.
We may write the inputs as

n= Y w2, ) € 0.1}, @)
k=1

In the deterministic channdl (R0), we have

nii

(270> (k)27 =) 2R (k)
k=1

k=1

and

ni2

12712 " mp(k)27F) =) 2m2Fay(k).
k=1 k=1

Thus, the common signal from user 2 is

Toe = {1‘2(1), N ,1‘2(7112)} .

Step 1 replaces the modulo 2 addition of the deterministamobkl with real addition. Using the
two previous equations, we define (the output at receive) Cbénnel 1 as

nii ni2

yr= 2" Fay (k) + ) 2m2 (k).
k=1 k=1
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We claim that the capacity region of this new channel costthat of the original deterministic
channel. Any rate point within the regidn {17) given by LeniBna achievable for Channel 1:

r$ -+l + 1§ < I(@1e, T1p, Toc; 1) = H(y1)

r{ 1] < I(xie, 1p; y1|woe) = H(x)
75 < (2265 y1]21e, T1p) = H(72¢)
i+ 15 < I(w1p, Toc; y1|21e) = H(y1|21e)
ry < I(z1p; y1]@oc, 21c) = H(z1p) 22)
{4+ 1h + 15 < I(ae, Top, T1es y2) = H(y2)
75+ 1 < I(Z2p, Toc; Yo|w1e) = H(x2)
) < (@105 y2| e, T2p) = H(71¢)
rh + 1] < I(@2p, T13 Y2 |20e) = H(y2|22c)
rh < I(xop; yo|@1c, 2c) = H(w2p) -

Thus, it suffices to show that each of the mutual informationstraints is made looser when using
the (optimal) uniform input distribution of the determitigschannel. Note that only the first, fourth,
sixth, and ninth constraints are affected by the changeatcaddition.

Now, in the deterministic channdl (20), the outputis uniformly distributed; alternatively,
each bit in the binary expansion gf that is random is independent of the other bits and has equal
probability of being zero or one. The distribution of thesis n the binary expansion af; does
not change in passing to real addition, because each bi isuim modulo two of a carry bit and a
fresh random bit. It follows that the entrogy(y; ) does not decrease. The entroptégy, |z1.) and
H (ya|72.) behave similarly.

Step 2: Real-valued gains (lose log 3 bits). In this step we compare the achievable rate under a
uniform input distribution of a channel with real-valuedrggato the achievable rate in Step 1, losing
at mostlog 3 bits per user. The result is an achievable region that ismvitiy 3 bits per user of the
capacity region of the original deterministic channel.

To allow real-valued gains, we first allow negative crossigait is sufficient to consider only
the case of cross gains, rather than any of the gains, begatine, since each transmitter can
negate its input to ensure a positive signal on the dire&t IWiewing each input as coming from
a contiguous subset of integers in the real line, it is clbat the entropy constraints ih_(22) are
invariant to negating a cross gain when the distributiomigoum.

Next, replace™ with the gainh,; having binary expansion

hij = sign(hij) Z 2_khw(k‘) .
k=—n;;

Accordingly, Channel 2 is given by

i 2 %1 (k) %1:2_1%51(/6)
( ) (27 tw)

k=—n11

(23)

+sign(hi2) ( Z 2 b (k )><§i2_kﬂf2(k)> ;
k=1

k=—n1o

and analogously fog,. We continue by comparing the mutual information constgain (22),
noting that any rate in the intersection of the MACs at eadeivwer is achievable by coding for
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Figure 20: Making the gains real-valued creates gaps inupeast without changing its cardinality.
In this exampler = 3 andh = 1.4(23) = 11.2.

the MACs. To begin, we may view the first term in[23) as startimth the random variable
2min S 2=k g (k), which is uniformly distributed o0, ...,2"* — 1}, scaled by2’}}111 > 1,
and retaining the integer part |. Upon scaling, any two points in the support are at leasads
1 apart, so the integer part is at least distance 1 as wells,Tthe first term in[(23) is uniformly
distributed with support a subset of the integers havingdinality 2"11; the support now has gaps,
and is no longer the set of integers betwéeand2"1* — 1 (see Figuré 20).

The second term in_(23) is similar, but the the argument maistbdified to account for the part
of the signal below the noise level. We have

[( i 2kh12(/€)><§:12k962(k)>J

k=—-mn12

- [h12i2kxz(/€)+h12 > 2%2(/?)}
k=1

k=ni2+1
= [ A1 + Az (24)

The argument for the first term ib (23) applies to the sdmin (24), giving that4; is distributed
uniformly with spacingh,2/2™2 > 1 and support set having cardinali§}*2. Now, A, is bounded
as0 < Ay < 2, since|ho| < 22+, Hence, defining

s= A1+ As] — [A:1],
we see that can take on value, 1, 2, giving
H(s) <log3. (25)
NeglectingAs,, let the modified output be

= {( i Tkhn(@) <§2k$1(k‘)>‘

k=—n11

(26)

+ sign(hio) [( f: 2kh12(k)><§2%2(k)>J .

k=—n12
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Sincey; can be recovered by the pair, s, Lemmdb shows that
I(z1;91) > I(2z1;91) — log 3.

The argument is completed by using the fact that

H ( bhu! 211: 2_kx1(l€)J + \"hm’ i 2_kx2(k)J )
k=1 k=1
> H (i 2=k (k) + f: 2“12—%2(@) .
k=1

k=1
This is seen to be true by directly comparing the distrimgiof the two random variables within
the entropies. Counting the number of pairs of integerssbat to each integer, we see that the
distribution on the left-hand side can be achieved by sigfprobability mass from more likely to
less likely values.

The argument applies to all the mutual information constsaof [22). Step 2 incurs a loss of
log 3 < 1.6 bits.

Step 3: Additive Gaussian noise (lose 1.5 bits). Let Channel 3 be obtained from Channel 2 by
adding Gaussian noisg ~ A (0, 1) to outputi, where the outputs of Channel 2 are given[by (26)

Y1 = \‘|h11| Z 2_k$2(k)J + Sign(hlg) \‘|h12| ZQ_kl‘Q(k‘)J (27)
k=1 k=1

and similarly forys.
Define the random variable= [z,], where[ - ] is the nearest integer function. Observe that it is
possible to recoveyl from the pair(y + 21V, sV). Lemmd3 gives that

1 1
Ll +2) > L1 l) - Hs).

It remains only to derive a bound on the entropy pf

H(s)=— Y P(s=k)logP(s = k)
k=—o00
= —2iP(s =k)logP(s = k)
k=1
—P(s=0)log P(s =0)
<1.5

Step 4: Remove truncation at noise level (lose log 3 bits). Let Channel 4 be the Gaussian channel

(e

y1 = hi1x1 + hiezo + 21
Y2 = ho1x1 + hooxo + 22

The difference between Channels 3 and 4 is that signals/eztbelow the noise level are no longer
truncated at the receivers. The output at receiver 1 is

y1 = h11x1 + hi2xe + 21 = 1 + &1 + sign(hi2) T2,
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whereg, is the output at receiver in Channel 3[(27) and, &5 are the magnitudes of the signals
received below the noise level at receiver 1.
The approach is similar to Step 3. Define the random variable

s = [&1 + sign(hi2)T2] (28)

where|[ -] is the nearest integer function. Eachigf z is bounded between 0 and 1 (since they are
below the noise level), and so the random variabtan take at most 3 values. Hence the entropy
of s is bounded as

H(s) <log3.

It is possible to recovejl from the pair(yl’, s"). Therefore Lemm@l5 gives

1 1 )
@) > 1@ a) — log3.

This completes the first direction of the proof.

Remark 2. The above proof used the form of the capacity achieving idgitibution. Thus, it
does not follow that any capacity achieving distributiontfee deterministic channel can simply be
used with an outer code in the Gaussian channel.

Remark 3. The final achievable strategy uses only positive, peak-poamstrained inputs to the
channel, which is obviously suboptimal.

Al Ceaussian € Caer + (13.6,13.6)

Here we begin with the Gaussian channel and finish with theraiétistic channel. Most of the steps
are precisely the opposite as in the previous section. Tikeneimportant difference, however: the
inputs to the Gaussian channel satisfy the less stringenage power constraint whereas the inputs
to the deterministic channel must satisfy a peak power canst An extra step in the argument
accounts for this difference.

Step 1 removes the part of the input signals exceeding the pm&er constraint; Step 2 trun-
cates the signals at the noise level and removes the no&e2'Sterives a single-letter expression
for the capacity region of the channel in Step 2 and shows dae-optimality of uniformly dis-
tributed inputs; Step 3 restricts the inputs and channelsgt positive numbers; Step 4 makes
addition modulo 2; Step 5 quantizes the channel gains tootme 3™ .

Denote by Channel 0 the original Gaussian interferencergian

y1 = hi1x1 + hiezo + 21

(29)
Y2 = ho122 + hooxo + 22
Recall that we assumed a unit average power constraint
1 n
~ D Blai <1, (30)
k=1

Step 1. Peak power constraint instead of average power constraint (lose 4 bits). The input-
output relationship of Channel 1 is the same as Channell0 (29)

yi = hitxy + hiozo + 2; . (31)
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The difference is that the inputs to Channel 1 satisfy a peakep constraint instead of an average
power constraint:
Writing the binary expansion af;,

o0

T, = Z l’i(k’)Q_k,

k=—o00

we see that in Channel z;(k) = 0 for k£ < 0.
Let z; be an input to Channel 0, satisfying the average power @ins{80). Let the part of the
input that exceeds the peak power constraint be

0

&; = |z;] = sign(x;) Z ac,-(k)Z_k,

k=—0c0

and let

T, =X — T = sign(mi) Z SL'Z'(k?)Q_

k=1
be the remaining signal. The signalis defined so as to satisfy the peak power constraint. Finally
denote byy; the output at receivarwhen the inputs are truncated to the peak power constraint,

Ui = hi1T1 + hiaT2 + 2;,
and let
Ui = Yi — Yi = hi1Z1 + hiodo (32)
be the output due to the inputs, z-.
To complete Step 1, we show that most of the mutual informatia ¥ ; V) is preserved when

the inputs are truncated to the peak power constralnt Bibserve that since; andx, are inde-
pendentzY, zVN 4V form a Markov chaing — z¥ — V. It follows that

1&g z)) = 0.
Hence, from the data processing inequality and the muté@inration chain rule we have
i)
z J‘T'fv7y7{v7yljv)
AR )+I( zl, & ,yZN\yz )
z; 7yZN)+H( )
z g ) + H(@Y) + H(2y) . (33)

I

A

—~

<

IN
2

IN

I(z
I(z
I(z
I(z
I(z

IN

The last inequality is a consequence of the fact thati:,» determinej;. It remains only to bound
each of the entropy terms in_(33).

Lemma 6. The following bound on the entropy holds

H(#Y) <2N. (34)
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Proof. The proof is based on the requirement that the pant)ofexceeding the peak power con-
straint, 2V, itself must satisfy the average power constraint. Noté tie entropyH (#)¥) does
not depend on the channel gains at all. The part of the sigiiahgng the peak power constraint,
Z;, absorbs all the benefit from increasing the signal to naitie,ras less significant bits from
appear above the noise level at the receiver.

Two approaches are possible. The simpler approach is towebdeat any scheme in the point-
to-point deterministic channel with average power comnstizan be used without modification in the
Gaussian channel with power constraiht= 1, with a loss of at most.5 bits due to noise, by the
argument in Step 3 of the previous subsection. The resultftilews from the fact that the capacity
of the point-to-point Gaussian channel with average powestaintP = 1 is %log(l +1) = %
Thus,

H(#N)<2N.

Alternatively, one may explicitly bound the number of pagsivalues fori using a combi-
natorial argument. The first step is to notice that for eaghgmission at powel™, it must hold
that 2™ — 1 other time slots are silent. By writing a recursionsnand N on the number of
possible signals of lengtlV with peak power betwee®™ and2™~!, it is possible to bound the
cardinality of the support of? by poly(N)c" for a constant and for all N, which shows that
limsup +H(&]) < c. O

Plugging in the estimaté (B4) from the Lemma irito] (33) shdves$ &t most 4 bits per user are
lost in passing to a peak power constraint.

Step 2: Truncate signals at noise level, remove fractional part of channel gains, and remove
noise (lose 2.6 bits). The truncation at the noise level is not performed by solakng the inte-
ger part of a real-valued signal; instead, bieary expansiorof each incoming signal is truncated
appropriately, and only then do we take the integer part ohesggnal. In the final deterministic
channel the two procedures are equivalent, so we choosmtris convenient option with regards
to the proof. The key benefit of this choice of truncation s thsulting clear distinction between
common and private information, with the unintended rezreable to decode the common infor-
mation. The derivation of the single-letter expressiontifier deterministic channel in Sectioh 4 can
then be applied without modification in Step

We write the peak-power constrained channel inputs as

x; = sign(z;) imi(k‘ﬂ_k, x;(k) € {0,1}. (35)
k=1

If |logh] = n, then we deem as being above the noise level the componéntarising from
then most significant bits in the binary expansiormof

hsign(z) Z 27 (k). (36)
k=1
The magnitude of the part below the noise level can be bouaded

Bl Y 27Fa(k) <2n 2T =2, (37)
k=n+1

Channel 2 is defined by retaining only the part of the inputsvalihe noise level as described in
(389), taking the integer part of the channel gains, furta&mg the integer part of each observed
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signal, and removing the noise. More specifically, receiv@rserves the signal

ﬂi:{ i1) Zﬂ:2 1 ( J {Lhzﬂi? zo( J (38)

Now, denote bye; the difference in the outputs relative to Channel 1, igrgpiine additive
Gaussian noise:

€ =Yi —Yi
= { i1 sign(zy) Z 2” xl
k= TL21+1
ni1
+ (hzl — LhzlJ) Sign(:nl) Z Q_kl’l(k‘)
k=1

i1
+ frac <81gn (1) hi1 22 x1( ) }
+ { io sign(za) Z ok xo(k

k= nL2+1

+ (hio — | hiz]) sign(z2) i 27 xo (k)
k=1

ni2
+ frac <81gn x9) | hi1 22 xa( ) } + 2z

=T+ T2 + %,

wherefrac( - ) denotes the fractional part. Combining the estimaté (3d)the fact that(h;; —
|hij])zj| <1, we have
We will later use the observation that, i — &; forms a Gaussian MAC, and frorh_(39) the

signal-to-noise ratio is at most 16 for each user.
We show next that

1
—I(zN:gN)y+51> —I(x
N(Z”L)—i_ N(Z’yl)’

wherey; is the output of Channel 1 defined in{31). Note thats independent of;. The data
processing inequality and the chain rule allow to sepabaeontribution to the mutual information

27



I(zN;yN) from each term Y, gV

7 7

I syY) =15 + &)
< I(z); g0, eN)
SCART A B (CARIA
< I35 ) + 1)z 5 )Y
= 1@ 5)) + h(E=NgY) — el Y o, 2y)
S (CAR A R A B TCAL AR AR
= I 5)) + b)) = h(z]))
=I(z"g)) + 127,45 ;e))
< I(zY;5) + 26N,

where the last inequality holds for sufficiently largé. In the last step we used the fact that
I1,29 — g; forms a Gaussian MAC with signal-to-noise ratio at most li6efach transmitter,
S0+ 1(d1,2258;) < $log(1+2(16)) + ey (with ey — 0). This completes Step 2.

Step 2': Singleletter expression and near optimality of uniform input distribution (lose 2 bits).
We now show that the derivation of Sectidn 4, giving a singteel expression for the capacity region
of the deterministic channdl (IL7), applies to the chann&itep 2. Following this, we will prove that
using uniformly distributed inputs incurs a loss of at megb bits per user relative to the optimal
input distribution.

Define

12
Toc := sign(xz) Z 2 2o (K), (40)
k=1
and similarly forz1.. This is the part of the input that causes interference aitivgended receiver.
Consider the signal that remains at receiver 1 after suitdlysdecoding and subtracting off;.
From [38), the remaining signal is

ni2

f(xgc) = thngQCJ = sign(xg)LhHJ ZQ_kxg(k) . (41)

k=1

The statement thaf : supp(xzo.) — Z is injective is equivalent to the claim that receiver 1 can
recoverzq. from f(xs.). Now, viewed as a real number, the support:gf has a spacing af "2,
and since

Lhi2| > 2™2, (42)

the spacing of the support df12 |z, is greater than 1. Hence the integer parf sends two
different values of{ h12] x4, to two different integers, i.ef is injective. An analogous argument
shows that receiver 2 can recovsy..

Since each receiver can recover the common portion of teeaning signall(40), the arguments
of Lemmasg 2 and]3 in Sectidn 4 apply without modification todhannel under scrutiny. Thus, the
region is given by((22).

We now show that at most one bit per user is lost relative tac#pacity region when each of
the signalszi., z1p, T2c, T2, is uniformly distributed on its support. We first prove a cargble
result for random variables with support sets that areragtic progressions of integers.
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Lemma?7. Let A, B € Z be two arithmetic progressions,

A={0,a,2a,...,(My—1)a} =[0,Ms—1]-a
B={0,b,2b,...,(Mp —1)b} = [0,Mp — 1] - b.

If X andY are independent and distributed uniformly drand B, respectively, then
HX+Y)+1>HX*"+Y") (43)
for any random variables(*, Y* with support setsd, B.

Proof. Scaling the setgl and B by the same number does not change the relevant entropies, so
may assume without loss of generality thatl(a,b) = 1. We first estimate the cardinality of the
sumsetd + B={a+b:a € A, b€ B}. Note that

A+BC{0,...,a(Mg—1)+b(Mp—1)},

from which it follows that
|A+ B| < aMy +bMp. (44)

Sincesupp(X* 4+ Y*) C A + B, we therefore have the estimate
H(X*+Y") <log(aMa + bMp). (45)
Next we calculate the maximum probability mass in the digtion of X + Y/,

5= P(X+Y =z). 46
pi= max (X + ) (46)

Foreachk with0 < k < Mp — 1 let
Sk =A+kb=1[0,Msg—1]-a+kb.

Fork outside the intervad, M p — 1], Sy is defined to be empty. A typical element®f .S, with
k' < k can be written as
ga+kb=qa+ kb,

for somed < ¢ < M4 —1and0 < ¢’ < Mp — 1. Rearranging, we have
(k—K)b=(d —qa,
which by the assumptioged(a, b) = 1 implies
al(k — k).

Thus
Sy NSy #0 implies k=k moda. (47)

Letting A and B be shifts of4 and B so that a median point lies at the origin, the maximunfiin (46)
occurs atr = 0, and it can be seen from the conditionl(47) that

My M
Hx,y:z+y=0,2 € A,y € B}| < min (TA,—B> )
a
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Since for eacty € A,y € B, P(X = z) = 1/MqandP(Y = y) = 1/Mp, andX andY are
independent,

—logp = —log Z P X =2zY =y)
rz€A,yeB
z+y=0

e Hmyiwty=02cAyec By
& MaMp

MsMp

min(4, £2)

= max(log(aM_y),log(bMp)) .

> log

Hence, from equatior_(45),

H(X+Y)=— Y p(z)logp(x)
z€A+B

>— > p(z)logp
z€EA+B (48)
> max(log(aMy,),log(bMg))
> log(aMa +bMp) — 1
> H(X* +Y*) —1.

This proves the lemma. O

It is not difficult to extend the proof of the Lemma to show theanoptimality of uniformly
distributed inputs for the channel defined byl(38). Let

U= [ha) Y27 (k) (49)
k=1
and s
Vo= |hio] > 27 Fas(k), (50)
k=1
so that
y=U|+[V]
Also, let

A =supp(U) = {0, [hir ], .-, [har ) (2" — 1)} - 2771,
{0, | hig)s - [hia ) (272 — 1)} - 2772

Assume without loss of generality (by symmetry of the défing of U andV) thatn;; > ns.
We will work with scaled, integer-valued versionsiofandV': let

A = 2Mt

and

U:=AU, V:=AV.

30



Let M4 = A andMp = 22, The supports sets are
A={0,1,...,(Mg—1)}- |ha]

and 5
B={0,1,...,(Mp — 1)} - A(|hp|27"2).

Correspondingly, the integer part of a numbés replaced by quantization to the greatest multiple

of A less than or equal to
t

o= L]

In the notation of Lemm@]7, the spacings in the sétand B are, respectivelyy = |h;; | and
b = A(|hi]27™2). Proving the equivalent of Lemnia 7 f@(U) + Q(V) will imply the same
result fory = |U| + | V| by the scale-invariance of discrete entropy.

With this notation, we have analogously fol(44) that

CLMA-l-bMB

QUA) +Q(B)| < A1

(51)

The next step is to compute a bound on the maximum probabhilitys inQ(U) + Q(V'),
p*=maxP(Q(U) + Q(V) = z).
For anyz, we have

fueUveV:Qu) +Qw) =z} C{ucUveV :utvcr,z+2A)}
= U {fucUweV iutv=a}.
*€[z,x+2A)
Thus
p* < max Z P(U +V =z*)
z*€[z,x+2A) (52)
<2Ap,

wherep is defined in[(46). Combining (51) and {52), the desired teasnlv follows exactly as in
equation[(4B) of Lemmia 7, giving that

H(U+V)>HU* +V*) —2.

The near optimality of the uniform distribution applies tch entropy constraint i (22), and
thus each user loses at most 2 bits as claimed.

Step 3: Positive inputs and channel gains (lose 2 bits). From Ste®’, the uniform distribution is
nearly optimal for Channel 2. Viewing the inputs as comirapira constellation in the real line, it
is not hard to see that negating a cross gain does not chagge #re output statistics, therefore
preserving the mutual information. Similarly, each of theput entropies i (22) is reduced by at
most 2 bits if the inputs are restricted to be positive.

Step 4: Addition over 5 (lose 2 bits). Consider the binary expansion of the output. In switching
to modulo 2 addition, every output bit that has some entropgmusing real addition is uniformly
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random, except possibly the two most significant bits thseadue to carry-overs. Thus, at most
two bits are lost in each of the entropy constraintg of (22).

Step 5. Channel gains of the form 2" (lose zero bits). Channel 5 is the deterministic channel
(20). The optimal input distribution is uniform and the maitinformation is unchanged when the
gains are quantized to the nearest power of 2. In fact, theoitigs of the channel in Step 4 and the
channel of Step 5 are identical.

Al. Complex Gaussian IC

The proof of Theorernl1 in the generality of complex-valuethgand signals is very similar to the
proof of Theoren 2 for the real-valued channel presentecatighg All. an@ Al.. We focus on the
proof that

CaussianC Cdet+ constant

the other direction follows by reversing the steps and ugiegargument for the real-valued channel,
and is omitted. The eventual gapdi bits, roughly double that of the real-valued case.
The complex Gaussian interference channel is given by

y1 = hi1x1 + hiezo + 21

Y2 = ho121 + hooxo + 22,

wherez; ~ CN(0,1) and the channel inputs satisfy an average power constraint

| N
NZE[mik] <P, i=1,2.
k=1
By scaling the outputs, we may set= 2 andz; ~ CA/(0,2). We assume without loss of generality
that the cross gains have zero phase, i.§hlg) = Im(ha;) = 0, since each of the receivers may
simply rotate the output appropriately. These assumptdioss to write the output of the channel

as
)1 ) ) (2
= + + : 53
<y1[> <h{1 hﬁ 11 0 h% ToJ 211 ( )

and similarly fory,. Here R and I denote real and imaginary part, respectively, angd z;; ~
N(0,1).

Step 1. Peak power constraint instead of average power constraint (lose 8 bits). The argument
is almost identical to that of Step 1[in Al.. We truncate thmuis, letting the part of the input;r
that exceeds the peak power constraint be

0
#ir = |wir) = sign(zir) Y wir(k)27",
k=—o0
and let
o
Tip = Tir — Tir = sign(x;R) ZwiR(k)Q_k
k=1
be the remaining signal, with similar definitions fey; with I replacingR. The signalst; g, Z;s
are defined so that; = z;r + jZ,; satisfies the peak power constrainRofLet y; be the output at
receiver; due to the truncated inputs. The development in Sted 1 df Wdws that

I syl) < 1@ g)) + H(@y) + H(3) . (54)

i
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The estimate
H(#N) <4N

follows from the argument of Lemnid 6, by translating an aaljt strategy for a point-to-point
deterministic channel to a corresponding Gaussian chavitteENR = 1, with a loss of at most 3
bits (1.5 bits per complex dimension). The point-to-poirguSsian channel has capacity 1, giving
the estimate.

Step 2: Truncate signals at noise level, remove fractional part of channe gains, and remove
noise (lose 5.1 bits). The argument repeats that of Step £1inlAl., and is omitted.

Step 2': Single letter expression, decoupling of real and imaginary components, and near
optimality of uniform input distribution (lose 6 bits). After decoding the message of the intended
user, each receiver has a clear view of the common messade afiterfering user. Thus, the
capacity region of the channel of Step 2 is given[by (22).

Next, using a similar argument to that in St&dor the real-valued case, it can be shown that
i.i.d. uniformly distributed inputs are nearly optimal omadified channel, with a loss of at maist
bits per user. The modified channel replaces the direct/giwith || + 11|, and sets}, = 0.
The support of the output is at least as large in the modifieshiodl under uniformly distributed
inputs, and moreover, the output is independent over tinteis Tthis step decouples the real and
imaginary components. The argument for the real-valuediredlacan now be applied to the real
and imaginary components of the complex channel.

Steps 3, 4, and 5: Positive inputsand channel gains (lose 4 bits), addition over Fy (lose 2 bits),
channel gains of the form 2". Steps 3 and 4 are identical to the real-valued case. In Stbp 5t
1

direct gaing %t + |11 | are replaced withos(nI+1hiD] | Similarly, the cross gaing?,| and|h,
are replaced wit2llos Ih1:|] and2lies 1h5i1) | respectively.

Step 6: Combinereal and imaginary parallel channels (lose 4 bits). Now, the resulting deter-
ministic channel from Step 5 is precisely the same as therdetistic channel in the real-valued
case, but with twice as many channel uses (one each for thamgamaginary part of the signal).
Hence the capacity region of the complex deterministic nkhis the same as for the real-valued
channel, but scaled by two. Note that the capacity regiothi®deterministic channdl (1L.8) exactly
doubles when all the channel gains are squared. We have

g2log(AfI+1REN)] < ol1+1oB(EP+IALI%)] _ gl+[log SNR]

which shows that changing the gain 28°¢SNR:] changes at most one bit of the output in each
complex dimension. Similarly, at most one bit of the outputegeiver 1 is changed by changing
the cross gaire2Llos b1l to 2llegINR2] - Thus, at most 4 bits per user are lost in making this final
modification to the channel.
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