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ABSTRACT

In this paper we study the behavior and correlation properties of some spreading sequences when applied to a system using
nonlinear offset quadrature phase-shift keying-type modulations. These signals, which include as special cases continuous-
phase modulation schemes, can be designed to have very low envelope fluctuations or even a constant envelope, making
them compatible with a very low-cost and power-efficient grossly nonlinear amplification. We use an analytical method to
derive the correlation of those signals. The resulting expressions are then applied to maximum-length sequences, Kasami,
and Tomlinson, Cercas, Hughes sequences. It is shown that Tomlinson, Cercas, Hughes sequences have better correlation

properties than other spreading sequences. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Pseudorandom sequences are widely employed in com-
munication systems. Pseudorandom spreading sequences
are used to differentiate between users in code division
multiple access although their use is not restricted to
spread spectrum systems. In fact, pseudorandom sequences
are employed for synchronization [1] and channel esti-
mation purposes [2], and position and range measure-
ments [3]. When employed in code division multiple
access communication systems, spreading sequences asso-
ciated with different users should have a small correlation.
Although the cross-correlation between orthogonal codes
(e.g., Hadamard codes [4]), is zero, the corresponding
sequences are no longer orthogonal after being submitted
to non-ideal channels (e.g., the system is not synchronous
and/or we have time-dispersive channels). The sequences
used for synchronization, channel estimation, and posi-
tioning purposes should also have good autocorrelation
properties, close to a Dirac function. Many families of
pseudorandom sequences have been intensively studied to
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identify good sets that exhibit good correlation properties,
that is, autocorrelation and/or cross-correlation. However,
the majority of these studies usually assume ideal condi-
tions that can be easily modeled and studied, such as linear
modulations and ideal linear transmitters (i.e., with linear
amplifiers), which do not exist in the real world.

On the other hand, it is well-known that efficient power
amplification is important for communication systems in
general and wireless communications in particular. Typ-
ical quasi-linear amplifiers are only linear for signals
with small amplitude, which means that we either have
high back-off (and, consequently, small amplification effi-
ciency) or we need to work in the nonlinear region with
significant signal distortion. Although this is especially
serious for multicarrier schemes [5, 6], it is also impor-
tant for single-carrier modulations [7, 8]. Whenever we
need very high power amplifiers with low complexity
we have to employ grossly nonlinear power amplifiers.
This class of amplifiers has lower implementation com-
plexity, higher amplification efficiency, and output power
than linear amplifiers. However, grossly nonlinear power
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amplification should only be used with signals with con-
stant or quasi-constant envelope, to avoid nonlinear distor-
tion effects. Because of its importance in present and future
systems, it is important to derive a model that can easily
characterize the signals at the output of these nonlinear, but
efficient, amplifier devices.

Continuous phase modulation [9, 10] schemes are
constant-envelope modulations that include as special
cases minimum shift keying (MSK) [11] and Gaussian
MSK [12], among others. These modulations can be
denoted as OQPSK-type (offset quadrature phase-shift
keying) modulations because they can be decomposed as
a sum of OQPSK components [13,14]. OQPSK-type mod-
ulations also include other ‘non-continuous phase modu-
lation” schemes with almost constant envelope and good
tradeoffs between spectral and power efficiencies [15-17].
OQPSK-type schemes are particularly important in the
context of nonlinear amplification because an OQPSK-
type signal retains its OQPSK-type structure when submit-
ted to bandpass memoryless nonlinear devices, the usual
model for power amplifiers [18], which simplifies the
performance evaluation and receiver design [19, 20].

In this paper we consider the use of pseudorandom
spreading sequences with nonlinear OQPSK-type signals.
The main purpose of this study is to present analytical
expressions to evaluate the correlation properties of
pseudorandom sequences when submitted to a modu-
lated system including nonlinearities. Its performance is
studied and compared for three families of pseudoran-
dom sequences, specifically maximum-length sequences
(MLS), Kasami sequences, and Tomlinson, Cercas,
Hughes (TCH) sequences, derived from the correspond-
ing code sets. The analytical expressions deduced can be
easily used with other types of pseudorandom sequences
and the obtained results provide more information than
the correlation properties of the sequences alone, or
when they are submitted to a linear system. These
results may contribute to the implementation of more
reliable systems.

This paper is structured as follows. After this introduc-
tory section, Section 2 presents OQPSK schemes, distin-
guishing its parallel and serial representations. In Section 3
the effects of nonlinearity applied to OQPSK-type modula-
tions is studied. Section 4 presents the analytical derivation
of the correlation properties for the type of signals used
in this paper. Section 5 briefly introduces the pseudoran-
dom sequences considered in this paper. Section 6 presents
the main results obtained with the derived expressions and
Section 7 concludes the paper.

2. PARALLEL AND SERIAL OQPSK
SCHEMES

In a QPSK scheme, the signal to be transmitted can be
denoted as xgp(f) = Re{xp(t)exp(j2m fct)} , where fc
is the carrier frequency and x;,(7) is the complex envelope,
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given by

Xp(t) =Y anry(t —2nT) 1)

where a, = a}, +ja,? with a}l = +1and a,? = %1 are the
‘in-phase’ and ‘quadrature’ bits of a length-N data block to
be transmitted, 7" is the bit duration and r(¢) is the adopted
pulse shape. Clearly, we can assume the QPSK signal as a
sum of pulse-amplitude modulation signals with complex
symbols separated by 27, because we are transmitting 2
bits per symbol.

For an OQPSK scheme, we have the same signal to
be transmitted, xgp(t) = Re{xp(t)exp(j2m fct)}, but in
this case the OQPSK signal can be regarded as a sum
of two pulse-amplitude modulation signals with symbols
separated by 27" and an offset 7" between them. This corre-
sponds to the parallel representation of an OQPSK signal
given by

Xp(0) =Y ahrp(t —2nT) + Y agry(t —2nT = T)

The average bit rate is 1/7, because we transmit 2 bits
per symbol.
An alternative form to describe the OQPSK signal is

xp(t) = Zaf,rp(t—nT) 3)

In this case, ab, has both in-phase and quadrature compo-
nents, which appear alternately, that is,

I +1

Ayip = , neven
an=1 g , )
ja(n+1)/2=:|:j , nodd

In both representations of the OQPSK signal (i.e., (1)
and (3)), we are assuming that the complex envelope is
referred to f.. By shifting the reference carrier from f;
to f1 = fc + 1/4T, the signal can be represented in a
‘serial” (BPSK-type) format. In fact, we have xpp(t) =
Re{xs(t) exp(j2m f1)}, where

(1) = xp(t) eI 72T 5)
which means that

Xs(t) = xp(1) eI =
= [(Za};a(t —nT)) rp(z)} e ITIT =
= |:(Z a8t — nT)) e_j”2tT:|[rp(t)e_j”2tT] =

—imal. it
:Za?,e TAT p(t) e/ 2T (6)
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