
Reconciling privacy and efficient utility management
in smart cities
David Rebollo-Monedero1*, Andrea Bartoli2, Juan Hernández-Serrano1, Jordi Forné1 and
Miguel Soriano1,2

1 Department of Telematics Engineering, Universitat Politècnica de Catalunya (UPC), C. Jordi Girona 1-3,
E-08034 Barcelona, Spain

2 Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Av. Carl Friedrich Gauss 7, E-08860 Castelldefels,
Barcelona, Spain

ABSTRACT

A key aspect in the design of smart cities is, undoubtedly, a plan for the efficient management of utilities, 
enabled by technologies such as those entailing smart metering of the residential consumption of electricity, 
water or gas. While one cannot object to the appealing advantages of smart metering, the privacy risks posed 
by the submission of frequent, data-rich measurements cannot simply remain overlooked. The objective of this paper 
is to provide a general perspective on the contrasting issues of privacy and efficient utility management, by surveying the 
main requirements and tools, and by establishing exploitable connections. 
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1. INTRODUCTION

Strongly increasing demographic flows towards cities
call into question the environmental, economic and social
sustainability of current urban models. Smarter utility
management emerges as the answer to continue provid-
ing citizens with services as essential as electricity, water
or gas, to the point that the very future of human pros-
perity and well-being may hinge on how we as a people
recognise the necessity for efficient use or resources [1].
Fortunately, such unfaltering trends are matched by a
breathtaking technological progress that may prove of
great assistance in attaining the efficiency improvements
we seek in utility management and many other aspects of
smart cities.

While one cannot object to the appealing improvements
enabled by technologies such as those entailing smart
metering of utility consumption, the privacy risks posed by
the submission of frequent, data-rich measurements can-
not simply remain overlooked. The extensive literature on
privacy for the smart grid abounds with very real exam-
ples of issues derived from smart metering [2–5]. Figure 1,
adapted from [6], plots the consumption of power over
time in an individual household, recorded on a minute-

by-minute basis, presented to support the fact that a
surprising amount of individual and social behavioural
patterns may be inferred from it.

Having succinctly motivated the contrasting aspects of
privacy and smart utility management, the object of this
manuscript is to offer a quick glance at the connection
between privacy requirements in smart metering and the
privacy-enhancing technologies available. More specifi-
cally, our goals are as follows.

� Perhaps, the most extensively studied aspects of
privacy for smart metering, or any information
system, deal with unauthorised access to sensitive
data, by means of authentication, data access control
policies and confidentiality, implemented as crypto-
graphic protocols [2,3,7]. In our exposition, we adopt
a fresh perspective that attempts to go beyond well-
established solutions for confidentiality. Indeed, we
describe fairly diverse genres of privacy-enhancing
technologies originally conceived for a wide vari-
ety of information systems, contributing to illustrate
their applicability to issues pertaining to the efficient,
smart management of utilities in the cities of the
foreseeable future.
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Figure 1. Example of electricity consumption over time for an individual household, adapted from [6].

� However, we strive to make a brief, accessible
presentation focusing on notional clarity over
technical details or thoroughness. Concordantly, we
do not pretend to provide an exhaustive review of
the state of the art on privacy technologies. Instead,
we aim to reach a wider audience of researchers in
the field of smart utility management, not necessar-
ily familiar with the intricacies of privacy-enhancing
mechanisms, seeking an introductory overview with
emphasis on conceptual breadth over technical depth.

� Last but not least, we hope that the conceptual
connections drawn here between requirements and
tools serve as a valuable start point for the researcher
making preliminary acquaintance with the subject.

The remainder of the paper enumerates privacy
requirements, analyses related privacy technologies, delves
into privacy metrics, and concludes with remarks on the
interplay between privacy and system usability.

2. PRIVACY RISKS IN SMART
METERING

Further to the well-established threats pertaining to
confidentiality in advanced metering infrastructures, we
would like to briefly enumerate privacy risks addressed by
a less traditional type of privacy solutions. For the sake of
clarity, along with the enumeration of risks, we obligatorily
make a succinct introductory allusion to the corresponding
privacy-enhancing technologies, which will be explored in
the next section in matching order.

� Eavesdropping. We argued in the introductory
section that a surprising amount of confidential
information may be inferred from precise, frequent
measurements of utility consumption. Consequently,
the unintended disclosure of such measurements
poses a serious privacy risk, especially in wireless
networks, exposed to illicit eavesdropping. The
problem of controlling the access to the contents
of sensitive data in communication systems is tra-
ditionally accomplished by means of cryptographic
mechanisms, also applicable to the more specific case
of smart utility management. Confidentiality may be
defined in a general manner as the protection of data
from unauthorised disclosure [8]. In this paper, how-
ever, we shall prefer the more restrictive semantics
referring only to the protection of the contents of the
data via encryption. Traffic analysis, essentially infer-
ring information merely from the flow of encrypted
packets through a network, is a problem related to
confidentiality whose importance warrants a separate
subsection in the present manuscript.

� Traffic analysis. Communication of utility-related
data between smart metres and utility companies
may conveniently reuse pre-existing general-purpose
networks, such as the Internet, sharing a variety of
traffic exchanged among multiple parties. In addition,
the frequency and size of such utility data may be
efficiently adapted to the consumption patterns and
requirements of different customers and companies
at different times. Under these practical assumptions,
message encryption is insufficient to mitigate all pos-
sible kinds of privacy risks derived from network



eavesdropping. Concealing the content of data
packets hinders attackers in their efforts to learn
the information exchanged, but does not prevent
those attackers from unveiling who is communicat-
ing with whom, when or how frequently. We shall see
that anonymous-communication systems encompass
a large family of solutions designed to address the
latter problem.

� Statistical disclosure. A variety of scientific stud-
ies, particularly research on efficient utility manage-
ment in smart cities, may benefit greatly from the
publication of statistical databases containing utility
consumption information of customers, related to
demographic information. Unfortunately, wide dis-
closure of such sensitive information poses serious
privacy concerns. This relevant dilemma is commonly
tackled under the mild assumption that the slight
perturbation of certain attributes, exploitable to infer
the identity of the individuals involved, should not
severely affect underlying statistical correlations. In
the next section, we shall illustrate the fundamental
principles of such perturbative techniques, within the
field of statistical disclosure control (SDC), in the
context of smart metering.

� Consumption profiling. Precise, frequent measur-
ing of utility consumption is dangerously prone to
user profiling, in the sense of analysis of personal
behavioural patterns. The concept of hard privacy
refers to the preservation of privacy by the user

itself, simply by minimising, obfuscating or perturb-
ing the information released, without the require-
ment of trusted intermediaries [9]. In the context of
smart metering, we must address the practical case
when the intended recipient of the data, namely the
utility company, may not be fully trusted by the
customers, but a minimum amount of accurate data
is needed for billing. Cryptographic data aggrega-
tion may be employed to reveal only the aggregated
consumption of a collective users to the utility
company, preventing consumption profiling on an
individual basis.

The flow of utility-related information and the privacy
risks derived, according to the aforementioned list, are
visually summarised in Figure 2.

3. RELATED PRIVACY-ENHANCING
TECHNOLOGIES

We now proceed to offer a brief overview of privacy-
enhancing technologies addressing the requirements
itemised in the previous section. To make our exposi-
tion more concrete from the standpoint of system design,
an example of architecture containing the main elements
involved in the protected communication of utility mea-
surements is diagrammatically represented in Figure 3.

Smart Meter
Utility Company:

Consumption Profiling

Data Transmission:
Eavesdropping & 
Traffic Analysis

Figure 2. The utility-related information flow leads to several sources of privacy risks, including confidentiality violation, traffic
analysis, statistical disclosure and user profiling based on consumption.
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Figure 3. Example of architectural elements involved in the privacy-enhanced communication between smart metres and
utility companies.

This diagram illustrates more concretely the information
flow of Figure 2, pointing out specific privacy vulnerabil-
ities in an advanced metering infrastructure and the types
of mechanisms capable of addressing them. We would like
to recommend bearing this depiction in mind when read-
ing the upcoming subsections on the respective classes of
privacy-enhancing technologies.

Before we proceed, we should hasten to point out that
the adjective usability is used in the context of data accu-
racy or system functionality, instead of the more common
qualifier utility. The reason is to prevent confusion with
the term utility in reference to electricity, water or gas
provision.

3.1. Confidentiality via cryptographic
mechanisms

We have stressed the serious privacy risks posed by the
unintended disclosure of frequent, data-rich measurements
of utility consumption in smart metering. These risks are
clearly manifest in the abundant literature [2,3], and graph-
ically evidenced in the introductory section with Figure 1,

adapted from [6]. In this subsection, we review confiden-
tiality issues solved through the implementation of crypto-
graphic mechanisms [8], where by confidentiality we mean
the restriction of the access to the contents of any sen-
sitive information related to smart utility management to
its intended recipients. The related issue of traffic anal-
ysis, even when encrypted, is treated separately in Sec-
tion 3.2. Our necessarily brief exposition intends to serve
merely as a conceptual introduction to the subject, partly
because of our focus on less traditional privacy-enhanc-
ing mechanisms in subsequent subsections. More extensive
studies on such type of mechanisms from a more technical
perspective include [2, 3].

Complete provision of confidentiality must address a
number of issues that might be presented along three
dimensions, space, time and layer, which we depict in
Figure 4 and proceed to describe next.

As far as space or network topology is concerned,
encryption must enforce end-to-end confidentiality, pre-
cluding any intermediate nodes or entities from eavesdrop-
ping, along the path from a sender to a receiver, typically
the smart metre and the utility company, respectively.
Hop-by-hop confidentiality refers to the principle that not
only the contents, but also certain headers with routing
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Figure 4. Provision of confidentiality along the dimensions of space, time and layer.

information may be encrypted, in such a manner that a
specific piece of information may be accessed only by
the routing nodes requiring it. Even if routing headers are
encrypted, traffic analysis may exploit size and timing to
infer the path followed by a packet through the network,
an additional problem whose solutions are discussed in
Section 3.2.

Because of the low-power, low-complexity constraints
present across most of the topology of a typical
communication network for smart utility management,
symmetric block cyphers such as Skipjack, RC5, AES and
Twofish, are most suitable for data secrecy [10]. Although
the computational cost of asymmetric cryptographic
operations has hindered its application in constrained
devices, recent improvements in elliptic-curve cryptog-
raphy have enabled proposals for the smart grid [11].
Obfuscating not only the data but also the code con-
tained in a potentially compromised device, such as a smart
metre, will undoubtedly make it harder for an attacker to
gain access to sensitive information such as security cre-
dentials [12], especially if the obfuscation methods vary
across devices.

Secondly, the dimension of time obeys to the require-
ment of maintaining confidentiality over the entire
lifespan of the communication network. Specifically,
forward secrecy is the requirement that no node should
be able to read any future messages after leaving the net-
work. Backwards secrecy requires that a newly joining
entity be unable to read any previously transmitted mes-
sages. In order to fulfil such requirements, reliable key-
management protocols must be implemented throughout

the communication network in the advanced metering
infrastructure [13, 14]. An example of key-management
platform specifically recommended for smart grids is Zig-
bee PRO (ZigBee Alliance 2400 Camino Ramon Suite 375
San Ramon, CA 94583 USA) [15].

Thirdly and lastly, the combination of cryptographic
mechanisms operating within different layers of the com-
munication protocol reinforces the overall communication
security, fulfilling the requirements of end-to-end and hop-
by-hop confidentiality aforementioned. Encryption at the
physical layer protects headers right at the lowest level
of the protocol stack thereby being the most conservative
alternative. However, security in wireless networks is most
commonly implemented at the next layer, specifically at
the media access control sublayer, part of the data link
layer. This type of security, in addition to protecting the
contents of the data exchanged at this level, contributes
to hinder attackers in their efforts to perform traffic
analysis. Obviously, traffic analysis can also be hindered
to a certain extent by encryption at the network layer.
Encryption only at the application layer, while protecting
the contents of the information actually exchanged
between sender and receiver, is clearly not as resilient
against such analysis.

3.2. Anonymous-communication systems

We have mentioned that message encryption is insufficient
to mitigate privacy risks derived from traffic analysis based
on routing, size, timing and frequency patterns of messages



between customers and utility companies. Motivated by
these risks in a general communication context, numerous
privacy-protecting technologies referred to as anonymous-
communication systems emerged. The fundamental strate-
gies to counter traffic analysis based on message routing
and size involve header encryption, message padding and
splitting and even the insertion of dummy traffic. However,
such countermeasures fail to address the risks posed by the
analysis of the time instants in which messages are sent,
routed and received. The first anonymous-communication
system attempting to also counter timing analysis was the
Chaum mix, essentially a trusted node that delays and
re-orders messages with the purpose of providing unlinka-
bility between the incoming and outgoing messages.

A wide range of sophisticated variations on the original
mix shortly ensued [16], with the same purpose. One of
the most relevant varieties is a family of mixes known as
threshold pool mixes. The leading idea is for the mix to
collect a number of incoming messages, store them in the
internal memory of the mix and output some of them when
the number of messages kept in its memory reaches a cer-
tain threshold. In order to reduce the correlation between
outgoing and incoming messages, the mix modifies the
flow of messages by resorting to two strategies, namely the
delay and re-ordering of messages.

The precise manner in which the mix operates is the
following. Consider a threshold pool mix in steady state,
forwarding batches of k messages at a time, with a buffer
of n > k messages thus keeping at least

mD n� k > 0

messages at a given time. At some point, the mix contains
its minimum of m messages and waits for k additional mes-
sages to come in, for a total of n D m C k. Once this
threshold n is reached, k messages are drawn randomly,
independently and uniformly among all stored messages,
regardless of the order in which they arrived, and sent

out simultaneously. This leaves the mix again at its min-
imum m, and the process is repeated from that point on.
Figure 5 is a snapshot of the operation of a threshold pool
mix with k D 2 and nD 5.

Naturally, chains of mixes can be implemented to dis-
tribute trust, and, certainly, delaying messages affects the
usability of these systems. Nevertheless, higher delays pro-
vide users with a higher degree of message unlinkability.
In short, mix systems pose an inherent trade-off between
anonymity and delay, in addition to the overheads derived
from any encryption or padding.

Alternative low-latency anonymous-communication
systems appeared later to provide routing anonymity on
the Internet to a certain extent, without the price of
message delay. Onion routing and subsequent improve-
ments termed the second-generation version of onion
routing (Tor) [17], consist in networks of trusted rout-
ing nodes that, unlike mixes, do not introduce additional
delays. In a nutshell, a user wishing to send a message
chooses a chain of onion routers and encrypts the mes-
sage in a multilayered manner—hence the onion metaphor.
This multilayered encryption is such that each router, after
decrypting—peeling off a layer of encryption—, retrieves
the address in plaintext of the node immediately sub-
sequent in the path, along with an encrypted portion
meant for said next node, all the way to the final recip-
ient. We would like to stress that, as these systems boil
down to anonymously relying messages without introduc-
ing delays, they are susceptible to traffic analysis based on
timing comparisons.

Yet another type of anonymous communication sys-
tems builds upon the principle of user collaboration with a
limited degree of trust. In the Crowds protocol [18, 19],
for instance, a group of users will collaborate to submit
their messages to a specified recipient. Simply put, when
sending a message, a user flips a biassed coin to decide
whether to submit it directly to the recipient or to send it to
another user, who will then repeat the randomised decision.
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Adding an initial forwarding step substantially increases
the uncertainty of the first sender from the point of view
of the final receiver, at the cost of an additional hop. In the
end, anonymity comes at the expense of traffic overhead
and delay.

3.3. Statistical disclosure control

We have pointed out the convenience of the publication
of confidential statistics such as utility consumption, for a
variety of demographic studies, particularly those dealing
with smart grid efficiency. The objective of SDC [20] is to
control the risk that information about specific individuals
can be extracted from amongst statistical summary results.
In the SDC terminology, a microdata set is a database
table whose records carry information concerning individ-
ual respondents, either people or companies. This database
commonly contains a set of attributes that may be classified
into identifiers, quasi-identifiers and confidential attributes.
Firstly, identifiers allow unequivocal identification of indi-
viduals. This is the case of social security numbers or
full names, which would be removed before the publica-
tion of the microdata set. Secondly, quasi-identifiers, also
called key attributes, are attributes that, in combination,
may be linked to external information to re-identify the
respondents to whom the records in the microdata set refer.
Examples include address, gender, age, job type, height
and weight. A notorious fact is that 87% of the popula-
tion in the USA may be re-identified solely on the basis
of the triple consisting of their ZIP code, gender, and date
of birth, according to 1990 census data [21]. Finally, the
dataset contains confidential attributes with sensitive infor-
mation on the respondent, such as salary, religion, political
affiliation, health condition and electricity consumption.
The classification of attributes as key or confidential may

ultimately rely on the specific application and the privacy
requirements the microdata set is intended for, and in fact
consumption patterns could be conceivably construed as
key attributes as well.

Hence, from the standpoint of privacy protection, mere
removal of identifiers is in general insufficient in the publi-
cation of microdata sets for statistical studies. Intuitively,
perturbation of numerical or categorical key attributes
enables us to preserve privacy to a certain extent, at the
cost of losing some of the data usability, in the sense
of accuracy with respect to the unperturbed version. k-
Anonymity [22] is the requirement that each tuple of key-
attribute values be shared by at least k records in the
dataset. This may be achieved through the microaggrega-
tion approach illustrated by the simple example depicted
in Figure 6, where gender, age and ZIP code are regarded
as key attributes and monthly average utility bill as a con-
fidential attribute. Rather than making the original table
available, we publish a k-anonymous version containing
aggregated records, in the sense that all key-attribute values
within each group are replaced by a common representative
tuple. As a result, a record cannot be unambiguously linked
to the corresponding record in any additional database
assigning identifiers to key attributes. In principle, this pre-
vents a privacy attacker from ascertaining the identity of
an individual for a given record in the microaggregated
database, which contains confidential information.

Even though the simplicity and algorithmic tractability
of k-anonymity as a measure of privacy makes it a widely
popular criterion in the SDC literature, it is not without
shortcomings. Indeed, while this criterion prevents
identity disclosure, it may fail against the full disclosure
of the confidential attribute. Concretely, suppose that a
privacy attacker knows Alice’s key attribute values. If the
attacker learns that she is included in the released table
depicted in Figure 6 and has access to external information

Name Gender Age
ZIP 

Code
Utility

Bill

Eve F 29 94024 $78

Dave M 26 94305 $43

Charlie M 29 94024 $65

Bob M 34 90210 $115

Alice F 32 90210 $112

Faith F 33 90213 $109

Gender Age
ZIP 

Code
Utility

Bill

M 28 94*** $78

M 28 94*** $43

M 28 94*** $65

F 33 9021* $115

F 33 9021* $112

F 33 9021* $109
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Figure 6. Hypothetical example of k-anonymous micro-aggregation of published data relating demographic information with utility
consumption for a population of individuals, with k D 3.



on her key attributes, then the attacker may conclude that
her monthly average bill amounts to a figure between $109
and $115, fairly similar values. This is known as similarity
or homogeneity attack, meaning that values of confiden-
tial attributes within a group may still be quantitatively or
qualitatively similar.

From a more general, probabilistic perspective, the
skewness attack exploits the difference between the prior
distribution of confidential attributes in the entire popula-
tion, and the posterior distribution of those attributes within
a specific group of the table. Assume, in the example of
Figure 6, that the average utility bill across the popula-
tion of study is $87, and that this is known by the privacy
attacker. With the information revealed by the published
table and the knowledge of Dave’s key attributes, this pri-
vacy attacker will gain further knowledge in a statistical
sense. In particular, the attacker will deduce that Dave’s
monthly bill is in the range from $43 to $78, well below
the population’s average, or at most $65 with 67% likeli-
hood. A background-knowledge attack exploits additional
side information to further refine statistical inferences. For
instance, if Dave were the only member in the group listed
as a graduate student living in a university dorm and the
rest were known to live in family detached houses, the
attacker might infer that Dave is likely to have the lowest
utility bill, $43.

Intuitively, we seek to introduce the smallest pertur-
bation in the key attributes, thereby preserving as much
as possible the statistical quality of the published data.
A number of algorithms for microaggregation have been
developed, with the goal of minimising the perturbation
of the key attributes with accordance to a variety of dis-
tortion measures, while meeting a given k-anonymity con-
straint [20]. Once again, we encounter privacy-enhancing
mechanisms incurring a cost, this time in terms of data
usability.

Among the best known algorithms in the SDC
community, the maximum distance (MD) algorithm [23]
and its less computationally demanding variation and
the MD to average vector (MDAV) algorithm [24, 25],
are fixed cluster size algorithms that perform partic-
ularly well in terms of the distortion they introduce,
for many data distributions. The probability-constrained
Lloyd algorithm generalises certain optimality condi-
tions originally devised for quantizer design [26] and is
capable of outperforming MDAV in a variety of syn-
thetic and standardised datasets [27], albeit at the expense
of increased computational complexity and mathematical
sophistication.

3.4. Hard Privacy against consumption
profiling

We have introduced the concept of hard privacy [9, 28],
apropos of which, we would like to complete the privacy-
enhancing scenarios covered thus far with the compelling
case of protecting the data on utility consumption revealed

by customers. Specifically, we contemplate the pro-
tection against a potentially untrusted utility company,
carried out directly by the users themselves with no
third parties involved and by means of data-perturbative
strategies.

Among the privacy technologies explored in this work,
perhaps the avenue of perturbation of consumption pro-
files, present the greatest opportunities for open-ended
research. Mathematically formal studies of hard privacy of
user profiles include [29, 30], which investigate the sub-
mission of search queries to an information provider and
the tagging of resources in the semantic Web, respectively.
Loosely speaking, the cited work defines user profile as
a histogram of relative frequencies of activity across pre-
defined categories of interest, for example, business, sci-
ence and sports in a news context. Then, it investigates the
effects of forging bogus queries and of suppressing certain
tags in terms of privacy gains because of an effective per-
turbation of the apparent profile from the point of view of
an external observer. Costs in system usability are defined
as the relative amount of forged queries and suppressed
tags, respectively, on the account of traffic and process-
ing overheads and degradation of semantic functionality.
Finally, the cited work proceeds to analyse the maximi-
sation of the privacy gains for given usability constraints
resorting to convex optimisation techniques.

The perturbation of profile of interests from the stand-
point of an untrusted observer may be accomplished with-
out forgery and suppression of online activity, so long
as users trust and collaborate with each other. This is
illustrated by [31], which contemplates the exchange of
queries among users prior to its submission to a common
information provider.

In order to relate privacy risks in the smart grid with the
literature on antiprofiling, and more concretely [29,30], we
provide an illustrative example in which behavioural pat-
terns in electricity consumption are mathematically mod-
elled by means of simple histograms. Figure 7 depicts a
hypothetical example in which power consumption data for
a particular season (e.g. winter) is aggregated in the form of
a histogram of relative values across six four-hour periods
during the day. This histogram could, of course, be accom-
panied by the total overall consumption during the season,
so that absolute values could be recovered.

Naturally, any perturbation of the user’s accurate pro-
file with the goal of attaining a higher degree of privacy
must conform to any billing requirements or at least be
accompanied with any unaltered data needed for accu-
rate billing. Beyond such billing constraints, profile per-
turbation can, in principle, be conducted directly in any
fashion unlike the indirect query forgery or tag suppres-
sion mechanisms in [29, 30]. An exciting connection with
the work cited is that the measure of privacy proposed
involves a reference profile, commonly representing the
average consumption patterns across the population of
interest. Although details are postponed until the next sec-
tion on privacy metrics; in essence, the anonymity of a
perturbed profile is quantified as an information-theoretic



Figure 7. Perturbation of an individual user profile, capturing behavioural patterns in electricity consumption, to approach the
population’s average profile.

measure of discrepancy with respect to the population’s
average profile. The more similar to the average consump-
tion pattern, the more anonymous a user’s behaviour may
be considered.

3.5. Data aggregation against
consumption profiling

A somewhat laxer form of hard privacy, where individu-
als transform or perturb sensitive data prior to sending it
to any untrusted external party, relies on the collaboration
with neighbouring parties. More precisely, assuming that
such data can be numerically aggregated, homomorphic
encryption [32] enables several individuals to exchange
and aggregate data in such a manner that the recipient is
able to decipher the aggregated value, but no party involved
is able to unveil each of the additive parts. Assuming
that those groups of collaborating users persist through
extended periods of time, profiling of consumption habits
cannot pinpoint individual users but only characterise small
collectives. Data aggregation has been extensively studied
in the context of smart metering [33].

It must be pointed out that data aggregation is effec-
tively a form of perturbation, where each of the individual
profiles participating in the aggregation is replaced by a
common aggregated profile. An important difference with
respect to the forgery and suppression strategies described
in Section 3.4, is that unless hard privacy and data aggre-
gation are combined, simple lossless data aggregation by
itself does not permit the strategies of parameter optimi-
sation exploited in [29, 30]. Notwithstanding this differ-
ence, the number of profiles aggregated may be construed

as a tuning parameter directly impacting anonymity and
inversely affecting data usability.

In general, data aggregation may be either lossy or
lossless. Strictly speaking, it is only the former mode of
operation, lossy; the one that resorts to adding or aver-
aging consumption measurements, as assumed previously.
Lossless data aggregation merely consists in the concate-
nation of several data payloads into a single, larger packet,
thereby reducing protocol overhead.

Despite the fact that lossless aggregation employs nei-
ther homomorphic encryption nor mathematical addition, a
degree of anonymity may be attained provided that the con-
catenation of consumption measurements is decipherable
by the utility company, for instance by means of a group
key, but the correspondence of those measurements with
the users within the group aggregated remains unknown.
If individual keys are used instead, lossless aggregation is
merely a traffic-efficient solution for confidentiality.

A typical secure lossy data-aggregation solution where
end-to-end and hop-by-hop security is provided with
homomorphic encryption, is shown in Figure 8(a). A con-
crete example of lossy data aggregation is [34], where all
smart metres are connected to a substation in charge of
collecting and aggregating electricity measurements. The
solution proposed is secure as long as two smart metres
remain uncompromised.

Figure 8(b) represents a secure lossless data-aggrega-
tion method where end-to-end and hop-by-hop security
are guaranteed at the network and link layers, respec-
tively. Because consumption measurements typically con-
tain just a few bytes of data, its concatenation contributes
to reduce the relative overhead of packet headers. However,
overly long packets may translate into frequent retrans-
missions because of more likely packet errors, which in
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Figure 8. Data aggregation with end-to-end and hop-by hop-securities.

turn may cause larger energy expenditures. Taking this
into consideration, appropriate packet sizes for lossy data
aggregation are computed experimentally in [35].

4. QUANTITATIVE ASSESSMENT
OF THE FULFILMENT OF PRIVACY
REQUIREMENTS

Quantifiable measures of privacy [36] and usability are
undoubtedly essential to the assessment, comparison,
improvement and optimisation of privacy-enhancing
mechanisms for advanced measurement infrastructures
such as the smart grid, in terms of both their privacy and
usability, from both theoretical and numerical perspectives.

In this work, we shall focus on the aspect of privacy,
for which we may capitalise on the existing measures of
information, uncertainty, (attacker’s) estimation error and
diversity, which abound in the fields of information
theory [37], statistics and engineering.

Of particular significance is the quantity known as Shan-
non’s entropy, a measure of the uncertainty of a random
event, associated with a probability distribution across
the set of possible outcomes. A well-known interpreta-
tion of this entropy refers to the game of 20 questions,
in which one player must guess what the other is thinking
through a series of yes/no questions, as quickly as possible.
Informally, Shannon’s entropy is a lower bound on—and
often good approximation to the minimum of—the average



number of binary questions regarding the nature of
possible outcomes of an event, to determine which one
in fact has come to pass, intelligently exploiting their
known probabilities.

The following subsections touch upon the measurement
of anonymity and privacy for the technologies succinctly
reviewed in §3, except for those based on encryption, given
the absence of a continuous trade-off between confidential-
ity and usability for the intended recipient of the data—the
data is either made confidential or not.

4.1. Anonymous-communication cystems

In the special case of anonymous-communication systems,
described in Section 3.2 (see also Figure 5), the knowledge
of the privacy attacker may be modelled by a probability
distribution on the possible senders of a given message.
Certainly, one could measure the degree of anonymity
attained by the mere cardinality of the set of candidate
senders. The logarithm of such cardinality is in fact called
Hartley’s entropy. Loosely speaking, Hartley’s entropy
may be regarded as a best-case metric from an optimistic
point of view of users (worst or pessimistic for adver-
saries), in the sense that it represents a privacy attacker’s
thorough effort in considering any and all possibilities,
regardless of their likelihood.

A metric oriented towards an average-case scenario
would take into consideration the probability distribution
of candidate senders, or recipients, of a given message,
thereby exploiting its potential skewness. Inspired by the
aforementioned interpretation of Shannon entropy as the
effective uncertainty within a set endowed with a proba-
bility distribution, Serjantov [38] proposed it as a measure
of anonymity.

An alternative interpretation of Shannon’s entropy in
the context of privacy is offered in [36] on the basis of
the asymptotic equipartition property and the concept of
typical set [37]. Precisely, for an adversary joint estimat-
ing sequences of uncertain outcomes, rather than individ-
ually guessing single occurrences, Shannon’s entropy is a
measure of the effective cardinality of the set of candidate
sequences.

At the other extreme in the family of entropies lies
the min-entropy of a distribution, defined as the negative
logarithm of the most likely outcome. This third exam-
ple of anonymity measure associated with a set of candi-
date identities may be construed as a worst-case metric
in the sense that users are only concerned with the most
vulnerable statistical link between messages and senders
or recipients [36].

Possible measures of usability comprise average delay
and the probability that such delay exceeds a given thresh-
old tolerated by the application at hand.

4.2. Statistical disclosure control

In the particular case of SDC, reviewed in Section 3.3,
(see also Figure 6), we already defined k-anonymity as

a measure of privacy and briefly commented on several
attacks. Common measures of usability loss for numer-
ical attributes include the mean squared error between
the original and the perturbed tuples. The vulnerabili-
ties of k-anonymity motivated the appearance of a num-
ber of enhancements [39], some of which we proceed to
review. For example, p-sensitive k-anonymity incorporates
the additional restriction that there be at least p distinct
values for each confidential attribute within each
k-anonymous group. While this overcomes the similarity
attack to a certain extent, the vulnerability to the skewness
attack still remains.

Measures to address skewness compare the prior
distribution of the confidential attributes in the population
with the posterior distribution within each group of the
microaggregated data. t -Closeness is the requirement that
for each group, a specific metric of discrepancy between
those distributions should not exceed a threshold t .
A particularly useful, information-theoretic metric of dis-
crepancy between probability distributions is the Kullback–
Leibler (KL) divergence, also called relative entropy for
its relationship with Shannon’s entropy. Both Shannon’s
entropy and KL divergence are also tightly related to the
information-theoretic quantity known as mutual informa-
tion, a measure of the uncertainty in one random event
unveiled by the outcome of a second, related event [37].
Partly inspired by t -closeness, Rebollo et al. [39] define
privacy risk as the average KL divergence between the
posterior and the prior distributions for each group, a
measure that may be regarded as an average-case version of
t -closeness. This average privacy risk is then shown to be
equal to the mutual information between the confidential
attributes and the observed, perturbed key attributes.

4.3. Hard privacy and data aggregation
against consumption profiling

Last but not least, in the distinct case of hard privacy of
consumption profiles modelled as probability distributions,
presented in Section 3.4, (see also Figure 7), the concept
of KL divergence plays once more a key role. Concretely,
Rebollo et al. and Parra-Arnau et al. [29, 30] proposed to
measure the anonymity of a user’s consumption profile,
possibly perturbed, as its KL divergence with respect to
the average profile across the entire population. When the
population’s profile is taken to be the uniform distribu-
tion, this divergence boils down to being equivalent to
Shannon’s entropy.

Leveraging on a celebrated information-theoretic
rationale by Jaynes, the KL divergence is interpreted
as an (inverse) indicator of the commonness of similar
profiles in said population [40]. As such, we should hasten
to stress that under this interpretation, the KL divergence is
a measure of anonymity rather than privacy, in the sense
that the obfuscated information is the uniqueness of the
identity behind the online activity, rather than the actual
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Table I. Main privacy risks, related privacy-enhancing technologies, and quantifiable metrics of privacy discussed in this manuscript.

profile of interests. Indeed, a profile of interests already
matching the population would not require perturbation.
Alternative privacy requirements might be formulated to
protect inferences of the original user profile from the
observed perturbation.

In this last case of hard privacy against consumption
profiling, appropriate metrics of usability should carefully
contemplate the quantitative impact of the perturbation of
consumption information in terms of the intricate series
of benefits of smart metering. Example of mathematically
tractable measures include redundancy and suppression
rate in query forgery and tag suppression, the respective

technologies studied in the cited work and, effectively, the
amount of perturbed activity.

We remarked in Section 3.5 (see also Figure 8)
that lossy data aggregation is effectively a form of
perturbation, where each of the individual profiles
participating in the aggregation is replaced by a
common aggregated profile. This abstract equivalence
permits the direct application of the same metrics of
anonymity proposed in [29, 30]. The number of users
being aggregated is thus viewed as a tuning param-
eter of the compromise between anonymity and data
usability, the former measurable by means of the KL
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Figure 9. We investigate privacy in smart metering beyond the traditional approaches of access control and confidentiality through
encryption, considering privacy-enhancing mechanisms based on data-perturbative strategies. Such perturbation poses a trade-off

between the privacy and usability of the data.
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divergence between the aggregated, apparent profile, and
the population.

5. CONCLUDING REMARKS

The protection of user privacy in advanced measuring
infrastructures is inextricably tied to the sustainable devel-
opment of information and communication technologies
for the efficient management of utilities.

In our introductory overview of various privacy-
enhancing solutions, the emphasis on conceptual breath
over technical depth allows us not only to reach a wider
audience, but also to look more comprehensively beyond
the more traditional approaches of access control and
confidentiality through encryption. Indeed, fairly diverse
genres of more recent technologies, originally conceived
for a variety of information systems, are illustrated here
in the context of smart metering. The main privacy risks,
related privacy-enhancing technologies, and quantifiable
metrics of privacy discussed in this manuscript are visually
summarised in Table I.

Of particular importance is the compelling case when
the intended recipient of sensitive information is not fully
trusted and may thus be construed as a privacy attacker
as well. Traditional encryption offers the possibilities of
either fully delivering or completely obfuscating data, by
either providing or not a cryptographic key permitting its
deciphering. In the case of untrusted recipients, however,
we are faced with a dilemma of great practical relevance.
Most of the novel privacy mechanisms explored in this
paper resort to perturbing or obfuscating certain informa-
tion released, but only to a certain degree, in lieu of sim-
ply making it either completely available or unavailable.
This fundamental notion is captured by the diagrammatic
representation in Figure 9.

In addition, we have established that privacy often comes
at a price in terms of usability of the underlying data
or information system. In anonymous-communication sys-
tems, this price takes the form of message delay or traffic
overhead; in SDC, the cost relates to the distortion intro-
duced in the key attributes; and finally, hard privacy and
lossy data aggregation come at the expense of accuracy in
the user consumption profile.

Further, both privacy and usability may be attained to
various quantifiable degrees, constituting contrasting quan-
tities in a privacy-usability trade-off. The existence of
this inherent price is a strong motivation to develop ade-
quate privacy metrics and ultimately to design practical
privacy tools achieving the maximum privacy for a desired
usability level, or vice versa; ideally, we seek the optimal
privacy-usability trade-off.

Future research aimed at reconciling privacy and
efficient utility management in smart cities must therefore
build upon a widely interdisciplinary variety of fields.
These include not only extensive work on more traditional,
cryptographically based security, but also a number
of privacy-enhancing technologies intersecting with the

fields of information theory and engineering optimisation.
We hope that this work succeeds in offering a quick,
fresh glance at such compelling aspect of the future of
our society.
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