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Abstract—The probability density function (PDF) and cumu-
lative distribution function of the sum of L independent but not
necessarily identically distributed Gamma variates, apptable
to the output statistics of maximal ratio combining (MRC)
receiver operating over Nakagami fading channels or in other
words to the statistical analysis of the scenario where theusn
of squared Nakagamim distributions are user-of-interest, is
presented in closed-form in terms of well-known Meijer's G
function and easily computable Fox’sH function for integer
valued and non-integer valuedm fading parameters. Further
analysis, particularly on bit error rate via a PDF-based appoach
is also offered in closed form in terms of Meijer's G function
and Fox’'s H function for integer valued fading parameters, and
extended Fox’sH function (H) for non-integer valued fading
parameters. Our proposed results complement previous know
results that are either expressed in terms of infinite sums, ested
sums, or higher order derivatives of the fading parameterm.

Index Terms—Gamma variates, cellular mobile radio systems,
non-integer parameters, diversity, maximal ratio combinng,
binary modulation schemes, bit error rate, Fox’s H function,
Meijer's G function, Fox’s H function, and extended Fox'sH
function.

I. INTRODUCTION

N recent times, different diversity schemes have marked

important impact in the arena of wireless communicati
systems. The main reason behind this is that these differ
diversity schemes allow for multiple transmission andfr r
ception paths for the same signal [1]. One of the optim
diversity combining scheme is the maximal ratio combinin
(MRC) diversity scheme where all the diversity branches ae
processed to obtain the best possible devised and impro
single output that possibly stays above a certain speciﬁg

threshold [1]-[3].

Additionally, wireless communications are driven by a conyy
plicated phenomenon known as radio-wave propagation$hah

characterized by various effects such as fading, shadoavidg
path-loss. The statistical behavior of these effects isritesd
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by different models depending on the nature of the communi-
cation environment. The wide versatility, experimentdidity,

and analytical tractability of Nakagami-distribution [4] has
made it a very popular fading model for performance analysis
investigations in diversity schemes of wireless communica
tions (for instance, [5] among others and [6] and references
therein). In addition, it is useful to mention that Nakagami
m distribution is useful to study multihop relay networks,[7]
[8]. Hence, this and such other distributions have manyrothe
applications in wireless communication engineering peots

and one of those that we focus on is a communication system
employing MRC diversity scheme undergoing this distribati

i.e. the study of MRC diversity combining receiver opergtin
over Nakagamim fading channels [4], where the statistics of
the sum of Gamma random variates (RVS) or equivalently the
sum of squared Nakagami-RVs are required and moreover,
the performance analysis of such wireless communication
systems usually requires complicated and tedious tasiteck!

to statistics as elegantly explained in details in [9].

The probability density function (PDF) and cumulative
distribution function (CDF) of the sum of. independent
but not necessarily identical (i.n.i.d.) Gamma RVs havenbee
investigated quite extensively in the pastin [6], [9]-[bL} the
an, . . : . .
ublished results are sometimes given in rather compticate

er%(Pressions in the form of single definite or indefinite serie

%t renders the given expressions therein not always ctampu

gf)nally efficient. In more details, Moschopoulos has pregub
In [11] an infinite-series representation for the PDF of thms
&f the i.n.i.d. Gamma RVs and Alouirt. al have extended
& results of [11] in [6] for the case of arbitrarily correde
mma RVs and studied the performance of MRC among
er receivers. Commonly, the moment generating function
(MGF)-based approach or characteristic function (CFedas
proach have been followed for the performance analysis an
rived accurate and/or approximate analytical resultsrins

of either infinite sums and/or higher order derivatives & th
diversity order [12]-[17]. This occurs as there are no sempl
closed-form expressions available in the open literatitreee

for the PDF or the CDF of the sum of i.n.i.d. Gamma RVs
[9]. In [18], the authors have also introduced the stasistic
of sum of multiple Gamma RVs with correlation but have
considered only the case wherein the RVs are identically
distributed. Recently, Karagiannidit. al have obtained in
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[9] closed-form expressions for the PDF and the CDF of thehereY; is the received signal at theth branch receiver end,

sum of nonidentical squared NakagamRVs or equivalently X is the transmitted signaly; is the channel gain, and; is

Gamma RVs with integer-order fading parameters but thetbee additive white Gaussian noise (AWGN). In a Nakagami-

results involve a series of nested summations that can memultipath fading channely; = |«|? follows a Gamma

computationally complex and expensive. distribution. Hence, the channel gains experience muttipa
In this work, we offer novel closed-form expressions fofading whose statistics follows a Gamma distribution wilbFP

the PDF and CDF of the sum of i.n.i.d. Gamma RVs ayiven by

equivalently squared Nakagamm-RVs with integer-order as mi _my—1

well as non-integer-order fading parameters in terms afyeas Py (7) = (ﬂ) T o O m )

computable Meijer's G function [19] and Foxld function o 7 L'(my)

[20]-[22, App. (A.5)], respectively. It is noteworthy to migon r\ﬁlheremz > 0andQ > 0 are known as fading figure

that the bit error rate (BER) is one of tr?e.mOSt.'mporta.representing the diversity order of the fading environneert
performance measures that forms the basis in designing wige

. g: mean of the local power, respectively, and whE(e)
less communication systems. Hence, we demonstrate closed- : .

. . enotes the Gamma function [24, Eq. (8.310)]. In more dstail
form expressions of the BER, as a performance metric, fi

. . . e parametern; quantifies the severity of multipath fading,
binary modulat|0|j schemes, viaa PDF-based approach, %h3he sense that small values af indicates severe multipath
L-branch MRC diversity receiver in the presence of Gam

. . ) : - n?gding and vice versa. The instantaneous signal-to-naeise r
or Nakagamim multipath fading, in terms of Meijer's G (SNR) of thelth branch is given byy — (Ey/No) |aul?, E

function and Fox'sH function for integer-order fadingApa-iS the average energy per bit, and is the one sided power
rameters, and in terms of extended Foksfunction (H) . '
sgectral density of the AWGN.

[23]* for non-integer-order fading parameters. This proves th
importance and the simplicity in the employment of those
earlier derived simple closed-form statistical PDF and CDFi|. CLoSED-FORM STATISTICAL CHARACTERISTICS FOR
expressions. These resulting expressions also give attesn THE SUM OF GAMMA RANDOM VARIATES
closed-forms for previously known/published results otee ) ) o
via CF or MGF-based approaches. It should be noted that a||'!'h!s section presents the results on the statistical _chgrac
our newly proposed results are readily computable by Melliferistics including the PDF and CDF of the sum of i.n.i.d.
Barnes theorem that further corroborates the generality dgamma variates. To best of the author's knowledge, it is
the usefulness of the analytical frameworks introducedhis t US€ful to mention again that the PDF of the sum of Gamma
paper. Finally, it must be further mentioned that theselresudistributions given in the following theorem is a novel @ds
have been checked and validated by Monte Carlo simulatiofM result not reported in the literature earlier. It indhs

The remainder of the paper is organized as follows. SectiSRECIal cases that are used in the literature such as indepen
Il introduces the system and Section Il gives novel close@d identically distributed (i.i.d.) Gamma RVs and/or gee
form expressions for the PDF and CDF of the sum of Gamniing figure parameters among others [6], [9].
or equivalently squared NakagamiRVs in terms of Meijer’s
G function and Fox'H function respectively for integer-order

. . 4 A. PDF

and non-integer-order fading parameters respectivelxt,Ne
Section 1V utilizes these results presented in Sectiondll t 1) General Case (Non-Integern Fading Parameters):
derive useful expressions for the BER, as a performanceane
for MRC diversity receivers operating over i.n.i.d. Gamm
fading channels or equivalently Nakagamidiversity paths in
terms of Meijer’s G function and Foxid function for integer-
order fading parameters, and extended Fox'unction (H)
for non-integer-order fading parameters. Further, Sachib L
also discusses the results followed by the summary of the Y = ZW (3)
paper in the last section. =1

t'Itheorem 1 (PDF of the Sum of Gamma or Equivalently
gquared Nakaganmit RVs). Let {v,}~, be a set of i.n.i.d.
Gamma variates with parameters; and ©;°. Then, the
closed-form PDF of the sum

for both integer-order as well as non-integer-order fading

I1. NAKAGAMI -m CHANNEL MODEL AND GAMMA
DISTRIBUTION 2For correlated diversity branches, the statistical charistics derivation
and the performance analysis can be carried out in a siméshidn as
A MRC based communication system with a source a@ the independent fading case. For an arbitrarily coreelaNakagamin

desti . . id d with di . h d . ding environment, assuming that the fading parameterianton to all
a destination Is considered wi Iversity paths undergoing e diversity branches, the desired MGF of the sum of cdeéldGamma

i.n.i.d. Nakagamim fading channels as follows RVs can be expressed asly (s) = det(l + sRA) ™™ = [[F, M, (s) =
Hle (1+ X, s)”™ wherel is the L x L identity matrix. A is a positive
Y, = X +ng, 1=1,2,...,L, (1) definite matrix of dimensiorl. (determined by the branch covariance matrix),

R is a diagonal matrix ag = diag(Q1/m, ..., Qr/m), and ) is the ™
_ R _ eigenvalue of matrixR A where each eigenvalue is modeled as a Gamma RV.
1The extended Fox'$l function (i), the Fox'sH function, the Fox’s H Hence, on replacing;’s with )\;’s, in our presented work, we will achieve
function, and the Meijer's G function are extensively defirie Table |. the results applicable to the correlated diversity case.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. XX, XX. 2012 3

TABLE |
REPRESENTATION OF THEEXTENDED FOX’SH FUNCTION (H) AND ITS SPECIAL CASES

The extended Fox'$l function (H) is defined by [23] as

Hm n|: ’(Oc]‘ Aj,aj)1,p i| 1 H?—1{F(1 —aj + Ajs)} ijl{l—‘(ﬁj - BJS)} I 2°ds, (T.1.1)

(B4, Bj,bj)1.q 27 Jo 17,1 (e — Aj9)}% T, 1 {T(1 — B, + B;s)}%

which contains fractional powers @f-functions. Herez may be real or complex but is not equal to zero and an emptyuptad interpreted as unity¢' is a suitable contour,
and positive integerg, ¢, m, andn satisfy the following inequalitiest < m < ¢, 0<n <p, A; >0(j=1,...,p),B; >0(j=1,...,9)anda;(j =1,...,p),
andg;(j =1,..., q) are complex parameters. The exponemj§j = 1,...,p) andb;(j = 1,...,q) can take on non-integer values. The poles of this integraed a
assumed to be S|mple and the contour in this definition isuonesl to be |maginary axis REEO that is suitably intended in order to avoid the singtikesi of the Gamma
functions and to keep these singularities at appropriatessi

When the exponents; = 1for (j =n+1,...,p) andb; = 1for (j =1,...,m), the extended Fox'si function (H) reduces to the familiar Fox'sl function defined
by [20]-[22] as
f— [ ’ (s Agy a3)1ms (@ At } g POy + AL TG = B g
(Bjs Bj)1,m; (Bi> Biybj)mt1.q 2mi Jo TT5_, 1y Ty — Ays) TI9_,, 1 {T(1 = 85 + B;s)}%

which contains fractional powers @f-functions. Herez may be real or complex but is not equal to zero and an emptyuptas interpreted as unity®' is a suitable contour,
and positive integerg, ¢, m, andn satisfy the following inequalitiest < m < ¢, 0<n <p, A; >0(j=1,...,p),B; >0(j=1,...,q)ando;(j =1,...,p),
andB;(j = 1,...,q) are complex parameters. The exponenj$j = 1,..., n)andb;(j =m+1,..., q) can take on non-integer values. The poles of thls integrand
are assumed to be simple and the contour in this definitiomeisumed to be |mag|nary aX|s R§€0 that is sunably intended in order to avoid the singtikesi of the Gamma
functions and to keep these singularities at appropriatessi

Now, when the exponenis; = b; = 1V, the Fox'sH function reduces to the familiar Fox’s H-function definegd 9] as

Hm,n|:z (011,141),...,(011), P :| % i F(l O‘J+A S)H ( — Bj 5) Sd
P (B1,B1), ..., (Bq, Bq) 2mi HJ it I S)HJ m1 L — Bi + Bjs)

which contains fractional powers @f-functions. Herez may be real or complex but is not equal to zero and an emptyuptad interpreted as unity¢’' is a suitable contour,
and positive integerp, ¢, m, andn satisfy the following inequalitiest < m < ¢, 0<n<p, A; >0(j =1,...,p),B; >0 =1,..., ;q) anda;(j =1,...,p),
and3;(j = 1,...,q) are complex parameters. The poles of this integrand arevesbto be simple and the contour |n this definition is presumeede imaginary axis
Re(s)=0 that is suitably intended in order to avoid the singtilesi of the Gamma functions and to keep these singularitie@gropriate sides.

(T.1.3)

Finally, when the exponentd ; = B; = 1Y/, the Fox'sH function reduces to the familiar Meijer's G function defiey [19] as

mon i, ..., Qp Pl —a; +s) 172, T(B; — s) e
G, d T.1.4
pa [Z Bi,---,Bq ] 2mi j{ H] nt1 F(O‘J s) Hj:m+1 (1 -8, +5) > ( )

which contains fractional powers @f-functions. Herez may be real or complex but is not equal to zero and an emptyuptad interpreted as unity¢’' is a suitable contour,
and positive integerp, ¢, m, andn satisfy the following inequalitiesl < m < g, and0 < n < p. o;(j =1,...,p), andB;(j = 1,...,q) are complex parameters.
The poles of this integrand are assumed to be simple and titeuwroin this definition is presumed to be imaginary axis4eQ that is suitably intended in order to avoid the
singularities of the Gamma functions and to keep these Kiriges at appropriate sides.

parameters can be expressed in terms of the Faxfsnctior®  respectively.

as Lo/ N\ ( ) Proof: In order to derive the PDF oY, we proceed as
v =]] <_l> 15 e | Zo | (4) follows. Firstly, the MGF
-1 W ’ =y

Moy (s) £ B[] = / ep(dy (7

of a single Gamma distribution is given as [1, Eq. (2.22)]

wherey > 0, the coefficient setg!"” and =\”, k € N are
defined as

k-bracketed terms

Q )ml
M., (s 1+ —s ) 8
E](Ql): 1——m1,1,m1 e, 1——mk,1,mk , (B wu(s) = ( my 8)
Q1 Qk

Then, after performing some simple algebraic manipulation
using [27, Eq. (6.1.15)], we can rewrite the MGF of a single
k-bracketed terms Gamma distribution as

=2 - (M > ( 1 > 6 mp T (g g
k < Ql ,L,my |, ) Qk , M ( ) M,YL(S) _ <@> (QL ) . (9)
2 'ma (1 + g—; + s)

and

3To our best knowledge, the Foxt4$ function [20]-[22, App. (A.5)] is not
available in any standard mathematical packages. As suebffer in Table Il Since.~’s are independent. the MGE of Y is the product of
an efficient MATHEMATICA® implementation of this functionsimilar to ’71 , P ! P
[7], [25], [26]) in order to give numerical results based af.(With this the MGF’s of they;s
implementation, the Fox'$1 function can be evaluated fast and accurately.
This computability, therefore, has been utilized for difiet scenarios and
is employed to discuss the results in comparison to resgebonte Carlo My (s) = H M., (s). (10)
simulation outcomes.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. XX, XX. 2012 4

Now, we express the PDF of the sum of Gamma RVs, usimghere the coefficient se@(” and <I>,(€2), k € N are defined as
the obtained MGF in (10), via the inverse Laplace transform

k-times
(28]
(1) my my
| @ :(1+_),...,(1+_), (16)
py(y) = L7H{M(s)} = —jé My(s)e'ds  (11) : U {4
27 C
and _
that produces a Mellin-Barnes contour integral [29] repnes k-times
tation as (similar to (T.l.1), Table |
( . TR o = () (&) a7
B - Q Qy,
my .
py(y) = 11:[1 (ﬁz) X respectively.
B I . Proof: The PDF of a single Gamma RV for integer-
1 [L, I (Q—f + 5) s order fading parameters can be expressed by plabing 1
o jé e*ds. (12) in (4). This substitution gets simplified, via simple algaibr

L m
c m my / ) . .
[T, I (1 T +S) manipulations, to the above obtained result in (15). Alter-

%tively, the PDF of a single Gamma RV for integer-order

ading parameters can be expressed using the obtained MGF

n (9), via inverse Laplace transform [28] that produces a
ellin-Barnes integral [29] representation. Hence we U6 t

as non-integer-order fading parameters, in terms of Fbx's obtained result to express the PDF of a single Gamma RV
in an alternative form, in terms of Meijer's G function, as

function as given in (4). din (15 -
It is worthy mentioning that the PDF of sum of Gamma or<Pressedin (15).
equivalently squared Nakagamm-RVs with arbitrary fading TABLE Il -
parameters has also been successfully achieved in terrhe of t MATHEMATICA® IMPLEMENTATION OF THE FOX’S H FUNCTION
confluent form of the multivariate Lauricella hypergeontetr

Hence we use this obtained result and perform some sim
rearrangements on thi&.) terms in the Mellin-Barnes contour .
integral representation to express the closed-form PDhRef
sum of Gamma RVY/, valid for both integer-order as well

funct|0n and g|Ven by [14, Eq (35)] (*Fox H-Bar-Function Implementation#)
Clear[x, Q];
(*Exception#)
1 L my my (ZL m )71 FoxHBar::InconsistentCoeffs = "Inconsistent coefficients!";
PY (y) = Li I I R Y 1=1"" FoxHBar[a , b_, z_] := Module
r (Zl—l ml) -1 2 {2, 5, Pa, Pb, Qa, @b, M, R, value},
- (*Gamma product termsx)
L Pa = Function[u, Product [
(L) j : . mi my Power [Gamma[1-a[[1, n, 1]] +ua[[1, n, 2111, a[[1, n, 3]]1], {n, 1, Length[a[[1]]1]}]];
X ¢2 ml’ te 7mL’ ml7 - Q y’ I Ql y ) (13) Qa = Function[u, Product [Gamma[a[[2, n, 1]] - ua[[2, n, 2]]], {n, 1, Length[a[[2]]]}]]:
=1 1 Pb = Function[u, Product [Gamma[b[[1, n, 1]] - ub[[1, n, 2]]], {n, 1, Length[b[[1]]1]1}]];

Qb = Function[u, Product [

where the confluent Lauricella hypergeometric function Pover [Gamna[1-b( (2, n, 1]] +ub[[2, », 2]1], b[[2, n, 3]11, (. 1, Length[b[[2]]1}]];
. . M = Function[u, Pa[u] Pb[u] /Qa[u] /Qb[u]];
é")(. ..) is defined as [14, Eq. (36)], [30] (xContour Liniters)
(*Depends on numerator argument i.e. it
(n) must be at least half of the least valued gamma argumentsx)
5 (b1y. . by, ) R=-1;

(*Assignment and Declarations)

o0 o0 7;1 i .
(01)iy - - (bn)i, 2y @y e
= cee ()— I TRE (14) (+Final Evaluation)
Cliq4neadi 1. In-:
11=0 15, =0 titetin 1 n value = !
2nl
n-fold summation NIntegrate [M[s] Z°, {s, -50 - 1100, R- 1100, R+ 1100, -50 + I 100}, MaxRecursion - 55];

(*Returning back the valuex)

and involves as such ah-fold infinite summations. On the Return [value]
other hand, our alternative result presented in Theorem 1 J
involves only one single-fold integration. (1End of Foihars)
The motivation and the possibility that led to the above o ) ) .
result presented in Theorem 1 was the representation of thé\s for validation and numerical examples, Fig. 1 and Fig. 2

PDF a single Gamma RV in terms of Meijer's G function aBrésent the PDF and the logarithmic PDF respectively of the
discussed below in Corollary 1. output SNR obtained from the exact closed-form expression

_ (4) and show a perfect match between this obtained closed-
Corollary 1 (PDF of a Single Gamma RV)Let {~;} be any form analytical result and the one obtained via Monte Carlo

i.n.i.d. Gamma variate with parameters; and);. Then, the sjmulations for varyingL’s (i.e. L = 3,4,5), and their
closed-form PDF of this single Gamma RV for integer-ordgespective fixed fading parametens; = 0.6, mo = 1.1,
fading parameters can be expressed as ms = 2, my = 3.4, andms = 4.5.
- o) For additional verification purposes, we simplified the PDF
Py (y) = (ﬂ) a0 [e’” gl) ]’ (15) expression presented in [9, Theorem 1, Eq. (6)] for the sum
Q B Dy of squared Nakaganmi or equivalently Gamma RVs, for a
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Gomparison batween Anlytical and Simlation Resuts match along with the Monte Carlo simulations and hence
! ‘ = smiain] | further conforming our results as shown in Fig. 3.

Analytical

Comparison between Analytical and Simulation Results
04 T T T T

—ISimulation

Our Analytical Result
L=3 + _Analytical Result from [8]
0.21- 7 0351 g

0.15 |

Probability Density Function (PDF)

Probability Density Function (PDF)

0 5 10 15
Output Signal-to-Noise Ratio y

Fig. 1. Comparison between PDFs obtained analytically dadAonte Carlo
simulations for varying branches and respective fixed fading parameters
for these channels withn, = 0.6, mo = 1.1, m3 = 2, mq = 3.4, and
ms = 4.5.

|
1 2 3 4 5 6 7 8 9 10
Output Signal-to-Noise Ratio y

Fig. 3. Comparison between PDFs obtained analytically, M@nte Carlo
simulations, and via [9, Theorem 1, Eq. (6)] with= 2 and fading parameters
Comparison between Analytical and Simulation Resuits for these channels withn; = 1 andmsy = 1 i.e. Rayleigh fading channels.

#  Simulation
Analytical

2) Special Case (Integen Fading Parameters):

Corollary 2 (PDF of the Sum of Gamma or Equivalently
Squared Nakagammt RVs for Integer-Order Fading Param-
eters) It is worth mentioning that the closed-form expression
in (4) simplifies to the following expressid@0) for integer-
order fading parameters via simple algebraic manipulation

Logarithmic Probability Density Function (PDF)

L my\ ™ o \I/(l)
= — ) arOemy | 6, 20
o =11(5) o)y | @
s 1 where,
L

K= Zml (22)

L L = 1
0 5 10 15
Output Signal-to-Noise Ratio y

is an integer, the coefficient sé{,(cl), k € N is as defined in

(19) and the coefficient self,(f), k € N is defined as
Fig. 2. Comparison between PDFs obtained analytically aiadMonte
Carlo simulations, on log scale, for varying branchesnd respective fixed
fading parameters for these channels with = 0.6, ma = 1.1, m3 = 2, k-bracketed terms
my = 3.4, andms =4.5.

m1-times m i -times

g@ _ (M my mg mg
) ) . . ) k — Q_ ge e ey Q_ g ooy Q— ge e ey Q— 3
special case with, = 2 i.e. a dual-branch MRC diversity 1 1 K K 22)
combining receiver based wireless communication systelhere K is the total

. ) S number of Gamma or equivalently
unde_rgomg Rayle'gh fa?"”g_ l.en, = 1 and ma = 1. We squared Nakagami-m RVs i.e.number of total branches for
obtained the following simplified PDF expression.

our specific wireless communication system being considere

1 _ = _z here.
fz,(z) = —— [e no—e 2|, (18)

=12 At this point it should be mentioned that the PDF of the
where, ;s are equivalent to ouf);s and z is the RV as sum of Gamma or equivalently squared NakagamRVs
opposed to our R\. This obtained expression, when plottedor integer-order fading parameters was also proposed by
against our results, with similar specific values, foundidgme Karagiannidiset. al.in [9, Eq. (6)]. More precisely, our result
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k-bracketed terms

m1-times m-times

M _ (1. m m mic mic
o T () (1 ) o (10 ) -

in Corollary 2 can also be represented in terms of a seriesTdfeorem 2 (CDF of the Sum of Gamma or Equivalently
L — 2 nested weighted summations of Erlang PDFs as per Squared Nakagami-m RV.sThe CDF ofY for both integer-
Eg. (6)]. On the other hand, the result presented in Cosoflar order as well as non-integer-order fading parameters can be
offers an alternative representation that involves onle orlosely expressed in terms of the Foksfunction as
single-fold integration (in terms of Meijer's G functionahis . "
readily available in the standard mathematical packagels su B mi\"™" So0.L11 =7, (1,1,1)
as MATHEMATICA, MATLAB and MAPLE). Py(y) =1+ H (Q_l) L+1,L+1 E(Ll), (0,1,1)
Now let us consider some special cases in order to check =t 27)
the correctness and accuracy of (20). These special cages gihere the coefficient sef.) and=> are defined earlier in
a further insight to the above obtained results and assist(8) and (6) respectively.
understanding the rest of the results presented in this.work

eY ,

Proof: In order to derive the CDF oY, we proceed as
follows.
We integrate the PDF expressed in (15) fronthrough
~ and obtain the CDF for a single Gamma RV, in terms of
Meijer's G function, as

Special Case 1Sum of Two Exponential RVs) et us assume
that we have two i.n.i.d. Gamma RVs with fading figures =

1 andms = 1 and average powerQ; and .. Substituting
these parameters in (20) results in

my (I)(l) 1
1 1+ L ;14 L P — m qrutl10 —y | T 28
py(y) = G§;3 e Y Ql . Q2 (23) 2 (01) Q, my+1,m;+1 | € (I)%’O ) (28)
Q109 oo

Then, using the Meijer's G identity given in [22, Eq. (1.142)where the coefficient se@g) and <I>§f) are defined earlier in

and then using [31, Eq. (07.23.03.0227.01)], (23) readify}6) and (17) respectively.
reduces to [32, Sec. 5.2.4] Now, performing a similar integral operation on (4), uti-

lizing a similar explanation as presented in the proof of the
e —e ™ PDF of the sum of Gamma RVs i.e. Theorem 1 to obtain (4)
Py (y) = O —Qs (24) from (10), and further making some simple modifications to
the Mellin-Barnes integral representation to satisfy tkace
definition of the Fox’sH function, we obtain a final closed-
form result for the CDF ofY, valid for both integer-order
Special Case ASum of L Exponential RVs)Let us assume as well as non-integer-order fading parameters, in terms of
that we havel. i.n.i.d. Gamma RVs with fading figures; = 1 Fox’s H function as presented in (27). Hence, in other words,
foralll € {1,2,3,..., L} and average powef®, # () forall the expression presented in (28) is a special case of (27),

as expected.

k.l € {1,2,3,...,L}. Substituting these parameters in (20Theorem 2 forL = 1. m
results in As for validation and numerical examples, Fig. 4 and Fig. 5
1 1oL 141 present the CDF and the logarithmic CDF respectively of the
py (y) = Lic;é’% e Y 911’ ’ . Q2o (25) output SNR obtained from the exact closed-form expression
Lo Q0O (27) and show a perfect match between this obtained closed-

. . . . . form analytical result and the one obtained via Monte Carlo
Then, performing some algebraic manipulations using the

. L i X
Meijer's G identity given in [31, Eq. (07.34.26.0004.01j)ica simulations for varyingL's (i.e. L = 3,4,5), and their

S respective fixed fading parametens; = 0.6, my = 1.1,
[31, 07.31.06.0017.01], we simplify (25) to [32, Eq. (5.8)] ms = 2, my = 3.4, andms = 4.5. The logarithmic plots

I 1 were selected to display the accuracy of the matched results
py(y) = Z H % Qile*n%, (26)  2) Special Case (Integen Fading Parameters):
Corollary 3 (CDF of the Sum of Gamma or Equivalently
Squared Nakagamm RVs for Integer-Order Fading Parame-
ters) In this case using some simple algebraic manipulations,
the expression iif27) simplifies to

as expected.

B. CDF

L my \I/(l) 1
1) General Case (Non-Integen Fading Parameters): Py (y) = H (%) Giinlyele” \11(2)70] . (29)
=1 L Ko
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Comparison between Analytical and Simulation Results
T T

#  Simulation
Analytical

Cumulative Density Function (CDF)

I I
0 5 10
Output Signal-to-Noise Ratio y

15

Fig. 4. Comparison between CDFs obtained analytically aadvonte Carlo

simulations for varying brancheg and respective fixed fading parametersop of MRC diversity Combining receivers based wireless

for these channels withn, = 0.6, mo = 1.1, m3z = 2, mq = 3.4, and
ms = 4.5.

Comparison between Analytical and Simulation Results
e

#  Simulation
Analytical

Logarithmic Cumulative Density Function (CDF)

I
10 15
Output Signal-to-Noise Ratio y

Fig. 5. Comparison between CDFs obtained analytically aiadMonte
Carlo simulations, on log scale, for varying branchesnd respective fixed
fading parameters for these channels with = 0.6, ma = 1.1, mz = 2,
myq = 3.4, andms = 4.5.

for integer-order fading parameters where the coefficiezis s
\IJS) and\IJEf) are defined earlier ir{19) and (22) respectively.

IV. APPLICATIONS TO THEPERFORMANCE OFDIVERSITY
COMBINING RECEIVER SYSTEMS

This section applies the previous results to the performanc

XX. 2012 7

TABLE IlI
CONDITIONAL ERRORPROBABILITY (CEP) RRAMETERS

Modulation P q
Coherent Binary Frequency Shift Keying (CBFSK) 05 05
Coherent Binary Phase Shift Keying (CBPSK) 0.5 1
Non-Coherent Binary Frequency Shift Keying (NBFSK) 1 0.5
Differential Binary Phase Shift Keying (DBPSK) 1 1

A. Outage Probability

Moreover, when the instantaneous MRC output SNR
falls below a given thresholg,, we encounter a situation
labeled as outage and it is an important feature to study
outage probability (OP) of a system. Hence, another impbrta
fact worth stating here is that the expression derived in the
Corollary 3 also serves the purpose for the expression of

communication system that is experiencing i.n.i.d. Nakaiga

m fading channels or in other words, when the desired user is
subject to Nakagami fading, the probability that the SNR
falls below a predetermined protection ratig, can be simply
expressed, for both integer-order as well as non-integdero
fading parameters, by replacingwith y, in (27) as

Pout(yth) = Py(yth)-

Employing similar substitutions, all the other respectase
pressions of CDF can be utilized for OP such as replaging
with ¢, in (28) and/or replacing with y, in (29).

(31)

B. Average BER

The most straightforward approach to obtain BER for
MRC is to average the conditional error probability (CEP)
P. (ely) for the given SNR given by

L(p. qy)
P. == 32
(ely) 2T(p) (32)
over the PDF of the combiner output SNR [1] i.e.
P, :/ P (ely) py (y) dy. (33)
0

The expression in (32) is a unified CEP expression for colheren
and non-coherent binary modulation schemes over an AWGN
channel [33]. In (32)I'(+, -) is the complementary incomplete
Gamma function [24, Eqg. (8.350.2)]. The parameterand

¢ in (32) account for different modulation schemes. For an
extensive list of modulation schemes represented by these
parameters, one may look into [33], [34] or refer to Table Il

1) General Case (Non-Integen Fading Parameters):

analysis, in particular outage probability (OP) and BERl-analrheorem 3 (BER of a L-branch MRC System Operating

ysis in Nakagamin fading environments.

over Nakagamim Fading Channels for Binary Modulation

In MRC combining scheme, all the branches are selectedSthemes) The BER of aL-branch MRC diversity combin-

the output. In our case, fora-branch MRC diversity receiver,
the signal-to-noise ratio (SNR), is given by

y=y+-+L- (30)

ing receiver wireless communication system running over
Nakagami-m fading channels, valid for both integer-order a

well as non-integer-order fading parameters and for any bi-

nary modulation scheme including coherent binary freqyenc
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shift keying (CBFSK), non-coherent binary frequency shiftumber of total branches for our specific wireless communi-
keying (NBFSK), coherent binary phase shift keying (CBRPSKhtion system being considered here. It must be noted tigat th
and differential binary phase shift keying (DBPSK), can besult is numerically equivalent to the result presented9in
expressed in closed-form, in terms of the extended Hdx'sEq. (18)].

i Y4
function ()", as Corollary 5 (BER of aL-branch MRC System Operating over

L m i i
P 7 H (mz) Cpaia {1 ‘ (1-gq,1,p), §1 } (39) Nakagamim Integer-Order Fading Channels for Non-Coherent

Q L+2,L+2 G (—q,1,p BFSK and Differential BPSK Binary Modulation Schemes)
=1 Further down the line, the BER expressior(3®)is simplified,
where via simple algebraic manipulations, to the following cldse
a="1%(1,1,1), (35) form expression when considering non-coherent BFSK and

differential BPSK binary modulation schemes for integeteo
only fading parameters. This expression is representegring
of the Meijer's G function as

and
<2 = (01171)1T(L2)7 (36)

and where the coefficient séf.é,cl) andT,(f), k € N are defined

as P qp H (ml)m Gt . oél), \I/,g),l
k-bracketed terms ‘ =1 Ql ftptletptl 0, \I//(f), 0;2)
(44)
T = (1 Loy ml) 7 (1 + =k, mk) (37) where the coefficient sets U'\", and¥\?) are defined earlier
& 2 in (21), (19), and(22) respectively, the coefficient seig) and
and J-bracketed terms o), k € N are defined as
(2 _ (M1 mg k-times
s (Q_l’l’ml) (Q_k’l’mk>’ 9 o =T-gq),...,(1—q), (45)
respectively. and
Proof: Utilizing (33) by substituting (32) and (4) into it k-times
and performing some simple manipulations along with some 01(3) =(=q),...,(—q), (46)

simple rearrangements df(.) function terms, we get an
exact closed-form result of the integral valid for both gee  respectively.lt must be noted that this result is numeigcal
order as well as non-integer-order fading parameters and @sjuivalent to the result presented in [9, Eq. (19)].
any binary modulation scheme including CBFSK, NBFSK
CBPSK, and DBPSK, in terms of extended Fokisunction
(H), as presented above in (34), Theorem 3.

2) Special Case (Integen. Fading Parameters):

'’ 3) Numerical Examples and Discussiofhe numerical
results for BER of MRC diversity combining receiver scheme
with L-diversity over i.n.i.d. Gamma or equivalently squared
Nakagamim fading channels are presented in this section.
Corollary 4 (BER of a L-branch MRC System Operating First we use our MATHEMATICA® implementation of the
with Nakagamim Integer-Order Fading Channels for Coherergxtended Fox'# function (H) given in Table IV in order to
BFSK and Coherent BPSK Binary Modulation Schemesjive numerical results based on (34), (39), and/or (44)hWit
The above presented BER expression(34), Theorem 3 is this implementation, the extended FoxXsfunction (H) can
simplified, via simple algebraic manipulations, to thedaling be evaluated fast and accurately. This computability etoee,
closed-form expression when considering BFSK and BP$HKs been utilized for different digital modulation scheraed
coherent binary modulation schemes with only integer-ordés employed to discuss the results in comparison to resgecti
fading parameters. It is represented in terms of the Fdx’s Monte Carlo simulation outcomes.
function as The average SNR per bit in all the scenarios discussed is
. m assumed to be equal. In addition, different digital modaiat
p =L H (ml> aetit [1 ’ (1-¢1,p),x1 ] (39) schemes are represented based on the valueswdq where
9 2] Xy (=g, 1,p) p = 0.5 andg = 1 represents CBPSKy = 1 andgq = 1
represents DBPSK, CBFSK is representediby- 0.5 and

=1

where — A (1,1) (40) g = 0.5, and NBFSK is represented py= 1 andq = 0.5. In
x moATER Monte Carlo simulations, the Gamma or equivalently squared
and Nakagamim fading channel generation is readily available in
=(0,1),A?, (41) MATLAB.

We observe from Fig. 6 that this implemented computability
of extended Fox'H function (H) provides a perfect match to
the MATLAB simulated results and the results are as expected
"i.e. the BER decreases as the SNR increases. Its important to
4The extended Fox'$i function (f) was first introduced in [23] and has note here that these values for the parameters were selected
a MATHEMATICA® implementation given in Table IV randomly to prove the validity of the obtained results and

and where the coefficient sets\" and A, k € N are
defined in(42) and (43) respectively.K is the total number
of Gamma or equivalently squared Nakagami-m RVs i.e
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k-bracketed terms

m1-times m i -times
(1) my my mg mg
Ak = 1—|—Q—,1 gy 1—|—Q—,1 gee ey 1+Q—,1 gy 1+Q—,1 5 (42)
1 1 K K
k-bracketed terms
m -times m g -times
AR — (I ™y MK 4 MK 4 (43)
k; - Q? Yyt Q’ AR Q ) AR Q )
1 1 K K
TABLE IV B
MATHEMATICA® IMPLEMENTATION OF THE EXTENDED FOX’S H 10t Comparison between Analytical and Simulation Resuls
FUNCTION (H) i Analytical
*  Simulation
(*Extended Fox H-Bar-Functionx)
Clear[x, Q];
ExtendedFoxHBar : : InconsistentCoeffs = "Inconsistent coefficients!";
ExtendedFoxHBar [a_, b_, z ] := Module[
{Z, s, Pa, Pb, Qa, Qb, M, R, Rmax, Rmin, value}, .
(*Gamma product termsx) g
Pa = Function[u, Product [ o
Power [Gamma[1-a[[1, n, 1]] -ua[[1, n, 2]]], a[[1, n, 3]]], {n, 1, Length[a[[1]]]}]]; E
Qa = Function [u, Product [Power [Gamma[a[[2, n, 1]] + wa[[2, n, 2]]1], a[[2, n, 3]]], s
{n, 1, Length[a[[2]]]}]]; u
Pb = Function [u, Product [Power [Gamma[b[[1, n, 1]] + ub[[1, n, 2]]], b[[1, n, 3]1], o
{n, 1, Length[b[[1]1]1}]1]1;
ob = Function [u, Product [Power [Gamma[l-b[[2, n, 1]] -ub[[2, n, 2]]], b[[2, n, 3]]],
{n, 1, Length[b[[2]]1]}]];
M = Function[u, Pa[u] Pb[u] /Qa[u] /Qb[u]];
(*Contour Limiters)
( ds on i.e. it
must be at least half of the least valued gamma argumentss)
{Rmin, Rmax} = {Max[-Min[b[[1, All, 1]] /b[[1, All, 2]]], - Infinity], : :
Min[Min[(1-a[[l, Al1l, 1]]) /a[[1, All, 2]]], Infinity]}; 10° I I I I I L L L L
If[Rmin = - Infinity && Rmax # Infinity, Rmin = Rmax - 1]; o 1 2 3 4 5 6 7 8 9 10
If[Rmin # - Infinity & Rmax = Infinity, Rmax = Rmin +0.1]; Signal~to-Noise Ratio (dB)
If[Rmin == Rmax, Message [Ex r::InconsistentCoeffs]];
R = Mean[{Rmax, Rmin}];
(*Assignment and Declarations) . . ) ) L.
Z=z; Fig. 6. Average BER of different binary modulation schemesra.n.i.d.

(+Final Evaluations)

value =

2nI

NIntegrate [M[s] 2™, {s, -50 -I50, R-150, R+ 150, -50 + 150}, MaxRecursion - 55] ;

Gamma or equivalently squared Nakagamfading channels with, = 5-
branch MRC and fading parameters for these channelsmith= 0.6, mo =
1.1, ms3 = 2, my = 3.4, andm5 =4.5.

(sReturning back the valuex)
Return[value] ;

(+End of ExtendedFoxHBar x)

in terms of special functions, specifically Fo)$ functions.
Based on these statistical formulas obtained, and follgvain
hence specific values based on the standards can be usédQf-based approach, we analyzed the performance of a MRC
obtain the required results. diversity combining receiver based wireless communicatio
Furthermore, it can be seen from Fig. 6 that, as expectgystem operating over i.n.i.d. Nakagami-fading channets a
CBPSK outperforms the other modulation schemes and tif@portant performance metrics such as OP and BER were
coherent binary modulation schemes outperform their esp@xpressed in closed form and hence this serves as the key
tive non-coherent and/or differential binary modulaticheme feature along side the novel statistical derivations of PDF
i.e. CBPSK outperforms DBPSK and CBFSK outperform@nd CDF. For instance, an exact closed-form expression for
NBFSK. Additionally, PSK in general performs better thathe BER performance of different binary modulations with
FSK, as expected. Similar results for any other valuesiof L-branch MRC scheme over i.n.i.d. Gamma or equivalently
can be observed for the exact closed-form BERHativersity squared Nakaganmifading channels was derived. The analyt-

i.n.i.d. Gamma or equivalently squared Nakaganghannels ical calculations were done utilizing a general class otipe
presented in this work. functions including Meijer's G function, Fox’$l function,

and extended Fox’sl function (F). Our results complement
previously published results that are either in the form of
infinite sums or nested sums or recursive expressions oehigh

We derived alternative closed-form expressions for the PFder derivatives of the fading parameter. In additions thi
and the CDF of the sum of i.n.i.d. Gamma or equivalenthyork presents numerical examples to validate and illustrat
squared Nakaganm RVs in the case of both integer-ordethe mathematical formulation developed in this work and to
as well as non-integer-order fading figure parameters. Ahow the effect of the fading severity and unbalance on the
interesting finding is that these expressions can be writtepstem performance.

V. CONCLUDING REMARKS
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