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Abstract

Inspired by recent industrial efforts toward high altitufiging wireless access points powered by renewable energy, a
online resource allocation problem for a mobile accesst@diR) travelling at high altitude is formulated. The AP a@ies its
resources (available energy) to maximize the total uti{igward) provided to a sequentially observed set of usensadding
service. The problem is formulated as a 0/1 dynamic knapgacklem with incremental capacity over a finite time horizon
the solution of which is quite open in the literature. We a&ddrthe problem through deterministic and stochastic ftations.
For the deterministic problem, several online approxiora&iare proposed based on an instantaneous threshold thatdapt
to short-time-scale dynamics. For the stochastic mod#&dy ahowing the optimality of a threshold based solution atymamic
programming (DP) formulation, an approximate thresholdeldapolicy is obtained. The performances of proposed pgsliare
compared with that of the optimal solution obtained thromfh[

I. INTRODUCTION

The possibility of providing ubiquitous Internet accessfiiing coverage gaps in rural and remote areas devoid of mtou
based Infrastructure through deployment of mobile accesgp(AP) in the Earths atmosphere (e.g. floating at 20 kituek,
the lower stratosphere, see, for example [1], [2], [3]) hasred recent industry effort. Such networks with autonomAPs
require long term unattended operation without a steadyggreource or a change of batteries, and are typically paiveye
renewable energy sources, particularly by solar energyelséing [2], [3].

We define an Access Point on the Move (APOM) as a flying platftrat provides Internet service to users it encounters
along its path, who demand service with possibly differamdliy requirements. This paper considers the problem tifrah
allocation of harvested energy in time by an APOM to a dynaseicof users.

We concern ourselves with the following problem: Supposd,ths the APOM moves along its trajectory, it encounters
users sequentially. Given its instantaneous energy bwdgeh is replenished by arbitrary amounts at arbitrary Spebserved
causally, how should it decide to serve or reject a givenacust? We impose a utility function related to a total valubeated
over users that are served within a given time frame. Thermhtéstic version of the problem can be modeled as an online
0/1 knapsack problem with dynamic capacity, where the aapaw service capacity, at a given time, corresponds totoie
energy stored in the battery at that time. The stochastisis@r where the arrival processes of energy and user demand a
assumed to be semi-Markov processes, may be modeled as eViaekov Decision Process.

In a practical application scenario, there may be a fleet 0DKR travelling over a geographical area, hence one might
imagine that a user that was rejected service by an APOM wilidrved by another one that will come along. In this paper, we
limit attention to solving the single access point problevhjle the multiple AP case would be an immediate and intergst
extension.

1This is an extended version of the paper “Optimizing theiserpolicy of a wireless access point on the move with renésvabergy” appearing in Proc.
of 52nd Annual Allerton Conference on Communication, Cointand Computing (Allerton), Monticello lllinois, pp.96974, Sept. 30 2014-Oct. 3 2014.

Fig. 1. lllustration of an Access Point on the Move which lestg energy and encounters user demands as it flies over engeicgl area.
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A. Related Work

According to a International Telecommunications UnionUW)Teport [4], only 40% of people around world had access to the
Internet as of 2014. Motivated by the potential opportasitpresented by this gap, major industry players have beshmin
for ubiquitous connectivity by deploying airborne mobilé#[1], [2], [3]. Mobile service providers in general havetam
advantages over fixed ones in terms of being more responsivarying geographic communication demahd [5]. Various
studies exist regarding mobile sinks in conventional netwdhat do not exploit renewable enerqgy [6]] [5]. Some ofsthe
studies focused on determining optimal paths in order tdopgpnetwork lifetime [[7], [8].

In recent years, employing energy harvesting (via ambiart@y sources such as solar irradiatioh [9], vibrationg,[d0
electromagnetic sources |11] etc.) to power transmittéreetwork devices such as access points has been drawing grea
attention from the research community. The consideratfomabile access points with energy harvest capability iatietly
new. Several of the recent studies on the topic are concevitiedinding optimal routing paths [12]. Xie et al. [13] addeethe
problem of colocating the mobile service provider on theeleiss charging machine with the objective of minimizingrgge
consumption. The closely related works of Ren and Liang [3fsidered a distributed time allocation method to maxémiz
data collection in energy harvesting sensor networks wdetning a scenario of a constrained path with all sensorgngav
renewable energy sources.

The optimality of a threshold based approach for a binanjisitat problem to transmit or defer transmision tasks on a
Gilbert-Elliot channel supplied by energy harvesting i®yad in [15]. Various other works, such ds [16], and]|[17]0als
consider threshold based solutions for resource allatgiimblems in energy harvesting systems for stochastic motte
recent work|[18],[[19],[[20] resource allocation for solawered stationary and mobile service providers have bedreased
through various different optimization techniques.

The problem at hand can be set up as a 0/1 dynamic online krlapsablem. While the knapsack problem is a well known
combinatorial optimization problem [21], for which comipge online solutions are limited [22]. In the sequel, Cretharty
et. al. propose a constant competitive solution to the groblvith static and large capacity under certain assump{@8js
The dynamic capacity case, which applies to the setup inpdyier, is largely open.

B. Our Contributions

One aspect that sets this paper apart from other studiegic@atwith resource allocation at a mobile access point pexve
through (solar) energy harvesting, is the formulation ofoaline user admission problem. The resource allocation problem is
mapped to a multi constrai/1 knapsack problertKP). After exhibiting the existence of a threshold basetinoal policy,
scalable and computationally cost effective heuristiespgoposed. The performance of these heuristics are stndiaérically
(through simulations) and a competitive ratio analysisasducted.

There are a number of studies implementing the optimizatiats utilized in this paper such as genetic algorithms and
rule-based logic, in resource allocation literature. Hosveto the best of our knowledge this is the first applicatibrihese
techniques to a threshold based user selection problerthdfarore, our schemes constitute a fairly competitive tsmiuto
the dynamic knapsack problem with incremental capacittintg competitive ratios for which are currently not avaik

C. Organization of the paper

The rest of the paper is organized as follows: The system haodiedeterministic problem formulation are provided in tRet
M Next, the stochastic version of the problem is examined aeveral approaches providing both optimal and suboptima
solutions are proposed in Section 1. After exhibiting gstimal algorithm and the existence of a threshold for thetsstic
model, the problem is investigated for a deterministic maedeere several novel optimization tools are employed tqppse
threshold based heuristic solutions to the resource diotaroblem in Sectiof V. Detailed numerical and simuatiesults
are presented in Secti@d V. The paper is concluded with aimeudf future directions in Sectidn VI.

Il. SYSTEM MODEL AND PROBLEM STATEMENT

Consider an APOM moving on a predefined path and empoweredrigmable energy resources. As it travels on its route,
each user request is regarded aseaantrepresenting the start of a tingtot Decisions are to be made on ament-based
schedulei.e. once per slot. We consider a finite horizon problem Witklots andV (distinct) corresponding users. Considering
the operating scenario on rural areas, it is reasonablesthfibnary end users (local base station transceiverdlistrébuted
sparsely over a large geographical area. Due to the topoiigypresumable that one such user will be observed at the, ti
which motivates a sequential user arrival model.

Note that each energy replenishment will constitute anease in the service capacity of the APOM. The problem will
be broken down intaJ harvest periods as depicted in Figlite 2, each incomingafimsheous) energy replenishment starts a
new subinterval. Each subinterval contains an integer rmurobslots (not necessarily corresponding to equal timervats).
Each slot corresponds to a single user demand being prdsientee APOM. A user is characterized byalue and weight
pair: (v, wy,) for the nt™ user. Thevalueof a user corresponds to the utility gained by serving that whereas theveight
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Fig. 2. lllustration of the problem setup with a sequencerafrgy arrivals{ By, ..., By_1} and service requests from a total that the APOM encounters on
its path.

corresponds to a cost (e.g., the energy consumption, ieeretiuction from the total instantaneous service capadithe
APOM) related to serving that user. The difference in co$tasers may in practice be related to the users having differe
predefined QoS (Quality of Service) requirements, theimaless having different qualities, etc. Differences initytilcould
model different user or service priorities/types, as wslipayments.

The APOM makes a binary decision at each slot, whether teesthiy encountered user or not. Once a decision on a user
has been made, there will be no re-evaluation of the same theeefore the decisions are irreversible. In the casetefést
where energy replenishment rate cannot meet the power deederve all incoming users, the APOM has to pick a proper
subset of users to maximize total utility under energy a@msts in an online fashion.

In the following sections online policies are proposed feteiministic variations of this problem. One practical ivetion
for the deterministic formulation is that, for some energurges, solar energy in particular, the energy harvestlersfiquite
predictable as it exhibits a daily pattefn [9]. In our stastimproblem formulation, energy harvesting is modelle@ aandom
stochastic process using similar assumptions as in reetated literature[[15], [16],[19]. Both deterministic astbchastic
approaches for this system setup bring discrete powerdemedl utilities, which is also consistent with practical cems.
Following knapsack terminology, APOM is characterized tsycapacity which corresponds to the amount of energy stored
in its battery. The objective is to collect the maximum vabwer N users while ensuring that total weight does not exceed
the service capacity at any time. If the total capacity wasicstthe problem would be an online knapsack problem whsch i
known to be NP-hard. The problem with intermittent capacitglenishments is the more difficult online knapsack pnaoble
with dynamic incremental capacity.

Below, we start by explicitly stating the offline problem foulation where a duration of time covering a total 6f> 1
energy replenishmentsV; denotes the arrival time of thé" energy replenishment of valuB;, the first one being at time
Ny = 0, with amountB,. Each time slot corresponds to one user arrival, and the euwftusers observed by timeg; is IV,
with By = 0. The problem is stated in terms of the decision variablgs {0,1},n = {1,2,..., N}'s, which indicate the
decision to either serve the” user ¢, = 1) or pass it up £, = 0).

Problem 1. Deterministic (offline) service policy optimization: Give/ € ZT,0 < N; < No...Nj_; < N; =
N; {vi,wi},i=1,2,...N; By, By,... By_y € R*such thaty /") B; < N, chooser,, € {0,1},¥n € {1,..N} to:

N
Max. Z UnTn (1)
n=1
n Jn
S.t. Z’wﬂ?l < ZBj (2)
1=1 §=0
Vn,1 <n < N, wherej, = argm;a())({]\fj <n}
i>

Note thatj, is the time slot index of the last energy arrival before timehence the constrainl(2) amounts to satisfying
“energy causality”, i.e., at any time, the total energy usadnot exceed the total energy harvested.

Ill. SERVICE PoLICY OF APOM THROUGH A STOCHASTIC KNAPSACK FORMULATION

Now, we will impose a stochastic structure on the problemrdeoto obtain an online algorithm via DP. Supp@sg, w,,) €
S§; x S € RT x RT such that|S; x S3| = K < oo. That is, there are< different types of users (value-weight pairs).
Furthermore, for each slot, a user of typek, 1 < k < K occurs with probabilityp(k), independently from all other slots.
Let {N,, j =1,.n} and{B; € [0, M],j = 1,..N} be positive-valued I[ID random sequences, whife< co. Due to the
finiteness ofM, the total energy stored under any policy at any time is finite

The objective is to maximize an expected total reward ct#@over the time horizon.



Problem 2. Stochastic Service policy optimization: Giveh € ZT,0 < N; < N>...N;_ 1 < N; = N; {v; €
S1,w; € S}, p(k) = Probv; = v(k)andw; = w(k)), ¢ = 1,2,...N, k = 1,2,...K; By,B1,...Bj_1 €
J—1
[0, M] such tha\tzjzO B; <N,
Choose a policyr = [z1,...,2,] € {0,1} to

N
Maximize:E (Z vnxn> 3)

n=1

S.t. Xn:wﬂ?l < iBj (4)
=1 §j=0

Vn,1 <n < N, wherej, = argm;a())({]\fj <n}
3>

A. Optimal Online Policy via Dynamic Programming

Note that feasible policies = [z1,...,z,] belong to the action spad@, 1}V, and further satisfy energy causality, given
in (). For every feasible policy, the remaining energy, at the beginning of slot is given by:

In n—1
€n = E Bj — E T;W;
7=0 =1

recall thatj,, is the time slot index of the last energy arrival up to (anduding) slotn.
As user and energy arrival sequences are |ID, it is straogidrd to see that the state at time slotis captured by
(Vn, wn, en), @ande, evolves as a Markov decision process where the action takehen'” slot, z,,, is:

_ [ 1 (transmi
xn(vnawnaen) — { O (dEfeﬂ (5)
For ease of exposition, we make two other simplifying asdionp. First, supposéB;| = 1 for all j, equivalently, let
energy arrivals be given by an 11D Bernoulli sequed¢g, € {0,1},n =1,..., N} over slots. Seconly, we set costs to unity,

w(k) = 1, for all types of users. Consequently, the feasibility condition reducesyt_, z,, < eg + Zﬁl;ll n-

Let V(en, k) be the objective function of this Markov Decision Probletre £xpectation of the total value collected from
slot n starting with energy levet,, and user typé:, till the end of time horizonV under policyx. A Dynamic Programming
(DP) problem recursion can be written starting from the &isp, namelyN*" slot:

Vx(en, kn) =v(kn),Ven 2 1 (6)
and go backwards using:

Ve, (€ns kn) =v(kn)zy (7)
+E(k’7Q){Vrr+1 (en — w(kn)Tn + Qn, k;L.H)}

For a current usen, expected value till the end of the horizon, after choosmgransmit to the current user (i.e, = 1), is
denoted ad/ (e,, k) whereas deferring that user (i, = 0) is represented a& (e, k). Comparing these quantities, the
optimal expected value may be stated as:
V* ny kn = Vm "y kn
' (€ns kin) Jmax Ve, (en, kn)
= maX{V1(€n,kn)7%(€n,kn)} (8)

Backward induction of DP reveals a threshold based policgrevlihe decision maker adopts a conservative attitude at the
initial slots and behaves more greedily toward the end othitnézon. To illustrate, the APOM will try to conserve its egg
to serve users with higher utility at the beginning. A pseadde for the dynamic programming solution is given in Algfaom
1.

B. Structure of the Optimal Policy

The structure of the optimal policy may be obtained basecheniP relaxation.
1) Existence of threshold:

Lemma 1. For a given k and n, the state defined as expected total reWarce,,, k,,) is super-modular in available energy and
decision pair(e,,, ), that is, for any0 < ey < ey < o0, Vi(e1, kn) + Voleo, kn) > Vo(e1, kn) + Vi(eo, k) for 1 <n < N.



Algorithm 1 DP solution to the problem for finite horizon

fore=0to E do
for k=1to K do
V(en+1,kn+1) = 0 {Initialization steg
end for
end for
for n=Nto1ldo
for e=0to E do
for k=1to K do
if w(kn) > en then
V(en,kn) = E(k/,Q){V;;JA(en +Qn, kil+1)}

else
V(en, kn) = max{E s o) {V,i 1 (en + Qn, Ky 1)} v(kn) + Egr ) {V*(en — w(kn) + Qn, k;, 1 }} {Recursive equatign
end if
return V(en, kn)
end for
end for

end for

Proof: The stated super-modularity corresponds to the statement:
Vi(er, kn) — Vo(er, kn) > Vi(eo, kn) — Vo(eo, kn) 9

In our construction energy harvests are in random incresneht hence there is an integer energy level difference between
e; andeyg. It suffices to prove this statement fer — ep = 1 (it can be easily extended to higher differences by itenatib

the same argument.) Let = ¢y + 1 = e + 1. The equality above can be shown to hold foxK n < N by the following
argument:

‘/l(en =e, kn) - VO(en =e, kn) = U(kn)

K
+ Z p(k')(q(V;H(e, k;erl) = Vip(e+1, k;erl))
k=1
(1 = @) (Vg (e = 1 k) = Vi (e, k) (10)
and,
Vilen =e+ 1, k,) — Vo(en = e+ 1, k) = v(ky)
K
+ Z p(k;ﬁl)Q(VJ—fl(e +1, k;,—l—l) - V:—f—l (e +2, k;+1))
k'=1
+(1 =) (Vi (e, kppq) = Vilpa (e + 1 ki) (11)
By subtracting[(I0) from[{11), a sufficient condition fbi (®) hold vn > 1 becomes:
V(e kn) — Vi(e—1,kn) > Vi(e+ 1,ky) — V' (e, kn) (12)

Then, the condition of[(12) is proved by induction. Firste tbondition is satisfied when = N, that is both sides of the
equation are equal t0. Second, if it is true for some + 1 as in [I3) then it is proved to hold far.

Vr;kJrl(e’ kn+1) - V;H(@ -1 kn—l) > V;Jrl(e +1, kn-l-l) - Vr?Jrl(ev kn-l-l) (13)

We will examine the three cases corresponding 3 energyssfate 1, e,e — 1) and the three optimal decisions;(zq, z3 €
{0,1}) respectively to show whether the inequality given[inl (1d)ds.

Ve e+ 1,kn) = Vay (e, k) — (Vay (e, k) — Vay(e — 1,kn)) <0 (14)
This is proved by adding-V,, (e, k,,) + Vi, (e, k) and =V, (e, k) + Vi, (e, k) to the LHS of the inequality such that:

VIl (8 + 17 kn) - le (8, kn) + VIl (67 kn)
—Vas (€, kn) — (Vi (€,kn) — Vag(e — 1, k)
Vi, (e, kn) + Viy (e, kn) <0 (15)

By optimality of 25 for energy state, V., (e, k) — Vi, (e, k) statement is already smaller than or equd).t&ame property
holds for theV,, (e, k,,) — Va, (e, k) statement. Therefore, we should only consider the remgiteinms. For each possible case



of [z1,z3] € {0,1}2, the inequality in[(Ib) is shown to be satisfied. For examigls, examine the case whete = 1,2, = 1:

Vile+ 1,kn) — V(e  kn) — (Vi(e  kn — Vi(e — 1, ky))

= ZP( ;+1)Q( ;+1(e+17 ;1+1)_V(ea ;L+1)

—Voale k) + V(e — 1,k 0)
(1 =) (Vi (e, k) = Vipa (e — Liky )
—Viale =Lk, ) + V(e =2,k 4) <0 (16)

The above inequality holds since the difference is assumdiktnon increasing in available energy, ). Similar steps may
be followed for all combinations of; and z; where [z, z3] € {0,1}* and give the same result. Hence, the total expected
reward is a super-modular function {a,,, z,). [ |

Theorem 1. The optimal policy is a threshold type policy in the availlehergye,, at each slotn for a userk,, thus there

. ) ) 1 ren > (k)
is a thresholdy defined asx,, (k,) = { 0 :en < mlkn)

Proof: Let {e1, e2,e3} be the available energies at three decision instants satheith< es < e3. Suppose there exists
an optimal policy which chooses to transmit at energy levgland e3 while deferring the user at the energy lewgl This
contradicts Lemma@l 1. Therefore, the crossover fidafier to Transmithappens only once as, is increased (holding all other
parameters constant), i.e. there is a threshold. [ ]

2) Monotonicity of threshold:

Lemma 2. Expected total reward’, (e,, k,,) is super-modular in slot index and decision pair, ,,), thatisV (e,41, knt1)+
‘/O(ena kn) Z %(en+la kn+1) + Vl (ena kn)

Proof: Following similar steps as in the proof of Lemina 1, superntady corresponds to the statement:

Vilent1, knt1) — Vo(ent1, kny1)
Z ‘/1(671, kn) - VO(env kn) (17)

Corollary 1. The threshold function on the available energy to serve & ugék, ) defined in Theoreml 1 is monotonically
non-increasing with slot number.

Proof: Let n > 1 be the first slot index such that the threshold increases frdmn + 1. This means the policy chooses
to transmit to a user of some tygeat n while deferring a user of the same type at siot 1, for the same starting energy
en. By (I4) this policy can be improved by reversing this desishence cannot be optimal. ]

From the analysis above, a monotonic threshold type paighbwn to be optimal. However, the computation of the exact
optimal threshold without loss of generality requires esgtee calculations and is not the focus of this study. Iréstsaboptimal
threshold policies are proposed by exploiting the striectifrthe optimal policy.

C. Suboptimal Solution: Expected Threshold Policy

DP provides an optimal solution for 0/1 dynamic and stodbaatapsack problem with growing capacity; however its
computational complexity increases exponentially wih which is consistent with the NP-hardness of the problenj. [24
this section, a computationally cost- effective suboptipwlicy called Expected Threshold Polici25], [16] will be adopted
for this problem.

First, we define the following bound on the expectation ofrgpelepletion (RHS of[(18)) at slot if the available energy

N—-1

is e,, and expected harvest amount from siotill the end of time horizonV is denoted asz E{Q.|Q7 '} .

N-1 N
ent Y E{QulQTT' > Y E{wnzn} (18)
m=n m=n-+1

After stating a bound on the expected energy consumptian ot . till the end of time horizon in[(18), a computationally
cost effective suboptimal policy called “Expected Thrddhds proposed in[(211) as follows:

1 ey >y
T (knyen) = { 0 e < (19)



where
N N—-1
m=n+1 m=n

As it is seen from[(21) and(22), APOM makes a decision to saruser of typek appearing in slot: (k) if the available
energye at slotn (e,) is greater than or equal to the threshold leygl n,, is stated as the difference between the expected
energy consumption for users with higher value and expestedgy replenishment from slat till the end of horizonN.

As an example, if the weights are all equal to one and harvestegs is IID, then

N N
Z E{wmxm} = Z p(kn)w(ky) = —n+1) Z Drr
m=n+1 m=n+1 =kn+1

N-1
D E{QnlQi '} = (N —n+1)g

so that the expected threshold policy becomes:

1 ren > (k)
xn(kn) = { 0 e, < nn(kn) (21)
where
=kn+1

vn = {1,..., N} and users of typé at each slot, k,, € {1, ..., K} are arranged such that priority of a usey, (w,,) increases
with increasingk,,.

To examine the performance of the expected threshold pinli§ection [Y), two more benchmark heuristics are also ddfine
as follows:

Definition 1. Greedy policy is a policy that serves an encountered usenesdes there is available energy to serve it; that is
z, = 1 iff e, > w,.

Definition 2. Conservative policy is a policy that serves only the bestsclaf user in terms afalue/weight when there is
available energy to serve it, i.e,, = 1 iff v, /w, = maxg=1,  xvi/w, ande, > w,.

D. A Performance Upperbound

An upper-bound performance analysis can be conducteddmnitsj the total expected reward (valuéy for two user type
case (i.e.{v1,w1), (v2,w2)) over a finite horizonN. Vy can be written as:

VN = Z V120 (1) + v22,(2) (23)

wherez,, (k,,) € {0, 1} is the decision whether to serve user typec {1, 2} or defer it, such that, /w; > vy /ws. AlSo note
thatz,, (1) + z,(2) < 1, Vn. Total energy consumption rate should be no greater thanefiienishment rate, therefore,

N N-1
Z w1Zn (1) + woxy,(2) < Z q (24)
=1 n=0
This inequality can be rewritten as:
N N-1
Z:cn( Zq/wg—Zwl/ngn 1) (25)
n=1 n=0 n=1

After substituting [(2b) into[(23):

2

N-1
Vn < (v1 — vowy /we) Z xn(1) Z vaq/wa (26)
n=0



Since the average amount of energy consumed by sengi@igtype 1Is limited by either the average amount of energy harvested

N-1 N
till the end of horizon Q: q) or the average amount of energy reques@ f1w1), the following bound is attained:
n=0 n=1
N N-1 N
> wn(1) <min{ ) q/wr, Y pi} (27)
n=1 n=0 n=1

Therefore, the total expected reward has a performancerdgoumd as follows:

vigN c o a9
Vi < { smin{py, o= o (28)

w1,
Y |y~ )y min(py i} = )

IV. SERVICE PoLIcY oF APOM THROUGH A KNAPSACK FORMULATION OVER DETERMINISTIC MODEL

APOM has to adopt an efficient and fast decision making gyates a new user demand appears. In such problems, if a
well defined threshold could be stated, then the threshaodgdaecision mechanism gives a satisfactory result in tefms
overall performance and computational complexity. Hemee shall mainly look for threshold based schemes which frgva
exhibit experimentally strong performance.

A. An Online Policy with Deterministic Threshold Method

Threshold based decision rules are examined in this seetioere values and weights of the encountered users are cethpa
with a time-varying threshold. In addition to time, the tsineld may also be a function of the fraction of remaining céga
in the battery. To consider the deterministic online knaggaroblem in a threshold based scheme, upper and lower kound
on the user rate, energy requirement and energy harvesilhgevassumed, which are not unrealistic considering jrakt
correspondents to these limitations exist.

The cost efficiencyyalue/weight(v/w), will be the critical decision metric for each user. Thetamaneous threshold is
defined as a monotonic increasing functiorepf= M the fraction of the capacity used up by #ié slot. Following
[23], where an optimal threshold scheme was developed fosthtic capacity 0/1 KP, we restrict attention to the caserah
the value/weight values are upper and lower bounde@hly > 0, i.e. L < > < U, and define the threshold functiorflas
U(z) = (%)zé where L < % <U (29)
where e denotes the natural logarithm. At each sigtthe value/weight value of the upcoming user is compareti wie
threshold¥ (z,,). The threshold based decision rule is the following:

Accept usem provided it does not violate the current remaining knapsasgtacity andv,, /w,, > ¥(z,,).

For a static KP,z,, thus the threshold is monotone nondecreasing, which qunes to being more willing to include
users early on, and being very selectivezgsincreases toward 1. In our problem, the knapsack capacihofsstatic but
gets incremented at arbitrary instants, at arbitrary antsodrhe detailed extension of the threshold function with diptimal
competitive ratio is revealed in Sectibn VIl for the dynaroapacity knapsack problem provided some precondition=riging
the above threshold to the two extreme cases where,

« Complete information about the incremental amounts islavks.
« No information about the increment amounts is available.

the fractionz,, may be defined in two different ways.

Definition 3. Monotone Threshold. Defing,on n = M where B is the total amount of energ$s = By + B, +
... + By_1 collected from all harvests.

As an alternative way to the monotone threshold approachdeiime a “Jumping Threshold” as a piecewise monotone
function of the current fraction in each energy harvestrirge It utilizes the the amount of energy harvested up td timae
instant as the denominator of the fraction.

Definition 4. Jumping Threshold. For each, let J(n) be the time of the last harvest before timeThe fraction of filled

capacity at timen is defined asjumpn = Bojg_:jifg%.

Clearly, this second threshold function is monotone norefesing between harvest instants, and jumps down whenever a
new harvest occurs. As opposed to the latter threshold ihmethich assumes prior knowledge of all harvest amounts ove
the problem horizon, this one is an online algorithm by cargiion.

1The form of this threshold function is found through lineaogramming and shown to achieve an optimal competitiveo riati[23]



A common success metric for a deterministic online algarith its competitive ratio the worst-case ratio of the algorithm’s
performance to the optimal offline solution under the sanptinAn online algorithmA for a user sequence that is a-
competitive satisfies the following:

OPT(v)

— = < aq,
A()
where OPT(v) and A(y) are the values obtained from optimal offline algorithm and firoposed online heuristigl
respectively. Having complete uncertainty in the inpug Heuristic proposed should build solutions with a comipetitatio
better than the worst-case ratio by

where « > 1 (30)

Remark 1. Under the conditionZﬁ;1 Tmw, < By, Monotone Threshold guarantees a competitive ratio no ntoas
In(U/L) + 1 assuming two energy harvest intervals, ife= 2.

If the total amount of energy collected from energy harvésts B, + B; is considered as a static capacity while computing
the fractionzmon,n @s in Definition B, then the competitive ratio of Monotone 8$irold corresponds to the the same constant
competitive ratio which is optimal in the case of online KRhwstatic and presumably high capacity. The proof for Rerffhrk
is given in Sectiof_ VIl since it is mainly an extension of th@@f for online KP with static capacity in_[23] to the dynamic
capacity case. Next, we will propose different thresholdegation methods using different optimization tools, ngngenetic
algorithms and fuzzy logic.

B. Threshold method via Genetic Optimization

Genetic Algorithm (GA) is a widely used search heuristispatalled a metaheuristic, that uses the process of naalegtion
as a model. In the computational science, engineeringnfioionatics, economics, manufacturing, mathematics, iphyasnd
many other fields, this heuristic is utilized for optimizatipurposes to various problems. GA is a widely applied teghn
for optimization and search problems, especially NP-hareksdncluding KPs. Basically, candidate solutions arersistically
selected, recombined, mutated, either eliminated orrretebased on relative fithess; even when the original proiddmsed
upon a deterministic model.

We propose the implementation of this stochastic approadabut deterministic problem with the twist that the knapsack
capacity may also change as solutions evolve toward beties dn time. Thus, generation adaptation and the capacity
incrementation need to be jointly taken into account. TolagRA on a fraction based scheme, a chromosome is chosen
as a vector that defines a threshold for each region of vaheefaction may take. For this purpose, the values that m@nmi
fraction of capacity £) can take are quantized in the following manner: The rang#&aafion (0, 1]) is divided into equal
regions agtits...t1000], Wheret; corresponds to the threshold for regibnThe threshold as the outcome is optimized over a
randomly generated expected user sequences as follows:

1—1 4
1000’ 1000]'
A quantization overl000 interval is quite sufficient, providing an opportunity to esp over a wide range. A number of
chromosomes are randomly generated at the beginning amathheesponding competitive ratios are found through tireefis
function evaluation. The fitness function checks the eneamstraint on the available capacity at each step. In aadidlitiapacity

is updated at each energy replenishment, so is the fraction

The threshold method via genetic optimization provides astant optimized threshold over the randomly generated use
pools and the real time user demands are served using teishthid. The observations on the fraction based method on the
natural selection of the best users over generations peoducertain competitive ratio in the best and the worst cases f
randomly generated parent sequences, provided and discirsSectionn V.

In genetic algorithm, the solution approaches to globaihapin as long as proposed algorithm operates over the acteal u
profile. Since apriori knowledge on the user sequences isavaitable, threshold via GA prevails the result for a expdct
user profile over a precise time interval. To increase theieffcy of the decision mechanism, an adaptive thresholidypis
proposed using rule based optimization in the followingtisec

¥(2) = t;, wherez € | (31)

C. Threshold method via Rule Based Optimization

A connected set of well defined rules, consisting of relat@dables in both the propositions and consequences, catiehan
uncertain knowledge successfully in decision problemth@lgh rule based approaches have been implemented inagigte
resource allocation problems in the literature [8], we hewme across no previous studies on the threshold deteliorinas
this method.

There are two input memberships functions (MF) assignecefme the decision strategy in each possible case for APOM.
Both of the input MFs are defined as trapezoidals of 5 degrBles. output MF is assigned as the desired change in the



TABLE |
MEMBERSHIPRULES OF5 DEGREES FORTHRESHOLDDETERMINATION BELONGING TO THEMEMBERSHIPFUNCTIONS

Energy Harvest Closeness  Capacity Fullngss  ThresHold
Very-Near Very-High Med
Very-Near High Low
Very-Near Med Low
Very-Near Low Very-Low
Very-Near Very-Low Very-Low
Near Very-High High
Near High Med
Near Med Low
Near Low Very-Low
Near Very-Low Very-Low
Med Very-High High

Med High Med

Med Med Med

Med Low Low

Med Very-Low Very-Low
Far Very-High Very-High
Far High High

Far Med High

Far Low Low

Far Very-Low Low
Very-Far Very-High Very-High
Very-Far High Very-High
Very-Far Med High
Very-Far Low Med
Very-Far Very-Low Low

T T T T T T
ery-far far med near very-near

T T T T
0.1 .2 03 0.4 05 0 .7 0.8 0. 1
input variable "Energy-Harvest-Closeness”

Fig. 3. Input membership function of energy harvest closene

threshold, the ultimate trend of which will be used to detesrwhich users to serve eventually. One of the input menhlgers
functions is chosen as the closeness to energy harveshtmstaterms of the number of user arrivals. This parameter is
prominent in real life scenarios since expecting an eneegydst sooner or at a far instant may completely alter adtidme
taken at that slot. Once, the harvest instant gets closercksér, the service provider should adopt a greedy attitices

it would serve as long as its service capacity allows it to Tas metric is chosen to vary betwedn 1] where the values
closer to 1 denotes that an energy arrival is presumed toemappon, presented &ery-Near Similarly, Very-Far stands for
the user arrivals at the beginning of an energy harvestvatevhere the input MF is set to be in the vicinity 0f In addition

to the energy replenishment rate, the fraction of the etlliznergy of available capacity is a critical measure as. vwalls,

the second MF is assigned as the depletion of available grér§POM. The values vary betwedf, 1] interval same as the
first MF function, ranging fronVery-Lowto Very-Highin 5 levels.

The behaviour of the threshold function is determined asvahia Figurel following the well calibrated rules by usingeth
input MFs in Figure§13 and 4 and the output MF in Figuke 5. Omheertiles are tested, the overall performance is increased
using calibrated MF parameters effectively ¥iae-tuning

It should also be noted that the improved performance otfhéisistic is largely related with the enlarged problem disien.
The accuracy of decisions leads to an improved utility médtion performance through proposing a 3D solution to a 2D
problem, obviously at an increased complexity.

Five degree MFs foenergy harvest closeneasid capacity fullnesgrovide sufficient performance as the decision metric
for APOM. The overall threshold system complexity and deciefficiency could be increased via MFs of 7 degree rules.

In Section[\-B, different threshold-based admission maidms are investigated and compared on their performance
regarding the total utility (rate) they provide. Compsttratio analysis is used to test the performance of the emligorithms
over a deterministic model.
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T
very=low low med high very-hig

0 0.1 0.2 03 04 05 0. 0.7 0.8 0.8 1
input variable "Capacity-of-Fullness”

Fig. 4. Input membership function of fraction of capacityifess

T
ery-low low med high very-higl

T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
output variable "Threshold"

Fig. 5. Output membership function of threshold

V. NUMERICAL AND SIMULATION RESULTS
A. Stochastic Service Policy Optimization Related Results

Both optimal and suboptimal policies behave more conseevat the beginning, and become more greedy through the end
of time horizon. As illustrated in Figurés 7 aht 8, the Expdcthreshold Policy performs very close to optimal. Dravkisac
of purely greedy and conservative policies are also evidenthe figures. FigurE] 7 shows that as the efficient users appea
with higher probability, conservative policies outperfothe greedy ones considering the expected total utility.tli@nother
hand, when the inefficient users appear with higher prolbgbgreedy policies are more advantageous than the comtbezv
approach. However, Expected Threshold Policy proposetisnpaper is robust against the variations in user disiobst

In order to investigate more general scenarios, number ef types ) is increased to 5 and simulations have been
conducted on the users with both equal weights (energy déyves in Figurd ® and different weights as in Figlré 10. In
Figure[10, simulations have been conducted for five diffeteser types with cost efficiency (w) ratios given as [10/1, 5/1,
8/4, 5/8, 2/6 1/5] appearing with probabilities [0.3, 0.05615, 0.3, 0.1]. As it can be seen from Figukrés 9 10, Erpect
Threshold Policy performs quite close to the optimal.

Considering the equal weight scenario, the greedy policfopmance is much higher than the conservative one since the
unity weight cost does not put a strain on the capacity caimf. However, the results in Figurel 10 reveals that the@tada
expected threshold policy outperforms the conservaticegraedy policies over user sequences with random weigldts an
cost efficiency ratios.

B. Deterministic Service Policy Optimization Related Rssu

In this section, competitive ratios of the various policasalysed in the previous sections will studied. As a benckma
the offline optimal policy will be used, hence the values oted will be overestimating the competitive ratio with respto
the online optimal for each case. In other words, the cortipetiatios of the algorithms may actually perform bettearthihe
estimates found here.

The simulation results shown in Table$ Il and Ill are obtdifer the case of predicted energy harvests. User efficiency
ratios take uniformly distributed random values within fhéerval 6 = L < 2 < U = 10. The knapsack capacity (energy
available at the start of the horizon) is taken2a80m.J considering one cell for energy harvesting00 Monte Carlo trials
are conducted, generatif@00 user arrivals on each trial. Results illustrated in Tableand [ show that even the worst-
case competitive ratio never exceelds5. Moreover, the results for the monotone threshold funciom consistent with the
worst possible competitive ratio stated in Secfion IV-A. émg the tested algorithms, the rule based threshold metasdhte
strongest performance, achieving the lowest worst caseetiine ratio.

Next, the energy harvest patterns are considered in a malisti® scenario where the overall resource allocatiorblem is
examined ovei 0 energy harvests, assumed to occur in a 24-hour cycle. Aistinct amounts of the harvests are assumed in
this case and assigned arbitrarily to model the potentiatier condition changes and different locations of the APONE
competitive ratio analysis for all of the threshold funatimethods proposed above yield the results shown in the npeaftce
graph11. The worst-case results illustrated in Fifute Y&akthat the Monotone Threshold function and Rule Baseédgfuoid
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Fig. 6. Surface graph of threshold function attained viaeReésed Algorithm described in Section IV-C indicating tiebdéviour of output threshold function
with respect to input membership functions
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Fig. 7. The comparison of the performances for Expecteddyriehreshold Policy, Greedy Policy and Conservative Policy optimal policy when available
energy=5,N = 100, K = 2 for two different user types with efficiency ratios 10 and &gbusers appear with high probability e.g. 0.7)
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Fig. 8. The comparison of the performances for ExpecteddynEhreshold Policy, Greedy Policy and Conservative Polic optimal policy when available
energy=5,N = 100, K = 2 for two different user types with efficiency ratios 10 and (8t users appear with high probability e.g. 0.7)
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Fig. 9. The comparison of the performances for Expected gm&hreshold Policy, Greedy Policy and Conservative Poliith respect to optimal policy
when available energy=5 at the beginning,= 100, K = 5 for five different user types with equal weights

function present closer performance to each other as thevaie=/weight characteristics are more diverse. Howeterrule
based threshold provides the best competitive ratio fosa thstinct user set as the user diversity rafig I,) approaches to
0.9 in the worst-case analysis.

For the average case performance, outputs given in Figuréh&2rule based, monotone and jumping thresholds ensure a
similar competitive ratio but the rule based threshold apphes to the optimal solution as the analysis is conducted &
user sequence of similar characteristics.

VI. CONCLUSION

In this paper, we addressed the online user admission pnotle an Access Point On the Mov®ue to the nature of the
problem the overall model is structured above a knapsadilgmo (KP) with dynamic and incremental capacity as the gnerg
of the access point gets replenished at arbitrary timenesawhile responding to random user demands. We investighé



13

300

optimal by DP
—— greedy

=——— conservative
—&— expected threshold

250

200

150

100

Expected Total Value over 100 slots

50

| |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Harvest Probability (q)

0 i i i

Fig. 10. The comparison of the performances for Expecteddynehreshold Policy, Greedy Policy and Conservative Roliith respect to optimal policy
when available energy=5 at the beginniig,= 100, K = 5 for five different user types with different efficiency (valweight) ratios and different weights

TABLE I
COMPARISON OF COMPETITIVE RATIOS FOR DIFFERENT THRESHOLD GEERATION METHODS FORL000OUSERS AND CAPACITY=200QvJ

Threshold Method Average competitive rafio  Worst compatitatio | Best competitive ratid
Monotone threshold| 1.1084 1.3100 1.0640
Jumping threshold 1.3700 1.7200 1.3500
GA based threshold| 1.1422 1.5102 1.1087
Rule based threshold 1.0362 1.2066 1.0229

problem under two different setups where energy and useabriare modelled stochastically as well as determiraiticThe
optimality and structure of a threshold based solution ®® gtochastic problem was shown, and a computationallydiyen
“Expected Threshold Policy” was shown to well approximéte optimal DP solution. On the deterministic side, we cosrgd
adaptive threshold based policies where a user is admitieslitility to weight ratio exceeds a certain threshold ethimay
be static or dynamic. A competitive ratio was exhibited fananotone threshold for the two-harvest scenario. In aolditd
extended online threshold functions based on previoustitee, threshold functions using Rule Based approach daenetic
Algorithm are also developed.

As far as proposed heuristics are concerned, dynamic progitag and GA approach propose the best solution if the user
statistics are available beforehand. Since we dealt witeldping online user admission mechanism over random uséitgs,
rule based method yields the best performance using thieratdd rules over all possible user sequences. Experihrestdts
demonstrate that the proposed decision methods usingeddiffé¢hreshold functions for the resource allocation problof
APOM are efficient in achieving close to optimal competitiadios in addition to low computational complexity.

VII. APPENDIX

Proof of Theorem 3. When we restrict attention to the case where the value/wemlhes of encountered users are upper and
lower bounded by/, L > 0, i.e. L < > < U, the total amount of energ§ = B, + By + ... + B collected from all harvests

TABLE Il
COMPARISON OF PERFORMANCES FOR DIFFERENT THRESHOLD GENERGN METHODS WITH OPTIMAL OFFLINE SOLUTION FORLO00USERS AND
CAPACITY=2000vJ

Threshold Method Average total value Worst total value Bettl value
Offline optimal soln.| 17599 17167 18050
Monotone threshold| 15880 13374 16647
Jumping threshold 12778 10221 13103

GA based threshold| 15416 11581 16042

Rule based threshold 17003 14524 17163
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Fig. 11. Performance Evaluation of Different Online Thir@shHeuristics vs. Diversity in Users Characteristié§orst Case Competitive Ratio Analysis
Monte Carlo Simulation o000 runs over a Randomly Generated User Sequend¥ ef 1000 Users undet/ = 10 Energy Harvests of Different Amounts
Modelled over 24-Hour with APOM Capacity Constraint 2600 J
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Fig. 12. Performance Evaluation of Different Online Thi@shHeuristics vs. Diversity in Users Characteristiésierage Case Competitive Ratio Analysis
Monte Carlo Simulation 0000 runs over a Randomly Generated User Sequend¥ ef 1000 Users undet/ = 10 Energy Harvests of Different Amounts
Modelled over 24-Hour with APOM Capacity Constraint 200m.J

are considered as if there is a static energy capaéitthen the proof of constant competitive ratio for “Monotofiereshold”
reduces to the proof of competitive ratio for online knapspmblem with static capacity described in_[23]. Followitige
steps given in[[23], for any input sequencesoéifter some time including energy harvests, let the algoriterminate fillingZ
fraction of the total capacity (total amount of energy hatgeuntil that instant). Les and S* denote the set of selected users by
the Monotone Threshold method and the offline optimal allgorirespectively, that is; = 1 if j € S andz} =1 1if j € 5™,

In (32) and [38) the weight and value of the common items ih Bets are assigned to the variablds and V. Then, the
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proof of deterministic competitive ratio is given as follow

SooowEW (32)
jE(SNS*)

> owtv (33)
jE(SNS*)

An upper bound is needed to be defined on the total value ahapslgorithm. Therefore, since all the users to be selebted
the optimal algorithm but not by the Monotone Threshold Atho have value over weight ratios smaller than the thrédho
at that instant and threshold is an increasing function, veeénan upper bound as:

OPT(0) <V + 4(2)(B — W) (34)
OPT(c) _V +(Z)(B—W)
Ao) = V1u(S\5Y (35)

Using the threshold function we may define upper bounds sctdmmon total value paramet&r and remaining total value
of optimal algorithm asl; and V, respectively.

V> ) gzw AW (36)
je(SNS*)

v(S\S) = D Y(z)w; £V (37)
JE(S\S*)

Then the competitive ratio can be found as:
OPT (o) < V+y9(Z)(B-W)

A) = VTus\9Y) (38)
Vi+o(Z)B-W) _Vi+4(2)(B-W)

ViroS\S) - Wi+ (39)

OPT(0) . _W(Z)B_ _ __4(2) o)

A@) T N T wlzwy T Y w(z)A
ics ics
Then, the assumption of encountering very small weights iedpect to the capacity is used aid; is defined as follows:

Azj £ zj41 — zj = w; /B Vj (41)
> iz = [ e (42)
= J J o
c A
:/ Ldz—i—/ Y(z)dz (43)
0 c
_ L (Ue/L)*  ¥(z) (44)

" eln(Ue/L)  In(U/L)+1

Finally, when the obtained result df {44) is substituted tfee denominator of(40), we have a deterministic competitatio
given as:

OPT (o)

i) < In(U/L) + 1 (45)
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